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A B S T R A C T

Models of heterogeneous firms with selection into export market participation generically exhibit aggregate
trade elasticities that vary across country-pairs. Only when heterogeneity is assumed Pareto-distributed
do all elasticities collapse into a unique elasticity, estimable with a gravity equation. This paper provides
a theory-consistent methodology for quantifying country-pair specific aggregate elasticities when moving
away from Pareto, i.e. when gravity does not hold. Combining two firm-level customs datasets for which we
observe French and Chinese individual sales on the same destination market over the 2000–2006 period, we
are able to estimate all the components of the bilateral aggregate elasticity: i) the demand-side parameter
that governs the intensive margin and ii) the supply side parameters that drive the extensive margin. These
components are then used to calculate theoretical predictions of bilateral aggregate elasticities over the
whole set of destinations, and how those elasticities decompose into different margins. Our predictions fit
well with econometric estimates, supporting our view that micro-data is a key element in the quantification
of aggregate trade elasticities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The response of trade flows to a change in trade costs, the
aggregate trade elasticity, is a central element in any evaluation of
the welfare impacts of trade liberalization. Arkolakis et al. (2012)
recently showed that this parameter, let us call it e for the rest of the
paper, is actually one of the (only) two sufficient statistics needed
to calculate Gains From Trade (GFT) under a surprisingly large set of
alternative modeling assumptions. Measuring those elasticities has
therefore been the topic of a long-standing literature in international
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economics. The most common practice (and the one recommended
by Arkolakis et al., 2012) is to estimate this elasticity in a macro-level
bilateral trade equation referred to as structural gravity in the lit-
erature following the initial impulse by Anderson and van Wincoop
(2003). In order for this estimate of e to be relevant for a particular
experiment of trade liberalization, it is crucial for this bilateral trade
equation to be correctly specified as a structural gravity model with,
in particular, a unique elasticity to be estimated across country pairs.

Our starting point is that the model of heterogeneous firms with
selection into export market participation (Melitz, 2003) will in gen-
eral exhibit a bilateral-specific aggregate trade elasticity, i.e. an eni,
which applies to each country pair, where i denotes the origin and
n the destination of the flow. Only when heterogeneity is assumed
Pareto-distributed1 do all eni collapse to a single e. Under any other
(commonly-used) distributional assumption, obtaining an estimate
of the aggregate trade elasticity from a macro-level bilateral trade

1 Unless otherwise specified, Pareto is understood here as the unbounded version
used by most of the literature. See Helpman et al. (2008) and Melitz and Redding
(2015) for results with the bounded version, where the trade elasticity recovers a
bilateral dimension.
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equation becomes problematic: first because a whole set of eni has
to be estimated, and second because structural gravity does not
hold anymore. We argue that in this case quantifying trade elastic-
ities at the aggregate level makes it necessary to use micro-level
information. To this purpose, we combine sales of French and Chi-
nese exporters in many destination-product combinations for which
we also observe the relevant tariff applied. We propose a theory-
consistent methodology using this firm-level export data for quan-
tifying all the components of the bilateral aggregate trade elasticity:
i) the demand-side parameter that governs the intensive margin
and ii) the supply side parameters that drive the extensive margin.
These components are then assembled under theoretical guidance
to calculate the bilateral aggregate elasticities over the whole set of
destinations.

Taking into account country pair heterogeneity in aggregate trade
elasticities is crucial for quantifying the expected impact of vari-
ous trade policy experiments.2 Consider the example of envisioned
Transatlantic or Transpacific trade agreements (TTIP or TPP). Under
the simplifying assumption of a unique elasticity, whether the trade
liberalization takes place with a proximate vs distant, large vs small
economy, is irrelevant in terms of trade-promoting effect or welfare
gains calculations. By contrast, our results suggest that the relevant
eni should be smaller (in absolute value) when trade liberalization
concerns country-pairs where the volume of bilateral trade is already
large. Regarding welfare, Head et al. (2014) and Melitz and Redding
(2015) have shown theoretically that the GFT can be substantially
mis-estimated if one assumes a constant trade elasticity when the
“true” elasticity is variable (the margin of error can exceed 100% in
both papers). The expected changes in trade patterns and welfare
effects of agreements such as TTIP or TPP will therefore be different
compared to the unique elasticity case. One of the main objectives
of our paper is to quantify how wrong can one be when making pre-
dictions based on a constant trade elasticity assumption. Naturally,
this point also applies to the case of potential breakups of existing
agreements such as the EU or NAFTA.

Our approach maintains the traditional CES (s) demand system
combined with monopolistic competition. It features several steps
that are structured around the following decomposition of the aggre-
gate trade elasticity into the sum of the intensive margin and the
(weighted) extensive margin:

eni = 1 − s︸ ︷︷ ︸
intensive margin

+
1

x̄ni/xMINni︸ ︷︷ ︸
mean-to-min

× d ln Nni

d ln tni︸ ︷︷ ︸
extensive margin

. (1)

The weight is the inverse of the mean-to-min ratio, our observable
measuring the dispersion of firm-level performance, that is defined
as the ratio of average to minimum sales across markets. As the
market gets easier, the model predicts a larger presence of weak
firms, which augments productivity dispersion, captured by x̄ni/xMINni .
This lowers the weight of the extensive margin in the overall trade
elasticity, which is intuitive: in extremely easy markets, all poten-
tial exporters should be active and the extensive margin of a small
change in trade costs should be close to 0. When assuming Pareto
with shape parameter h, the last part of the elasticity reduces to s −
1−h, and the overall elasticity becomes constant and reflects only the
parameter controlling dispersion in the distribution of productivity:
eP

ni = eP = −h (Chaney, 2008). Without the Pareto assumption, one

2 Imbs and Méjean (2015) and Ossa (2015) recently argued that another source of
heterogeneity, the cross-sectoral one, raises important aggregation issues that mat-
ter for aggregate outcomes of trade liberalization. We abstract from this particular
kind of aggregation issue (which would reinforce the importance of heterogeneity for
aggregate outcomes) in our paper and omit cross-sectoral variation in e until Section 6
where we present industry-level estimates and use those to show that both demand
and supply side determinants enter aggregate elasticities.

needs to calculate the two components of the aggregate elasticity
(Eq. (1)). We do so in two steps.

Our first step aims to estimate the demand side parameter s

using firm-level exports. Since protection is imposed on all firms
from a given origin, higher demand and lower protection are not
separately identifiable when using only one exporting country. With
CES, firms are all faced with the same aggregate demand conditions.
Thus, considering a second country of origin enables to isolate the
effects of trade policy, if the latter is discriminatory. We therefore
combine shipments by French and Chinese exporters to destinations
that confront those firms with different levels of tariffs. Our setup
yields a firm-level gravity equation which raises serious estimation
challenges. The main issue is the combination of a selection bias
(inherent in any firm-level estimation of the Melitz (2003) model)
with a very large set of fixed effects to be included in the regression.
We use adapted versions of three estimators that have been pro-
posed in the literature to deal with different aspects of the problem.
Those three methods are evaluated with Monte Carlo simulations
of our theoretical setup, before being implemented on our data.
Our preferred estimates of the firm-level trade elasticity imply an
average value of (1 − ŝ) around −4.

Our second and main step applies Eq. (1) and combines the esti-
mate of the firm-level elasticity (1 − ŝ) with the central supply side
parameter—reflecting dispersion in the distribution of productivity—
to obtain theoretical predictions of the aggregate elasticities of total
export, number of exporters and average exports per firm to each
destination. Those predictions (one elasticity for each exporter-
importer combination) require knowledge of the bilateral export
productivity cutoff under which firms find exports to be unprofitable.
We make use of the mean-to-min ratio to reveal those cutoffs. A
key element of our procedure is the calibration of the productivity
distribution. As an alternative to Pareto we consider the log-normal
distribution that fits the micro-data on firm-level sales very well.3

A related contribution of our paper is to discriminate between
Pareto and log-normal as potential distributions for the underlying
firm-level heterogeneity, suggesting that log-normal does a better
job at matching the non-unique response of exports to changes in
trade costs. Two pieces of evidence in that direction are provided.
The first provides direct evidence that aggregate trade elasticities are
non-constant across country pairs. The second is a strong correlation
across industries between firm-level and aggregate elasticities—at
odds with the prediction of a null correlation under Pareto. We
also find that the heterogeneity in trade elasticities is quantitatively
important: Although the average of bilateral elasticities is quite well
approximated by a standard gravity model constraining the esti-
mated parameter to be constant, deviations from this average level
can be large. We show that under log-normal the eni are larger
(in absolute value) for pairs with low volumes of trade. Hence the
trade-promoting impact of liberalization is expected to be larger for
this kind of trade partners. For Chinese exports, assuming a unique
elasticity would underestimate the trade impact of a tariff liberaliza-
tion by about 25% for countries with initially very small trade flows
(Somalia, Chad or Azerbaijan for instance). By contrast, the error
would be to overestimate by around 20% the exports created when
the United States or Japan reduce their trade costs.

The next section relates our paper to the existing literature.
Section 3 describes our model and empirical strategy. Section 4
deals with the estimation challenges of the firm-level gravity regres-
sions and reports the estimates of the intensive margin elasticity.

3 Head et al. (2014) provide evidence and references for several micro-level data
sets that individual sales are much better approximated by a log-normal distribution
when the entire distribution is considered (without left-tail truncation). Freund and
Pierola (2015) is a recent example showing, for all of the 32 countries used, very large
deviations from Pareto if the data is not vastly truncated to focus on the very largest
firms.
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Section 5 computes micro-based theoretical predictions of the bilat-
eral aggregate elasticities and compares them to their gravity esti-
mates obtained with Chinese and French aggregate export data.
Section 6 investigates the implications of cross-industry heterogene-
ity for our analysis and provides an additional piece of evidence in
favor of non-constant aggregate trade elasticities. The final section
concludes.

2. Related literature

In the empirical literature estimating trade elasticities, differ-
ent approaches and proxies for trade costs have been used, with
an almost exclusive focus on aggregate country or industry-level
data. The gravity approach to estimating those elasticities mostly
uses tariff data to estimate bilateral responses to variation in applied
tariff levels. Most of the time, identification is based on the cross-
section of country pairs, with origin and destination determinants
being controlled through fixed effects (Hummels, 1999; Baier and
Bergstrand, 2001; Head and Ries, 2001; Romalis, 2007; Caliendo and
Parro, 2015 for instance). A related approach consists in using the
fact that most foundations of gravity predict the same coefficient
on trade costs and domestic cost shifters to estimate that elastic-
ity from the effect on bilateral trade of exporter-specific changes in
productivity, export prices or exchange rates. Costinot et al. (2012)
use industry-level data for OECD countries, and obtains a preferred
elasticity of −6.53 relying on producer prices of the exporter as
the identifying variable.4 Our paper has consequences for how to
interpret those numbers in terms of underlying structural param-
eters. With a homogeneous firms model of the Krugman (1980)
type in mind, the estimated trade elasticity turns out to reveal a
demand-side parameter only, 1 − s (this is also the case with Arm-
ington differentiation and perfect competition as in Anderson and
van Wincoop, 2003). When instead considering heterogeneous firms
à la Melitz (2003), the literature has proposed that the aggregate
trade elasticity is driven solely by a supply-side parameter describ-
ing the dispersion of the underlying distribution of firm productivity.
This result has been shown with several demand systems (CES by
Chaney (2008), linear by Melitz and Ottaviano (2008), translog by
Arkolakis et al. (2010) for instance), but relies critically on the main-
tained assumption of a Pareto distribution. The trade elasticity then
provides an estimate of the dispersion parameter of the Pareto dis-
tribution for firm productivity, h.5 We show here that both existing
interpretations of the estimated elasticities are too extreme: When
the Pareto assumption is relaxed, the aggregate trade elasticity is a
mix of demand and supply parameters.

A small set of papers estimate the intensive margin elasticity at
the exporter level. Berman et al. (2012) present estimates of the trade
elasticity with respect to real exchange rate variations across coun-
tries and over time using firm-level data from France. Fitzgerald and
Haller (2015) use firm-level data from Ireland, real exchange rate and
weighted average firm-level applied tariffs as price shifters to esti-
mate the trade elasticity. The results for the impact of real exchange
rate on firms’ export sales are of a similar magnitude, around 0.8 to 1.

4 Other methodologies (also used for aggregate elasticities) use identification via
heteroskedasticity in bilateral flows, and have been developed by Feenstra (1994)
and applied widely by Broda and Weinstein (2006) and Imbs and Méjean (2015). Yet,
another alternative is to proxy trade costs using retail price gaps and their impact on
trade volumes, as proposed by Eaton and Kortum (2002) and extended by Simonovska
and Waugh (2011).

5 This result of a constant trade elasticity reflecting the Pareto shape holds when
maintaining the CES demand system but making other improvements to the model
such as heterogeneous marketing and/or fixed export costs (Arkolakis, 2010; Eaton
et al., 2011). In the Ricardian setup of Eaton and Kortum (2002), the trade
elasticity is also a (constant) supply side parameter reflecting heterogeneity, but this
heterogeneity takes place at the national level, and reflects the scope for comparative
advantage.

Regarding tariffs, Fitzgerald and Haller (2015) construct a firm-level
destination-year tariff as the weighted average of the applied tariffs
at the product-destination-year level imposed on the firm’s products,
using as weights the share of a product in firm total production. They
find a tariff elasticity ranging widely from −1.7 to −24 in their base-
line table. The preferred estimate of Berthou and Fontagné (2016),
who use the response of the largest French exporters in the United
States to the levels of applied tariffs is −2.5. We depart from those
papers by using an alternative methodology to identify the trade
elasticity with respect to applied tariffs; i.e. the differential treat-
ment of exporters from two distinct countries (France and China) in
a set of product-destination markets. We also describe thoroughly
the estimation challenges involved in firm-level gravity regressions
and provide the first rigorous evaluation of the alternative estimators
available with Monte Carlo simulations using the canonical Melitz
(2003) model as a Data Generating Process (DGP).

Our paper also relates to several recent papers studying patterns
and consequences of heterogeneity in trade elasticities. Berman et al.
(2012) and Gopinath and Neiman (2014) find that in order to predict
correctly the aggregate patterns of trade adjustments to price shocks,
one has to take into account firm-level heterogeneity with the use
of micro-data. In both papers, heterogeneity matters because firms
have different individual responses in export and/or import behavior.
In particular, both papers find that the firm-level elasticity depends
negatively on the size of the firm (because of variable markups). Our
paper also finds that measuring aggregate trade responses requires
usage of firm-level data. It is however for a different reason: In
our case, heterogeneity in aggregate trade elasticities simply origi-
nates in a departure from the common assumption that productive
efficiency is Pareto-distributed.6 While we do recognize that trade
elasticities might differ across firms because of variable markups,
our paper shows that this is not required to ensure that heterogene-
ity matters for the aggregate economy and investigates a different,
complementary, channel.7

We also contribute to the literature studying the importance
of the distributional assumption for firm heterogeneity for trade
patterns, trade elasticities and welfare. Head et al. (2014), Yang
(2014), Melitz and Redding (2015) and Feenstra (2013) have recently
argued that the simple gains from trade formula proposed by
Arkolakis et al. (2012) rely crucially on the Pareto assumption, which
mutes important channels of gains in the heterogenous firms case.
Barba Navaretti et al. (2015) present gravity-based evidence that the
exporting country fixed effects depends on characteristics of firms’
distribution that go beyond the simple mean productivity, a fea-
ture incompatible with the usually specified Pareto heterogeneity.
Fernandes et al. (2015) use customs data for numerous developing
countries to show that a decomposition of total bilateral exports
into intensive and extensive margins exhibits an important role for
the former, with patterns consistent with log-normally distributed
heterogeneity and incompatible with (unbounded) Pareto. The alter-
natives to Pareto considered to date in welfare gains quantification

6 Yet another alternative source of bilateral heterogeneity in the trade elastic-
ity could be a composition effect, coming from aggregating products with different
underlying elasticities, or comparing pairs with different country characteristics. Our
empirical analysis showing heterogeneous elasticities at the aggregate level is based
on a ratio approach that conditions on the two exporting countries having the same
set of destination-product combinations.

7 A further interesting result is that heterogeneous firm-level elasticities do not
guarantee variable bilateral aggregate trade elasticities. Melitz and Ottaviano (2008)
and Berman et al. (2012) are two examples of models with variable markups that yield
heterogeneity in firm-level response to trade costs. However, in both cases, when pro-
ductivity is assumed Pareto-distributed, the bilateral aggregate trade elasticity turns
out to be a constant only related to the Pareto shape parameter. Introducing variable
markups in the Pareto context therefore is not sufficient to generate the data patterns
we uncover here.
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exercises are i) the bounded Pareto by Helpman et al. (2008), Melitz
and Redding (2015) and Feenstra (2013), ii) the log-normal by Head
et al. (2014), Fernandes et al. (2015) and Yang (2014), and iii) a
mixture of Pareto and log-normal in Nigai (2017). A key simplify-
ing feature of Pareto is to yield a constant trade elasticity, which
is not the case for alternative distributions. Helpman et al. (2008),
Novy (2013) and Spearot (2013) have produced empirical evidence
showing substantial variation in the trade cost elasticity across coun-
try pairs. Our contribution to that literature is to use the estimated
demand and supply-side parameters to construct predicted bilateral
elasticities for aggregate flows under the log-normal assumption,
and compare their first moments to gravity-based estimates. It
should be noted that there are other ways to generate bilateral
trade elasticities. The most obvious is to depart from the simple CES
demand system. Novy (2013) builds on Feenstra (2003), using the
translog demand system with homogeneous firms to obtain variable
trade elasticities. Spearot (2013) obtains country-pair specific trade
elasticities motivated by the Melitz and Ottaviano (2008) model,
which combines firm heterogeneity with a linear demand system.
Atkeson and Burstein (2008) maintain CES demand, generating het-
erogeneity in elasticities through oligopoly. We choose here to keep
the change with respect to the benchmark Melitz/Chaney frame-
work to a minimal extent, keeping CES and monopolistic competi-
tion, while changing only the distributional assumption, comparing
Pareto to log-normal.8

3. Firm-level and aggregate-level trade elasticities: theory

We use the multi-country one-sector version of the Melitz (2003)
theoretical framework. Country i hosts a set of heterogeneous firms
facing a constant price elasticity (CES utility combined with iceberg
costs) and contemplating exports to several destinations indexed by
subscript n. In this setup, firm-level export value x depends upon
the firm-specific unit input requirement (a), wages at home (wi),
and real expenditure in n, An ≡ XnPs−1

n , with Pn the ideal CES price
index relevant for sales in n. An is a measure of “attractiveness” of
market n (expenditure discounted by the degree of competition in
this market). There are trade costs associated with reaching market
n, consisting of an observable iceberg-type part (tni), and a shock
that affects firms differently on each market, bni(a).9 Monopolis-
tic competition ensures a complete pass-through of trade costs into
delivered prices, such that firm-level sales are

xni(a) =
(

s

s − 1

)1−s

[awitnibni(a)]1−sAn. (2)

The firm-level trade elasticity, i.e. the individual reaction of xni to a
change in observable trade costs, is 1 − s .

In order to obtain the aggregate trade elasticity, we start by sum-
ming, for each country pair, the sales Eq. (2) across all active firms:

Xni = Vni ×
(

s

s − 1

)1−s

(witni)
1−sAnMe

i , (3)

8 Relying on the same approach (CES and monopolistic competition), Helpman et
al. (2008) assume bounded Pareto to obtain bilateral trade elasticities that vary across
country pairs. They estimate the distance trade elasticity at the aggregate level, while
in this paper, we estimate directly the price elasticity using tariff data and we use
firm-level information.

9 An example of such unobservable term would be the presence of workers from
country n in firm a, that would increase the internal knowledge on how to reach
consumers in n, and therefore reduce trade costs for that specific company in that par-
ticular market (b being a mnemonic for barrier to trade). Note that this type of random
trade cost shock is isomorphic to assuming a firm-destination demand shock in this
CES-monopolistic competition model.

where Me
i is the mass of entrants and Vni is a term which denotes

a cost-performance index of exporters located in country i and
selling in n. This index, introduced by Helpman et al. (2008), is
defined as

Vni ≡
∫ a∗

ni

0
a1−sg(a)da, (4)

where a ≡ a × b(a) corresponds to the unitary labor requirement
rescaled by the firm-destination shock and g(.) denotes its PDF (with
a corresponding CDF denoted by G(.)). In Eq. (4), a∗

ni is the rescaled
labor requirement of the firm that just breaks even and therefore
exports to market n. The solution for this cutoff firm is the cost
satisfying the zero profit condition, i.e., xni(a∗

ni) = swi fn, where fn is
the fixed export cost in each destination n. Using Eq. (2), this cutoff
is characterized by

a∗
ni =

s − 1
s

1

tni f 1/(s−1)
n

(
An

sws
i

) 1
s−1

. (5)

We are interested in the (partial) elasticity of aggregate trade value
with-respect to variable trade costs, tni. Partial means here holding
constant origin-specific and destination-specific terms (income and
price indices) as in Arkolakis et al. (2012) and Melitz and Redding
(2015).10 Using Eq. (3), we obtain the bilateral aggregate trade
elasticity:

eni ≡ d ln Xni

d ln tni
= 1 − s − cni, (6)

which uses the fact that d ln a∗
ni/d ln tni = −1. The cni term, intro-

duced by Arkolakis et al. (2012), describes how Vni varies with an
increase in the cutoff cost a∗

ni, that is an easier access of market
n for firms in i:

cni ≡ d ln Vni

d ln a∗
ni

=
a∗2−s

ni g
(
a∗

ni

)
Vni

. (7)

Eqs. (6) and (7) show that the aggregate trade elasticity should,
in general, not be constant across country pairs. They also make
it clear that the aggregate elasticity is a combination of the firm-
level trade elasticity, 1 − s , and the contribution to total export
changes due to entry and exit of firms into the export market,
cni.

In order to evaluate eni, combining Eq. (7) with Eq. (4) reveals that
we need to know the value of bilateral cutoffs a∗

ni. In order to obtain
those, we define the following expression

H(a∗
ni) ≡ 1

a∗1−s
ni

∫ a∗
ni

0
a1−s g(a)

G
(
a∗

ni

) da =
Vni

a∗1−s
ni G

(
a∗

ni

) , (8)

a monotonic, invertible function with a parametrization that is
tightly linked to the distributional assumptions retained for G(.) (see
Eq. (20) in Section 5.1). In this model, H(.) has a straightforward
economic interpretation. It is the ratio of average over minimum per-
formance (measured as a*1−s ) of firms located in i and exporting to
n. Using Eqs. (2) and (3) reveals that this ratio also corresponds to the
observed mean-to-min ratio of sales:

H(a∗
ni) =

x̄ni

xni
(
a∗

ni

) =
x̄ni

xMINni
. (9)

10 In practical terms, the use of importer and exporter fixed effects in gravity
regressions (the main source of estimates of the aggregate elasticity) holds wi ,
Me

i and An constant when estimating Eq. (3).
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In firm-level export data sets, the ratio of average to minimum trade
flows by firm in each destination country n is an observable. Using
Eq. (9), one can reveal â∗

ni, the predicted value of the export cutoff for
i firms exporting to n as a function of the mean-to-min ratio of sales
in each destination market:

â∗
ni = H−1

(
x̄ni

xMINni

)
. (10)

Equipped with the bilateral cutoff, we use Eqs. (6) to (9) to quantify
the bilateral aggregate trade elasticity

eni = 1 − ŝ − xMINni

x̄n,i
× â∗

nig
(
â∗

ni

)
G

(
â∗

ni

) , (11)

where (1 − ŝ) is obtained from the firm-level export equation (see
Section 4). We also calculate two other aggregate elasticities: the
elasticity of the number of exporters Nni (the so-called extensive
margin) and the elasticity of average exports per firm x̄ni. The num-
ber of active exporters is closely related to the cutoff since Nni =
Me

i × G
(
a∗

ni

)
, where Me

i represents the mass of entrants. Differentiat-
ing and using Eq. (11) we can calculate the bilateral extensive margin
of trade

d ln Nni

d ln tni
= − â∗

nig
(
â∗

ni

)
G

(
â∗

ni

) . (12)

From the accounting identity Xni ≡ Nni × x̄ni, we obtain the (partial)
elasticity of average exports per firm to trade simply as the differ-
ence between the predicted aggregate elasticity, Eq. (11) and the
predicted extensive margins, Eq. (12):

d ln x̄ni

d ln tni
= eni − d ln Nni

d ln tni
= 1 − ŝ − â∗

nig
(
â∗

ni

)
G

(
â∗

ni

) (
xMINni

x̄n,i
− 1

)
. (13)

Combining Eqs. (11) and (12), we can re-express aggregate elastici-
ties as a function of the intensive and extensive margins and of the
mean-to-min ratio:

eni = 1 − ŝ︸ ︷︷ ︸
intensive margin

+

weighted extensive margin︷ ︸︸ ︷
1

x̄ni/xMINni︸ ︷︷ ︸
mean-to-min

× d ln Nni

d ln tni︸ ︷︷ ︸
extensive margin

, (14)

which is Eq. (1) presented in the Introduction 1. This decomposition
shows that the aggregate trade elasticity is the sum of the inten-
sive margin and of the (weighted) extensive margin. The weight on
the extensive margin depends only on the mean-to-min ratio, an
observable measuring the dispersion of relative firm performance
(H(a∗

ni) in the model). Intuitively, the weight of the extensive mar-
gin should be decreasing when the market gets easier. Indeed easy
markets have higher rates of entry, G(a∗), and therefore increasing
presence of weaker firms which augments dispersion measured as
H

(
a∗

ni

)
. The marginal entrant in an easy market will therefore have

less influence on aggregate exports, a smaller impact of the exten-
sive margin. In the limit, the weight of the extensive margin becomes
negligible and the whole of the aggregate elasticity is due to the
intensive margin/demand parameter. In the (unbounded) Pareto case
however, this mechanism is not operational since H

(
a∗

ni

)
and there-

fore the weight of the extensive margin is constant. In Section 5,
we implement our method with both Pareto-distributed a as well as
with log-normally-distributed a (which yields a varying dispersion
of sales across destinations).

There are two major elements needed for the practical implemen-
tation of Eq. (14). First, we need to obtain an estimate of 1 − ŝ , the

parameter relevant in the firm-level trade elasticity. This is the topic of
Section 4. Second, we need to measure the mean-to-min ratio, H(a∗

ni),
in the weighted extensive margin that add to the firm-level elastic-
ity to yield the response of total trade to a change in trade costs. This
is done in Section 5. Our framework until now has been silent about
the product/sector dimension. However, our data (export values and
tariffs notably) come with product information, and it is possible that
different products (we index those with p) are characterized by differ-
ent values of the demand elasticity s and/or of the dispersion of firm
performance, H

(
a∗

ni

)
. The composition effects coming from such dis-

persion in sectoral characteristics has been well documented in the
recent work by Imbs and Méjean (2015) and Ossa (2015) for instance.
We want to first present results that abstract from this dimension and
focus on the new source of bilateral heterogeneity we propose: the
one coming “purely” from distributional assumptions. In Sections 4
and 5, we therefore abstract from cross-sectoral heterogeneity in s

and in H
(
a∗

ni

)
. Those should be understood as averages of the under-

lying sectoral values, which we obtain by pooling over sectors. This
offers the advantage of compactness in the presentation of results.
In Section 6, we return to that sectoral issue and let all structural
parameters and observables take a different value across sectors in
our computation of firm-level and aggregate elasticities.

4. Estimation of the firm-level trade elasticity

4.1. Estimation challenges

Three serious methodological challenges arise when estimating
the firm-level response of export values to variation in tariffs while
keeping a close link to theory.

4.1.1. The need for multiple origins
The first challenge is to separate the effect of trade costs from

destination fixed effects. At this stage, it is useful to account for
the product (p) dimension for which we observe both the value
exported by the firm, xp

ni(a), and the bilateral tariff rate tp
ni(a). Trade

costs include both tariffs and other trade costs (distance Dni for
instance), and we assume the standard functional form such that
t

p
ni =

(
1 + tp

ni

)
Dd

ni. From now on, we will use the term “market”
to designate a product-destination combination. Taking logs of the

demand Eq. (2), where 4
p
ni(a) ≡

(
bp

ni(a)
)1−s

is our unobservable
firm-market error term, a “firm-level gravity” equation is obtained:

ln xp
ni(a) =(1− s) ln

(
s

s − 1

)
+ (1 − s) ln(awi)+ (1 − s) ln

(
1 + tp

ni

)
+ (1 − s)d ln Dni + ln Ap

n + ln 4
p
ni(a). (15)

The objective is to estimate 1 −s out of the impact of tariffs on firm-
level sales. At this stage of the paper, as discussed above, we consider
a unique s , which can be interpreted as an average of elasticities that
might vary across products. We will come back to industry-specific
elasticities in Section 6. In the gravity literature, it has become com-
mon practice to capture Ap

n (a complex construction, that depends
non-linearly upon s) with market fixed effects. This is however not
applicable if the data set at hand covers only one origin country,
since Ap

n and t
p
n would then vary across the same dimensions.11 To

11 Most if not all papers estimating firm-level gravity rely on only one source of
export flows, while still estimating the impact of exchange rate (Berman et al., 2012),
tariffs (Berthou and Fontagné, 2016) or both (Fitzgerald and Haller, 2015). The identi-
fication in those papers then comes from another dimension, usually time. However,
this strategy requires making the assumption that XnPs−1

n does not vary over time
when tn does. This is inconsistent with a theory where trade costs enter the price
index. Also the time dimension of variance in tariffs might be problematic since
Fitzgerald and Haller (2015) note that the changes in tariffs over time are small relative
to the cross-sectional variations.
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remain theory-consistent, one therefore needs to use at least two
sets of exporters, based in countries that face different levels of tar-
iffs applied by n. We do combine firm-level customs data for France
and China (i = [FR, CN]), where the value of export flows is available
at the firm–HS6–destination level in each year. We measure bilateral
tariffs tp

ni using WITS at the HS6–destination country level in each
year. Proxies for Dni include distance, contiguity, colonial linkage
and common language all obtained from the CEPII gravity database.
Section 4.2 gives more detail about each of those data sources.

4.1.2. The fixed effects curse
The second challenge relates to the number of fixed effects to

be estimated. In addition to the market dimension (Ap
n), we need a

set of fixed effects at the firm level to capture marginal costs (awi)
(and more generally all other unobservable firm-level determinants
of export performance, such as quality of products exported, man-
agerial capabilities. . . ). Since there are tens of thousands of exporters
in each origin country and several hundred thousand destination–
product combinations, the Least Square Dummy Variable–brute
force-approach is not feasible. There are two alternative imple-
mentable solutions that we consider. The first solution is to estimate
Eq. (15) directly using the high-dimensional procedure that was
developed by labor economists to deal with the very large number of
fixed effects implied by employer–employee data. 12

ln xp
ni(a) = FEa

i +FEp
n +(1−s) ln(1+tp

ni)+(1−s)d ln Dni +ln 4
p
ni(a).

(16)

We call this approach two-way fixed effects procedure, 2WFE, since
we have two dimensions of unobserved heterogeneity to be con-
trolled for (i.e. firm fixed effects FEa

i and market fixed effects FEp
n).

The second solution is a ratio-type estimation inspired by Hallak
(2006), Romalis (2007), Head et al. (2010), and Caliendo and Parro
(2015) that removes observable and unobservable determinants for
both firm-level and destination factors. This method uses four indi-
vidual export flows to calculate ratios of ratios: an approach referred
to as Tetrads from now on. Consider a given French firm j and a
Chinese firm � exporting to both n and a reference country k. The
Independence of Irrelevant Alternatives (IIA) property of the CES
demand system allows to manipulate Eq. (2) to write the following
Tetrad:

xp
n(aj,FR )/xp

k(aj,FR )

xp
n(a

�,CN )/xp
k(a

�,CN )
=

(
tp

nFR
/tp

kFR

t
p
nCN/tp

kCN

)1−s

× 4
p
n(aj,FR )/4p

k(aj,FR )

4
p
n(a

�,CN )/4p
k(a

�,CN )
. (17)

Denoting tetradic terms with a ∼ symbol, one can re-write Eq. (17) as
an estimable equation

ln x̃p
{j,n,k} = (1 − s) ln

˜(
1 + tp

{n,k}
)

+ (1 − s)d ln D̃{n,k} + ln 4̃
p
{j,n,k}. (18)

This approach involves a linear regression of log “tetraded” flows on
log “tetraded” trade costs and does not require the estimation of any
fixed effect. This method is therefore very simple computationally. It
also lends itself easily to graphical analysis and will finally provide a
natural test of non-constant aggregate elasticities, which we conduct
in Section 5.3.

4.1.3. Firm-level zeroes (selection bias)
The third challenge is to account for the selection of firms into dif-

ferent export markets. Assuming that fixed export costs vary across

12 The fastest procedure to date available in Stata, reghdfe, has been developed by
Sergio Correia building on Guimarães and Portugal (2010).

markets and are paid using labor of the origin country, profits in
this setup are given by xp

ni(a)/s − wi f p
n . From Eq. (15), we see that

a firm with a low cost (awi) can afford having a low draw on 4
p
ni(a)

and still export profitably to n. The same logic applies for large (high
Ap

n), and easy to reach (low t
p
ni) markets. Concerning our variable of

interest, higher tariff observations will be associated with firms hav-
ing drawn higher 4p

ni(a), thus biasing downwards our estimate of the
trade elasticity. The solution to this selection bias is not trivial in our
case where a large set of fixed effects is included. Although we are
unaware of a “perfect” estimator, we propose three alternative meth-
ods, that we confront to Monte Carlo evidence of a simulated version
of the model.

First, one can focus the regressions on firms that have such a large
productivity that their idiosyncratic destination shock is of second
order. Inspired by Mulligan and Rubinstein (2008), Paravisini et al.
(2015) and Fitzgerald and Haller (2015), we concentrate the analysis
on large firms that serve almost all markets. This requires to decide
on a variable likely to predict small levels of selection. Paravisini et
al. (2015) use firm-level measures of total exports and credit, while
Fitzgerald and Haller (2015) use a threshold of firm-level employ-
ment. We implement this approach with our data by restricting the
sample to the largest exporter in each origin-product. Because this
approach can accommodate our two-way fixed effects procedure
(firm and destination) very easily, we call it 2WFE on top exporters.
The second estimator relies upon the Tetrads method, with a similar
strategy of restricting attention to large exporting firms that are the
least likely to be affected by the selection bias. When taking ratios
of ratios of individual trade flows, we focus on the top exporters of
each country,13 and look at their relative exports in different markets
(compared to a reference country). We expect those two methods to
give comparable results. The issue with both estimators is that they
estimate the firm-level trade elasticity on a reduced sub-sample of
the largest firms. Those might have different trade elasticities, for
reasons outside of our model.14 Our third estimator reinstates the
full sample of exporters. Assuming a normally distributed ln 4

p
ni(a) in

Eq. (15) yields a generalized structural Tobit, that we will refer to as
EK-Tobit, since it was developed by Eaton and Kortum (2001). Crozet
et al. (2012) apply EK-Tobit to the heterogeneous exporter model by
using the theoretical equation for minimum sales, xp,MIN

ni (a) = swi f p
n ,

which therefore provides a natural estimate for the truncation point
for each market. EK-Tobit is the best estimator for our theoretical
framework, with an important caveat: We must reduce the number
of included fixed effects because it seems computational unfeasible
to estimate a generalized Tobit with the very large set of fixed effects
our theory demands.15

We therefore have three possible estimators, 2WFE on top
exporters, Tetrads on top exporters, and EK-Tobit. We now proceed to
test for the performance of our three imperfect estimators meant to
correct for the selection bias using Monte Carlo simulations. The DGP
uses Eq. (15) for the value xni(a) exported by 100,000 firms divided
into two origin countries and selling in 80 (to roughly match the num-
bers we have in our sample). The true value of s is set to 5. The fixed
export costs fn and the market size An are drawn from independent
log-normal distributions calibrated to generate the same proportion

13 j and � are chosen as the top exporters to k in value terms in Eq. (17).
14 Berman et al. (2012) show that several models featuring variable markups predict

that large firms should face lower demand elasticities and therefore react less than
small firms to a change in trade costs. Their finding that the response to exchange rate
changes declines with productivity (confirmed by Chatterjee et al. (2013) for Brazilian
exporters and Li et al. (2015) for Chinese exporters) suggests that the estimates in the
present paper could be considered as a lower bound.
15 Although Greene (2004) shows that the Tobit model is much less subject to the

incidental parameters problem than other non-linear models such as logit or probit,
it is not possible to include the very large number of fixed effects in the EK-Tobit
model due to computational burden. We also detect no sign of bias in our Monte Carlo
simulations.
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(b) Chinese firms in Japan(a) French firms in Belgium

Fig. 1. Distribution of firm-level sales. Note: In the QQ regressions reported, the dependent variable is the firm-level log of exports in 2000. The RHS is V−1(F̂f ) for log-normal and
ln(1 − F̂f ) for Pareto, where F̂f is the empirical CDF of log sales and V is the CDF of the standard normal. Under the usual CES (s)/constant markup assumptions, coefficients have a
direct interpretation in terms of structural parameters: s−1

h if productivity is Pareto with shape parameter h, and (s − 1)m for log-normal productivity with dispersion parameter
m. The fit measure is the R2 of each regression.

of zero valued flows we find in the data (about 95%). For a given origin-
destination, the firm-level sales distribution follows the distribution
of a = a × b(a). Following results of firm-level sales distribution
shown in Section 5, we assume a log-normal distribution for a. The key
parameter of this distribution is its standard deviation, which is equal
to the Quantile–Quantile(QQ) regression coefficient divided by s − 1
(see Head et al., 2014 and Section 5 for details). We set this parameter
to be equal to the average of the two regression coefficients obtained
for French and Chinese exporters in Fig. 1. An important aspect of the
simulation lies in the choice of the relative importance of firm-level
cost, a, and unobserved firm-destination shock bni(a) in the firms’
sale Eq. (2). We calibrate the relative contribution of productivity and
demand shocks, a and bni(a), fitting the correlation between the rank
of a firm in total exports of the country and its rank in sales to each
country n. Without the random demand term our model predicts a
perfect correlation, while this rank correlation would approach zero
if bni(a) is the only source of firm-level heterogeneity (see Appendix C
for a theoretical discussion). Our data reveals that this correlation is
around 66% in both the French and Chinese cases.

Table 1 summarizes our Monte Carlo results based on 1000 repli-
cations. Mean and standard deviation of the sampling distribution

Table 1
Monte Carlo results: firm-level elasticities wrt to a change in trade costs.

Mean s.d.

% of positive flows 0.050 0.008
Correlation between global and local rank 0.662 0.015
Correlation between lntni and lnbni(a) −0.138 0.045
s 2WFE on full sample 5.000 0.004
s 2WFE on censored sample 2.438 0.113
s EK-Tobit 4.997 0.014
s EK-Tobit (no FEs) 5.019 0.576
s Tetrads 4.311 0.921
s 2WFE on top exporter 4.603 1.068
# obs full sample (and EK-Tobit) 8,000,000 0
# obs censored sample 398,408.063 60,719.656
# obs Tetrads 326.036 48.222
# obs 2WFE on top exporter 133.779 14.097

Note: True s is set to 5. There are 1000 replications, parameters on fixed costs of
exports and size of the demand term have been calibrated so that the share of non-
selected trade flows at the firm-destination level averages between 4 and 5%. For
each elasticity, the first column reports the average value, while the second reports
standard deviations of elasticities across the 1000 replications.

are reported for various statistics. When the exports are censored
(setting unprofitable exports to 0), the correlation between tni and
the error term is about −14 %, sufficient to create a massive bias in
the estimated trade elasticity which falls to about half its true value
(rows 4 and 5). EK-Tobit with the appropriate set of fixed effects (row
6) recovers almost exactly the true coefficient. Perhaps more surpris-
ing, EK-Tobit without any fixed effect also is very close to the true
trade elasticity. This is due to the fact that the simulation assumes no
correlation between tni and either An or a. Since EK-Tobit considers
the full sample of potential flows, no selection bias can occur through
that channel. However, there might be some correlation between tni

and An for instance in the true data, suggesting the need to introduce
proxies of An in empirical implementations. Rows 8 and 9 report the
results for the two other estimators. Both seems to be slightly biased,
8% for 2WFE on top exporters, 14% for Tetrads on top exporters, even
though they do not differ significantly from the true value of s .

4.2. Data

We combine French and Chinese firm-level data sets from the cor-
responding customs administrations which report export value by
firm at the HS6 level for all destinations in 2000. The firm-level cus-
toms data sets are matched with data on tariffs effectively applied
to each exporting country (China and France) at the same level of
product disaggregation for each destination. Focusing on 2000 allows
us to exploit variation in tariffs applied to each exporter country
(France/China) at the product level by the importer countries since it
precedes the entry of China into WTO at the end of 2001.16

4.2.1. Trade
The French trade data comes from the French Customs, which

provide annual export data at the product level for French firms.17

The customs data are available at the 8-digit product level Combined
Nomenclature (CN) and specify the country of destination of exports.

16 We exploit the variation over time of trade and tariffs from 2000 to 2006 in a set
of robustness checks reported in the working paper version.
17 This database is quite exhaustive. Although reporting of firms by trade values

below 250,000 FF – less than 39,000 euros –(within the EU) or 1000 euros (rest of
the world) is not mandatory, there are in practice many observations below these
thresholds.
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The free on board (f.o.b.) value of exports is reported in euros and
we converted those to US dollars using the real exchange rate from
Penn World Tables for 2000. The Chinese transaction data comes
from the Chinese Customs Trade Statistics (CCTS) database which
is compiled by the General Administration of Customs of China.
This database includes monthly firm-level exports at the 8-digit HS
product-level (also reported f.o.b.) in US dollars. The data is collapsed
to yearly frequency. The database also records the country of desti-
nation of exports. In both cases, export values are aggregated at the
firm–product(HS6)–destination level in order to match with applied
tariffs information that are available at the origin–product(HS6)–
destination level.

4.2.2. Tariffs
Tariffs come from the WITS (World Bank) database.18 We rely

on the ad valorem rate effectively applied at the HS6 level by each
importer country to France and China. In our cross-section analy-
sis performed for the year 2000 before the entry of China into the
World Trade Organization (WTO), we exploit different sources of
variation within HS6 products across importing countries on the tar-
iff applied to France and China. The first variation naturally comes
from the European Union (EU) importing countries that apply zero
tariffs to trade with EU partners (like France) and a common external
tariff to extra-EU countries (like China). The second source of vari-
ation in the year 2000 is that several non-EU countries applied the
Most Favored Nation tariff (MFN) to France, while the effective tariff
applied to Chinese products was different (since China was not yet
a member of WTO). In the Online Appendix, Fig. 1 illustrates those
sources of variation in applied tariffs, graphing the average difference
between the tariffs applied to France and China across industries
by two major trading partners: Germany and Japan. While Germany
naturally favors French exports across the board, Japan has the oppo-
site policy, all industries featuring a preference towards Chinese
exporters (except a few sectors where the difference is nil). Fur-
thermore, those tariff differences show substantial variance across
industries.

4.2.3. Gravity controls
In all estimations, we include additional trade barriers variables

that determine bilateral trade costs, such as distance, common (offi-
cial) language, colony and common border (contiguity). The data
come from the CEPII distance database.19 We use the population-
weighted great circle distance between the set of largest cities in the
two countries.

4.3. Empirical estimates of the firm-level trade elasticity

Table 2 reports the results for firm-level trade elasticity based on
our three estimators applied to the French and Chinese firm-level
exports in 2000. The first three columns use 2WFE on top exporters,
the next 3 use Tetrads on top exporters, while the last three use EK-
Tobit.

While 2WFE on top is straightforward to implement, one needs to
define reference k countries for Tetrads (Eq. (18)). We choose those
with two criteria in mind. First, these countries should be those that
are the main trade partners of France and China in the year 2000,
since we want to minimize the number of zero trade flows in the
denominator of the Tetrad. The second criteria relies on the variation
in the tariffs effectively applied by the importing country to France
and China. Hence, among the main trade partners, we retain those
countries for which the average difference between the effectively

18 Information on tariffs is available at http://wits.worldbank.org/wits/.
19 This data set is available at http://www.cepii.fr/anglaisgraph/bdd/distances.htm.

applied ad valorem tariffs to France and China is greater. These two
criteria lead us to select the following set of 8 reference countries:
Australia, Canada, Germany, Italy, Japan, New Zealand, Poland and
the UK.

When implementing EK-Tobit, we need to fill in (with zero flows)
the destinations that a firm found unprofitable to serve. The set
of potential destinations for each product is given by all countries
where at least one firm exported that good. When estimating Eq. (15)
through EK-Tobit, we proxy for ln Ap

n with destination n fixed effects,
and for firm-level determinants a with the count of markets served
by the firm. An origin country dummy for Chinese exporters account
for all differences across the two groups, such as wages, wi.

For each of the three methods of estimation, the first column
includes tariffs and the usual set of gravity variables (distance,
contiguity, colonial link and common language). The second col-
umn adds a dummy variable set to one for active Regional Trade
Agreements (RTA). The idea is to control for unobserved non-tariff
barriers to trade that could potentially be correlated with ad val-
orem applied tariffs. This is a particularly demanding specification,
since a lot of the variance in tariffs should come from the distinc-
tion between RTA members facing zero tariffs and non-member
pairs facing positive ones. The third column of each method con-
trols for all unobservable bilateral frictions. This is done by including
destination–origin fixed effects for 2WFE and EK-Tobit (columns 3
and 9). Since Tetrads rely on a ratio of flows going to a destination
compared to a reference country, all bilateral unobservables char-
acteristics are taken into account by a destination–reference fixed
effect (column 6).

The Tetrads and 2WFE methods on top exporters in columns
(1) to (6) show quite similar patterns of results, as expected from
the similarity in approach and Monte Carlo results. Distance has
the usual negative coefficient, contiguity enters strongly positive,
while colonial link and common language have a much more volatile
and mostly insignificant effect at the firm level. RTAs enter with a
very comparable and strong effect in both methods (approximately
tripling trade flows), with the expected effect of reducing the impact
of tariffs. Coefficients on tariffs relying on the EK-Tobit method
(columns (7) to (9)) are slightly greater than in the previous methods.
Overall the three methods point to similar coefficients with a reason-
able value of the firm-level elasticity (1 − s) averaging −4.4 across
the 9 columns. This turns out to be a central value within the small
set of papers estimating the response of firm-level flows to applied
tariffs. Berthou and Fontagné (2016) obtain coefficients that would
imply a preferred value of s = 3.5 and report a larger response when
restricting the sample to the largest exporters, as expected from our
analysis of selection bias above. Fitzgerald and Haller (2015) report
a very strong variance in firm-level response to tariffs, with implied
value of s strongly rising when restricting regressions to the largest
firms. Their benchmark table imply s ranging from 2.7 to around 25,
the latter being relevant for the biggest firms in the most popular
markets.

Our results are robust to several sensitivity tests that are pre-
sented and described in the Online Appendix. First, we re-estimate
the firm-level trade elasticity on alternative levels of aggregation
(firm–HS4(HS2)–destination and firm–destination) using the EK-
Tobit method. Coefficients on tariffs are larger than in the baseline
estimation and increase as the sample gets more aggregated.20

Second, we have run our benchmark estimates for the years 2001 and
2006. Although estimates of the firm-level trade elasticity are slightly
smaller in absolute value, they remain close to the results for the year

20 This finding is consistent with a substantial effect of tariffs on the extensive mar-
gin of products, and is in line with the patterns of results in Fitzgerald and Haller
(2015), when comparing the third columns of their Tables 8 and 12.

http://wits.worldbank.org/wits/
http://www.cepii.fr/anglaisgraph/bdd/distances.htm
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Table 2
Intensive margin elasticities in 2000: 3 methods.

Estimator: 2WFE on top Tetrad on top EK-Tobit

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln (1 + Applied tariff) −4.95b −3.14 −3.13 −4.75a −3.25a −2.57a −5.54a −5.54a −6.88a

(1.94) (1.96) (2.21) (0.79) (0.74) (0.50) (0.26) (0.26) (0.26)
ln Distance −0.52a −0.19a −0.48a −0.16a −1.73a −1.66a

(0.04) (0.06) (0.03) (0.04) (0.04) (0.06)
Common language −0.36a −0.10 0.07 0.37a 1.86a 1.93a

(0.11) (0.12) (0.09) (0.08) (0.12) (0.12)
Contiguity 0.99a 0.89a 0.57a 0.52a 1.43a 1.41a

(0.09) (0.09) (0.08) (0.07) (0.11) (0.11)
Colonial link 0.45 −0.14 0.31 −0.22 3.49a 3.40a

(0.53) (0.54) (0.29) (0.29) (0.21) (0.21)
RTA 1.13a 1.07a 0.25b

(0.18) (0.12) (0.13)
ln # of dest. by firm 1.69a 1.69a

(0.02) (0.02)
Chinese exporter 0.59a 0.64a

(0.06) (0.05)

Fixed effects:
Firm Yes Yes Yes
HS6–destination Yes Yes Yes
Destination–origin Yes Yes Yes
Destination Yes Yes
Observations 14,124 37,706 49,067,666
R2 0.777 0.779 0.782 0.137 0.144 0.177 0.829/0.08 0.830/0.08

Notes: a , b and c denote statistical significance levels of 1, 5 and 10% respectively. Because Tetrads compare ratios of flows from the two origin countries going to destination n and
to reference k, column (6) relies on destination × reference fixed effects to capture all destination–origin determinants. Standard errors are clustered by destination × reference
country for columns (4) to (6) (Tetrads), and by HS6–origin–destination for columns (7) to (9). Those three last columns compute the R2 as the squared correlation between the
predicted and actual values of the dependent variable. The second R2 does the same calculation on positive trade flows.

2000, and maintain similar patterns of statistical significance. Third,
we present evidence on an alternative definition of largest firms as
the set of exporters selling to the largest number of destinations. At
the HS6 level of detail, a number of such origin–product combina-
tion have the top firm in terms of destinations sell to only a handful
of destinations. We therefore restrict the attention to the set of those
firms that export to more than 20 markets (the median destination
count). The estimated elasticities of firm-level responses to tariffs are
of comparable magnitude.

The working paper version of this paper concentrated on the
Tetrads approach to estimation and provided many robustness
checks of the firm-level trade elasticity. We briefly report a summary
of those results here. There are essentially two sources of variance
of tariffs in our setting: across products and across destinations.
When focusing on the cross-destination dimension through the use
of product fixed effects, the coefficients for the applied tariffs (1−s)
range from −6 to −3.2. Restricting the sample to destination coun-
tries which apply non-MFN tariffs to France and China (Australia,
Canada, Japan, New Zealand and Poland), yields results of similar
magnitude, ranging from −5.47 to −3.24. We also consider two
additional cross-sectional samples, one after China’s entry into the
WTO (2001), the other for the final year for which we have Chinese
customs data (2006). Here again the results are qualitatively robust,
although the coefficients on tariffs are lower as expected since the
difference in the tariffs applied to France and China by destination
countries is much reduced after 2001. With the caveat in mind that
entry into the WTO combined with patchy data over time for many
countries makes panel estimation quite difficult, we consider it over
the 2000–2006 period. The coefficients are more volatile, but some-
how close to the findings from the baseline cross-section estimations
in 2000 (they range from −5.26 to −1.80). This set of robustness
estimates combined with the ones in Table 2 points to a central
value of the demand side parameter of our model located around
5. We use ŝ = 5 in the coming section in order to calculate aggre-
gate trade elasticities relevant for the same sample of French and
Chinese exporters.

5. Bilateral aggregate trade elasticities

5.1. Theory with numbers: micro-based predictions of aggregate trade
elasticities

In this section, we provide a theory-consistent methodology for
predicting, from firm-level data, a set of three aggregate elastici-
ties of trade with respect to trade costs (the reactions of total trade,
number of exporters and average exports per firm to tariffs). Those
micro-based predictions of aggregate elasticities are characterized by
Eqs. (12), (13) and (14). In each of those, the distribution of rescaled
labor requirement, the CDF G(a) enters prominently. Specifying G(a)
is also necessary to invert the H(a∗) function, and reveal the bilat-
eral cutoffs required to compute the bilateral trade elasticities. We
consider two possibilities for G(a): following the almost universally
chosen Pareto approach, or going a natural alternative route moti-
vated from data patterns, the log-normal distribution. The latter is a
much better fit of the firm-level exports for the overall distribution
(as Fig. 1 below shows), making it a credible and natural alternative
to Pareto.21

Pareto-distributed rescaled productivity v ≡ 1/a translates into a
power law CDF for a, with shape parameter h and location parameter
ā. A log-normal distribution of a retains the log-normality of produc-
tivity (with location parameter l and dispersion parameter m) but
with a change in the log-mean parameter from l to −l. Under those
two distributional assumptions the CDFs for a > 0 are therefore given
by

GP(a) = max

[(
a
ā

)h

, 1

]
, and GLN(a) = V

(
ln a + l

m

)
, (19)

21 It is worth noting that one can obtain a sales distribution with a similar shape
as shown in Fig. 1 by combining Pareto-distributed productivity with log-normally-
distributed demand shocks, as done in Eaton et al. (2011). This setup however
maintains the property of a constant aggregate trade elasticity, which depends solely
on the Pareto shape parameter, as in Chaney (2008).
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where we use V to denote the CDF of the standard normal. Simple
calculations using Eq. (19) in Eq. (8), and detailed in Appendix A,
show that the resulting formulas for H are

HP(a∗
ni) =

h

h − s + 1
, and HLN(a∗

ni) =
h

[(
ln a∗

ni + l
)
/m

]
h

[
(ln a∗

ni + l)/m + (s − 1)m
] ,

(20)

where h(x) ≡ 0(x)/V(x), the ratio of the PDF to the CDF of the
standard normal.

Calculating GP(.), GLN(.), HP(.) and HLN(.) requires knowledge of
underlying key supply-side distribution parameters h and m.22 For
those, we rely on estimates from QQ regressions combined with our
estimate of the demand side parameter (ŝ = 5) obtained from the
preceding section.

With CES demand and constant markups, Head et al. (2014) show
that the distribution of sales in a given destination inherits the distri-
bution of the firms’ underlying performance variable (productivity).
When the latter is distributed Pareto or log-normal, sales are also dis-
tributed Pareto and log-normal, the only substantial difference being
a shift in the shape parameter of each of those distributions. While
we do not observe productivity, we do observe the distribution of
sales, and can use those to reveal the underlying structural parame-
ters h and m. A very useful tool for that purpose is the QQ regression,
where the empirical quantile (log sales) is regressed on the theoretical
quantile under each alternative distributional assumption. Denoting
with F̂f the empirical CDF of log sales, and f now indexing firms in
ascending order of individual sales, we have the theoretical quantiles

QP
f = qP − s − 1

h
ln(1− F̂f ), and QLN

f = qLN +(s−1)mV−1(F̂f ).

(21)

QQregressionsarethus linear inbothParetoandlog-normalcases,and
the slope reveals the shape parameter of the underlying distribution
(the constant terms qP and qLN corresponding to location parameters).
Fig. 1 reports those regressions for the two sets of exporters used in
this paper. We focus on a major destination for each of those countries,
Belgium and Japan respectively. The Pareto regression is represented
in light gray and the log-normal one in dark gray. It is very clear that
the log-normal QQ plot is much closer to the linear relationship that
should obtain when assuming the correct distribution.

What are the implied values of structural distribution parame-
ters? The log-normal case is simple, since it is a very good fit to the
overall distribution, we simply have m̂FRA = 2.392/(ŝ − 1) = 0.598
and m̂CHN = 2.558/(ŝ − 1) = 0.639. The Pareto case is more tricky
since the implied values of ĥ for the overall estimation of the QQ
regression (2.146 and 2.194) are incompatible with finite values of
the price index. We therefore concentrate on the part of the distribu-
tion where the Pareto QQ relationship is approximately linear with
a slope satisfying ĥ > ŝ − 1, that is the extreme right tail (like most
papers that estimate Pareto shape parameters on sales data). Concen-
trating on the top 1% of sales (in terms of value exported), we obtain
QQ coefficients of 0.779 and 0.618 respectively, which yield ĥFRA =
(1/0.779)(ŝ − 1) = 5.134 and ĥCHN = (1/0.618)(ŝ − 1) = 6.472.

Panel (a) of Fig. 2 depicts the theoretical relationship between the
ratio of mean to minimum sales, H(a∗

ni) in Eqs. (8) and (9), and the
probability of serving the destination market, G(a∗

ni), spanning over
values of the cutoff a∗

ni. Under Pareto heterogeneity, H is constant but
this property of scale invariance is specific to the Pareto: H is increas-
ing in G under log-normal. Panel (b) of Fig. 2 depicts the empirical

22 We show in Appendix A that the values taken by ā and l do not affect calculations
of the trade elasticity.

counterpart of this relationship as observed for French and Chinese
exporters in 2000 for all countries in the world. On the x-axis is
the share of exporters serving each of those markets.23 Immediately
apparent is the non-constant nature of the mean-to-min ratio in the
data, contradicting the Pareto prediction. This finding is very robust
when considering alternatives to the minimum sales (which might
be noisy because of statistical threshold effects) for the denomina-
tor of H, that is different quantiles of the export distribution (results
available upon request). In a further effort to minimize noise in the
calculation of the mean-to-min ratio, the figures are calculated for
each of the 99 HS2 product categories and averaged. In the rest of the
section, we will stick to this approach for the calculation of elasticities,
done at the HS2 level before being averaged, which also simplifies
exposition (detailed sector-level results are provided in Section 6).

Fig. 3 turns to the predicted aggregate trade elasticities.24 Func-
tional forms Eqs. (19) and (20) combined with Eq. (11), are used to
deliver bilateral aggregate trade elasticity of total flows, eni, under
the two alternative distributional assumptions:

eP
ni = −h, and eLN

ni = 1 − s − 1
m

h

(
ln a∗

ni + l

m
+ (s − 1)m

)
.

(22)

Parallel to Fig. 2, panel (a) of Fig. 3 shows the theoretical relationship
between those elasticities and G(a∗

ni), while panel (b) plots the same
elasticities evaluated for each individual destination country against
the empirical counterpart of G(a∗

ni) (described in footnote 23). Again,
the Pareto case has a constant prediction, while log-normal predicts
a trade elasticity that is declining (in absolute value) with easiness
of the market. Panel (b) confirms the large variance of trade elastici-
ties according to the share of exporters that are active in each of the
markets. It also shows that the response of aggregate flows to trade
costs is reduced (in absolute value) when the market becomes easier.
The intuition is that for very difficult markets, the individual reaction
of incumbent firms is supplemented with entry of exporters selected
among the most efficient firms. The latter effect becomes negligible
for the easiest markets, yielding e to approach the firm-level trade
elasticity. This mechanism becomes very clear when looking at the
patterns of the extensive margin and average export elasticities in
Fig. 4.

The predicted elasticity on the extensive margin is also rising with
market toughness as shown in panel (a) of Fig. 4. The inverse rela-
tionship is true for average exports per firm (panel b). When a market
is very easy and most exporters make it there, the extensive margin
elasticity goes to zero, and the response of average exports per firm
goes to the value of the firm-level trade elasticity, 1 −s , as shown in
Fig. 4 when the share of exporters increase. While this should intu-
itively be true in general, Pareto does not allow for this change in
elasticities across markets, since the response of average exports per
firm should be uniformly 0, while the total response is entirely due
to the (constant) extensive margin elasticity.

In Table 3, we compute the mean and standard deviation of the
bilateraltradeelasticitiescalculatedusingthelog-normaldistribution,
and presented in Figs. 3 and 4. The first column presents the statis-
tics for the French exporters’ sample, the second one is the Chinese

23 On the x-axis we have the share of exporters serving each market n computed
as the number of French and Chinese firms serving market n in 2000 conditional
on exporting (divided by the total number of exporters in each origin). The exact
empirical counterpart of G(a∗

ni) would require to divide the number of actual French
and Chinese exporters to n by the set of potential exporters in France and China.
We don’t observe that last number. However, the theoretical and the empirical
proportion of exporters differ only by a multiplicative constant, leaving the shape of
the (logged) relationship unchanged.
24 See Appendix A for details.
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Fig. 2. Theoretical and empirical mean-to-min ratios.
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Fig. 3. Predicted bilateral aggregate trade elasticities: enFR and enCN.

exporters’ case, and the last column averages those. The mean elastici-
tiesobtainedvaryslightlybetweenFranceandChina,butthedominant
feature is that the aggregate elasticity of total flows is in neither case
confined to the extensive margin (i.e. number of exporters). In both
cases, average exports per firm are predicted to react strongly to trade
costs, a pattern we will confirm on actual data in the next subsection.

Fig. 5 groups our predictions of the bilateral aggregate elastic-
ity of total flows (eni) into ten bins of export shares for both France
and China in a way similar to empirical evidence by Novy (2013)
and Spearot (2013), who find that the aggregate trade cost elasticity
decreases with bilateral trade intensity.25 The qualitative pattern is
very similar here, with the bilateral aggregate elasticity decreasing in
absolute value with the share of exports going to a destination. One
can use this variance in eni to quantify the difference with respect to

25 Although Novy (2013) estimates variable distance elasticity, his Section 3.4
assumes a constant trade costs to distance parameter to focus on the equivalent of our
eni . Spearot (2013) estimates the aggregate trade elasticity directly through the impact
of tariff changes on US imports between 1992 and 2004.

a constant response of exports to a trade liberalization episode. Tak-
ing China as an example, decreasing trade costs by 1% would raise
flows by around 6.5% for countries like Somalia, Chad or Azerbai-
jan (first bin of Chinese exports) and slightly more than 4% for the
USA and Japan (top bin). Since the estimate that would be obtained
when imposing a unique elasticity would be close to the average
elasticity (4.79), this would entail about 25% underestimate of the
trade growth for initially low traders (1.7/6.5) and an overestimate
of around 20% (0.8/4) for the top trade pairs (with the caveat that we
have more variance in the predicted elasticities for low export bins
than in the top ones).26

5.2. Comparison with macro-based estimates of aggregate trade
elasticities

We now turn to empirical estimates of aggregate trade elastici-
ties to be compared with our predictions. Those are obtained using

26 We thank Steve Redding for suggesting this quantification.
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Fig. 4. Predicted bilateral aggregate elasticities: extensive and average exports.

aggregate versions of our estimating Tetrad equations presented
above, which is very comparable to the method most often used in
the literature: a gravity equation with country fixed effects and a set
of bilateral trade costs covariates, on which a constant trade elastic-
ity is assumed.27 Column (1) of Table 4 uses the same specification
as in column (4) of Table 2 but runs the regression on the Tetrad of
aggregate rather than individual exports. Column (2) uses the same
covariates but on the count of exporters, and column (3) completes
the estimation by looking at the effects on average exports per firm.28

An important finding is that the effect on average exports per firm is
estimated at −2.77, and is significant at the 1% level, contrary to the
Pareto prediction (in which no variable trade cost should enter the
equation for average flows).29 This finding is robust to controlling for
RTA (columns 4–6) or destination–reference fixed effects (columns
7–9). It is interesting to note that our middle estimate of the trade
elasticity on total flows is −4.79, reasonably close to the −5.03 found
as the median estimate in a large set of regressions covered by Head
and Mayer (2014).

Under Pareto, the aggregate elasticity should reflect fully the one
on the number of exporters, and there should be no impact of tariffs
on average exports per firm. This prediction of the Pareto distribu-
tion is therefore strongly contradicted by our results. As a first pass at
assessing whether the data support the log-normal predictions, we
compare the (unique) macro-based estimate of aggregate elasticities

27 Note that the gravity prediction on aggregate flows where origin, destination, and
bilateral variables are multiplicatively separable and where there is a unique trade
elasticity is only valid under Pareto. The heterogeneous elasticities generated by devi-
ating from Pareto invalidate the usual gravity specification. Our intuition however is
that the elasticity estimated using gravity/Tetrads should be a reasonable approxima-
tion of the average bilateral elasticities. In order to verify this intuition, we run Monte
Carlo simulations of the model with log-normal heterogeneity and find that indeed the
average of micro-based predictions of elasticities is very close to the unique macro-
based estimate in a gravity/Tetrads equation on aggregate flows. Description of those
simulations are in Appendix B.
28 Note that the three dependent variables are computed for each HS6 product–

destination, and therefore that the average exports per firm do not contain an
extensive margin where number of products would vary across destinations.
29 Fernandes et al. (2015) also show that the Melitz model combined with log-

normal productivity can explain the reaction of average flows to distance. They refer
to that response as the “intensive margin puzzle”. We prefer to keep the terminol-
ogy “intensive” for the firm-level response, and while we measure the trade elasticity
directly through the impact of tariffs rather than distance, our results are totally in line
with their main finding.

obtained in Table 4, to their corresponding micro-based predictions
shown in Table 3. The sample mean obtained with the model’s pre-
dictions are not out of the range of empirical estimates. Although
this is not a definitive validation of the heterogenous firms model
with log-normal distribution, our results clearly favor this distribu-
tional assumption over Pareto, and provide support for the empirical
relevance of non-constant trade elasticities.

5.3. Direct evidence of non-constant bilateral aggregate trade
elasticities

We can further use the Tetrad methodology in order to show
direct empirical evidence of non-constant bilateral trade elasticities.
Using aggregate bilateral flows from Eq. (3), and building Tetrads
with a procedure identical to the one used at the firm level, we obtain
the (FR,CN, n, k)—Tetrad of aggregate exports

X̃{n,k} ≡ XnFR/XkFR

XnCN/XkCN
=

(
tnFR/tkFR

tnCN/tkCN

)1−s

× VnFR/VkFR

VnCN/VkCN
(23)

Taking logs, differentiating with respect to tariffs and using the
expression for the cutoff Eq. (5), we obtain

d ln X̃{n,k} = (1 − s − cnFR) × d ln tnFR − (1 − s − ckFR) × d ln tkFR

− (1 − s − cnCN) × d ln tnCN + (1 − s − ckCN) × d ln tkCN,
(24)

Table 3
Predicted bilateral aggregate trade elasticities (LN distribution).

France China Average

Total flows −5.14 −4.792 −4.966
(1.069) (.788) (.742)

Number of exporters −2.866 −2.274 −2.57
(1.657) (1.472) (1.335)

Average flows −2.274 −2.517 −2.396
(.687) (.731) (.64)

Notes: This table presents the predicted elasticities (mean and standard deviation
calculated across destinations) on total exports, the number of exporting firms, and
average export flows. Required parameters are s , the CES, and m, the dispersion
parameter of the log-normal distribution.
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Fig. 5. Variance in bilateral aggregate trade elasticities: enFR and enCN. Note: The export share bins are constructed using the share in total export value to each destination country
in 2000.

Table 4
Elasticities of total flows, count of exporters and average trade flows.

Tot. # exp. Avg. Tot. # exp. Avg. Tot. # exp. Avg.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln (1 + Applied tariff) −6.60a −3.83a −2.77a −4.79a −2.02a −2.77a −3.81a −2.45a −1.36a

(0.60) (0.41) (0.40) (0.57) (0.36) (0.40) (0.26) (0.10) (0.22)
ln Distance −0.80a −0.54a −0.26a −0.43a −0.18a −0.26a

(0.03) (0.02) (0.02) (0.04) (0.02) (0.03)
Common language 0.05 0.10 −0.04 0.41a 0.45a −0.04

(0.08) (0.07) (0.04) (0.07) (0.06) (0.05)
Contiguity 0.49a 0.27a 0.23a 0.43a 0.20a 0.23a

(0.09) (0.06) (0.05) (0.08) (0.05) (0.05)
Colonial link 0.89a 0.78a 0.12 0.28c 0.16 0.12

(0.15) (0.11) (0.09) (0.16) (0.11) (0.10)
RTA 1.23a 1.23a 0.01

(0.12) (0.07) (0.08)
R2 0.336 0.543 0.081 0.346 0.581 0.081 0.382 0.635 0.109
rmse 2.56 1.09 2.13 2.54 1.04 2.13 2.47 0.98 2.10

Notes: 100,533 observations. a , b and c denote statistical significance levels of 1, 5 and 10% respectively. Standard errors are clustered by destination × reference country. The
dependent variable is the tetradic term of the logarithm of total exports at the HS6–destination–origin country level in columns (1), (4) and (7); of the number of exporting firms
by HS6–destination and origin country in columns (2), (5) and (8) and of the average exports per firm at the HS6–destination–origin country level in columns (3), (6) and (9).
Applied tariff is the tetradic term of the logarithm of applied tariff plus one. Columns (7) to (9) present the estimations including destination–reference fixed effects that take into
account all the unobservable bilateral frictions.

where cni is the elasticity of the cost performance index to a rise in
the easiness of the market, defined in Eq. (7). For general distribu-
tions of heterogeneity, this elasticity is not constant across country
pairs as it depends on the bilateral-specific cutoff a∗

ni. Hence, our
interpretation of Eq. (24) is that the contribution to the (tetraded)
total exports of a change in bilateral tariffs is larger for country pairs
that have a larger elasticity. Under Pareto, this elasticity is constant
across country pairs, cP

ni = 1 − s + h. Combined with Eq. (24) this
leads to

ẽP
{n,k} =

d ln X̃{n,k}
d ln t̃{n,k}

= −h, (25)

where t̃{n,k} is the vector of tetraded trade costs (each of the com-
ponents of trade costs expressed as a ratio of ratios). This formula
states that under Pareto, the elasticity of aggregate tetraded exports to
tetraded tariffs is equal to the supply-side parameterh. This transposes
to the Tetrad environment the well-known result of Chaney (2008)

on gravity. Under non-Pareto heterogeneity, the four elasticities in
Eq. (24) will remain different, a prediction we can put to a test.

Results are shown in Table 5, where we pool observations for
the years 2000 to 2006 (we also multiply lntkFR and lntnCN by −1,
in order to have only negative figures–reflecting elasticities–in the
Table, which eases interpretation). Columns (1), (2) and (3) are the
equivalent of the first three columns of Table 4, with the trade costs
Tetrads being split into its four components and the coefficients
allowed to differ. The difference in coefficients on tariffs to destina-
tion country n is generally quite large, suggesting that the elasticity
when considering France and China as an origin country differ, con-
sistent with the non-Pareto version of heterogeneity.30 Coefficients
related to the reference importer k also differ substantially from each

30 In terms of statistical significance, a Wald test reveals that the two coefficients
on tariffs applied to France and China by destination n or by reference country k are
indeed significantly different in columns (1), (2), (4) and (5) where the p-value of this
test is zero. The p-value for the test on coefficients applied to France and China by
destination n in column (3) is 0.79 and in column (6) is 0.02.
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Table 5
Non-constant trade elasticity.

Dependent variable: Tot. # exp. Avg. Tot. # exp. Avg.
(1) (2) (3) (4) (5) (6)

ln (1 + Applied tariff)n,FR −4.82a −2.81a −2.01a −3.27a −2.18a −1.08a

(0.23) (0.17) (0.15) (0.20) (0.14) (0.13)
ln (1 + Applied tariff)n,CN −3.68a −1.69a −1.99a −2.07a −1.15a −0.92a

(0.21) (0.16) (0.13) (0.18) (0.12) (0.12)
ln (1 + Applied tariff)k,FR −6.69a −5.81a −0.88a

(0.29) (0.16) (0.20)
ln (1 + Applied tariff)k,CN −4.48a −2.17a −2.31a

(0.22) (0.15) (0.13)
R2 0.347 0.588 0.080 0.348 0.593 0.080
rmse 2.49 1.04 2.10 2.49 1.04 2.10

Notes: 1,119,993 observations in all columns. a , b and c denote statistical significance levels of 1, 5 and 10% respectively. Estimations in columns (1) to (3) include a year fixed
effect and the four components (n, FR; n, CN; k, FR; and k, CN) of each gravity control (distance, common language, contiguity and colony). Estimations in columns (4) to (6) include
reference country–year fixed effects and the two components (n, FR; n, CN) of each gravity control. In all estimations, standard errors are clustered by destination × reference
country and year level.

other, supporting further heterogeneity in the trade elasticities. A
related approach is to confine identification on the destination coun-
try, neutralizing the change of reference country with a k fixed effect.
Those results are shown in columns (4) to (6), where again most of
the tariff elasticities differ across origin countries.31

6. Industry-level analysis

We now investigate the implications of cross-industry hetero-
geneity for our analysis. We proceed with the ISIC rev3 2-digit
industry classification, which has an easy match with the HS6 prod-
uct classification used in trade and tariff data. We first provide
micro-based theoretical predictions of the bilateral aggregate trade
elasticities at the sectoral level and compare them to their empirical
gravity estimates. We then exploit cross-industry variations in firm-
level elasticity and bilateral aggregate elasticity to show that both
demand and supply determinants enter the aggregate elasticity — a
finding which discriminates in favor of the log-normal distributional
assumption.

6.1. Comparing predicted and estimated sectoral elasticities

We start by computing for each sector the bilateral aggregate
trade elasticity predicted by the Melitz (2003) model under a log-
normal distribution of productivity. To do so, we follow the approach
of Sections 4 and 5 conducting the full analysis for each sector p.
More precisely, for each sector, we estimate the firm-level trade
elasticity sp according to a p-specific version of Eq. (18):

ln x̃p
{j,n,k} = (1 −sp) ln

˜(
1 + tp

{n,k}
)

+ (1 −sp)d ln D̃{n,k} + ln 4̃
p
{j,n,k}. (26)

We then estimate a sector-specific version of the QQ-regression Eq.
(21), QLN,p

f = qLN,p + (ŝp − 1)mpV−1(F̂p
f ), in order to retrieve mp, the

standard deviation of the underlying log-normal productivity distri-
bution (QQ estimates at the sector level are available upon request).
As explained in Section 5.1, those estimates ŝp and m̂p are combined
according to p-specific versions of Eqs. (12), (13) and (14) to pre-
dict three sector-specific aggregate elasticities of trade with respect
to trade costs (the reactions of total trade, number of exporters and
average exports per firm to tariffs).

Column (1) of Table 6 runs a Tetrad estimation of Eq. (26)
over 2000–2006 for each 2-digit ISIC industry separately including

31 In the Online Appendix, we present results from the same estimations run for
the two extreme years of our sample, 2000 and 2006, with significant evidence of
non-constant elasticities in most cases.

destination–reference country (as in column 6 of our benchmark
results table) and year fixed effects. Each cell reports the coefficient
on the applied tariffs with its associated degree of statistical signif-
icance (1%, 5%, 10%), which corresponds to the estimated firm-level
trade elasticity by industry (1 − ŝp). Averaging over significantly
negative coefficients, we obtain an elasticity of −5.39. The median
response is −4.71.

Each figure in column (1) provides the firm-level trade elasticity
(1 − ŝp), needed for the calculation of p-specific bilateral aggre-
gate trade elasticities. We summarize those elasticities by report-
ing cross-sector cross-destination means and standard deviations
in Table 7. These statistics can then be compared to the empirical

Table 6
Firm-level and aggregate elasticities by industry.

Firm-level Aggregate

Dependent variable: Exports Tot. exports # exporters Avg. exports
(1) (2) (3) (4)

Agriculture −3.89a −2.71a −1.63a −1.08
Food −3.53a −4.54a −1.23a −3.31a

Textile −4.18a −1.95a −1.63a −.32
Wearing apparel −4.03a −4.21a −.43 −3.79a

Leather −2.84a −6.62a −.27 −6.34a

Wood −7.82b −11.04a −2.26a −8.78a

Paper 9.76a 5.43c 6.93a −1.51
Publishing −1.64 4.33c 6.81a −2.48
Chemicals −3.38a .6 .08 .52
Rubber and plastic −5a −5.55a −.93b −4.61a

Non-metallic 4.56a 11.24a 5.61a 5.63a

Basic metals −4.73b −3.75b −1.46a −2.29
Metals −2.39b −1.41b 1.87a −3.28a

Non-electrical machinery −4.71a −3.14a −.11 −3.04a

Office machinery −8.48 −20.75a −2.43c −18.33a

Electrical machinery −2.5 .55 2.19a −1.63b

Equip. radio, TV −7.5a −7.17a −1.67a −5.51a

Instruments −4.76a −.5 1.91a −2.42a

Motor vehicles −9.25a −4.7c −1.81c −2.89
Other transport −10.26a −17.42a −1.07c −16.35a

Furniture −3.11a .31 1.29a −.98c

Average −5.39 −5.71 −.97 −4.74
Median −4.71 −4.54 −1.23 −3.31
Pooled −3.48a −3.37a −1.75a −1.62a

Notes: a , b and c denote statistical significance levels of 1, 5 and 10% respectively. Esti-
mations run at the ISIC 2 digit level, for years 2000 to 2006. All estimations include
destination–reference country and year fixed effects. Standard errors are clustered by
product–reference country combinations. The lines “Average” and “Median” take the
mean and median values of coefficients obtained for the 13 industries where both
the firm-level elasticity and aggregate trade elasticity are estimated to be significantly
negative at the 5% level. The line “Pooled” is reporting coefficients obtained in a regres-
sion pooling over all those industries. The cells report the coefficient on the tetraded
applied tariffs for each industry.
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Table 7
Predicted bilateral aggregate trade elasticities (LN distribution).

France China Average

Total flows −5.492 −5.513 −5.502
(.369) (.451) (.308)

Number of exporters −1.117 −.8 −.958
(.788) (.971) (.762)

Average flows −4.375 −4.713 −4.544
(.608) (.66) (.564)

Notes: This table presents the predicted elasticities (mean and standard deviation over
destinations and sectors) on total exports, the number of exporting firms, and aver-
age export flows. The CES for each sector, sp , is obtained from the first column of
Table 6. Unreported sector-specific QQ-regressions yield mp , the standard deviation of
log-normal productivity distribution.

macro-based estimates of the same bilateral elasticities reported in
columns (2), (3) and (4) of Table 6. Remarkably, for each of those
three elasticities, the average micro-based theoretical prediction and
the average macro-based estimate are quite close: −5.50 vs −6.04
for total export, −.96 vs −.97 for the number of exporter, −4.54 vs
−4.74 for average exports. Another comparison can be made across
sectors. For the 13 sectors with significantly negative joint estimates
in Table 6, the pairwise correlations across sectors between pre-
dicted and estimated elasticities are large (respectively .77, .59, and
.61). Overall, results from this sectoral analysis confirm the ones of
Section 5.2: The micro-based theoretical predictions of the aggre-
gate trade elasticities align reasonably well with their empirical
macro-based estimates.

6.2. Demand and supply side components of bilateral aggregate trade
elasticity

In this final section, we take advantage of our industry-level
analysis to provide evidence that both demand and supply-side
determinants enter the bilateral aggregate elasticity of total flows
(eni). Under the Pareto assumption, the firm-level elasticity and the
aggregate elasticity have no reason to be correlated, since the firm-
level elasticity is a measure of (inverse) product differentiation, while
the aggregate one is capturing homogeneity in firms’ productive

efficiency (Chaney, 2008). Under alternative distributions like the
log-normal, the aggregate elasticity includes both determinants and
therefore should be correlated with the firm-level elasticity (see
Eq. (1)). Fig. 6 reports graphical evidence that those correlations are
large, both when considering all sectors (panel a), or when restricting
attention to the 13 sectors with significantly negative joint estimates
in Table 6 (panel b). This pattern exhibits overwhelming evidence
in favor of the aggregate trade elasticity including demand side
determinants.

7. Conclusion

We argue in this paper that knowledge of the firm-level response
to trade costs is key for understanding the reaction of aggregate
exports to trade costs. In other words, we need micro-level data to
uncover the macro-level impact of trade costs, a central element in
any trade policy evaluation. This need for micro-data is presumably
true with the vast majority of possible distributional assumptions
of firm-level productivity. There is one exception however where
micro-data is not needed: The (unbounded) Pareto distribution. The
literature has been concentrating on that exception for reasons
of tractability that are perfectly legitimate. In particular, it main-
tains the simple log-linear gravity equation with a constant trade
elasticity to be estimated with macro-data. However, the evidence
presented in our paper points to systematic variation in bilateral
aggregate trade elasticities that is both substantial and compatible
with log-normal heterogeneity (which is also the assumption that
best matches the micro-level distribution of export sales). We find in
particular that the average values of bilateral aggregate trade elas-
ticities predicted under a log-normal calibration are close to the
empirical gravity estimates. By contrast, the Pareto-based calibration
leads to predictions that seem invalidated by the data. Namely, the
invariance of average exports per firm to ad-valorem tariff variations,
the lack of correlation between firm-level and aggregate elasticities
estimated industry by industry, and the constant aggregate trade
elasticities. We are therefore tempted to call for a “micro-approach”
to estimating those bilateral aggregate elasticities as opposed to the
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Fig. 6. Country-pair and firm-level elasticities by industry. Note: The figure plots in each panel the firm-level elasticity against the aggregate elasticity estimated at the 2-digit
industry level.
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“macro-approach” that uses gravity specified so as to estimate a
constant elasticity.

The micro- and macro-approaches differ substantially in several
respects and both have positive and negative aspects. On the one
hand, gravity is a more direct and parsimonious route for estimating
aggregate elasticities: (i) parametric assumptions are reduced to a
minimum while our micro-based procedure depends on the calibra-
tion of the productivity distribution; (ii) gravity is less demanding
in terms of data and makes possible the use of easily accessible
data sets of bilateral aggregate trade flows. On the down side, the
log-linear specification of gravity is inconsistent with theory when
dropping Pareto-heterogeneity. Also, gravity provides, for each ori-
gin country, only a cross-destination average of aggregate elasticities
while the micro-based approach provides the full distribution of
elasticities. Our Monte Carlo simulations show that gravity actually
approximates this average of the true underlying bilateral aggregate
elasticities quite decently. However, the gravity-predicted impact
can be a bad approximation when trade liberalization occurs between
countries that have either very low or very high levels of trade ini-
tially. When interested in policy experiments that involve this type
of country pairs (distant and small countries or proximate and large
ones for instance), one might strongly prefer the micro-approach.

Appendix A. Theoretical derivations of V, c and H under Pareto
and log-normal distributions

Our central Eq. (6) makes it clear that the heterogeneity of aggre-
gate trade elasticity comes entirely from the term cni that stems from
endogenous selection of firms into export markets (see Eq. (7)). In
turn, cni depends on the cost-performance index Vni as defined by

Vni ≡
∫ a∗

ni

0
a1−sg(a)da.

We therefore need to understand how these c and V terms behave
under alternative distributional assumptions on productivity, i.e.
Pareto and log-normal. One important advantage of Pareto, pointed
out by Redding (2011) is that if v is distributed Pareto(h) then vr

is also distributed Pareto. The shape parameter becomes h/r. This
advantage is shared by the log-normal. If v is log-N (l,s2) then
vr is log-N (rl, r2s2). This follows from a more general reproduc-
tive property reported by (Bury, 1999, p. 156) and recently used in
Mrázová et al. (2016).

If productivity is Pareto, then the rescaled unit input requirement
a has PDF g(a) = hah−1/āh, which translates into

VP
ni =

ha∗h−s+1
ni

āh(h − s + 1)
. (A.1)

The elasticity of VP
ni with respect to a∗ is

cP
ni = h − s + 1 > 0. (A.2)

Hence, Pareto renders cni constant, i.e. not depending on n nor i, and
therefore transforms an expression generally yielding heterogeneous
trade elasticities into a one-parameter elasticity d ln Xni

d ln tni
= h, that is

related to the supply side of the economy only.
When productive efficiency is distributed log-normally,32 things

are very different. For v ∼log-N (l,m), the distribution of rescaled

32 There are a number of useful properties of the normal distribution that we use
here:

1. V(−x) = 1 − V(x)
2. 0(−x) = 0(x)
3. 0′(x) = −x0(x)
4. V′(x) = 0(x)
5. ∂(xV(x) + 0(x))/∂x = V(x) > 0

unit input requirements is a ∼log-N (−l,m). (Jawitz, 2004, Table 1)
expresses mr, the absolute rth truncated moment in terms of the
error function (erf). We convert his expression to be in terms of
the more familiar, V(), the CDF of the standard normal, using the
relationship erf(x) = 2V(x

√
2) − 1. For x ∼ log-N (l,m) truncated

between lower limit � and upper limit u the Jawitz formula can be
expressed as

mr = exp(rl+r2m2/2)

[
V

(
ln u − l − rm2

m

)
− V

(
ln � − l − rm2

m

)]
.

We are considering the distribution of a which is the inverse of pro-
ductivity so it has distribution log-N (−l,m) and it has a lower limit
� = 0 and an upper limit u = a∗. The limit of V(x) as x → −∞ is
zero so the second term involving ln� disappears. Replacing l with
−l and r with 1 − s , we obtain:

VLN
ni = exp

[
(s − 1)l + (s − 1)2m2/2

]
V

[
(ln a∗

ni + l)/m + (s − 1)m
]

,

(A.3)

Differentiating ln VLN
ni with respect to ln a∗

ni,

cLN
ni =

1
m

h

(
ln a∗

ni + l

m
+ (s − 1)m

)
, (A.4)

where h(x) ≡ 0(x)/V(x), the ratio of the PDF to the CDF of the stan-
dard normal. Thus, cni is no longer the constant which obtains for
productivity distributed Pareto. Bilateral elasticities write as

eP
ni = −h, and eLN

ni = 1 − s − 1
m

h

(
ln a∗

ni + l

m
+ (s − 1)m

)
.

(A.5)

The H function is a central element of our quantification exercise,
as summarized by relationship Eq. (9), that reveals cutoffs and there-
fore aggregate bilateral elasticities. Comparing Eqs. (4), (7) and (8),
we see that H and c are closely related

cni × H
(
a∗

ni

)
= a∗

ni

g
(
a∗

ni

)
G

(
a∗

ni

) . (A.6)

With Pareto, we make use of Eq. (A.2) to obtain

HP (
a∗

ni

)
=

h

h − s + 1
. (A.7)

With a log-normal productivity, Eq. (A.4) leads to

HLN (
a∗

ni

)
=

h
[
(ln a∗

ni + l)/m
]

h
[
(ln a∗

ni + l)/m + (s − 1)m
] . (A.8)

Table A.1 summarizes all formulas for the variables used in this paper
under both distributions.

An attractive feature of our quantification exercise relates to
the small number of relevant parameters to be calibrated. Under
Pareto, Eqs. (A.2) and (A.7) show that only the shape parameter h

matters. Similarly, under a log-normal, only the calibration of the
second-moment of the distribution, m, is necessary for inverting the
H function to reveal the cutoff and for quantifying the aggregate
elasticity: This last point stems from the fact that shifting the first
moment, l, affects Eqs. (A.4) and (A.8) in an identical way and so has
no impact on the quantification.
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Table A.1
Pareto vs log-normal: key variables.

Variable Pareto Log-normal

PDF: g(a) hah−1

āh
0

(
ln a+l

m

)
/am

CDF: G(a) ah

āh
V

(
ln a+l

m

)
Vni(a∗) ≡ ∫ a∗

0 a1−sg(a)da
ha∗h−s+1

ni
āh(h−s+1)

exp
[
(s − 1)l + (s−1)2m2

2

]
V

[ (ln a∗
ni+l)
m + (s − 1)m

]
cni ≡ d ln Vni

d ln a∗
ni

h − s + 1 1
m h

( ln a∗
ni+l

m + (s − 1)m
)

d ln Xni
d ln tni

= 1 − s − cni = 4ni −h 1 − s − 1
m h

( ln a∗
ni+l

m + (s − 1)m
)

H(a∗) ≡ V(a∗)
a∗1−s G(a∗)

h
h−s+1

h[(ln a∗
ni+l)/m]

h[(ln a∗
ni+l)/m+(s−1)m]

Note: The Pareto parameters of the unit input requirement distributions are h and ā. For the log-
normal distribution, when v ∼log-N (l,m), the distribution of rescaled unit input requirements is
a ∼log-N (−l,m). We define h(x) ≡ 0(x)/V(x), a non-increasing function.

Appendix B. Predicted/estimated elasticities: Monte Carlo
evidence

In Section 5.2, we find that the macro-based estimate of the
aggregate trade elasticity is quantitatively close to the average
micro-based theoretical prediction when heterogeneity is calibrated
as being log-normal. We interpret this finding as empirical sup-
port in favor of this distributional assumption. In this Appendix, we
substantiate this last statement by embracing a more theoretical
perspective. This is an important step in the argument because the
theoretical relationship between the macro-based estimates and the
micro-based predictions of the elasticities is unknown (except under
Pareto where they are unambiguously equal). Hereafter, we provide
simulation-based evidence that the similarity between micro-based
predictions and macro-based estimates is not accidental, even under
log-normal heterogeneity.

We proceed with Monte Carlo (MC) simulations of our generic
trade model with heterogeneous firms. In the baseline simulations,
we generate fake bilateral trade for 10 countries and 1 million
active firms per country. Our data generating process uses the firms’
sales in Eq. (2). Firm-level heterogeneity in terms of rescaled labor
requirement, a ≡ a × b(a) is assumed to be Pareto or log-normally
distributed with a set of parameters identical to the ones used in our
empirical analysis (Section 5.1). We also retain s = 5 as the param-
eter for the firm-level trade elasticity. Without loss of generality, in
this partial equilibrium framework, we normalize the nominal wage,
w = 1, and we draw An/fni, i.e. the ratio of destination n attractive-
ness over entry cost from a log-normal distribution. This distribution
is calibrated such as to match an average bilateral share of exporting
firms of 18%, an empirical moment that is also targeted by Head et
al. (2014) and Melitz and Redding (2015) and that reflects the aver-
age fraction of US manufacturing firms that export (as reported in

Bernard et al., 2007). Finally, the applied-tariffs tni = 1 + tni are
drawn from an uniform distribution over the range [1, 2].

In each MC draw, we first generate a matrix of firm-level trade
flows that are non-zero when sales exceed the bilateral entry cost,
i.e. xni(a) >swfni. In a first stage we infer from this fake trade data
set the micro-based predictions of the aggregate trade elasticities by
applying the methodology of Section 5.1: We first retrieve mean-to-
min ratios for all country-pairs and then predict the corresponding
set of theoretical bilateral elasticities (Eqs. (10) and 11)). In a second
stage, we turn to the macro-based estimates of the trade elasticity.
To this purpose, we collapse firm-level trade flows at the country-
pair level to construct a matrix of bilateral aggregate trade. We then
run gravity regressions (both using country fixed effects and Tetrads)
and retrieve the point estimate of applied tariffs. Hence, for each
draw, we obtain one macro-based estimate of the trade elasticity
that we compare to the average of the micro-based predictions. This
procedure is replicated 1000 times.

The simulation results are displayed in Table A.2 for log-normal
(col. 1–col. 4) and Pareto (col. 5–col. 8) and for different degrees
of firm scarceness (from 1000 to 1 million firms per country). Each
column reports averages and standard errors across replications.

Our baseline simulation under Pareto (col. 8) shows that the
simulated economy with 1 million firms conforms to the theoret-
ical prediction of a model with a continuum of firms. The micro-
based predictions of the bilateral aggregate trade elasticity are rela-
tively homogeneous across country pairs (the number in parenthesis
reports the mean value of the standard deviation within each draw,
and is quite small compared to the average elasticity) and their aver-
age (first row) is close to the macro-based estimates of the elasticities
retrieved from Tetrad-like specification (second row) or standard
gravity with fixed effects (third row). Finally, the elasticity of the
average export (last row) is not significantly different from zero, as

Table A.2
Monte Carlo results: elasticities wrt to a change in trade costs.

Distribution: Log-normal Pareto

# firms per country: 1 K 10 K 100 K 1 M 1 K 10 K 100 K 1 M

Total exports (micro-predictions) −4.64 −4.51 −4.48 −4.47 −5.77 −5.50 −5.28 −5.20
(1.08) (0.66) (0.54) (0.53) (0.95) (0.77) (0.33) (0.17)

Total exports (macro/Tetrads) −4.42 −4.56 −4.53 −4.53 −5.60 −5.33 −5.31 −5.23
(0.49) (0.26) (0.09) (0.03) (0.95) (0.59) (0.42) (0.27)

Total exports (macro/FE) −4.40 −4.44 −4.43 −4.43 −5.51 −5.32 −5.27 −5.20
(0.20) (0.09) (0.04) (0.01) (0.35) (0.23) (0.15) (0.10)

Nb exporters (macro/FE) −2.63 −2.72 −2.72 −2.71 −5.12 −5.09 −5.15 −5.14
(0.07) (0.04) (0.01) (0.00) (0.20) (0.08) (0.04) (0.01)

Avg. exports (macro/FE) −1.77 −1.72 −1.71 −1.71 −0.43 −0.23 −0.13 −0.06
(0.18) (0.09) (0.03) (0.01) (0.50) (0.21) (0.14) (0.10)

Notes: 1000 replications for each cell, parameters on fixed costs of exports and size of the demand term have been calibrated so the share of exporters averages to 18% in all
simulations. For each elasticity, the first line reports the average value. Standard deviations are in parentheses. For the “micro-predictions” elasticity, the number in parentheses
is the average of standard deviations of the elasticity in each draw (quantifying the degree of heterogeneity in bilateral elasticities). For the aggregate elasticities, we report the
standard deviation of elasticities across the 1000 replications.
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expected from the theoretical prediction associated with Pareto het-
erogeneity and a continuum of firms. An important finding is that
with small numbers of potential exporters, this elasticity gets larger
(in absolute value), but remains a small share of the elasticity on total
exports, and is never statistically different from 0, even with only
1000 firms (of which around 18% export). We conclude from this
exercise that scarceness (sometimes referred to as granularity) does
not seem to play a central role in our results (which is related to the
findings of Fernandes et al., 2015).

From the baseline simulation under log-normal (column 4), we
see that the macro-based estimate of the aggregate elasticity and
the average of the micro-based predictions are quantitatively very
close — i.e. equality cannot be rejected. This constitutes the main
result of our Monte Carlo approach. It confirms that the similarity
between micro-based predictions and the macro-based estimates in
Section 5.2 can be safely interpreted as supportive of the log-normal
distribution. Notice that the magnitude of the simulation results on
the three bilateral trade elasticities (total exports, count of exporters
and average exports per firm) is also close to what we obtain with the
sample of French and Chinese firms. This is remarkable given that our
Monte Carlo approach is minimal and shares only few features with
the true data, i.e. the parameters of firm-level heterogeneity and the
share of exporters.

Appendix C. Rank correlation in Section 4.1

In Section 4.1, we calibrate the relative contribution of a and b(a)
using the correlation between the rank of a firm in total exports of
the country and its rank in sales to country n. This Appendix aims at
documenting in more details the predictions of our model in terms of
those rank correlations. For a given destination market n, the relative
rank in the unconstrained sales distribution of two firms a and a′
from origin country i is an increasing step-function of the (log of the)
ratio of their sales. Let us denote this log of sales ratio as RRni(a,a′) ≡
ln(xni(a)/xni(a′)). Note that by construction, RR is equal to zero when
firms have exactly the same rank. Eq. (2) yields

RRni(a,a′) = (1−s)(lna−lna′)−(1−s)(ln bni(a)−ln bni(a′)). (A.9)

The previous formula makes clear that, for a given pair of firms,
the cross-market variations in RRni(a,a′) are driven by the second
component only. In particular we see that the larger is the variance
of lnb(a) with respect to the variance of lna, the more we should
observe changes in the relative rank of a and a′ across markets.
When the variance of lnb(a) goes to zero (infinite), the cross-market
correlation in RRni(a,a′) approaches unity (zero).

The previous discussion relates to rank correlations in the uncon-
strained sales distribution. We must now take into account selection

into export and this feature makes the analysis more complex. More-
over, obtaining closed-form results on rank statistics is challenging
because of the non-differentiability of the step function. For these
two reasons we now rely on Monte Carlo simulations to illustrate
further how rank correlation is used for calibrating the relative
contribution of a and b(a).

We simulate our model for different values of r, namely the ratio
of the variance of lnb(a) over the variance of lna (other parameters
being unchanged). Fig. A.1 reports the correlation between the rank
of a firm in total exports of the country and its rank in sales to each
destination market n (vertical axis) for different values of r/(1 + r)
(horizontal axis). The left panel displays rank statistics for the uncon-
strained sales distribution. The right panel considers the conditional
sales distribution, i.e. when selection into export takes place. In that
case all non-exporters have zero sales and so only exporting firms
are ranked. In both cases, as expected, we see a negative relation-
ship. Under selection the limited number of destinations prevents
rank correlation to attain zero for infinite r. Crucial for the calibra-
tion is the fact that the relationship is monotonic. And we retain a
value of r such as to match the empirical moment of 66% for the rank
correlation obtained with conditional sales (right panel).

Appendix D. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.jinteco.2017.05.001.
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