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A. THEORY APPENDIX

A.1. Proof of Proposition 1

WE FIRST ESTABLISH THE EXISTENCE of a Nash equilibrium in which all groups partici-
pate in the contest (an interior equilibrium). Let x∗ = (x∗

1� � � � � x
∗
n)

� ∈ R
n denote the candi-

date equilibrium effort vector that satisfies the FOCs; let x∗
−i ∈ R

n−1 denote the same vec-
tor without the ith component. Let πi(G;xi�x∗

−i)= ϕi(G;xi�x∗
−i)/

∑n

j=1 ϕj(G;xi�x∗
−i)−xi

denote the payoff function of a deviation from the equilibrium effort, in the range where
ϕi ≥ 0.

The FOCs of the profit maximization problem yield

0 = ∂πi

(
G;x∗

i �x∗
−i

)
∂xi

=

n∑
j=1

ϕ∗
j −ϕ∗

i

(
1 +βd+

i − γd−
i

)
(

n∑
j=1

ϕ∗
j

)2 − 1� (22)

Here we have used the fact that ∂ϕ∗
j (G;xi�x∗

−i)/∂xi = δij + βa+
ij − γa−

ij (where δij = 0 if
i �= j and δii = 1); consequently,

∑n

j=1 ∂ϕ
∗
j /∂xi = 1 +βd+

i − γd−
i . Standard algebra yields

ϕ∗
i = 1

1 +βd+
i − γd−

i

(
1 −

n∑
j=1

ϕ∗
j

)
n∑

j=1

ϕ∗
j � (23)

Next, define 
β�γ
i (G)≡ (1+βd+

i −γd−
i )

−1 > 0 and Λβ�γ(G)≡ 1−(
∑n

i=1 

β�γ
i (G))−1, where

the inequality follows from (3). Summing over i’s in equation (23) implies that

ϕ∗
i =Λβ�γ(G)

(
1 −Λβ�γ(G)

)

β�γ
i (G) > 0� (24)
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The inequality hinges on establishing that Λβ�γ(G) > 0, or equivalently,
∑n

i=1 

β�γ
i (G) > 1.

Observe that
∑n

i=1 

β�γ
i (G) = ∑n

i=1
1

1+βd+
i −γd−

i
≥ ∑n

i=1
1

1+βd+
i

≥ n

1+βd+
max

> 1. The last inequal-

ity holds true if and only if β < n−1
d+

max
, which is, in turn, necessarily true if β < 1. This, in

turn, follows from the assumption that β+γ < 1/max{λmax(G
+)�d−

max} which implies that
β+γ < 1/max{λmax(G

+)�λmax(G
−)}, since λmax(G

−) < d−
max (Cvetkovic, Doon, and Sachs

(1995)). Moreover, for any non-empty graph G, λmax(G) ≥ 1, because for any graph G,
λmax(G)≥ maxi=1�����n

√
di (Cvetkovic, Doon, and Sachs (1995)), and maxi=1�����n di ≥ 1 when

G is not empty. Thus, β≤ β+ γ < 1. This establishes that ϕ∗
i ≥ 0 for all i = 1� � � � � n.

Next, we compute x∗. Combining (2) with (24) yields

x∗
i +β

n∑
j=1

a+
ij x

∗
j − γ

n∑
j=1

a−
ij x

∗
j = Λn�β(G)

(
1 −Λn�β(G)

)

β�γ
i (G)� (25)

Denoting �β�γ(G) ≡ (
β�γ
1 (G)� � � � �
β�γ

n (G))�, we can write this system in matrix form as(
In +βA+ − γA−)

x∗ =Λβ�γ(G)
(
1 −Λβ�γ(G)

)
�β�γ(G)� (26)

The fact that β + γ < 1/max{λmax(G
+)�λmax(G

−)} also ensures that the matrix In +
βA+ − γA− is invertible.38 Then, (26) yields the effort levels:

x∗ =Λβ�γ(G)
(
1 −Λβ�γ(G)

)
cβ�γ(G)� (27)

where cβ�γ(G) is the centrality measure defined by equation (8). Equation (27) is the
matrix-form version of equation (7) in the proposition. Evaluating πi(G�x) at x = x∗ yields
equation (9) in the proposition.

Thus far, we have established that x∗ and ϕ∗ satisfy the FOCs. In order to prove
that the FOCs pin down a Nash equilibrium, we must establish that, for all i =
1�2� � � � � n, x∗

i is a global maximum of πi(G;xi�x∗
−i) for all xi ∈ R. To prove the re-

sult, we split the horizontal line at the cutoff value x̂i, uniquely defined by the con-
dition ϕi(G; x̂i�x∗

−i)= 0. For xi < x̂i, πi(G;xi�x∗
−i) = −D. For xi ≥ x̂i, standard alge-

bra establishes that (∂2πi/∂x
2
i )(G;xi�x∗

−i) = −2/(
β�γ
i (G) × Λβ�γ(G)) < 0, where the in-

equality follows from the facts, established above, that 
β�γ
i (G) > 0 and Λβ�γ(G) > 0.

Thus, πi(G;xi�x∗
−i) is strictly concave in xi in the subdomain xi ≥ x̂i. Moreover, equa-

tion (4) establishes that ϕ∗
i > 0 = ϕi(G; x̂i�x∗

−i). This, together with the fact that ϕi is
increasing in xi, establishes that x∗

i > x̂i. The facts that (i) πi(G;xi�x∗
−i) is strictly con-

cave in xi, and (ii) x∗
i > x̂i jointly imply that πi(G;x∗

i �x∗
−i) is a global maximum of the

πi function in the subdomain xi ≥ x̂i. It is immediate that πi(G;x∗
i �x∗

−i) < ∞. Define
D = maxi −πi(G;x∗

i �x∗
−i). Then, for all D>D, we have that πi(G;x∗

i �x∗
−i) >−D, namely,

defeat is not a profitable deviation. This completes the proof of existence of an interior
Nash equilibrium.

Next, we prove uniqueness. We assume that, contrary to the statement of the proposi-
tion, for all D < ∞, there exists an equilibrium where n − n̂ > 0 groups take the defeat
option. Then, we show that this induces a contradiction. Since we have proved that when

38This follows from Weyl’s theorem. The determinant of a matrix of the form In − ∑p
j=1 αjWj is strictly

positive if
∑p

j=1 |αj | < 1/maxj=1�����p ‖Wj‖, where ‖Wj‖ is any matrix norm, including the spectral norm, which
corresponds to the largest eigenvalue of Wj .
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FIGURE A.1.—The figure shows the function πi(G;xi�x∗
−i) for different values of xi .

all n groups participate in the contest there exists a unique equilibrium, this establishes
global uniqueness.

The condition that 
0�γ
i > 0, ∀i = 1�2� � � � � n, ensures that, in a candidate equilibrium in

which only n̂ < n groups participate in the contest, all such n̂ groups choose a finite effort
level (this follows immediately from the analysis of the case where all n groups partici-
pate). The effort level of participants is x∗

n̂ = Λβ�γ(Gn̂)(1 −Λβ�γ(Gn̂))cβ�γ(Gn̂), where the
graph Gn̂ only includes the participating groups. Consider a non-participating group ν.
For this group, in the assumed equilibrium, πν = −D. Suppose group ν deviates and
chooses, instead, xν = x0

ν , where x0
ν is the unique threshold such that ϕν(Gn̂+1;x0

ν� x̂∗
−ν)= 0.

The payoff of this deviation is πν(Gn̂+1;x0
ν� x̂∗

−ν) = −x0
ν > −∞. Thus, for any D> x0

ν , this
deviation is profitable. Repeating the argument for all partitions establishes that there
exists D<∞ such that, for all D>D, any candidate equilibrium where n− n̂ > 0 groups
take the defeat option is susceptible to a profitable deviation (hence, it is not an equilib-
rium). Thus, the only equilibrium is interior, completing the proof.

REMARK: Figure A.1 (referred to in the text) shows the payoff function πi(G;xi�x∗
−i)

at the equilibrium strategy profile. Group i’s payoff function is constant (πi = −D) for
all xi below the threshold that guarantees the non-negativity of ϕi. At the threshold, the
function is discontinuous, capturing the fact that when ϕi ≥ 0, no defeat cost is due. To the
right of the threshold, condition (3) ensures that πi(G� ;xi�x∗

−i) is strictly concave in xi.
Moreover, the payoff function is hump shaped and reaches a maximum at ϕ∗

i > 0.

A.2. The Case of Small Externalities

The centrality measure cβ�γi (G) in equation (8) depends, in general, on the entire net-
work structure. However, it is instructive to consider networks in which the spillover pa-
rameters β and γ are small. In this case, our centrality measure can be approximated by
the the sum of (i) the Katz–Bonacich centrality related to the network of enmities, G−,
(ii) the (negative-parameter) Katz–Bonacich centrality related to the network of alliances,
G+, and (iii) the local hostility vector, �β�γ(G).39

39See Webpage Appendix C for a definition of the Katz–Bonacich centrality and for proofs of Lemmas 1–2.
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LEMMA 1: Assume that the conditions of Proposition 1 are satisfied. Then, as β → 0 and
γ → 0, the centrality measure defined in equation (8) can be written as

cβ�γ(G)= b·
(
γ�G−) + b·

(−β�G+) − �β�γ(G)+O(βγ)�

where O(βγ) involves second and higher order terms, and the (weighted) Katz–Bonacich
centrality with parameter α is defined as b·(α�G) ≡ b�β�γ(G)(α�G) = (In − αA)−1�β�γ(G)
assuming that α is smaller than the inverse of the largest eigenvalue of A.

Lemma 1 states that the centrality cβ�γ(G) can be expressed as a linear combination of
the weighted Katz–Bonacich centralities b·(γ�G−), b·(−β�G+) and the vector � β�γ(G).
Each Katz–Bonacich centrality gauges the network multiplier effect attached to the sys-
tem of enmities and alliances, respectively. In the case of weak network externalities (i.e.
when β→ 0 and γ → 0), the following approximation holds true:

b·�i
(
γ�G−) = 
β�γ

i (G)+ γ

n∑
j=1

a−
ij 


β�γ
j (G)

+ γ2
n∑

j=1

a−
ij

n∑
k=1

a−
jk


β�γ
k (G)+O

(
γ3

)
�

(28)

b·�i
(−β�G+) = 
β�γ

i (G)+ (−β)

n∑
j=1

a+
ij 


β�γ
j (G)

+ (−β)2
n∑

j=1

a+
ij

n∑
k=1

a+
jk


β�γ
k (G)+O

(
β3

)
�

(29)

Thus, Lemma 1 suggests that, when higher order terms can be neglected, our central-
ity measure is increasing in γ and in the number of first- and second-degree enmities,
whereas it is decreasing in β and in the number of first-degree alliances. Second-degree
alliances have instead a positive effect on the centrality measure. An illustration of this
result in the case of a path graph is provided in Appendix C.

We can also obtain a simple approximate expression for the equilibrium efforts and the
payoffs in Proposition 1.40

LEMMA 2: As β → 0 and γ → 0, the equilibrium effort and payoff of group i in network
G can be written as

x∗
i (G)= Aβ�γ

1 (G)−B1

(
βd+

i − γd−
i

) +O(βγ)�

π∗
i (G)= Aβ�γ

2 (G)+B2

(
βd+

i − γd−
i

) +O(βγ)�

where Aβ�γ
1 (G)�B1�A

β�γ
2 (G), and B2 are positive constants with Aβ�γ

1 (G) and Aβ�γ
2 (G) being

of the order of O(β)+O(γ).

40See the proof of Lemma 2 for the explicit expressions for the constants Aβ�γ(G)�B�Cβ�γ(G), and D.
It is useful to note that, when β = γ = 0, then Λβ�γ(G) = 1 − 1

n
, and c

β�γ
i (G) = 1. Then, the equilibrium

expressions in Proposition 1 simplify to x∗
i (G)= (n−1)/n2 and π∗

i (G) = 1/n2 which are the standard solutions
in the Tullock CSF.
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Lemma 2 shows that, when network externalities are small, a group’s fighting effort in-
creases in the weighted difference between the number of enmities (weighted by γ) and
alliances (weighted by β), that is, the net local externalities d−

i γ − d+
i β. The opposite is

true for the equilibrium payoff, which is increasing in d+
i β − d−

i γ. Thus, ceteris paribus,
an increase in the spillover from alliances (enmities), parameterized by β (γ), and an in-
crease in the number of allies (enemies) decreases (increases) group i’s fighting effort and
increases (reduces) its payoff. Intuitively, a group with many enemies tends to fight harder
and to appropriate a smaller share of the prize, whereas a group with many friends tends
to fight less and to appropriate a large size of the prize. One must remember, however,
that this simple result hinges on β and γ being small; in general, higher-degree links have
sizeable effects.

A.3. Appendix to Section 2.4 (Heterogeneity)

In the following, we provide a complete equilibrium characterization of the extension of
our model that we have introduced in Section 2.4. When the fighting strength ϕi of group
i depends on an idiosyncratic shifter ϕ̃i as in equation (11), then the following proposition
characterizes the corresponding Nash equilibrium.

PROPOSITION 2: Let 
β�γ
i (G) and Λβ�γ(G) be defined as in equation (6), and let

cβ�γμ (G)≡ (
In +βA+ − γA−)−1

μ (30)

be a centrality vector, whose generic element cβ�γμ�i (G) describes the centrality of group i in the
network for some vector μ ∈ R

n, and assume that the same parameter restrictions on β and
γ hold as in Proposition 1. Then for the cost of defeat, D, large enough, there exists a unique
Nash equilibrium of the n-player simultaneous move game with payoffs given by equation (1),
groups’ OPs in equation (11), and strategy space R

n, where the equilibrium effort levels are
given by

x∗
i (G)=Λβ�γ(G)

(
1 −Λβ�γ(G)

)
cβ�γ
�β�γ(G)�i

(G)− cβ�γϕ̃�i (G)� (31)

for all i = 1� � � � � n. Moreover, the aggregate and individual equilibrium OPs are, respec-
tively,

n∑
i=1

ϕi =Λβ�γ(G)� (32)

ϕi =Λβ�γ(G)
(
1 −Λβ�γ(G)

)

β�γ
i (G)� (33)

and the equilibrium payoffs are given by

π∗
i (G) ≡ πi

(
G�x∗) = (

1 −Λβ�γ(G)
)(

β�γ
i (G)−Λβ�γ(G)cβ�γ

�β�γ(G)�i
(G)

) + cβ�γϕ̃�i (G)� (34)

PROOF: We start by considering an equilibrium in which all groups participate in the
contest (i.e., an interior equilibrium). With equation (11), we can write group i’s payoff
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as follows:

πi(G�x)= ϕi

n∑
j=1

ϕj

− xi

=
xi +β

n∑
j=1

a+
ij xj − γ

n∑
j=1

a−
ij xj + ϕ̃i

n∑
j=1

(
xj +β

n∑
k=1

a+
jkxk − γ

n∑
k=1

a−
jkxk + ϕ̃j

) − xi�

(35)

The partial derivatives are given by

∂πi

∂xi

=

∂ϕi

∂xi

n∑
j=1

ϕj −ϕi

n∑
j=1

∂ϕj

∂xi(
n∑

j=1

ϕj

)2 − 1

=

n∑
j=1

ϕj −ϕi

(
1 +βd+

i − γd−
i

)
(

n∑
j=1

ϕj

)2 − 1�

(36)

where we have used the fact that ∂ϕj

∂xi
= δij +βa+

ij − γa−
ij and consequently

∑n

j=1
∂ϕj

∂xi
= 1 +

βd+
i − γd−

i . The FOCs are then given by ∂πi

∂xi
= 0. From the partial derivative in equation

(36), the FOC for group i can be written as follows:

∂πi

∂xi

=

n∑
j=1

ϕj −ϕi

(
1 +βd+

i − γd−
i

)
(

n∑
j=1

ϕj

)2 − 1 = 0�

from which we get

ϕi = 1
1 +βd+

i − γd−
i

(
1 −

n∑
j=1

ϕj

)
n∑

j=1

ϕj�

Summation over i gives

n∑
i=1

ϕi =

⎛
⎜⎜⎜⎜⎝1 − 1

n∑
i=1

1
1 +βd+

i − γd−
i

⎞
⎟⎟⎟⎟⎠ �
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With 
β�γ
i (G) and Λβ�γ(G) as in equation (6), we can write the aggregate operational

performance as
n∑

i=1

ϕi = Λβ�γ(G)�

which is equivalent to equation (32). The individual operational performance can be writ-
ten as

ϕi(G�x)=Λβ�γ(G)
(
1 −Λβ�γ(G)

)

β�γ
i (G)� (37)

which is equivalent to equation (32). We then get

ϕi(G�x)= xi +β

n∑
j=1

a+
ij xj − γ

n∑
j=1

a−
ij xj + ϕ̃i =Λn�β(G)

(
1 −Λn�β(G)

)

β�γ
i (G)� (38)

We can write

xi +β

n∑
j=1

a+
ij xj − γ

n∑
j=1

a−
ij xj = ϕi − ϕ̃i = Λn�β(G)

(
1 −Λn�β(G)

)

β�γ
i (G)− ϕ̃i�

Denoting 
β�γ(G)≡ (
β�γ
1 (G)� � � � �
β�γ

n (G))�, we can write this in vector-matrix form as(
In +βA+ − γA−)

x =Λβ�γ(G)
(
1 −Λβ�γ(G)

)
�β�γ(G)− ϕ̃�

When the matrix In +βA+ − γA− is invertible, we obtain a unique solution given by

x =Λβ�γ(G)
(
1 −Λβ�γ(G)

)(
In +βA+ − γA−)−1

�β�γ(G)− (
In +βA+ − γA−)−1

ϕ̃� (39)

With the definition of the centrality in equation (30), we then can write equation (39) in
the form of equation (31) in the proposition. Moreover, using the fact that equilibrium
payoffs are given by πi(G�x∗) = ϕ∗

i (G)∑n
j=1 ϕ

∗
j (G)

− x∗
i , we obtain equation (34) in the proposi-

tion.
Next, note that from equation (36) we find that

∂2πi

∂x2
i

= − 2

Λβ�γ(G)
β�γ
i (G)

= −2

n∑
j=1


β�γ
j (G)

n∑
j=1


β�γ
j (G)− 1

(
1 +βd+

i − γd−
i

)
� (40)

which is negative under the same parameter restrictions on β and γ as in Proposi-
tion 1. Further, as in the proof of Proposition 1, one can then proceed to establish
that there exists a unique interior Nash equilibrium when the cost of defeat, D, is large
enough. Q.E.D.

B. EMPIRICAL APPENDIX

In this section, we discuss technical details related to Sections 4 (ambiguous links) and
6 (random utility model). Then, we include the tables and figures discussed in the main
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text and in this appendix. Additional tables and figures can be found in the webpage
Appendix C.

B.1. Appendix to Section 4.2.2

While the large majority of bilateral links are incontrovertible, there are some that may
potentially be ambiguous, that is, for which experts do not all reach the same clear-cut
assessments or where the battleground observations in ACLED are not fully reflected in
the expert accounts. As mentioned earlier, Table B.V checks the robustness of our results
with respect to ambiguous group links. The columns 1–5 of the table have already been
discussed in the main text. Here, we discuss columns 6–9. In column 6, we exclude the
CNDD since this group appears to have switched its relation with the Mayi-Mayi militia.
Next, we classify Uganda and the RCD-G as enemies (column 7). While this violates our
coding rule (that classifies them as neutral), it is more consistent with the narrative. Next,
we code all member states of the Southern African Development Community (SADC) as
allies of each other and of the FARDC (column 8). Finally, we define as “governments
allied to the FARDC” all governments allied to the FARDC in the baseline treatment
plus all SADC member states. Finally, we let all “governments allied to the FARDC” be
(i) allied among themselves, (ii) allied to the FARDC, and (iii) enemies to Rwanda-I and
Uganda (column 9). The results are in all cases similar to the baseline table.

In Table B.VI, we investigate potentially ambiguous links on the basis of accounts in
Autesserre (2008), Prunier (2011), Sanchez de la Sierra (2016), Stearns (2011). We start by
focusing in column 1 on the FARDC links with ALIR. In the baseline regression, they are
coded as enemies under Laurent Kabila and as neutral under Joseph Kabila. The earlier
link is potentially ambiguous, since the ALIR was part of the Hutu exodus that clashed
with Rwanda and Uganda (see, e.g., Prunier (2011, p. 234)). This might suggest an alliance
between the FARDC and ALIR. However, this is in contradiction with the ACLED data
where these two groups are observed fighting against each other on fourteen occasions
between 1998 and 2001, and never on the same side as brothers in arms. Column 1 shows
that the results are not sensitive if we code this dyad as an alliance or as an enmity.

In the same vein, columns 2 and 3 run the same regressions as in columns 4 and 5 of
Table B.V where we investigated the ambiguous links between the FARDC and FDLR,
but assuming now in addition the same links for the FARDC-Interahamwe pair as for the
FARDC-FDLR pair. In particular, in our baseline estimates the FARDC-FDLR are first
allies under Laurent Kabila, and then neutral under Joseph Kabila, whereas the FARDC-
Interahamwe are allies throughout the whole period. Here, we assume that FARDC-
Interahamwe and FARDC-FDLR are in both cases allies under Laurent Kabila and ene-
mies under Joseph Kabila (column 2), or neutral throughout the entire period (column 3).

In column 4, we scrutinize the relationship between the FARDC-LK and ADF. In the
baseline, we code them as allied, based on an expert source (see International Crisis
Group (1998)). However, Prunier (2011, p. 177) mentioned one incident where the 10th
division of the FARDC attacks ADF rebels. While this appears to be an isolated episode,
in column 4 we code FARDC-LK and ADF as enemies.

In column 5, we investigate the link MLC-Hema ethnic militia. In the baseline estima-
tions, we code them as enemy, based on ACLED reporting them to fight five times against
each other and never as brothers in arms. Stearns (2011, p. 230) referred to one incident
where MLC troops cooperated with the Hema ethnic militia to attack locals. Thus, in the
robustness check of column 5, we code them as allies.
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Finally, the link FDLR-MayiMayi is considered in column 6. In the baseline esti-
mations, we code two MayiMayi fractions as allied to FDLR (based on ACLED in-
cidences), namely, the Yakutumba and Pareco fractions. In contrast, the relationship
FDLR-MayiMayi is coded as neutral for all other MayiMayi fractions (again based on
ACLED). Prompted by Sanchez de la Sierra’s statement that “Mayi-Mayi groups and the
FDLR often conducted joint operations during the second Congo war” (2016, p. 84), we
code all MayiMayi fractions as being allied to the FDLR.

In all columns, the baseline results are virtually unchanged. The results are also robust
to changing all links simultaneously (except for column 3, since it would be incompatible
with column 2).

B.2. Appendix to Section 6 (Random Utility Model)

B.2.1. Multinomial Logit Estimation

Table B.XII displays the results of the multinomial logit estimation. Table B.XIII dis-
plays the results of the Random Utility Model with time-varying network. Figure B.1
reports the cross-dyad distribution of predicted probabilities for enmities (left panel) and
alliances (right panel). In the left panel, the dark sample represents the distribution for
observed enmities (alliances) and the light sample represents the distribution for the other
observed links. Figure B.2 displays the observed and predicted distributions of six network
statistics that play an important role in our baseline model: degree one enemies (panel
a), degree one allies (panel b), number of degree one links (panel c), common enemies
(panel d), common allies (panel e), and conflicting neighbors (panel f). For each statistic,
the panel compares the data with the average distribution over 1000 simulated networks
as predicted by the conditional logit model (plus/minus one standard deviation interval).
The figure shows that all these important moments of the data are predicted accurately.
More precisely, each Monte Carlo draw consists in drawing a random utility shock ũij(a)
for each dyad ij and alternative a from a type I extreme value distribution with mean
γ ≈ 0�577 (the Euler–Mascheroni constant), and variance,

√
π/6. Using equation (21),

we compute each simulated alternative-dependent joint surplus U sim
ij (a) and select the

predicted link for dyad ij as apre
ij = arg maxU sim

ij (a). This leads to a simulated network for
which we can compute the six distributions of network statistics. This procedure is iter-
ated 1000 times. Each panel reports the average distribution (±1 SD) across the Monte
Carlo draws.

FIGURE B.1.—Predicted probabilities of enmities and alliances.
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FIGURE B.2.—Goodness-of-fit statistics.
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B.2.2. Effect of Removing Armed Groups (With Network Rewiring)

Table B.XIV summarizes the effect of removing one or more groups from the conflict
when endogenous network adjustments are allowed. We focus, for comparability, on the
top 15 groups in Table IV. All but three groups remain in the top 15 even after allowing
for network recomposition.41 The UPC is especially interesting. This is a medium-large
group whose activity accounts for 2.2% of the total violence. Its removal in Table IV yields
a reduction in violence of the order of 3%, with a sizeable multiplier of 1.4. However, the
recomposition of the network after its removal offsets two thirds of the gains.

TABLE B.I

SUMMARY STATISTICSa

Variable Obs. Mean Std. Dev. Min Max

Total Fight. 1040 5�929 25�046 0 300
Total Fight. Enemies (TFE) 1040 69�237 109�95 0 682
Total Fight. Allies (TFA) 1040 48�603 85�75 0 563
Total Fight. Neutrals (TFN) 1040 350�539 241�616 1 1042
d− (# enemies) 1040 2�95 4�306 0 26
d+ (# allies) 1040 2�4 3�45 0 21
Rainfall (t − 1) 1040 125�839 26�164 59�639 195�56

aThe sample comprises the 80 fighting groups that are involved in at least one fighting event in ACLED during the period 1998–
2010.

41The three groups that drop out of the top 15 are the UPC, Mutiny of FARC, and FRPI. The groups
entering the top 15 are two branches of the RCD (the first collects all events involving “unspecified” RCD; the
second is the group labeled RCD-National; both are likely to suffer with large measurement error) and the
National Army for the Liberation of Uganda.
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TABLE B.II

BENCHMARK SECOND STAGE WITH LARGE_6a

Dependent Variable: Total Fighting

OLS Reduced IV Full IV Neutrals Battles d− ≥ 1 & d+ ≥ 1 GED Coord. GED Union
(1) (2) (3) (4) (5) (6) (7) (8)

Total Fight. Enemies (TFE) 0�066∗∗∗ 0�130∗∗ 0�100∗∗∗ 0�119∗∗∗ 0�121∗∗∗ 0�118∗∗∗ 0�123∗∗∗ 0�161∗∗∗

(0�016) (0�057) (0�033) (0�035) (0�035) (0�035) (0�036) (0�045)
Total Fight. Allies (TFA) 0�001 −0�218∗∗ −0�149∗∗∗ −0�139∗∗∗ −0�153∗∗∗ −0�161∗∗∗ −0�138∗∗∗ −0�152∗∗∗

(0�017) (0�086) (0�051) (0�047) (0�051) (0�062) (0�047) (0�050)
Total Fight. Neutrals (TFN) 0�005 0�004 0�009 0�005 0�006

(0�006) (0�006) (0�014) (0�006) (0�005)

Additional controls Reduced Reduced Full Full Full Full Full Full
Estimator OLS IV IV IV IV IV IV IV
Set of Instrument Variables n.a. Restricted Full Full Full Full Full Full
Kleibergen–Paap F-stat n.a. 10�6 15�6 15�1 17�4 14�9 15�1 17�3
Hansen J (p-value) n.a. 0�16 0�75 0�83 0�79 0�70 0�81 0�79
Observations 1040 1040 1040 1040 988 598 1040 1781
R-squared 0�510 0�265 0�474 0�459 0�446 0�462 0�455 0�389

aAll regressions include group fixed effects and control for rainfall in the own group’s territory. Columns 1–3 include time fixed effects. Robust standard errors corrected for Spatial HAC in
parentheses. Significance levels are indicated by ∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.III

ROBUSTNESSa

Dependent Variable: Total Fighting

Only Deg. 2 Sample Split Only Violent Batt., Riots, Viol. Excl. Bilateral Lags 1 Evt. Enemy 2 Evts. Ally RUM 3d Poly.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Total Fight. Enemies (TFE) 0�074∗∗∗ 0�147∗∗ 0�083∗∗∗ 0�083∗∗∗ 0�063∗∗∗ 0�090∗∗∗ 0�119∗∗∗ 0�089∗∗∗ 0�106∗∗∗ 0�082∗∗∗

(0�027) (0�062) (0�019) (0�019) (0�023) (0�026) (0�029) (0�019) (0�033) (0�019)
Total Fight. Allies (TFA) −0�207∗∗ 0�002 −0�114∗∗∗ −0�114∗∗∗ −0�110∗∗∗ −0�104∗∗∗ −0�170∗∗∗ −0�107∗∗∗ −0�112∗∗ −0�115∗∗∗

(0�083) (0�079) (0�033) (0�034) (0�033) (0�040) (0�051) (0�033) (0�050) (0�034)
Total Fight. Neutrals (TFN) 0�008 0�011 0�004 0�004 0�004 0�007 0�005 0�002 0�002 0�004

(0�006) (0�007) (0�004) (0�004) (0�004) (0�005) (0�006) (0�004) (0�006) (0�004)

Additional controls Full Full Full Full Full Full Full Full Full Full
Estimator IV IV IV IV IV IV IV IV IV IV
Set of Instrument Variables Full Full Full Full Full Full Full Full Full Full
Kleibergen–Paap F-stat 13�4 37�7 22�5 24�6 20�4 20�3 11�8 25�3 4�0 28�6
Hansen J (p-value) 0�28 0�84 0�58 0�58 0�54 0�69 0�51 0�51 0�62 0�58
Observations 1040 640 1040 1027 1040 960 1040 1040 1040 1040
R-squared 0�489 0�589 0�568 0�570 0�550 0�577 0�394 0�571 0�554 0�567

aAll regressions include group fixed effects and control for rainfall in the own group’s territory. Robust standard errors corrected for Spatial HAC in parentheses. Significance levels are indicated
by ∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.IV

ROBUSTNESS: GROUP DEFINITION (FARDC, RWANDA & OTHERS)a

Dependent Variable: Total Fighting

FARDC MayMay Rwanda FARDC & RWA
Merge (1) (2) (3) (4)

Total Fight. Enemies (TFE) 0�040∗∗ 0�068∗∗∗ 0�074∗∗∗ 0�040∗∗

(0�019) (0�022) (0�022) (0�020)
Total Fight Allies (TFA) −0�058∗ −0�084∗∗∗ −0�108∗∗∗ −0�066∗

(0�034) (0�032) (0�032) (0�037)
Total Fight. Neutrals (TFN) −0�002 −0�000 0�003 −0�003

(0�004) (0�005) (0�005) (0�004)

Additional controls Full Full Full Full
Estimator IV IV IV IV
Set of Instrument Variables Full Full Full Full
Kleibergen–Paap F-stat 34.6 15.4 19.7 29.8
Hansen J (p-value) 0.44 0.66 0.59 0.51
Observations 1027 962 1027 1014
R-squared 0.631 0.614 0.589 0.642

aAll regressions include group fixed effects and control for rainfall in the group’s homeland. Robust standard errors corrected for Spatial HAC in parentheses. Significance levels are indicated by
∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.V

ROBUSTNESS: AMBIGUOUS NETWORK LINKS Ia

Dependent Variable: Total Fighting

Uga-Rwa
Neutral

Uga-Rwa
Allies

Uga-Rwa Allies
Then Neutral

FARDC-FDLR
Allies Then Enemies

FARDC-FDLR
Neutral

Exclude
CNDD

Uga-RCD-G
Enemies

SADC
Allies

Dyadic Closure
Main Groups

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total Fight. Enemies (TFE) 0�082∗∗∗ 0�081∗∗∗ 0�082∗∗∗ 0�090∗∗∗ 0�083∗∗∗ 0�083∗∗∗ 0�074∗∗∗ 0�082∗∗∗ 0�075∗∗∗

(0�021) (0�021) (0�020) (0�020) (0�020) (0�020) (0�019) (0�020) (0�020)
Total Fight Allies (TFA) −0�105∗∗∗ −0�109∗∗∗ −0�112∗∗∗ −0�116∗∗∗ −0�112∗∗∗ −0�111∗∗∗ −0�104∗∗∗ −0�116∗∗∗ −0�100∗∗∗

(0�031) (0�033) (0�033) (0�033) (0�036) (0�033) (0�031) (0�035) (0�031)
Total Fight. Neutrals (TFN) 0�004 0�003 0�004 0�003 0�003 0�002 0�004 0�004 0�000

(0�004) (0�004) (0�004) (0�004) (0�004) (0�004) (0�004) (0�004) (0�004)

Additional controls Full Full Full Full Full Full Full Full Full
Estimator IV IV IV IV IV IV IV IV IV
Set of Instrument Variables Full Full Full Full Full Full Full Full Full
Kleibergen–Paap F-stat 19�9 20�2 19�8 16�7 23�4 27�2 20�8 19�2 12�7
Hansen J (p-value) 0�60 0�59 0�58 0�60 0�56 0�54 0�57 0�55 0�58
Observations 1040 1040 1040 1040 1040 1027 1040 1040 1040
R-squared 0�574 0�573 0�569 0�577 0�565 0�574 0�577 0�573 0�589

aAll regressions include group fixed effects and control for rainfall in the group’s homeland. Robust standard errors corrected for Spatial HAC in parentheses. Significance levels are indicated by
∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.VI

ROBUSTNESS: AMBIGUOUS NETWORK LINKS IIa

Dependent Variable: Total Fighting

FARDC-ALIR
Ally

FARDC-FDLR/Interah.
Ally Then Enemy

FARDC-FDLR/Interah.
Neutral

FARDC-ADF
Enemy

Hema Ethnic
Militia-MLC Ally

FDLR-MayiMayi
Ally

(1) (2) (3) (4) (5) (6)

Total Fight. Enemies (TFE) 0�087∗∗∗ 0�077∗∗∗ 0�078∗∗∗ 0�081∗∗∗ 0�085∗∗∗ 0�070∗∗∗

(0�020) (0�022) (0�019) (0�018) (0�019) (0�020)
Total Fight. Allies (TFA) −0�117∗∗∗ −0�087∗∗∗ −0�103∗∗∗ −0�117∗∗∗ −0�113∗∗∗ −0�107∗∗∗

(0�035) (0�025) (0�034) (0�036) (0�035) (0�033)
Total Fight. Neutrals (TFN) 0�004 0�002 0�003 0�004 0�004 0�003

(0�004) (0�004) (0�004) (0�004) (0�004) (0�006)

Additional controls Full Full Full Full Full Full
Estimator IV IV IV IV IV IV
Set of Instrument Variables Full Full Full Full Full Full
Observations 1040 1040 1040 1040 1040 1040
Kleibergen–Paap F-stat 21�4 10�1 25�2 25�1 20�1 28�3
Hansen J (p-value) 0�58 0�58 0�55 0�56 0�57 0�58
R-squared 0�562 0�605 0�576 0�570 0�566 0�574

aAll regressions include group fixed effects and control for rainfall in the own group’s territory. Robust standard errors corrected for Spatial HAC in parentheses. Significance levels are indicated
by ∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.VII

MEASUREMENT ERROR IN RAINFALLa

Dependent Variable: GPCC Gauge Rainfall Measure

Linear Log-linear Linear Log-linear

Model (1) (2) (3) (4) (5) (6) (7) (8)

# ACLED conflict events 0�017 0�008 0�009 0�001 −0�069 0�016 −0�016 0�005
(0�032) (0�011) (0�008) (0�003) (0�057) (0�014) (0�014) (0�004)

TRMM satellite rainfall measure 0�639∗∗∗ 0�513∗∗∗ 0�714∗∗∗ 0�619∗∗∗ – – – –
(0�018) (0�012) (0�015) (0�013) – – – –

GPCP satellite rainfall measure – – – – 0�790∗∗∗ 1�073∗∗∗ 0�843∗∗∗ 1�233∗∗∗

– – – – (0�044) (0�078) (0�055) (0�096)

(0�5 × 0�5) Grid Cell FE No Yes No Yes No Yes No Yes
Annual TE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 9893 9893 9893 9893 9893 9893 9893 9893
R-squared 0�578 0�446 0�604 0�490 0�555 0�494 0�541 0�503

aThe unit of observation is a cell of resolution 0�5 × 0�5 degrees in a given year. The panel contains 761 cells covering DRC between 1998 and 2010. In columns 3, 4, 7, and 8, all rainfall variables
are in log. Robust standard errors are clustered at the (0�5 × 0�5) cell level in columns 1–4 and at the (2�5 × 2�5) cell level in columns 5–8. Significance levels are indicated by ∗p < 0�1, ∗∗p < 0�05,
∗∗∗p< 0�01.
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TABLE B.VIII

ALTERNATIVE RAINFALL DATAa

Column in baseline Table I 4 (All Evts.) 5 (Battles) 4 (All Evts.) 5 (Battles) 4 (All Evts.) 5 (Battles)

Definition “large group” d− ≥ 10 d− ≥ 6 Not Included

(1) (2) (3) (4) (5) (6)

Panel a (TRMM)
Total Fight. Enemies (TFE) 0�025 0�084∗∗ 0�053∗ 0�102∗∗ 0�131∗∗ 0�197∗∗∗

(0�029) (0�042) (0�029) (0�049) (0�060) (0�074)
Total Fight. Allies (TFA) −0�092∗∗ −0�146∗∗∗ −0�142∗∗∗ −0�194∗∗∗ −0�126∗∗ −0�187∗∗∗

(0�038) (0�047) (0�053) (0�058) (0�058) (0�066)
Total Fight. Neutrals (TFN) 0�006 0�007 0�005 0�007 0�004 0�003

(0�005) (0�008) (0�007) (0�009) (0�006) (0�010)

Kleibergen–Paap F-stat 10�3 3�9 10�9 4�2 18�1 10�7
Hansen J (p-value) 0�50 0�68 0�55 0�72 0�39 0�72
Observations 1040 988 1040 988 1040 988
R-squared 0�586 0�534 0�495 0�403 0�431 0�264

Panel b (GPCP)
Total Fight. Enemies (TFE) 0�017 0�023 0�060 0�064 0�138∗∗ 0�155∗∗

(0�041) (0�041) (0�050) (0�053) (0�063) (0�062)
Total Fight. Allies (TFA) −0�068∗∗∗ −0�097∗∗∗ −0�130∗∗∗ −0�186∗∗∗ −0�106∗ −0�144∗∗

(0�026) (0�036) (0�049) (0�062) (0�055) (0�064)
Total Fight. Neutrals (TFN) −0�009 −0�006 −0�010 −0�004 −0�002 0�001

(0�008) (0�009) (0�011) (0�013) (0�012) (0�013)

Kleibergen–Paap F-stat 7�2 7�4 6�4 11�3 10�1 10�0
Hansen J (p-value) 0�60 0�69 0�66 0�72 0�58 0�71
Observations 1040 988 1040 988 1040 988
R-squared 0�606 0�590 0�514 0�446 0�444 0�390

Panel c (TRMM & GPCP)
Total Fight. Enemies (TFE) 0�035 0�060∗∗ 0�069∗∗ 0�095∗∗∗ 0�128∗∗∗ 0�163∗∗∗

(0�026) (0�026) (0�029) (0�033) (0�049) (0�050)
Total Fight Allies (TFA) −0�063∗∗∗ −0�099∗∗∗ −0�108∗∗∗ -0�157∗∗∗ −0�087∗ −0�129∗∗∗

(0�024) (0�028) (0�038) (0�043) (0�046) (0�050)
Total Fight. Neutrals (TFN) 0�006 0�007 0�002 0�004 0�003 0�001

(0�005) (0�007) (0�006) (0�008) (0�006) (0�009)

Kleibergen–Paap F-stat 38�6 27�8 51�4 33�3 58�0 15�6
Hansen J (p-value) 0�89 0�93 0�93 0�94 0�85 0�87
Observations 1040 988 1040 988 1040 988
R-squared 0�609 0�586 0�528 0�464 0�471 0�398

aThe dependent variable is total fighting. The unit of observation is an armed group in a given year. The panel contains 80 armed
groups between 1998 and 2010. All regressions include group fixed effects and control for rainfall in the own group’s territory, as well
as the same additional controls and instruments as in the columns (4) and (5) of the baseline Table I. Robust standard errors corrected
for Spatial HAC in parentheses. Significance levels are indicated by ∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.IX

MONTE CARLO SIMULATIONS TESTING LINK MISMEASUREMENTa

Probability of mismeasurement

0 0.01 0.1 0.2 0.5 1

TFA TFE TFA TFE TFA TFE TFA TFE TFA TFE TFA TFE

Enmity links only Mean 0.118 0.085 0.117 0.084 0.112 0.077 0.106 0.0713 0.102 0.046 0.119 0.002
S.D. 0.012 0.011 0.012 0.011 0.014 0.013 0.019 0.022 0.024 0.020 0.018 0.015

Alliance links only Mean 0.119 0.085 0.117 0.0843 0.107 0.075 0.095 0.066 0.059 0.055 0.000 0.083
S.D. 0.012 0.011 0.014 0.011 0.019 0.015 0.023 0.019 0.027 0.022 0.008 0.008

Alliance & Enmity links Mean 0.118 0.085 0.116 0.083 0.101 0.067 0.086 0.051 0.040 0.012 0.001 -0.001
S.D. 0.012 0.010 0.014 0.012 0.022 0.019 0.028 0.023 0.037 0.028 0.017 0.014

aThe table reports the mean and standard deviations (S.D.) of the Monte Carlo sampling distributions (1000 draws) of the baseline 2SLS estimates (col. 4, Table I) of TFE and TFA for different
probabilities of network link mismeasurement. The data generating process is based on the coefficients = 0�114 for TFA and = 0�083 for TFE.
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TABLE B.X

BOOTSTRAPPING ACLED EVENTSa

(1) (2) (3) (4) (5) (6) (7) (8)

TFA Mean 0.006 −0�231 −0�121 −0�114 −0�113 −0�138 −0�111 −0�132
S.D. 0.007 0�039 0�022 0�023 0�023 0�033 0�023 0�013

TFE Mean 0.065 0�131 0�067 0�088 0�086 0�087 0�089 0�135
S.D. 0.005 0�024 0�016 0�016 0�016 0�019 0�016 0�011

TFN Mean 0�003 0�003 0�013 0�004 0�005
S.D. 0�003 0�003 0�008 0�003 0�002

aThe table reports the mean and standard deviations (S.D.) of the Monte Carlo sampling distributions (1000 draws) of the es-
timates of TFE, TFA, TFN for all specifications of the baseline Table I. In each Monte Carlo draw, the analysis is conducted on a
random sample of ACLED events drawn with replacement.

TABLE B.XI

MONTE CARLO SIMULATIONS TESTING ACLED EVENT MISMEASUREMENTa

Probability of mismeasurement

0.01 0.1 0.2 0.5

TFA TFE TFA TFE TFA TFE TFA TFE

Mean −0�1139 0.0831 −0�1132 0.0836 −0�1109 0.0828 −0�1054 0.0813
S.D. 0.0009 0.0008 0.0028 0.0025 0.0044 0.0011 0.0063 0.0053

aThe table reports the mean and standard deviations (S.D.) of the Monte Carlo sampling distributions (1000 draws) of the baseline
2SLS estimates (col. 4, Table I) of TFE and TFA for different probabilities of ACLED event mismeasurement for small groups.
A group is defined to be small if (d− + d+) < 3, a condition that is satisfied for 49.7 percent of the groups in the sample.
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TABLE B.XII

MULTINOMIAL LOGITa

CSF Surplus

0.000
(0.000)

Enmity link Alliance link

Common enemy −0�387∗∗ 0�425∗∗

(0�183) (0�181)
Common allied 0�097 −0�529∗∗∗

(0�194) (0�175)
Common allied and enemy 0�454∗∗∗ −0�727∗∗∗

(0�119) (0�161)
Geodistance −0�003∗∗∗ −0�004∗∗∗

(0�001) (0�001)
Same ethnic group 0�842 0�865

(0�595) (0�601)
Same Hutu Tutsi 0�831 0�550

(0�813) (0�787)
Different Hutu Tutsi 1�295∗∗ −0�914

(0�596) (1�148)
Zero Government −1�977∗∗∗ 0�849

(0�711) (0�763)
Zero Foreign 1�514∗∗∗ 0�761

(0�523) (0�576)

Number of observations 9480
Log likelihood −445�92

aConditional logit estimator. The unit of observation is a pair of fighting groups in
a given year. Alternatives correspond to Enmity (column 2), Alliance (column 3), and
Neutrality as reference. Alternative-dependent group fixed effects are included. Stan-
dard errors in parentheses, ∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.

TABLE B.XIII

RUM WITH TIME-VARYING NETWORKa

Dep. Var.: Total Fighting

(1) (2) (3)

Total Fight. Enemies (TFE) 0�106∗∗∗ 0�114∗∗∗ 0�110∗∗∗

(0�033) (0�035) (0�038)
Total Fight. Allies (TFA) −0�112∗∗ −0�122∗∗ −0�137∗∗

(0�050) (0�053) (0�062)
Total Fight. Neutrals (TFN) 0�002 0�001 0�011

(0�006) (0�006) (0�023)

Kleibergen–Paap F-stat 4�0 3�6 5�1
Hansen J (p-value) 0�62 0�67 0�73
Observations 1040 1040 469
R-squared 0�554 0�579 0�597

aAn observation is a given armed group in a given year. The panel contains 80 armed groups between 1998 and 2010. All regressions
include group fixed effects and control for rainfall in the group’s homeland. Robust standard errors corrected for Spatial HAC in
parentheses. Column (1) replicates the baseline specification of the main table (column (4), Table I) but with RUM. Column (2)
replicates column (1) of Table III but with RUM, while column (3) replicates column (4) of Table III but with RUM. Significance
levels are indicated by ∗p< 0�1, ∗∗p< 0�05, ∗ ∗ ∗p< 0�01.
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TABLE B.XIV

WELFARE EFFECT OF REMOVING ARMED GROUPS WITH NETWORK RECOMPOSITIONa

Sh. Fight. −�RD (Exog. Netw.) −�RD (End. Netw.) Multipl. (End. Netw.) MAD −�RD due to rewiring New Enm. at Med. New All. at Med.
Group (1) (2) (3) (4) (5) (6) (7) (8)

RCD-G 0.087 0.151 0.137 1.6 0�025 −0�014 −2 −2
RCD-K 0.060 0.094 0.077 1.3 0�027 −0�017 −1 −1
Rwanda 0.053 0.066 0.105 1.9 0�039 0�039 −3 4
LRA 0.041 0.056 0.051 1.2 0�005 −0�005 0 −1
FDLR 0.066 0.055 0.058 0.9 0�008 0�004 0 1
Mayi-Mayi 0.057 0.046 0.083 1.5 0�024 0�037 −1 2
Uganda 0.043 0.043 0.066 1.5 0�036 0�023 −3 3
CNDP 0.043 0.041 0.041 0.9 0�008 0 0 0
MLC 0.031 0.039 0.053 1.7 0�016 0�014 −1 2
UPC 0.022 0.030 0.009 0.5 0�021 −0�021 −2 −1
Lendu Ethnic Mil. 0.024 0.022 0.047 2.0 0�020 0�025 1 −2
Mutiny FARDC 0.016 0.016 0.016 1.0 0 0 0 0
Interahamwe 0.014 0.014 0.032 2.3 0�024 0�018 −1 0
ADF 0.013 0.012 0.038 2.9 0�013 0�026 −1 1
FRPI 0.009 0.010 0.010 1.1 0 0 0 0

aThe computation of the counterfactual equilibrium is based on the baseline point estimates of column 4 in Table I. The results are based on 1,000 Monte Carlo simulations of an endogenous
network recomposition. For each group, we report the observed share of total fighting involving this group (col. 1); the counterfactual reduction in rent dissipation associated with its removal
(exogenous network) (col. 2); the counterfactual reduction in rent dissipation associated with its removal with network recomposition (col. 3); a multiplier defined as the ratio of col. 3 over col. 1 (col.
4); the Median Absolute Deviation in reduction in RD across Monte Carlo draws (col. 5); the difference between col. 3 and col. 2 (col. 6); post-rewiring number of new enmities and alliances at the
median Monte Carlo draw (cols. 7–8).



NETWORKS IN CONFLICT 23

REFERENCES

AUTESSERRE, S. (2008): “The Trouble With Congo: How Local Disputes Fuel Regional Conflict,” Foreign
Affairs, 87, 94–110. [8]

CVETKOVIC, D., M. DOON, AND H. SACHS (1995): Spectra of Graphs: Theory and Applications. Leipzig: Johann
Ambrosius Barth. [2]

INTERNATIONAL CRISIS GROUP (1998): “Congo at War: A Briefing on the Internal and External Players in the
Central African Conflict,” http://www.crisisgroup.org/. [8]

PRUNIER, G. (2011): Africa’s World War: Congo, the Rwandan Genocide, and the Making of a Continental Catas-
trophe. Oxford: Oxford University Press. [8]

SANCHEZ DE LA SIERRA, R. (2016): “On the Origin of States: Stationary Bandits and Taxation in Eastern
Congo,” Report, Columbia University. [8,9]

STEARNS, J. (2011): Dancing in the Glory of Monsters: The Collapse of the Congo and the Great War of Africa.
New York: PublicAffairs. [8]

Co-editor Liran Einav handled this manuscript.

Manuscript received 6 January, 2015; final version accepted 30 December, 2016; available online 26 January, 2017.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201707%2985%3A4%2B%3C1%3ASTNICT%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/2&rfe_id=urn:sici%2F0012-9682%28201707%2985%3A4%2B%3C1%3ASTNICT%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/13&rfe_id=urn:sici%2F0012-9682%28201707%2985%3A4%2B%3C1%3ASTNICT%3E2.0.CO%3B2-4
http://www.crisisgroup.org/
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/2&rfe_id=urn:sici%2F0012-9682%28201707%2985%3A4%2B%3C1%3ASTNICT%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/13&rfe_id=urn:sici%2F0012-9682%28201707%2985%3A4%2B%3C1%3ASTNICT%3E2.0.CO%3B2-4

	Theory Appendix
	Proof of Proposition 1
	The Case of Small Externalities
	Appendix to Section 2.4 (Heterogeneity)

	Empirical Appendix
	Appendix to Section 4.2.2
	Appendix to Section 6 (Random Utility Model)
	Multinomial Logit Estimation
	Effect of Removing Armed Groups (With Network Rewiring)


	References

