
Valuing Life as an Asset, as a Statistic,

and at Gunpoint1

Julien Hugonnier1,4,5, Florian Pelgrin2,6 and Pascal St-Amour3,4,6
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Abstract

The Human Capital (HK), and Statistical Life Values (VSL) lack a common theo-

retical background, and differ sharply in their empirical pricing of a human life. This

paper makes four contributions to the theory, and measurement of the latter. First, we

provide a unified framework to formally define, and relate the HK, and the VSL. Second,

we use this setting to introduce a third life value calculated at Gunpoint (GPV), i.e. the

maximal Hicksian willingness to pay to avoid certain, instantaneous death. Third, we

associate a flexible human capital model to the common framework to characterize the

three life valuations in closed-form. Fourth, we structurally estimate the three life values.

Our results confirm the relevance of reduced-form HK, and VSL estimates, identify the

role of technological, distributional, and preferences parameters, and clarify the formal

links between the alternative valuations.

Keywords: Values of Human Life, Human Capital, Value of Statistical Life, Willingness

to pay, Equivalent Variation, Endogenous Morbidity, Endogenous Mortality, Structural

Estimation.
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1 Introduction

The life you save may be your own (Schelling, 1968)

1.1 Motivation and outline

Motivation Evaluating the price of a human life has long generated a deep interest

in economic research.1 Indeed, life valuations are often used in public health and safety

debates, such as for cost/benefit analyses of life-saving measures in transportation, en-

vironmental, or medical settings. Economic life values are also resorted to in wrongful

death litigation, for example in cases involving occupational or end-users’ exposure to

fatality.

Three main sources of difficulty make the life pricing exercise particularly challenging.

First, a human life is by definition non-divisible, i.e. a life must be valued as an entity,

and not partially. This implies that any marginal valuation, e.g. via small incremental

risks to life, must eventually be integrated back into a unitary life value. Second, a

human life is non-marketed, i.e. the life of someone else life cannot be acquired through

markets. The absence of equilibrium prices implies that the economic value of a human

life must somehow be inferred from relevant, and measurable proxies. Finally, ethical

considerations induce significant discomfort in computing – and eventually comparing –

the life values of different persons.

The two most-widely used life valuation frameworks differ in how these three chal-

lenges are dealt with. First, the Human Capital (HK) approach does not balk at

personalizing valuations, and associates the value of an individual’s life to the economic

value embodied in his human capital. Relying on standard asset pricing, the HK valuation

is the expected present value of the dividend stream associated with human capital, where

the dividend is proxied by the marketed labor income, net of measurable expenses to

maintain that capital. Second, the Value of a Statistical Life (VSL), introduced by Drèze

(1962); Schelling (1968), relies on a stated, or inferred willingness to pay (WTP) to avert

(resp. attain) small increases (resp. reductions) in exposure to death risks as its main

building block. Under specific preferences assumptions, a collective WTP to save one

unidentified (i.e. statistical) life can be recovered through a linear aggregation of the

1Landefeld and Seskin (1982) reference human-capital based evaluations of the value of life dating
back to Petty (1691).
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individual WTP’s. Focusing on the value of an unidentified, rather than personalized,

agent’s life thus conveniently avoids addressing the uncomfortable ethical issues associated

with the latter.

Notwithstanding cautionary claims to the contrary,2 both the HK, and the VSL are

ultimately gauging the value of an identical underlying object, and should presumably

come up with similar answers to the single question of how much is worth a human life.

However, despite pricing a common element, the two life valuations yield vastly different

values in practice.3 Understanding these differences is complicated by the absence of

common theoretical underpinnings that encompass both valuations. Consequently, most

HK, and VSL evaluations are reduced-form empirical exercises that rely on minimal the-

oretical foundations, and are performed within disparate settings that further complicate

comparisons.

Contributions This paper makes four different contributions to the theory, and the

measurement of life values. Our first contribution proposes a common theoretical back-

ground linking both the Human Capital, and Statistical Life values. We start from a

generic dynamic human capital problem in which an agent facing an uncertain horizon

selects investment in his human capital, where the latter augments labor income. As-

suming the existence of a solution to this problem satisfying weak preference for life over

death, we use standard asset pricing to define the HK value as the discounted dividend

stream, i.e. the income, net of investment, along the optimal dynamic path. Second, we

rely on the associated indirect utility (i.e. the welfare at the optimum) which we combine

with the Hicksian Equivalent Variation (EV, Hicks, 1946) to formally define the maximal

willingness to pay to avoid any exogenous change in death risk exposure. The VSL can

then be defined formally in two equivalent ways: (i) as the (negative of the) marginal

rate of substitution (MRS) between death exposure and wealth, calculated through the

2In his opening remarks, Schelling (1968, p. 113) writes

“This is a treacherous topic and I must choose a nondescriptive title to avoid initial
misunderstanding. It’s not the worth of a human life that I shall discuss, but of ‘life
saving’, of preventing death. And it’s not a particular death, but a statistical death. What
it is worth to reduce the probability of death – the statistical frequency of death – within
some identifiable group of people, none of whom expects to die except eventually. ”

3For example, Huggett and Kaplan (2016) identify HK values between 300 K–900 K$, whereas the
U.S. Department of Transportation recommends using a VSL-type amount of 9.4 MM$ (U.S. Department
of Transportation, 2016).
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indirect utility, and (ii) as the marginal WTP with respect to death risk. This common

setup ensures that the HK, and the VSL are both evaluated from a single, micro-founded

perspective corresponding to a shared underlying dynamic problem.

Our second contribution also relies on this common theoretical framework to define

a third valuation alternative that forthrightly addresses the three aforementioned mea-

surement challenges. The objectives are to gauge the economic value of a human life

without recourse to indirect proxies and/or arbitrary aggregation assumptions. Instead,

we address the non-divisibility, non-marketability, as well as ethical issues by resorting

to the unitary shadow value of life accruing to its main beneficiary, i.e. the willingness

to pay that leaves an agent indifferent between living and dying. The Hicksian EV again

provides a natural theoretical background to elicit this shadow value, and can be thought

of as asking a question most of us would rather avoid having to answer:

“What is the maximum amount you would be willing to pay in order to survive

in a credible ‘your money or your life’ highwayman threat or, equivalently, how

much would you value your own life?”

We refer to the corresponding amount as the Gunpoint Value of Life (GPV). To para-

phrase Schelling (1968)’s seminal title, ‘the life you save is your own’ in our highwaymen

valuation.

Compared to the HK, and VSL alternatives, the Gunpoint Value presents several

advantages that are discussed in further details in Section 1.2. First, unlike the HK

models, the Gunpoint Value does not uniquely ascribe the economic worth of an agent

to the labor income he generates, but instead accounts for all pledgeable disposable

resources, including financial wealth. Moreover, the GPV also incorporates human capital

services other than income determination, such as self-insurance against income shocks.

Second, unlike the VSL, the GPV does not extrapolate measurable responses to small

probabilistic changes in the likelihood of death, but instead explicitly values a person’s

life as an entity, and does so without external assumptions regarding integrability from

marginal to total value of life. Finally, the GPV directly confronts the ethical pitfalls in

calculating an external life value. Unlike the VSL which computes a collective willingness

to pay to save someone, we let someone compute his own intrinsic value through his

individual willingness to pay to save himself.
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Our third contribution is also theoretical, and consists of analytical calculations of

the WTP, as well as of the Human Capital, Statistical Life, and Gunpoint Values of

life. To do so, we rely on a flexible human capital model that we developed elsewhere

(Hugonnier et al., 2013). This model follows a long tradition in associating an agent’s

human capital to his health, and endogenizes investment, and exposure to sickness, and

death risks, while guaranteeing weak preference for life over death. It is thus general

enough to accommodate other well-known health demand models as testable special cases.

Importantly, closed-form solutions are available, allowing us to compute the analytic

expressions corresponding to the formally-defined life values. In particular, we can price

the net dividend to human capital along the optimal path to calculate the HK value. We

can use the indirect utility to compute the Hicksian willingness to pay, from which we

calculate the VSL. Finally, we are able to use the WTP to calculate the maximal amount

an agent would pay to avoid certain, instantaneous death to recover the GPV. These three

closed-form life valuations, as well as the WTP stem from the same underlying model,

and are thus directly comparable. Consequently, we can precisely assess the contribution

to value of fundamentals, such as preferences, risks distributions, or technology, as well

as financial, and human resources. This analysis allows us to pinpoint how the HK, VSL,

and GPV are related to one another.

Our fourth, and final contribution is empirical, and consists of structural estimates

of the three different life valuations. More precisely, we adopt a revealed-preference per-

spective to estimate the structural parameters of the benchmark model, using PSID data

that correspond to the optimal investment, consumption, portfolio, and health insurance

policies. We can then combine the structural parameters with observed wealth, and

health status to calculate the analytical expressions for the Human Capital, Statistical,

and Gunpoint Values of life. Whereas the latter is new, and has not been previously

estimated, the HK, and the VSL can be contrasted with reduced-form estimates in an

out-of-sample assessment of our results.

Main findings The generic human capital model yields the optimal investment from

which the net dividends stream along the optimal path can be recovered to calculate the

HK value of life. It also produces the indirect utility through which the WTP, VSL,

and GPV are calculated. Standard properties of the indirect utility implies that the
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willingness to pay is increasing, and concave in the increment in death risk. It follows

that the marginal WTP (corresponding to the theoretical VSL) overstates the limiting

WTP (corresponding to the GPV), and that the slope for small increments (corresponding

to the empirical VSL) understates the theoretical Value of a Statistical Life.

Applying our benchmark human capital model first reveals that the market value

of the net dividend stream corresponding to the HK value equals the capitalized fixed

income, plus the shadow value of the human capital. The latter is the capital stock,

times its morbidity-adjusted Tobin’s-Q. The market-based HK value is independent

of individual characteristics such as preferences, and wealth, and is pricing income,

technological, and distributional features exclusively. Second, the willingness to pay is a

weighted average of total disposable resources, and of a term encompassing preferences,

as well as endogenous mortality exposure. The WTP is lower for high elasticity of inter-

temporal substitution through a Live Fast and Die Young effect whereby higher death

risk exposure is substituted more easily by higher consumption. In the limit, the WTP

converges to net total wealth only, i.e. financial wealth, minus capitalized subsistence

consumption, plus the Human Capital value of life. Third, the MWTP corresponding to

the theoretical VSL is also increasing in net total wealth and is lower at high elasticity.

Fourth, the Gunpoint value is the limiting WTP, and is equal to net total wealth. Since

death is instantaneous and certain in a highwayman threat, the agent thus pays out all

pledgeable resources, net of unpledgeable subsistence requirements, and attitudes towards

towards risk, or time play no role in the GPV. Finally, the theoretical predictions are

qualitatively robust for the restricted case corresponding to Grossman (1972); Ehrlich

and Chuma (1990).

Our structural estimation shows that the deep parameters are realistic, and that

preferences are elastic with respect to inter-temporal substitution. Morever, the restricted

case is formally rejected when tested against our general benchmark. The estimates for

the HK value (738 K$), and the VSL (8.14 MM$) are well in line with those obtained

in the reduced-form literature. The Gunpoint Value (460 K$) is in the same range as

the HK, with a lower value explained by the financial wealth deficit with respect to

capitalized minimal consumption. Importantly, our results confirm the strong concavity

of the willingness to pay, i.e. that the MWTP is decreasing in the increment in death

risk exposure. This curvature – rather than disjoint valuation concepts – is thus the main
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element explaining the much higher values of life obtained under the VSL, compared to

the HK, and Gunpoint values.

From a different perspective, Pratt and Zeckhauser (1996) argue that concentrating

the costs, and benefits of death risk changes (an extreme case of which is the GPV) leads

to two opposing effects on valuation, and therefore on the VSL. The willingness to pay

increases as the longevity gains are personalized, possibly being infinite in the case on

one’s own life value (Dead anyways effect). However, concentrating the costs lowers the

WTP through decreasing marginal utility of wealth, and of life (High payments effect).

They conjecture that the latter effect dominates the former in the case of large changes in

death risk. Our theoretical, and empirical results unambiguously confirm this conjecture,

and explain why the Gunpoint, and the closely-related HK value are both much lower

than the Statistical Value of Life.

The rest of the paper is organized as follows. We first present the related literature in

Section 1.2, while Section 2 formally defines, and discusses the links between the WTP,

GPV, and VSL. The benchmark human capital model is described in Section 3, and

the application relying on this model is outlined in Section 4. The empirical strategy is

discussed in Section 5, with deep parameters, and values of life estimates being presented

in Section 6.

1.2 Related literature

1.2.1 Human Capital values of life

The HK models evaluate the human capital embodied in the expected discounted net

value of the lifetime labor income flows, net of associated investment, and that are

foregone upon death.4 Well-known issues related to this approach include the treatment of

non-labor activities, the appropriate rate of discounting, and the endogeneity of survival

probabilities.5

As for HK models, we do calculate the net present value of income streams that

are lost upon death. Unlike HK models however, that value is computed in closed-

form, i.e. accounting for potential endogeneities linked to the income stream and/or the

4See Jena et al. (2009) for partial- and general-equilibrium HK life values.
5Conley (1976) provides additional discussion of HK approaches while Huggett and Kaplan (2016)

address the discounting issues.
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rate of discounting. Furthermore, whereas our modeling strategy does allow for labor

income flows, this hypothesis is not restrictive for two reasons. First, by assuming

that labor income is health-dependent, the reduced capacity to work for unhealthy

individuals is explicitly taken into account. Since health is an adjustable variable, any

endogeneity of labor income is thus implicitly accounted for. Second, Hugonnier et

al. (2013) show that the base model with health-dependent labor income and health-

independent preferences can be rewritten as an equivalent one with health-independent

income, and direct preference for health. Put differently, our model choice is equivalent

to one with only exogenous income (which could be zero), and where agents directly

value better health in the instantaneous utility function. Finally, discounting is also

internally determined, and explicitly incorporates the endogeneity of exposure to death

risk. Agents thus fully internalize their adjustable longevity in discounting future choices,

and resources.

1.2.2 Value of a Statistical Life

The empirical VSL alternative relies instead on explicit and implicit evaluations of the

Hicksian WTP for a small reduction in fatality risk which is then linearly extrapolated to

obtain the value of life.6 Explicit VSL uses stated preferences for mortality risk reductions

obtained through surveys or lab experiments, whereas implicit VSL employs a revealed

preference perspective in using decisions and outcomes involving fatality risks to indirectly

elicit the Hicksian compensation.7 Examples of the latter include responses to prices and

fines in the use of life-saving measures such smoke detectors, speed limitations or seat

belt regulations. Implicit VSL research also exploits the fatality risk and wages nexus

in labor markets to identify the death-income tradeoff. In particular, the Hedonic Wage

(HW) variant of VSL evaluates the equilibrium willingness to accept (WTA) compen-

sation in wages for given increases in work dangerousness. Controlling for job/workers

characteristics, the wage elasticity with respect to job fatality risk can be estimated, and

again extrapolated linearly to obtain the VSL (e.g. Aldy and Viscusi, 2008).

6See equation (7) below for a canonical example of the empirical VSL.
7A special issue directed by Viscusi (2010) reviews recent findings on VSL heterogeneity. A meta

analysis of the revealed-preference VSL is presented in Bellavance et al. (2009). See also Doucouliagos
et al. (2014) for a meta-meta analysis of the stated- and revealed-preferences valuations of life.
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Ashenfelter (2006) provides a critical assessment of the VSL’s theoretical and empirical

underpinnings. First, the assumed exogeneity of the change in fatality risk can be

problematic. For instance, safer roads will likely result in faster driving, which will

in turn increase the number of fatalities. Second, agency problems might arise and lead

to overvaluation in cost-benefit analysis when the costs of safety measures are borne by

groups other than those who benefit (see also Sunstein, 2013; Hammitt and Treich, 2007,

for agency issues). Third, and related, whose preferences are involved in the risk/income

tradeoff and how well these arbitrage are understood often remains an open question. For

example, high fatality risk employment may attract workers with low risk aversion and/or

high time discount rates; generalizing the wages risk gradient to the entire population

could understate true valuation of life. Moreover, because wages are an equilibrium

object in the HW variant of the VSL, they encompass both labor demand and supply

considerations with respect to mortality risk. Hence, a high death risk gradient in wages

could reflect high employer aversion to the public image costs of employee deaths, as

much as a high aversion of workers to their own death. Finally, as was the case for HK

measures, HW estimates relate primarily to workers, and are hardly adaptable to other

non-employed groups, such as young, elders, or the unemployed.

Our approach offers several advantages in calculating the value of life. First, by

emphasizing the destruction of the human capital in the willingness to pay to avoid

certain death, we bridge a gap between HK and VSL literature. Unlike HK however,

we do not uniquely associate the service flows of human capital to labor revenues, but

explicitly calculate other self-insurance services provided by health. Second, and related,

any endogeneity of morbidity and mortality risk exposition is fully accounted for in

the model. Indeed, we explicitly ascribe an increase in fatality risk to the exogenous

component in death intensity; the optimal WTP fully accounts for possible adjustments

to such exogenous increases in death risk via the endogenous elements to mortality risk.

Third, by focusing on a unified theoretical setting with an individual human capital

problem, the question of whose risks preferences are involved is not an issue in our setup.

Indeed, we rely on a widely-used panel (PSID) accounting for households’ consumption,

financial, and health-related decisions to elicit the WTP, and life valuations. Resorting to

such a representative panel ensures that these values can therefore be generalized to the

entire population. Unlike the HW variant of the VSL, our GPV approach neither relies
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exclusively on equilibrium objects such as wages, nor does it apply uniquely to workers to

elicit the WTP. This also means that the GPV reflects the value of life to a representative

subset of those who are primarily concerned, i.e. the holders of the life capital. Finally,

unlike the empirical VSL, our theoretical setup makes no assumption on the shape of

the WTP, but rather establishes its properties through the optimization process. Indeed,

we show that, consistent with economic intuition, the marginal value ascribed to small

increases in death intensity is positive, but falling in the latter. The direct implication is

that the linear extrapolation that is implicit in the VSL sharply overestimates the value

of one’s own life.

A related, albeit semi-structural measure of life value is provided by Hall and Jones

(2007). As for the VSL, they adopt a marginal value perspective by equating the latter

to the marginal cost of saving a human life. By specifying, and separately estimating

a technology for health production, and inversely relating mortality risks exposure to

health status, they impute the cost of reducing mortality by a given amount. Dividing

this cost by that amount yields a VSL-inspired life value, e.g. corresponding to 1.9 MM$

for an individual aged 40-44 (Hall and Jones, 2007, Tab. 1, p. 60). As for them, we

model, and estimate the health production, and death distributional processes. However,

our valuations framework does not exclusively rely on technological and distributional

parameters, but includes preferences, and status in explicitly computing the marginal

and total values of life along the optimal path.

2 A Common Framework for Life Valuation

This section outlines a common framework that will be relied upon to formally define,

and link the Human Capital, Statistical, and Gunpoint Values of Life. Our main building

block is an underlying human capital problem for which the optimal policies, and asso-

ciated indirect utility function can be solved. We combine these solutions with standard

asset pricing, and Hicksian Variation to characterize the three life valuations.

2.1 Underlying Human Capital Problem

Consider an agent’s human capital problem defined by a stochastic age at death Tm, an

instantaneous death probability P ∈ [0, 1], a human capital H, and associated increasing
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income function Y (H), a financial wealth W , as well as the relevant distributional

assumptions with respect to mortality, human, and financial assets. For this program, the

agent selects the money value of investment in his human capital I, and other controls

X so as to maximize utility U :

V (W,H,P) = sup
I,X

U, subject to:

dH = dH(H, I),

dW = dW (W,Y (H), I,X).

(1)

We assume that the agent’s preferences, and constraints in (1) satisfy standard properties

such that the indirect utility V = V (W,H,P), i.e. the agent’s continuation utility at the

optimal policies, is monotone increasing and concave in the (W,H) space. We further

assume weak preference for life over death. In particular, the indirect utility is assumed

to be decreasing and convex in death probability P , and satisfies:

V (W,H,P) ≥ V m ≡ V (W,H, 1) > −∞, ∀W,H,P , (2)

where V m denotes the finite utility at death. Standard examples of the latter include the

seminal Yaari (1965); Hakansson (1969) paradigm (V m ≡ 0), or ‘warm glow’ effects of

bequeathed wealth (V m = V (WTm , H,P), e.g. Yogo (2016); French and Jones (2011); De

Nardi et al. (2009)). Observe that monotonicity, curvature, and finite utility assumptions

imply the existence of decreasing and convex indifference curves in the wealth, and life

probability (1− P) space.

2.2 Human Capital Value of Life

First, as is well known, the Human Capital Value of life is the market value of the

net dividend flow associated with human capital, and that is foregone upon death (e.g.

Huggett and Kaplan, 2016, 2013). In our setting, this net dividend is the marketed

income Y (H), minus the money value of associated investment expenses I, where both

are evaluated at the optimum to problem (1):

Definition 1 (HK value of life) The Human Capital Value of life vh,t = vh(Wt, Ht,P0)

is the expected discounted present value over stochastic horizon Tm of labor revenue flows,
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net of investment costs:

vh,t = Et

∫ Tm

0

mt,τ [Y (H∗τ )− I∗τ ] dτ, (3)

where mt,τ is a stochastic discount factor induced by the assets’ prices, and (H∗, I∗) are

evaluated along the optimal path solving (1).

As a canonical example, assume deterministic horizon Tm, constant discount rate r,

and deterministic growth rate gn < r for net income Y n = Y (H)− I, for which the HK

value simplifies to:

vh =
Y n

r − gn
(
1− e−Tm(r−gn)

)
.

The human capital value of life in this special case is therefore decreasing in interest rate

r, and increasing in net income level Y n, net growth rate gn, and horizon length Tm.

2.3 Willingness to pay

Next, consider a permanent exogenous change ∆ in the instantaneous probability of

death from base level P0 to P∗0 = P0 + ∆, and rely on the indirect utility (1) to define

the Hicksian Equivalent Variation as follows:

Definition 2 (WTP) The maximal willingness to pay v = v(W,H,P0,∆) to avoid a

permanent change ∆ in death risk exposure P is implicitly given as the solution to:

V (W − v,H,P0) = V (W,H,P0 + ∆) , (4)

where V (W,H,P) solves (1).

For unfavorable changes ∆ > 0, equation (4) indicates indifference between paying the

equivalent variation v > 0 to remain at base risk P0, and not paying, but face higher death

risk P∗0 > P0; for favorable changes ∆ < 0, the agent is indifferent between accepting

−v > 0 and foregoing lower death risk exposure.8

8An alternative formulation relies instead on the Hicksian willingness to accept compensation (WTA)
to face ∆, implicitly defined as va = va(W,H,P0,∆) in:

V (W + va, H,P0 + ∆) = V (W,H,P0) .
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Note also that the monotonicity, and curvature assumptions on the indirect utility

V (W,H,P) in (1) are sufficient to yield a monotone increasing, and concave willingness

to pay with respect to increment in death risk ∆. To see this, substitute v(W,H,P0,∆)

in (4), take derivatives, and re-arrange to obtain:

∂v

∂∆
=
−VP
VW

≥ 0, (5a)

∂2v

∂∆2
=
VPP − VWW (∂v/∂∆)2

−VW
≤ 0, (5b)

i.e. the marginal willingness to pay (MWTP) is equal to the (negative of the) marginal

rate of substitution between death risk, and wealth, and is decreasing in mortality risk

exposure.

2.4 Value of Statistical Life

Third, as is well known, the VSL is a measure of the marginal rate of substitution

(MRS) between the probability of life and wealth, evaluated at base risk (e.g. Aldy and

Smyth, 2014; Andersson and Treich, 2011; Bellavance et al., 2009). In the context of the

continuation utility V (W,H,P), is is thus the negative of the MRS between P , and W .

Equivalently, the discussion of the WTP properties in equation (5a) establishes that this

MRS is also the marginal willingness to pay evaluated at base risk, such that:

Definition 3 (VSL) The Value of a Statistical Life vs = vs(W,H,P0) is the negative

of the marginal rate of substitution between the probability of death, and wealth, and also

the marginal WTP evaluated at base risk:

vs =
−VP(W,H,P)

VW (W,H,P)

∣∣∣∣
P=P0

, (6a)

=
∂v(W,H,P0,∆)

∂∆
= lim

∆→0

v(W,H,P0,∆)

∆
, (6b)

where V (W,H,P) solves (1), and v(W,H,P0,∆) solves (4).

This WTA perspective is however not suitable for Gunpoint settings in the absence of bequests. Indeed,
whereas paying out the WTP in a highwaymen threat is rational, accepting compensation against
instantaneous, and certain death when terminal wealth in not bequeathed, and life is preferred is not.
Since we abstract from bequests in our benchmark model in Section 3, we therefore adopt the WTP
perspective in (4).
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Figure 1 plots the indifference curves (in blue) in the wealth, and life probability space.

The VSL in (6a) is the slope of the red tangent evaluated at base death risk P0, and is

equivalent to the total wealth spent to save one life corresponding to the distance [a,d]

(e.g. Andersson and Treich, 2011, Fig. 17.1, p. 398).

Moreover, contrasting the theoretical definition of the VSL as a MWTP in (6b) with

its empirical counterpart reveals that the latter can also be interpreted as a slope of the

willingness to pay to avoid small changes in death risk. To see this, consider a canonical

example (e.g. Aldy and Viscusi, 2007), whereby we suppose that each agent i = 1, 2, . . . , N

has WTP of vi(W,H,P0,∆) for a ∆ = N−1 reduction in death risk. Assuming identical

preferences, and statuses, the empirical value of a statistical life is obtained as:

ves =
N∑
i=1

vi(W,H,P0,∆) = Nv(W,H,P0,∆) =
v(W,H,P0,∆)

∆
, (7)

i.e. the collective willingness to pay to save one unidentified individual is equal to a

slope of the WTP for ∆ small. The theoretical measure of the VSL (6b) is therefore the

limiting value of the slope in (7) when the change ∆ tends to zero. Figure 2 illustrates the

difference between the theoretical, and empirical VSL valuations. From properties (5),

the willingness to pay v = v(W,H,P0,∆) (in blue) is an increasing, concave function of

the change in death risk ∆. The theoretical VSL vs in (6b) is the marginal willingness to

pay (∆→ 0), i.e. the slope of the red tangent evaluated at base death risk. Equivalently,

it is the linear projection corresponding to the total wealth spent to save one person (i.e.

reach P∗0 = 1.0) and it is equal to the distance [a,d]. The empirical Value of a Statistical

Life ves in (7) is computed for a small change ∆ > 0, and corresponds to the slope of the

green line; equivalently, it is the distance [e,f]. As Figure 2 makes clear, the empirical

VSL measure ves will understate its theoretical counterpart vs when ∆ is large, and when

the WTP is concave, i.e under diminishing marginal values of wealth, and of additional

expected life. Our analytical characterization of the VSL will consequently rely on its

theoretical definition in equations (6).
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2.5 Gunpoint Value of Life

We next introduce the Gunpoint Value (GPV) as a third valuation of life. To do so, we

combine preference for life (2) with the Hicksian Equivalent Variation in (4) to define the

GPV as follows.

Definition 4 (GPV) The Gunpoint Value vg = vg(W,H,P0) is the maximal WTP to

avoid a change ∆ = 1− P0 and is implicitly given as the solution to:

V (W − vg, H,P0) = V m (8)

where V (W,H,P), and V m solve (1), and satisfies (2).

The Gunpoint Value vg(W,H,P0) in equation (8) is implicitly defined as the maximal

payment that leaves the agent indifferent between paying vg and remaining at base death

risk P0, and not paying and face instantaneous and certain death P∗0 = P0 + ∆ = 1. The

willingness to pay vg can thus be interpreted as the maximal amount paid at gunpoint

in order to survive an ex-ante unforecastable, and ex-post credible highwaymen threat.

Figure 2 illustrates the links between the WTP, VSL, and the GPV. The Gunpoint Value

is the limiting WTP when death is certain, and is equal to the distance [b,c]. A linear

extrapolation under either the theoretical, or the empirical VSL will thus over-estimate

the value attributed to one’s own life when the WTP is increasing and concave.

To summarize, the Human Capital vh, as well as the willingness to pay v, Statistical vs,

and Gunpoint vg Values of life can be computed jointly from the optimal policies X∗, I∗

, and indirect utility V (W,H,P) associated with a generic underlying human capital

problem. These values will in general be functions of financial W , and human capital

H, as well as depend on base exposure to death risk P0. Finally, the differences between

the empirical, and theoretical Statistical, and Gunpoint Values crucially depend on the

properties of the WTP function.

3 A Benchmark Human Capital Model

Our objective is to calculate the valuations (vh, v, vs, vg) that are formally defined in

Section 2 as functions on the optimal policies I∗, X∗, and associated indirect utility

V (W,H,P). Towards that aim, we resort to a dynamic model of human capital that we
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developed elsewhere. The life cycle framework of Hugonnier et al. (2013) associates an

agent’s human capital H to his health, and focuses on endogenously-determined health

expenditures in a setting where the time horizon is finite and stochastic. Modeling health

as human capital follows a long tradition (e.g. see the Hicks Lecture by Becker, 2007,

for a review), and is motivated by several analogies. First, while productive skills can be

augmented via education, training, and experience, health can be accumulated through

medical spending, and leisure choices made by the agent. Second, both skills and health

are durable capital, and subject to depreciation, either via obsolescence, or biological

decline. Third, skills and health are both non-marketed, and non-transferable, and are

fully depreciated at death. Fourth, skills affect income both in levels, and in self-insurance

against adverse labor market shocks, while health determines the capacity to work, and

provides self-insurance against sickness shocks.

3.1 Overview

For completeness, the main building blocks of the Hugonnier et al. (2013) are briefly

summarized here. First, health H ≥ 0 is a durable and depreciable good whose law of

motion is given by:

dHt =
[
Iαt H

1−α
t− − δHt−

]
dt− φHt−dQst (9)

where δ ∈ (0, 1) is a deterministic depreciation, and dQs is a stochastic morbidity shock

whose occurrence further depreciates the health stock by a factor φ ∈ (0, 1), and where

Ht− = lims↑tHs is health prior to occurrence of the sickness shock. Health investment

I ≥ 0 is subject to diminishing returns, and is motivated in part by self-insurance services.

Indeed, healthier agents face lower Poisson morbidity intensity λs(H), and can also lower

their Poisson mortality intensity λm(H) given by:

λs(Ht−) = η +
λs0 − η

1 + λs1H
−ξs
t−
∈ [λs0, η], (10)

λm(Ht−) = λm0 + λm1H
−ξm
t− (11)

The parameters λk1 ≥ 0, k = s,m, determine the extent to which exposure to morbidity

and mortality can be adjusted through better health, with ξk ≥ 0 representing dimin-
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ishing returns, whereas the parameters λk0 ≥ 0 capture endowed exogenous exposure.

Within the context of this continuous-time model, the instantaneous death probability

P introduced earlier can be obtained by noting that:

Pr[Death(t, t+ h)] = λm(H)h+ o(h),

for a small h. In the subsequent life valuation, we will henceforth analyze exogenous

changes ∆ in death risk P resulting from permanent changes in the exogenous death risk

exposure λm0 in the death intensity (11).

Second, financial wealth W evolves according to the budget constraint:

dWt = [rWt− + Yt − ct − It] dt+ πtσS [dZt + θdt] + xt [dQst − λs(Ht−)dt] , (12)

Yt = y + βHt (13)

where, in addition to I, the control variables include c as consumption, π as the risky

portfolio, and x as demand for actuarially-fair health insurance, and where r it the

interest rate, and θ = σ−1
S (µ−r) is the market price of financial risk. The income process

in (13) comprises an exogenous component y, whereas the expression βH provides further

motivation for investing in one’s health, and can equivalently be interpreted as improved

work capacity for healthier agents, or as utilitarian services implicitly procured by better

health (see Hugonnier et al., 2013, Remark 3).

Finally, the agents’ objectives are:

V (Wt, Ht) = sup
(c,π,x,I)

Ut,

where preferences are:

Ut = 1{Tm>t}Et

∫ Tm

t

(
f(cτ , Uτ−)− γ|στ (U)|2

2Uτ−
−

s∑
k=m

Fk(Uτ−, Hτ−,∆kUτ )

)
dτ , (14)
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with

f(ct, Ut−) =
ρUt−

1− 1/ε

((
ct − a
Ut−

)1− 1
ε

− 1

)
, (15)

Fk = Ut− λk(Ht−)

[
∆kUt
Ut−

+ u(1; γk)− u
(

1 +
∆kUt
Ut−

; γk

)]
, (16)

where ∆kUt = Et−[Ut−Ut−|dQkt 6= 0] is the expected utility jump associated with either

morbidity (k = s), or mortality (k = m). The utility U in (14), combined with the

Kreps-Porteus aggregator function f(c, U) in (15), and risk exposure penalties in (16) is

generalized from Duffie and Epstein (1992). It is characterized by subjective discount

rate ρ > 0, minimal subsistence consumption a ≥ 0, as well as by non-expected utility

which disentangles the elasticity of inter-temporal substitution (EIS) ε ≥ 0, from source-

dependent aversion with respect to the three sources of risk. Indeed, as is the case for the

traditional penalty for financial risk exposure σt(U) = d〈U,Z〉t/dt (with aversion γ), the

agent is separately penalized for being exposed to the Poisson morbidity risk Fs (with

aversion γs), and for exposure to the Poisson mortality risk Fm (with aversion γm ∈ (0, 1))

where u(·; γk) is the CRRA function with curvature γk for k = s,m.

3.2 Special cases

The model of Hugonnier et al. (2013) generalizes other demand-for-health frameworks

found in the literature. In particular, the following models are nested as special cases:

1. Exogenous morbidity by restricting λs1 = 0 in (10) after readjusting base intensity

λs0 upwards to maintain mean exposure;

2. No morbidity by restricting φ = 0 in (9), and λs0 = λs1 = 0 in (10), as well as by

shutting down the demand for health insurance x = 0 in (12), and the aversion to

morbidity risk γs = 0, in penalty (16);

3. Exogenous expected horizon by restricting λm1 = 0 in (11) after readjusting λm0

upwards base intensity to maintain mean exposure;

4. Von Neumann-Morgenstern (VNM) utility by restricting ε = 1/γ in aggrega-

tor (15);
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5. Source-independent risk aversion constant relative risk aversion (CRRA) obtains

by imposing a = 0 (no minimal consumption), with source-independent risk aver-

sion is by restricting γs = γm = 0 (no morbidity risk), or γs = γ (if morbidity risk)

in (15), and (16).

As an example, Ehrlich and Chuma (1990), who characterize the solutions to the seminal

Grossman (1972) model, can be obtained by jointly imposing restrictions 2–5. The

restricted model then becomes:

V (Wt, Ht) = sup
(c,π,I)

Ut,

Ut = 1{Tm>t}Et

∫ Tm

t

e−ρτu (cτ ; γ) dτ,

(17)

where u(·; γ) is the CRRA function with curvature γ, and subject to:

dHt =
[
Iαt H

1−α
t − δHt

]
dt,

λm(Ht) = λm0,

dWt = [rWt + Yt − ct − It] dt+ πtσS [dZt + θdt] ,

Yt = y + βHt.

(18)

Compared to our benchmark Hugonnier et al. (2013), the Grossman (1972); Ehrlich

and Chuma (1990) model in (17), and (18) thus abstracts entirely from morbidity (and

associated health insurance, and risk aversion), while it supposes an exogenously set hori-

zon, and risk neutrality with respect to death risk. In addition, VNM preferences restrict

financial risk aversion to be the inverse of the elasticity of inter-temporal substitution.

The theoretical, and empirical implications of these restrictions for life valuation will be

reviewed in Sections 4.5, 6.1, and 6.3.

3.3 Key features for life valuation

Four features of the Hugonnier et al. (2013) framework are especially relevant for life

valuation purposes. First, this model follows standard approaches dating back to Yaari

(1965); Hakansson (1969) in normalizing utility at death V m ≡ 0. Second, unlike VNM

models with CRRA preferences, non-expected utility guarantees that the indirect utility

is measured in the same units as consumption, regardless of parameter values. It follows
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that positive excess consumption c − a ≥ 0 – a necessary condition for subsistence –

is associated with positive welfare, and therefore (weak) preference for life over death

V ≥ 0 = V m, as required in (2).9 Third, under a Poisson mortality assumption, it

is possible to rewrite the original problem with finite and stochastic horizon Tm and

constant discounting ρ as an infinite horizon program with health-dependent discounting

ρ+ λm(H) (see Hugonnier et al., 2013, for details).

Fourth, as summarized in Appendix B.1, the agent’s problem (14) can be solved for

the choice variables (c, π, x, I), and therefore for the indirect utility V from which the

expression for life valuations introduced in Section 2 can be computed. The approximate

solution proceeds in two steps, first a closed-form expression (referred to as order-0) is

recovered for the exogenous intensity case corresponding to λs(H) = λs0 in (10), and

λm(H) = λm0 in (11). Then a first-order expansion around λs1, λm1 = 0 is performed

to obtain the endogenous intensities adjustments, and thus recover the approximate

solutions (referred to as order-1).

Under regularity, and transversality conditions (37) outlined in Appendix B.1, these

approximate first-order solutions reveal two important characteristics for valuing a human

life. First, the indirect utility associated with the agent’s problem in the Hugonnier et

al. (2013) model is given as:

V (W,H, λm0) = Θ(λm0)
[
N1(W,H)− λm1H

−ξmlm(λm0)N0(W,H)
]
, (19)

where any dependence on λm0 is explicitly stated. The expression N0(W,H) captures the

agent’s order-0 (i.e. without endogenous intensities) net total wealth along the optimal

path:

N0(W,H) = W +
y − a
r

+ HB︸︷︷︸
P0(H)

. (20)

This net worth is the sum of financial wealth W , plus the present value of the fixed-

income stream, net of minimal consumption (y − a)/r, plus P0(H) = HB which is the

order-0 shadow value of the human capital along the optimal path. The price B ≥ 0 is

9See Rosen (1988); Hall and Jones (2007) for a discussion of the violation of weak preference for
life (2) in VNM-CRRA settings. See Hugonnier et al. (2013) for why this condition is verified under
non-expected utility.
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the health’s Tobin-Q solving g(B) = 0, subject to g′(B) < 0 in:

g(B) = β − (r + δ + φλs0)B − (1− 1/α)(αB)
1

1−α , (21)

and is increasing in health sensitivity of income β, and decreasing in depreciation param-

eters (δ, φ, λs0). The order-1 net total wealth corrects net worth for endogenous morbidity

and is given as:

N1(W,H) = N0(W,H)− λs1lsH−ξsP0(H)

= W +
y − a
r

+HB
[
1− λs1lsH−ξs

]︸ ︷︷ ︸
P1(H)

(22)

and is lower than N0(W,H) at all wealth and health levels. Indeed, the order-1 human

capital P1(H) in (22) adjusts the shadow value of the health capital for optimal sickness

risk exposure λs1lsH
−ξs , where:

ls =
φ(η − λs0)

r − F (1− ξs)
≥ 0, (23)

F (x) = x(αB)
α

1−α − xδ − λs0 [1− (1− φ)x] .

Because the health shock intensity (10) is mechanically higher for λs1 > 0, the health stock

is more subject to stochastic depreciation; its value must be discounted accordingly, and is

lower than under exogenous exposure to sickness λs1 = 0. The analytical solutions (21),

and (23) indicate that P1(H) – and therefore net total wealth – is a function of the

parameters in the health production technology (9), morbidity risk (10) and income (13)

only, and is independent of attitudes with respect to risk, and time, as well as of horizon

length. The horizon independence stems from the equivalence with an infinite horizon

problem discussed earlier.

Second, the exposure to exogenous death risk λm0 affects welfare through its impact

on the marginal propensity to consume (MPC) exclusively. To see this, note that the

marginal value of N1(W,H) in (19) is given as:

Θ(λm0) = ρ

(
A(λm0)

ρ

) 1
1−ε

≥ 0, (24)
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where A(λm0) is the marginal propensity to consume given by:

A(λm0) = ερ+ (1− ε)
(
r − λm0

1− γm
+
θ2

2γ

)
≥ 0, (25)

which also conditions the endogenous mortality adjustment term:

lm(λm0) =
1

(1− γm)[A(λm0)− F (−ξm)]
≥ 0. (26)

The effect of mortality exposure on the MPC in (25) crucially depends on the elasticity

of inter-temporal substitution ε. An increase in death risk λm0 induces heavier discounting

of future utility flows, leading to two opposite outcomes on the marginal propensity to

consume. First, more discounting makes future consumption less desirable and shifts

future towards current consumption (i.e. by increasing the MPC); this Live Fast and

Die Young effect is dominant at high elasticity of inter-temporal substitution ε > 1.

Second, higher discounting of future consumption requires shifting current towards future

consumption to maintain utility (i.e. by lowering the MPC); that effect is dominant at

low elasticity of inter-temporal substitution ε ∈ (0, 1). Observe in the latter case that

an upper bound on death intensity is required to maintain non-negativity of the MPC

in (25):

λm0 ≤ λ̄m0 = (1− γm)

[(
ε

1− ε

)
ρ+

(
r +

θ2

2γ

)]
, when ε ∈ (0, 1). (27)

Finally, unit elasticity implies exact cancellation of the two effects, and results in a

mortality risk-independent MPC that is equal to the subjective discount rate ρ.

We note in closing that whereas the sign of the effects of death risk λm0 on the

MPC (25) depends on the EIS, preference for life implies that it always reduces the

marginal value of total wealth, i.e. Θ′(λm0) ≤ 0,∀ε in (24). By non-negativity of (A,Θ),

it follows that Θ(λm0) = 0 when λm0 → ∞, i.e. the agent’s marginal value of net total

wealth converges to zero as mortality becomes more certain.
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4 Application to Values of Life

We next calculate the associated closed-form expressions for life valuation relying on the

solution for the benchmark human capital model of Hugonnier et al. (2013), starting

with the HK value of life in Section 4.1, followed by the WTP in Section 4.2, the VSL in

Section 4.3, and the GPV in Section 4.4. In these sections, we will assume throughout

that the optimal rules verifying the regularity conditions outlined in Appendix B.1 are

being followed by the agents. We also resort to a similar first-order approximation to

compute the valuations. We then close this section by comparing the valuation results

for the baseline model with those in other life cycle models of demand for health in

Section 4.5.

4.1 Human Capital Value of Life

The HK value of life outlined in Definition 1 is computed as follows.

Proposition 1 (HK value) Up to a first order approximation, the Human Capital Value

of life (3) is:

vh(H) =
y

r
+ P1(H) (28)

where P1(H) is the human capital value in (22).

From equation (3) in Definition 1, the first component y/r in the HK value is the NPV

of the fixed component of income (13) over an infinite horizon. The second component

P1(H) is the expected discounted value of the health-dependent part of income βH, net of

expenses I, along the optimal path. As equations (19), and (22) make clear, the Human

Capital Value of life is thus embedded in the net total wealth N1(W,H), and therefore

directly linked with welfare.

For reasons discussed earlier, the determinants of P1(H) are independent of prefer-

ences, and horizon length, and reflect only the technology, income, and sickness risk.

In particular, the presence of morbidity risk exposure lsλs1H
−ξs along the optimal path

augments the expected depreciation of the human capital stock. It consequently lowers

the economic value of H, and therefore the HK value of life. Moreover, the discussion

of (21) showed that the Tobin’s-Q (and therefore P1(H)) is higher under a higher health
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gradient in labor income or utility services, or lower depreciation rates, and sickness

exposure. Because all these elements are more plausible for younger agents, and since

health declines over the life cycle (e.g. Pelgrin and St-Amour, 2016) the model would thus

be consistent with a higher Human Capital Value of life for young adults, compared to

elders, independently of horizon length.

4.2 Willingness to pay to avoid a finite increase in death risk

Next, we can substitute the indirect utility V (W,H, λm0) given by (19) in the implicit

equivalent variation in Definition 2, and solve for v = v(W,H, λm0,∆) as follows:

Proposition 2 (willingness to pay) Up to a first order approximation, the maximal

willingness to pay solving (4) to avoid a change from λm0 to λ∗m0 = λm0 + ∆ is given by:

v(W,H, λm0,∆) =

[
1− Θ(λ∗m0)

Θ(λm0)

]
N1(W,H)

+
Θ(λ∗m0)

Θ(λm0)
λm1H

−ξm [lm(λ∗m0)− lm(λm0)]N0(W,H),

(29)

where total wealth N0(W,H), and N1(W,H) are given in (20), and (22), and where the

Θ(·), and lm(·) functions are given in (24) and (26).

The WTP in (29) equals zero when the increment ∆ = 0, and is otherwise a weighted

average of two components: the first-order net total wealth N1(W,H), and the change

in the endogenous mortality adjustment that is induced by a change in the endowed

intensity λm1H
−ξm [lm(λ∗m0)− lm(λm0)]N0(W,H). Indeed, it was shown earlier that the

marginal value of total wealth Θ(λm0) ≥ 0 in (24) is a decreasing function, regardless

of the EIS. Consequently, the weights Θ(λ∗m0)/Θ(λm0) ∈ [0, 1] for detrimental changes

∆ ≥ 0.

Moreover, we saw earlier that a change in λm0 affects welfare V (W,H, λm0) through

the Θ(λm0), and the lm(λm0) channels, both of which transit through the MPC, A(λm0).

This is naturally reflected in the WTP (29) via its effects on Θ(λ∗m0), and lm(λ∗m0).

Interestingly, we saw that unit elasticity cancels out the two conflicting effects on the

MPC A(λm0), and therefore implies that Θ(λm0) = Θ(λ∗m0), and lm(λm0) = lm(λ∗m0).

Consequently, v(W,H, λm0,∆) = 0,∀∆ and for all wealth, and health levels, i.e. the
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agent with unit elasticity is indifferent to an increase in the risk of death, regardless of

the magnitude of the change, and is therefore unwilling to pay to avoid ∆ > 0.

Third, since lm(λm0) in (26) is declining in the MPC, it follows that lm(λ∗m0) −

lm(λm0) < 0 when ε > 1, i.e. agents with elastic preferences more easily substitute

additional consumption when faced with a shorter horizon, and are therefore willing to

pay less to avert ∆ > 0. Finally, the weights Θ(λ∗m0)/Θ(λm0) are falling as exogenous

death risk λ∗m0 increases. This implies that the elements capturing preferences towards

time or towards the various sources of risk (embedded in lm(λm0)), as well as the possibility

to adjust death risk (i.e. λm1H
−ξm) gradually lose any relevance as the change in the

endowed death intensity becomes large. This is formalized in the following result.

Corollary 1 (limiting WTP) Up to a first order approximation,

lim
∆→∆̄

v(W,H, λm0,∆) = N1(W,H), if

ε > 1, and ∆̄ = +∞, or

ε ∈ (0, 1), and ∆̄ = λ̄m0 − λm0.

where net total wealth N1(W,H) is given in (22), and where the maximal admissible death

intensity λ̄m0 is computed using (27),

Hence, when preferences are sufficiently elastic with respect to inter-temporal sub-

stitution, the willingness to pay asymptotically converges to the morbidity-adjusted net

total wealth N1(W,H) as death becomes certain. It also converges to N1(W,H) when

preferences are inelastic, and the exogenous death risk intensity attains its maximal

admissible value λ̄m0. For the other cases of finite ∆, the shape of the willingness to

pay v(W,H, λm0, ·) in function of the death risk increment ∆ crucially depends on the

EIS ε, as well as on the other parameters, and the health level, and is difficult to establish

ex-ante.10 We will instead perform an empirical evaluation below (see Figure 3).

4.3 Value of a Statistical Life

Using Definition 3, and welfare (19), we can calculate the theoretical expression for the

VSL consistent with the benchmark model as follows.

10Rosen (1988) stresses the importance of inter-temporal substitution in valuing longevity. See also
Córdoba and Ripoll (2013) for the importance of the EIS in value of life calculations, as well as Huggett
and Kaplan (2016) for EIS effects on human capital valuation.
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Proposition 3 (Value of Statistical Life) Up to a first order approximation, the Value

of a Statistical Life solving (6) is:

vs(W,H, λm0) =
−Θ′(λm0)

Θ(λm0)
N1(W,H) + λm1H

−ξml′m(λm0)N0(W,H), (30)

where total wealth N0(W,H), and N1(W,H) are given in (20), and (22), and where the

Θ(λm0), and lm(λm0) functions are given in (24) and (26).

First, as explained earlier, the marginal value of total wealth Θ(λm0) is a decreasing

function for all levels of EIS. It follows that the VSL is an increasing function of first-

order net total wealth N1(W,H). However, the marginal effects of λm0 on the endogenous

death risk factor lm depends on the elasticity of inter-temporal substitution. The VSL

is consequently lower (l′m(λm0) < 0) when the agent’s preferences are sufficiently elastic

with respect to time (i.e. ε > 1) and higher otherwise. Finally, unit elasticity again

entails that Θ′(λm0) = l′m(λm0) = 0 and therefore that vs(W,H, λm0) = 0.

Remark 1 (discrete changes per period) The theoretical calculations of the VSL in

equation (30) are valid for permanent, infinitesimal changes in the death intensity. In the

spirit of the empirical VSL literature, the value of a statistical life can also be computed

as the maximal willingness to pay to avoid an exogenous increase ∆ in the probability of

death over a given time interval (e.g. a change ∆ = 0.1% per one year period), divided

by ∆ (see ves in equation (7)). This calculation involves two steps. First, the new value

of the endowed intensity λ∗m0(H,∆, T ) is computed, corresponding to a change in death

risk ∆ occurring over a duration of T (see Lemma 1 in Appendix C.5). Second, one

substitutes λ∗m0(H,∆, T ) in Θ(λ∗m0), and lm(λ∗m0) in the WTP (29), and divides by ∆ to

obtain the corresponding Value of a Statistical Life.

4.4 Gunpoint Value of Life

Again relying on the welfare function (19), and resorting to a first-order approximation

to the GPV in (8) in Definition 4 reveals the following result.
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Proposition 4 (Gunpoint value of life) Up to a first order approximation, the max-

imum willingness to pay solving (8) to avoid certain death is given by:

vg(W,H) = N1(W,H)

= vh(H) +W − a

r
.

(31)

where N1(W,H) is the net total wealth in (22), and vh(H) is the HK value in (28).

We saw earlier that N1(W,H) = W + (y − a)/r + P1(H) captures order-1 net total

wealth. In the absence of a bequest motive, and under perfect markets, the agent who is

forced to evaluate life at gunpoint is thus willing to pledge all available resources, i.e. his

entire financial wealth W , plus the capitalized value of his fixed income endowment y/r,

plus the morbidity-adjusted value of his human capital P1(H). However, the previous

discussion emphasized that the minimal consumption level a is required at all periods

for subsistence. It therefore cannot be pledged in a highwaymen threat, and must be

subtracted from the Gunpoint value. It follows that the GPV can be higher or lower

than the HK value depending on the level of financial wealth relative to capitalized

subsistence consumption.

The links between the Gunpoint, and the Human Capital values of life are intuitive.

Since human capital is non-transferable, and is entirely depreciated at death, the agent is

also willing to give up the shadow value of his health capital P1(H) = HB[1−λs1lsH−ξs ].

For reasons discussed earlier, this shadow value is likely to be lower for older individuals,

consistent with a lower GPV for elders. Furthermore, for reasons previously discussed, the

shadow value of health must be adjusted downwards for the endogeneity of the agent’s

exposure to health shocks. Finally, the shadow price of health p1(H) = P1(H)/H is

monotone increasing and concave, such that healthier agents face lower sickness risks,

and thus value more highly their health capital that is fully depreciated at death.

Interestingly, the shadow value of the health stock P1(H), and therefore the Gunpoint

Value of life vg in (31) are both independent of the attitudes towards death risk γm and of

the endogenous components in the mortality intensity (λm1, ξm). Consequently, neither

aversion to death risk nor health’s ability to ward off death determine the Gunpoint Value

of life. This result stems from the way the GPV is evaluated. Because the outcome of

death is certain when life is evaluated at gunpoint, both the attitudes towards death risk
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and the ability to marginally alter exposure to that risk become irrelevant. Indeed, this

element could already be inferred by combining Figure 2, and Corollary 1 which showed

that the willingness to pay v(W,H, λm0,∆) is converging to N1(W,H) that is independent

of preferences, and horizon, as the exogenous death risk λ∗m0 becomes large, and death

becomes certain.

Furthermore, unlike the WTP, the Gunpoint value is independent of the exogenous

death intensity λm0. This again stems from the way vg(W,H) is computed, i.e. as a

willingness to pay to avert certain, and instantaneous death regardless of how death

occurs. Put differently, both base exposure, and the specific mechanism – be it through

increases in λm0 or not – are irrelevant, only the outcome is. Moreover, the Gunpoint

value is independent of the EIS ε. Because death is instantaneous in a highwaymen

threat, attitudes towards inter-temporal substitution are irrelevant as well.

Finally, it can also be shown that net total wealth N1(W,H) is equal to the expected

discounted present value of excess consumption along the optimal path.11 In order to

survive, the agent is thus willing to pledge the total value of his optimal consumption

stream (net of minimal subsistence). This result can be traced to the homegeneity

between the value and excess consumption functions in the non-expected utility setting

we consider (see Section 3.3). The foregone utility is measured in the same units as the

foregone excess consumption when gauging the Gunpoint value of life.

4.5 Comparison with other models of human capital

We mentioned in Section 3.2 that the Hugonnier et al. (2013) generalizes other well-

known life cycle models of health demand. In particular, the Ehrlich and Chuma (1990)

version of the Grossman (1972) model in (17)-(18) abstracts from morbidity altogether,

as well as from endogenous mortality, while assuming VNM preferences, without minimal

consumption requirements. Appendix B.2 reports the indirect utility, and optimal rules

for this restricted model. Relying on these restrictions, the corresponding Human Capital

Value, willingness to pay, as well as Statistical, and Gunpoint Values then simplify to:

11In particular, Hugonnier et al. (2013, Prop. 2) establishes that:

Et

∫ ∞
t

mt,τ (c∗τ − a)dτ = N1(W,H).
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Corollary 2 (Valuation for restricted case) The HK, WTP, VSL, and GPV corre-

sponding to the Grossman (1972); Ehrlich and Chuma (1990) model in (17), and (18)

are given by:

ṽh(H) =
y

r
+ P̃0(H), (32)

ṽ(W,H, λm0,∆) =

[
1− Θ̃(λ∗m0)

Θ̃(λm0)

]
Ñ0(W,H), (33)

ṽs(W,H, λm0) =
−Θ̃′(λm0)

Θ̃(λm0)
Ñ0(W,H), (34)

ṽg(W,H) = Ñ0(W,H), (35)

where the modified expressions for marginal value Θ̃(λm0), and order-0 human P̃0(H),

and net total wealth Ñ0(W,H) are given in Appendix B.2.

These restricted results qualitatively confirm those for the more general model. In

the absence of endogenous mortality and morbidity, as well as minimal consumption

adjustments, the relevant net wealth measure is the order-0, Ñ0(W,H). If the other

parameters remain constant, the absence of morbidity risk exposure (λs0 = 0) raises the

Tobin’s-Q of health, B̃, which, combined with λs1 = 0 results in higher human capital

P̃0(H) > P1(H). Consequently, the HK value (32) is increased. Moreover, net total

wealth is also higher Ñ0(W,H) > N1(W,H). The WTP ṽ in (33) remains an increasing

share of order-0 net total wealth, and converges to the latter as exposure to death risk

increases. The Value of a Statistical Life ṽs in (34) is again increasing in net total wealth,

whereas the Gunpoint Value ṽg in (35) confirms that all available net worth is spent to

survive a highwaymen threat. Importantly, equation (39) in Appendix B.2 establishes

that the marginal value Θ̃(λm0) is a decreasing, and convex function at all parameter

values. Consistent with Figure 2, the WTP ṽ in (33) is therefore an increasing, and

concave function in the death risk increment ∆. It follows that the linear projection bias

of the VSL discussed earlier is unconditionally present for the restricted model.

We conclude that whereas the main theoretical findings are qualitatively robust to the

choice of human capital model (within the generalized class of the health models we con-

sider), abstracting from sickness risk as well as from minimal consumption requirements

increases the human capital, and net worth that can be used in life valuation.
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5 Structural estimation

5.1 Econometric model

The econometric model that we rely upon assumes that agents are heterogeneous with

respect to their health, and wealth statuses, and are homogeneous with respect to the

distributional, revenue, and preference parameters. To structurally estimate these deep

parameters, we use the quadri-variate closed-form expressions for the optimal rules in

Theorem 1, to which we append the exogenous income equation (13). Specifically, let

Yj = [cj − a, πj, xj, Ij]′ denote the vector of optimal excess consumption, portfolio, health

insurance, and health spending for agents j = 1, 2, . . . , n. The estimated econometric

model rules are:Yj

Yj

 =

Y∗(Wj, Hj)

y + βHj

+ uj, (36)

where the optimal rules Y∗(Wj, Hj) are given in equation (38) in Appendix B.1, and

where the uj’s are (potentially contemporaneously correlated) Gaussian error terms.

To ensure theoretical consistency, we estimate the structural parameters in (36)

imposing the full set of regularity conditions in (37) in Appendix B.1. In light of the

strong nonlinearities not all the deep parameters can be identified, and a subset are

calibrated. We resort to a two-stage, iterative Maximum Likelihood procedure. In stage

one, we fix the curvature parameters in the Poisson intensity functions ξk, for k = m, s,

then estimate the remaining deep parameters. In the first stage two, we condition on the

latter to re-estimate the ξk. In the second stage, we iterate on this procedure until a fixed

point is reached.

5.2 Data

We use a sample of 8 378 individuals taken from the 2013 wave of the Institute for Social

Research’s Panel Study of Income Dynamics (PSID). The data construction is detailed

in Appendix E. We proxy the health variables through the polytomous self-reported

health status that is linearly converted to numeric values from 1 to 4. The financial

wealth comprises risky, and riskless assets. Using the method in Skinner (1987), we
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infer the unreported total consumption by extrapolating the food, transportation, and

utility expenses reported in the PSID. Finally, health expenditures and insurance are

respectively the out-of-pocket spending, and premia paid by agents. All nominal values

are scaled by 10−6 for the estimation.

Tables 1, and 2 present descriptive statistics, as well as mean values (in $) for the

main variables of interest, per health status, and per wealth quintiles. Table 2.a shows

that financial wealth remains very low for the first three quintiles (see also Hubbard et al.,

1994, 1995; Skinner, 2007, for similar evidence). Moreover no clear effects of the health

status on wealth levels can be deduced. The level of consumption in panel b is increasing

in financial wealth. However, the effects of health remain ambiguous, except for the least

healthy who witness a significant drop in consumption.

In panel c, stock holdings are very low for all but the fourth, and fifth quintiles,

illustrating the non-participation puzzle (e.g. Friend and Blume, 1975; Mankiw and

Zeldes, 1991). Again, a clear positive wealth gradient is observed, whereas health effects

are weakly positive. The health insurance expenses in panel d are modest relative to

consumption. They are increasing in wealth, and devoid of clear health gradients. Finally,

health spending in panel e is of the same order of magnitude as insurance. It is strongly

increasing in wealth, and also sharply decreasing in health status.

6 Results

Sections 6.1, and 6.2 report the estimated parameters, and life valuations for the bench-

mark model. Section 6.3 revisits these results for the restricted model. Finally, Section 6.4

provides concluding remarks.

6.1 Structural parameters

Table 3 reports the calibrated (with subscripts c), and estimated (standard errors in

parentheses) deep parameters. Overall, the latter are precisely estimated, and are close

to other estimates for this type of model (e.g. Hugonnier et al., 2013, 2017).

First, the health law of motion parameters in panel a are indicative of significant

diminishing returns in adjusting health status (α = 0.70). Although depreciation is

relatively low (δ = 1.09%), additional depletion brought upon by sickness is consequen-
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tial (φ = 1.36%). Second, the sickness and death intensities parameters in panel c

are consistent with endogeneous morbidity, and mortality (λk1, ξk 6= 0 for k = s,m).

Moreover, high convexity parameters (ξk > 1) indicate strongly diminishing returns in

adjusting exposure to death and sickness risks. Consistent with intuition, self-insurance

against morbidity risk is more potent than against the risk of dying (λs1, ξs > λm1, ξm).

Finally, a large calibrated value for η entails that sickness risks increase very steeply as

health falls.

Third, the income parameters in panel c are indicative of a significant positive effect

of health on labor income (β = 0.0095), as well as a realistic calibrated value for base

income (y×106 = 12.2 K$).12 The returns process parameters (µ, r, σS) are calibrated at

standard values. Finally, the preference parameters in panel d indicate realistic aversion

to financial risk (γ = 3.52), and to mortality risk (γm = 0.29), where the latter is less than

one as required, as well as a high calibrated value for aversion to morbidity risk (γs = 7.4).

As for other cross-sectional estimates using survey data (Gruber, 2013; Hugonnier et al.,

2017), the elasticity of inter-temporal substitution is larger than one (ε = 1.67), and is

consistent with a Live Fast and Die Young effect whereby a higher risk of death increases

the marginal propensity to consume. Observe that the inverse of the EIS is nonetheless

larger than the mortality risk aversion (1/ε = 0.60 > 0.29 = γm), an issue to which we will

return shortly. The minimal consumption level is realistic, and larger than base income

(a × 106 = 14.4 K$). Finally, we note in closing that all the restrictions in Section 3.2

that are associated with the Grossman (1972); Ehrlich and Chuma (1990) model (17),

and (18) are individually rejected, confirming the relevance of the more general Hugonnier

et al. (2013) benchmark.

6.2 Estimated valuations

Human Capital Value of Life Using the estimated parameters in Table 3, we can

compute the HK value of life vh(H) given in (28), and reported in Table 4. Overall, the

human capital values are realistic, with a mean value of 738 K$. Indeed, the estimated

HK values range from 393 K$ (Poor health) to 913 K$ (Excellent health) and compare

12For example, the 2016 poverty threshold for single-agent households under age 65 was 12.5 K$ (U.S.
Census Bureau, 2017).
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advantageously with other HK estimates,13 and provide a first out-of-sample confirmation

that the structural estimates are realistic. The HK values are independent of wealth, and

are increasing in the health level. From the health capital P1(H) = HB[1 − λs1lsH−ξs ],

healthy agents have more human capital HB at stake, as well as a lower exposure to

sickness risks λs1H
−ξs . Both elements concur to yield a higher economic value of their

human capital stock.

Value of Statistical Life Again relying on the estimated structural parameters, Ta-

ble 5 reports the Values of Statistical Life vs(W,H, λm0) in (30) by observed health,

and wealth statuses. First, the VSL values average 8.14 MM$, and are ranging between

1.48 MM$, and 12.97 MM$, well within the ranges usually found in the empirical VSL

literature.14 The concordance of these values with previous findings provides additional

out-of-sample evidence that our structural estimates are well grounded. The human

capital P1(H) captures a low value to the VSL, representing between 4.5% and 9.4% of

the levels, indicating that financial wealth is the main determinant of vs(W,H, λ0).

Second, the VSL is increasing in both wealth, and especially health. Positive wealth

gradients have been identified elsewhere (Bellavance et al., 2009; Andersson and Treich,

2011; Adler et al., 2014) whereby diminishing marginal value of wealth and higher fi-

nancial values at stake both imply that richer agents are willing to pay more to improve

survival probabilities. The literature has been more ambivalent with respect to the health

effect (e.g. Andersson and Treich, 2011; Robinson and Hammitt, 2016; Murphy and Topel,

2006). On the one hand better health increases the value of life that is at stake, on the

other hand, healthier agents face lower death risks, and are willing to pay less to attain

further improvements (or prevent deteriorations). Our estimates unambiguously indicate

that the former effect is dominant and that better health raises the VSL.

13Huggett and Kaplan (2016, benchmark case, Fig. 7.a, p. 38) find HK values starting at about 300 K$
at age 20, peaking at less than 900 K$ at age 45, and falling steadily towards zero afterwards.

14A meta-analysis by Bellavance et al. (2009, Tab. 6, p. 452) finds mean values of 6.2 MM$ (2000
base year, corresponding to 8.6 MM$, 2016 value). Survey evidence by Doucouliagos et al. (2014) ranges
between 6 MM$, and 10 MM$. Robinson and Hammitt (2016) report values ranging between 4.2, and
13.7 MM$. Finally, guidance values published by the U.S. Department of Transportation were 9.6 MM$ in
2016 (U.S. Department of Transportation, 2016), whereas the Environmental Protection Agency relies on
central estimates of 7.4 MM$ (2006$), corresponding to 8.8 MM$ in 2016 (U.S. Environmental Protection
Agency, 2017).
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Gunpoint Value Using the point estimates of the deep parameters, Table 6 reports

the Gunpoint values vg(W,H) in (31). The GPV is increasing in both health and wealth,

and ranges between 88 K$, and 730 K$, with an average of 460 K$. Contrasting these

valuations with the low observed financial wealth in Table 2.a reveals that the bulk of

the Gunpoint value captures human capital, with P1(H) capturing between 77% (high

wealth), and 157% (low wealth) of net total wealth N1(W,H). As discussed earlier, the

low observed wealth W , and high minimal consumption a > 0 explain why the Gunpoint

is lower than the HK value.

Whereas it is of similar magnitude to the Human Capital Value of life, the Gunpoint

Value is much lower than the VSL. To understand these differences, it is useful to chart

the estimated counterpart of the willingness to pay first introduced in Figure 2. In

particular, Figure 3 plots the estimated v(W,H, λm0,∆) in function of the death intensity

λ∗m0 = λm0+∆.15 First, the estimated WTP in blue is an increasing, and concave function

that equals zero at λ∗m0 = λm0 = 0.0244, is negative for ∆ < 0, and positive for positive

increments. The pronounced curvature of the WTP is consistent with standard economic

intuition of diminishing marginal valuation of exposure to death (e.g. Philipson et al.,

2010; Córdoba and Ripoll, 2016). Concavity of the WTP is also expected when the

reciprocal of the EIS is larger than mortality risk aversion (as was found in Table 3.c) in

other life valuation literature using Non-Expected Utility (see Córdoba and Ripoll, 2016,

for discussion).

Second, we saw from Corollary 1 that for ε > 1, the limit of the willingness to pay when

death becomes certain – i.e. when λ∗m0 tends to infinity – is the morbidity-adjusted net

total wealth N1(W,H). From Proposition 4, this limiting value is also the gunpoint value

vg(W,H) plotted in red. Third, as explained in Proposition 3, the VSL vs(W,H, λm0)

is the value of the slope of the yellow tangent of v(W,H, λ∗m0) evaluated at ∆ = 0 or,

equivalently, the value of the yellow tangent evaluated as λ∗m0 = 1+λm0. The pronounced

curvature of the WTP in Figure 3 is informative as to why the VSL is much larger than

the Gunpoint value. Put differently, the linear extrapolation of marginal values that is

relied upon in the VSL calculation overstates the willingness to protect one’s own life

when the WTP is very concave in the death risk increment.

15These valuations are calculated from (29) at the estimated parameters, and relying on the mean
wealth and health status in Table 1.a (W = 38, 685$× 10−6, H = 2.58).

33



6.3 Comparisons with restricted model of human capital

Our discussion of the estimated parameters in Table 3 revealed that the theoretical

restrictions associated with the Grossman (1972); Ehrlich and Chuma (1990) model (17),

and (18) were rejected, thereby validating our benchmark model over the restricted one.

Despite this statistical evidence, we re-estimate the restricted model to verify empirical

robustness. In particular, the econometric model (36), is modified where optimal rules

are now given by (41), and the model is re-estimated subject to the modified regularity

conditions (40) outlined in Appendix B.2.

The estimated parameters for the restricted model are reported in Table 7, whereas

the associated valuations ṽh, ṽs, and ṽg are reported in Tables 8, 9, and 10. Overall, the

unrestricted deep parameters remain similar, with the exception of a higher depreciation

rate δ which over-compensates the absence of morbidity risk.16 Larger depreciation results

in a lower Tobin’s-Q, and explains a lower HK value (634 K$ vs 737 K$). Conversely, the

VSL (16.7 MM$ vs 8.1 MM$), and GPV (661 K$ vs 460 K$) results are higher, confirming

our discussion of Corollary 2. Abstracting from sickness risks, combined with the absence

of minimal consumption by imposing a = 0 results in higher net total wealth Ñ0(W,H) >

N1(W,H). Consequently, we find higher life values for the VSL, and GPV. We conclude

that while the theoretical valuations are qualitatively similar, the absence of adjustments

for sickness exposure, and for minimal consumption requirements results in quantitative

adjustments for the restricted model that do not overturn our main conclusions. Formal

testing unambiguously rejects the associated restrictions.

6.4 Discussion, and Caveats

Our structural estimation maintains the general conclusion that the Value of a Statistical

Life is much larger than other valuations. As famously pointed out by Schelling (1968),

and widely recognized by the literature, the VSL gauges the aggregate willingness to pay

for infinitesimal changes in the risk of dying indiscriminately affecting entire populations.

Conversely, the Gunpoint value measures the willingness to pay to avoid a large change

in death risk (i.e. life versus certain death), and affecting a single individual. There

16In particular, the depreciation rate for the restricted model δ = 0.0272 is more than twice the
deterministic plus expected stochastic depreciation for the benchmark: δ + φλs0 = 0.0113.
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is therefore no ex-ante reason why the Statistical Life, and Gunpoint values should be

equal.

Indeed, Pratt and Zeckhauser (1996) argue that concentrating the costs, and benefits

of death risk reduction leads to two opposing effects on valuation. On the one hand,

the dead anyway effect leads to higher payments on identified (i.e. small groups facing

large risks), rather than statistical (i.e. large groups facing small risks) lives. In the

limit, they contend that an individual might be willing to pay infinite amounts to save

his own life from certain death. On the other hand, the wealth or high payment effect has

an opposite impact. Since resources are limited, the marginal utility of wealth increases

with each subsequent payment to avoid increases in risk, thereby reducing the WTP as

risk increases.17 Although the net effect remains uncertain, Pratt and Zeckhauser (1996,

Fig. 2, p. 754) argue that the wealth effect is dominant for larger changes in death risk,

i.e. for those cases that naturally extend to our Gunpoint Value. Their conjecture is

warranted in our calculations. When faced with certain death, an individual is willing

to pay much less than what can be inferred from the VSL. Indeed, while total financial

wealth, plus the value of the human capital, net of subsistence costs, are paid out in

the Gunpoint value, these resources are limited, and much less than what society might

collectively be willing to pay to save one unidentified life.

Given that three different answers are provided to the same question, which of the

Human Capital, Statistical Life, or Gunpoint Value should be relied upon to measure

the value of a human life? To the extent that they measure fundamentally different

objects, we may contend that all should be used. Put differently, the HK, VSL, and

GPV are complements, rather than substitutes, and their relevance should depend on the

underlying motivation for computing a life value. All in all, the VSL is more appropriate

in issues involving collective choices that involve small changes in death probabilities

affecting large subsets of the population, and for which society is the ultimate payer of the

associated costs. Well-known examples identified in the literature include general safety

measures with respect to transportation, or public health. The GPV is inappropriate for

such cases in that it gauges what someone would be willing to pay to survive, not what a

society is collectively willing to pay to indiscriminately save someone in the group. The

17Pratt and Zeckhauser (1996, p. 753) point out that whereas a community close to a toxic waste
dump could collectively pay $1 million to reduce the associated mortality risk by 10%, it is unlikely that
a single person would be willing to pay that same amount when confronted with that entire risk.
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HK and the GPV are closely linked and should thus be relied upon in situations where

the risk of dying concerns a single individual, such as the continued life support decisions,

wrongful death litigation, or life insurance where the GPV would gauge the value of life

ascribed by its main beneficiary, with full adjustments for his health, financial, and net

total wealth statuses. The HK value can be applied in instances where labor income is

the main source of human wealth.

Two caveats of our approach are worth mentioning. A first limitation is the absence

of bequest motives. This omission is related to the technical difficulty in solving the

Hugonnier et al. (2013) model when bequeathed wealth is optimally chosen. Although

it remains unclear how our results would be affected, we can however conjecture that

a likely effect would be to reduce the GPV even further. Indeed, warm glow effects of

bequest would attenuate the cost of dying, and consequently also the WTP to avert death.

Moreover, bequeathed wealth is illiquid, to the extent that it is set aside for surviving

heirs, and not to ensure one’s own survival. Without affecting human capital, the amount

of disposable financial resources that can be pledged in a money-or-death threat would

therefore be reduced, and consequently so would the GPV.

A second limitation is the absence of aging in our valuation. A fair treatment

would involve time varying parameters, which are made possible in the original paper

of Hugonnier et al. (2013, Appendix B), yet are technically more challenging. Although a

complete derivation is again beyond the scope of this paper, we can conjecture that aging

should also reduce the GPV. Indeed, biological limits to life expectancy would generate

optimal dis-saving of financial wealth, lowering even further the Gunpoint value for elders.

Moreover, as mentioned earlier, the marginal Q of health, B, is a declining function of

the health depreciation parameters (which would likely increase in age) and an increasing

function of health gradient of income (which should fall in age). A lower value of human

capital for elders would then lead to less resources being paid out to survive a credible

death threat.
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A Figures

Figure 1: Indifference curves, MRS, and Value of Statistical Life

Notes: Reproduced and adapted from Andersson and Treich (2011, Fig. 17.1, p. 398).

Indifference curves for indirect utility (1) in blue. vs: Theoretical Value of Statistical Life

in (6a) is the negative of the MRS, i.e. the slope of red tangent equal to distance [a,d].
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Figure 2: Willingness to pay, Empirical, and Theoretical VSL, and Gunpoint Value of
Life

Notes: P: instantaneous probability of death. v: Willingness to pay to avoid change ∆ in death

risk (in blue), evaluated at (W,H), and for base risk P0. vs: Theoretical Value of Statistical

Life in (6b) is slope of red tangent equal to distance [a,d]. ves: Empirical Value of Statistical

Life in (7) is slope of green line, and equal to distance [e,f]. vg: Gunpoint Value of Life in (8)

is equal to distance [b,c].
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Figure 3: Estimated willingness to pay, Statistical Life and Gunpoint Values
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Notes: At estimated parameter values, for mean wealth and health levels. v(W,H, λ∗m0) in blue

is the maximum willingness to pay to avoid an increase of ∆ in exogenous death intensity λm0;

vg(W,H) in red is the Gunpoint value of life; vs(W,H, λm0) is the Value of statistical life, and

the slope of the yellow tangent evaluated at λm0. In MM$.
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B Solutions for human capital models

B.1 Solution for the benchmark Hugonnier et al. (2013) model

The main results of Hugonnier et al. (2013, Prop. 1, 2, and Thm. 1, 2) show that the

optimal policy can be characterized as follows.

Theorem 1 (Indirect utility and optimal policy) Assume that the following regu-

larity conditions are verified:

β < (r + δ + φλs0)
1
α ,

0 < A(λm0)−max

(
0, r − λm0

1− γm
+ θ2/γ

)
,

0 < min

(
λm0

1− γm
, r

)
− F (1− ξs),

0 < A(λm0)−max

(
0, r − λm0

1− γm
+ θ2/γ

)
− F (−ξm).

(37)

Then, up to a first-order approximation, the nonnegative indirect utility of an alive agent

is given by (19) and generates the optimal policy functions:

ct =a+ A(λm0)
[
N1(Wt−, Ht−)− (1− ε)λm1H

−ξm
t− lm(λm0)N0(Wt−, Ht−)

]
πt =(θ/(γσS))N0(Wt−, Ht−)− λs1(θ/(γσS))lsH

−ξs
t− P0(Ht−)

xt =φP0(Ht−)− λm1χ(ξm)(1− 1/γs)lm(λm0)H−ξmt− N0(Wt−, Ht−)

− λs1χ(ξs − 1)lsH
−ξs
t− P0(Ht−),

It =KP0(Ht−) + λm1(ξmK/(1− α))lm(λm0)H−ξmt− N0(Wt−, Ht−)

+ λs1((ξs − 1)K/(1− α))lsH
−ξs
t− P0(Ht−),

(38)

where K = α1/(1−α)Bα/(1−α), χ(x) = 1 − (1 − φ)−x, and where any dependence on the

endowed mortality rate λm0 is explicitly stated, and where the nonnegative order-0 value

of human capital and nonnegative orders-0 and 1 of net total wealth are defined as by (20),

and (22).
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B.2 Solution for the restricted Grossman (1972); Ehrlich and

Chuma (1990) model

The Hugonnier et al. (2013) framework nests the Grossman (1972); Ehrlich and Chuma

(1990) model. In particular, the exogenous morbidity, and mortality restriction λk1 =

0, k = s,m corresponds to the order-0 case analyzed in Hugonnier et al. (2013, Prop. 1,

Thm. 1). Moreover, imposing λs0 = φ = 0 in the g(·) equation yields B̃. Imposing

no subsistence a = 0, VNM preferences ε = 1/γ, and source-independent risk aversion

γk = 0, k = s,m restrictions in Θ(λm0), A(λm0) yields:

Ñ0(W,H) = W +
y

r
+ B̃H,

where B̃ solves g(B̃) = 0 s.t. g′(B̃) < 0 in

g(B̃) = β − (r + δ)B̃ − (1− 1/α)(αB̃)
1

1−α ,

and where

Θ̃(λm0) = ρ

(
Ã(λm0)

ρ

) γ
γ−1

, Ã(λm0) =
ρ

γ
+

(
γ − 1

γ

)(
r − λm0 +

θ2

2γ

)
. (39)

The associated theoretical restrictions are:

β < (r + δ)
1
α ,

0 < Ã(λm0)−max
(
0, r − λm0 + θ2/γ

)
,

(40)

Given these elements, the welfare corresponding to the restricted case is:

Ṽ (W,H, λm0) = Θ̃(λm0)Ñ0(W,H),
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and generates the optimal policy functions:

c̃t =a+ Ã(λm0)Ñ0(Wt−, Ht−)

π̃t =(θ/(γσS))Ñ0(Wt−, Ht−)

xt ≡0

Ĩt =K̃P̃0(Ht−),

(41)

where K̃ = α1/(1−α)B̃α/(1−α), and where any dependence on the endowed mortality rate

λm0 is explicitly stated.
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C Proofs

C.1 Proof of Proposition 1

From definition (3), the NPV of the fixed component y in income (13) is y/r. The results

in Hugonnier et al. (2013, Prop. 2) show that the NPV of the health-dependent part of

income net of expenses along the optimal path is:

Et

∫ Tm

0

mt,τ [βH∗τ − I∗τ ] dτ = P1(H),

as required.

C.2 Proof of Proposition 2

Following Hugonnier et al. (2013), we can define Lk(H) = H−ξk lk, for k = s,m, and set

λk1 = ελ̄k1 for some strictly positive constants λ̄k1, and for k = m, s, such that the value

function in (19) can be written as:

V (W,H, λm0, ε) = Θ(λm0)
[
N0(W,H)− ελ̄s1Ls(H)P0(H)

]
−Θ(λm0)ελ̄m1Lm(H,λm0)N0(W,H),

= Θ(λm0)
[
N1(W,H, ε)− ελ̄m1Lm(H, λm0)N0(W,H)

]
,

(42)

where the first-order total wealth N1(W,H, ε) is implicitly defined. The indirect util-

ity (42) is obtained by Hugonnier et al. (2013) through a first-order Taylor expansion of

the agent’s problem around small deviations ε ≈ 0. By a similar reasoning, the first-order

approximation to the Hicksian compensating value v(ε) = v(W,H, λ∗m0, ε) ≥ 0 in (4) to

prevent any increase in the endowed death intensity λ∗m0 > λm0 is given as:

0 = V (W − v(ε), H, λm0, ε)− V (W,H, λ∗m0, ε)

= ∇V (W,H, λ∗m0, ε)

≈ ∇V (W,H, λ∗m0, 0) + ε∇Vε(W,H, λ∗m0, 0).
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Straightforward calculations using the indirect utility (42) reveal that:

∇V (W,H, λ∗m0, 0) = V (W − v(0), H, λm0, 0)− V (W,H, λ∗m0, 0)

= −Θv(0) + (Θ−Θ∗)N0(W,H)

where Θ = Θ(λm0), and Θ∗ = Θ(λ∗m0) are given in (??). Setting ∇V (W,H, λ∗m0, 0) = 0

uniquely solves for v(0) as:

v(0) =

(
1− Θ∗

Θ

)
N0(W,H). (43)

Similarly, we obtain:

∇Vε(W,H, λ∗m0, 0) =− VW (W − v(0), H, λm0, 0)v′(0)

+ Vε(W − v(0), H, λm0, 0)− Vε(W,H, λ∗m0, 0),

=−Θv′(0) + λ̄m1ΘLm(H)v(0)

− λ̄m1 [ΘLm(H)−Θ∗L∗m(H)]N0(W,H)

− λ̄s1 [Θ−Θ∗]Ls(H)P0(H),

where Lm(H) = Lm(H,λm0), and L∗m(H) = Lm(H, λ∗m0) are given in (??). Again setting

∇Vε(W,H, λ∗m0, 0) = 0 uniquely solves for v′(0) as:

v′(0) = −λ̄m1
Θ∗

Θ
[Lm(H)− L∗m(H)]N0(W,H)− λ̄s1

[
1− Θ∗

Θ

]
Ls(H)P0(H) (44)

The corresponding Hicksian value v(ε) obtains by substituting the solutions (43) and

(44) in the first-order expansion of the compensating value:

v(ε) ≈v(0) + εv′(0)

=

[
1− Θ∗

Θ

] [
N0(W,H)− ελ̄s1Ls(H)P0(H)

]
− ελ̄m1

Θ∗

Θ
[Lm(H)− L∗m(H)]N0(W,H)

=

[
1− Θ∗

Θ

]
N1(W,H, ε)− ελ̄m1

Θ∗

Θ
[Lm(H)− L∗m(H)]N0(W,H).

Substituting back λk1 = ελ̄k1, and using total wealth (22) yields (29). �

49



C.3 Proof of Corollary 1

When the agent’s preferences are sufficiently elastic with respect to time (i.e. ε > 1), the

marginal propensity to consume A(λm0) in (25) is a linear increasing function, such that

l∗m < lm is decreasing. Since Θ(λm0) was found to be increasing and convex for all ε it

follows that

lim
λ∗m0→+∞

v(W,H, λ∗m0) = N1(W,H), if ε > 1,

Conversely, when the elasticity is low, i.e. ε ∈ (0, 1), the marginal propensity to

consume A(λm0) is a linear decreasing function. To maintain non-negativity of the MPC,

the maximal admissible increase in the death intensity must be bounded above by λ̄m0

in (27). Since A(λ̄m0) = 0, and ε ∈ (0, 1), it follows that Θ(λ̄m0) = 0 in (24), while

lm(λ̄m0) is finite in (26), and

v(W,H, λ̄m0) = N1(W,H), if ε ∈ (0, 1)

as stated. �

C.4 Proof of Proposition 3

Using a similar reasoning and standard principles, the VSL can be calculated as the

negative of the MRS between death intensity λm0, and wealth:

vs(W,H, λm0, ε) =
−Vλm0(W,H, λm0, ε)

VW (W,H, λm0, ε)

≈ vs(W,H, λm0, 0) + ε
∂vs(W,H, λm0, ε)

∂ε

∣∣∣∣
ε=0

,

where

vs(W,H, λm0, 0) =
N0(W,H)Θ′(λm0)

Θ(λm0)

∂vs(W,H, λm0, ε)

∂ε

∣∣∣∣
ε=0

=
−λ̄s1BHLs(H)Θ′(λm0)

Θ(λm0)
− λ̄m1N0(W,H)

∂Lm(H, λm0)

∂λm0

.

Re-arranging terms, using the definition of N1(W,H) in (22), and substituting for λk1 =

ελ̄k1 yields the VSL in (30). Note that the alternative calculation through the marginal
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willingness to pay

vs(W,H, λm0, ε) =
∂v(W,H, λ∗m0, ε)

∂λ∗m0

∣∣∣∣
∆=0

yields the same value of statistical life (30). �

C.5 Discrete changes per period in death intensity (Remark 1)

Lemma 1 A higher likelihood of death of ∆ per time interval of s ∈ [0, T ] corresponds

to a permanent increase in the endowed intensity to λ∗m0(H,∆, T ) > λm0 given by:

λ∗m0(H,∆, T ) =
−1

T
log

[
e−λm0T − ∆

1− λm1k(H,T )

]
,

where,

k(H,T ) = H−ξm
(
eψT − 1

ψ

)
≥ 0,

ψ = ξm

[
δ − (αB)

α
1−α

]
+ λs0

[
(1− φ)−ξm − 1

]
≥ 0.

Proof A higher likelihood of death of ∆ over a time interval of s ∈ [0, T ] corresponds

to an increase in the endowed intensity to λ∗m0(∆, H) > λm0:

Pr [Tm ≤ T | λ∗m0] = Pr [Tm ≤ T | λm0] + ∆,

= 1− E
[
e−

∫ T
0 λ∗m(∆,Hs)ds

]
,

where we have set λ∗m(∆, H) = λ∗m0(∆, H) + λm1H
−ξm in (11). Solving for λ∗m0 through

a first-order expansion around benchmark λk1 = 0, k = m, s reveals that the latter is as:

λ∗m0(∆, H) =
−1

T
log

[
e−λm0T − ∆

1− λm1k(H)

]
,

where,

k(H) = E

∫ T

0

H−ξms ds = H−ξm
(
eψT − 1

ψ

)
≥ 0,

ψ = ξm

[
δ − (αB)

α
1−α

]
+ λs0

[
(1− φ)−ξm − 1

]
≥ 0.
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as stated. �

C.6 Proof of Proposition 4

Again by a similar reasoning, the first-order approximation to gunpoint value of life

vg(ε) = vg(W,H, ε) in (8) is implicitly given as:

0 = V (W − vg(ε), H, λm0, ε)

≈ V (W − vg(0), H, λm0, 0) + εVε(W − vg(0), H, λm0, 0).

Straightforward calculation indicate that:

V (W − vg(0), H, λm0, 0) = Θ [N0(W,H)− vg(0)]

whereas,

Vε(W−vg(0), H, λm0, 0) = Θ
[
−v′g(0)− λ̄s1Ls(H)P0(H)− λ̄m1Lm(H) (N0(W,H)− vg(0))

]
.

Again equating each terms to zero uniquely solves for vg(0), v′g(0) and reveals that:

vg(ε) ≈ vg(0) + εv′g(0)

= N0(W,H)− ελ̄s1Ls(H)P0(H).

Substituting back λs1 = ελ̄s1, and using total wealth (22) yields (31). �
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D Tables

D.1 Data

Table 1: PSID data statistics

Mean Std. dev. Min Max

Health (H) 2.58 0.80 1 4

Wealth (W ) 38 685 122 024 0 1 430 000

Consumption (c) 9 835 11 799 1.047 335 781

Risky holdings (π) 20 636 81 741 0 1 367 500

Insurance (x) 247 718 0 17 754

Health investment (I ) 721 2 586 0 107 438

Income (Y ) 21 838 37 063 0 1 597 869

Age (years) 45.68 16.46 16 100

Notes: Statistics in 2013 $ for PSID data used in estimation (8 378 observations). Scaling for

self-reported health is 1.0 (Poor), 1.75 (Fair), 2.50 (Good), 3.25 (Very good), and 4.0 (Excellent).

53



Table 2: PSID data statistics (cont’d)

Wealth quintiles

Health Hj 1 2 3 4 5

a. Wealth Wj ($)

Poor 1.00 0 139 2 063 11 831 152 151

Fair 1.75 0 145 1 741 12 027 123 083

Good 2.50 0 168 1 802 11 908 120 467

Very good 3.25 0 199 1 823 12 197 118 738

Excellent 4.00 0 192 1 823 12 099 122 135

b. Consumption cj ($)

Poor 1.00 3 281 4 906 6 558 10 052 7 752

Fair 1.75 4 095 6 888 8 795 11 196 13 368

Good 2.50 5 086 6 526 9 745 11 269 13 336

Very good 3.25 5 989 7 517 10 181 11 131 13 626

Excellent 4.00 5 276 6 897 10 002 12 099 14 628

c. Stocks πj ($)

Poor 1.00 0 0 0 725 46 497

Fair 1.75 0 5 279 2 309 76 721

Good 2.50 0 1 268 4 320 55 379

Very good 3.25 0 5 192 4 756 68 768

Excellent 4.00 0 0 334 5 801 90 147

d. Insurance xj ($)

Poor 1.00 165 191 503 723 856

Fair 1.75 181 196 497 775 1 095

Good 2.50 206 219 401 564 852

Very good 3.25 190 284 313 522 797

Excellent 4.00 203 254 366 429 807

e. Investment Ij ($)

Poor 1.00 549 552 2 341 2 936 6 003

Fair 1.75 400 468 968 621 1 250

Good 2.50 243 238 383 500 962

Very good 3.25 276 226 275 435 596

Excellent 4.00 151 192 230 307 451

Notes: Statistics in 2013 $ for PSID data used in estimation. Means per quintiles of wealth,

and per health status
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D.2 Benchmark model (Hugonnier et al., 2013)

Table 3: Estimated and calibrated structural parameter values, benchmark model

Parameter Value Parameter Value

a. Law of motion health (9)

α 0.7045 δ 0.0109

(0.1799) (0.0048)

φ 0.0136c

b. Sickness and death intensities (10), (11)

λs0 0.0316 λs1 0.0088

(0.0152) (0.0042)

ξs 2.9802 η 50c

(1.0262)

λm0 0.0244 λm1 0.0045

(0.0087) (0.0022)

ξm 1.0686

(0.4497)

c. Wealth, and income (12), (13)

y 0.0122c β 0.0095

(0.0045)

µ 0.108c r 0.048c

σS 0.20c

d. Preferences (15), (16)

γ 3.5242 ε 1.6699

(1.3316) (0.5911)

a 0.0146 γm 0.2862

(0.0037) (0.1212)

γs 7.4c ρ 0.05c

Notes: Estimated structural parameters (standard errors in parentheses); c: calibrated

parameters. Econometric model (36), estimated by iterative 2-stages ML, subject to the

regularity conditions (37).
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Table 4: Estimated Human Capital Value of Life, benchmark model (in $)

Health level

Poor 392 736

Fair 534 280

Good 662 459

Very Good 787 946

Excellent 912 547

All

- mean 737 887

- median 787 946

Notes: At estimated parameter values, using vh(H) in (28), multiplied by 1 MM$ to correct for

scaling used in estimation. All reported entries are averages of individual values and shares in

the PSID sample.

Table 5: Estimated Value of Statistical Life, benchmark model (in $)

Health level Wealth quintile

1 2 3 4 5

Poor 1 477 135 1 479 511 1 512 348 1 679 099 4 074 525

Fair 4 009 020 4 011 551 4 039 474 4 219 360 6 161 584

Good 6 309 322 6 312 286 6 341 112 6 519 437 8 434 923

Very Good 8 563 359 8 566 878 8 595 675 8 779 565 10 668 049

Excellent 10 802 205 10 805 618 10 834 609 11 017 266 12 973 124

All

- mean 8 142 566

- median 8 565 013

Notes: At estimated parameter values, using vs(W,H, λm0) in (30), multiplied by 1 MM$ to

correct for scaling used in estimation. All reported entries are averages of individual values and

shares in the PSID sample.
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Table 6: Estimated Gunpoint Value of Life, benchmark model (in $)

Health level Wealth quintile

1 2 3 4 5

Poor 87 935 88 074 89 998 99 766 240 086

Fair 229 479 229 624 231 220 241 506 352 562

Good 357 658 357 826 359 460 369 566 478 125

Very Good 483 146 483 344 484 969 495 343 601 884

Excellent 607 747 607 939 609 570 619 846 729 881

All

- mean 460 087

- median 483 243

Notes: At estimated parameter values, using vg(W,H) in (31), multiplied by 1 MM$ to correct

for scaling used in estimation. All reported entries are averages of individual values and shares

in the PSID sample.
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D.3 Restricted model (Grossman, 1972; Ehrlich and Chuma,

1990)

Table 7: Estimated and calibrated structural parameter values, restricted model

Parameter Value Parameter Value

a. Law of motion health (18)

α 0.6940 δ 0.0272

(0.1739) (0.0123)

φ 0

b. Sickness and death intensities (18)

λs0 0 λs1 0

ξs 0 η 0

λm0 0.0336 λm1 0

(0.0087)

ξm 0

c. Income, and wealth (13), (18)

y 0.0122c β 0.0095

(0.0048)

µ 0.108c r 0.048c

σS 0.20c

d. Preferences (17)

γ 2.7832 ε 1/γ

(1.2209)

a 0 γm 0

γs 0 ρ 0.05c

Notes: Estimated structural parameters (standard errors in parentheses); c: calibrated

parameters. Econometric model (36), where optimal rules are given by (41), estimated by

iterative 2-stages ML, subject to the regularity conditions (40).
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Table 8: Estimated Human Capital Value of Life, restricted model

Health level

Poor 382 814

Fair 479 162

Good 575 509

Very Good 671 856

Excellent 768 204

All

- mean 634 365

- median 671 856

Notes: At estimated parameter values, using ṽ(H) in (32), multiplied by 1 MM$ to correct for

scaling used in estimation. All reported entries are averages of individual values and shares in

the PSID sample.

Table 9: Estimated Value of Statistical Life, restricted model (in $)

Health level Wealth quintile

1 2 3 4 5

Poor 9 667 389 9 670 905 9 719 481 9 966 156 13 509 723

Fair 12 100 495 12 104 150 12 144 470 12 404 224 15 208 774

Good 14 533 601 14 537 843 14 579 100 14 834 323 17 575 815

Very Good 16 966 707 16 971 721 17 012 749 17 274 735 19 965 254

Excellent 19 399 813 19 404 662 19 445 851 19 705 361 22 484 145

All

- mean 16 701 792

- median 16 970 897

Notes: At estimated parameter values, using ṽs(W,H) in (34), multiplied by 1 MM$ to correct

for scaling used in estimation. All reported entries are averages of individual values and shares

in the PSID sample.
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Table 10: Estimated Gunpoint Value of Life, restricted model (in $)

Health level Wealth quintile

1 2 3 4 5

Poor 382 814 382 954 384 877 394 645 534 965

Fair 479 162 479 306 480 903 491 189 602 245

Good 575 509 575 677 577 311 587 417 695 976

Very Good 671 856 672 055 673 680 684 054 790 594

Excellent 768 204 768 396 770 027 780 303 890 339

All

- mean 661 366

- median 672 022

Notes: At estimated parameter values, using ṽg(W,H) in (35), multiplied by 1 MM$ to correct

for scaling used in estimation. All reported entries are averages of individual values and shares

in the PSID sample.
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E Data

The data construction follows the procedure in Hugonnier et al. (2013). We rely on a

sample of 8,378 U.S. individuals obtained by using the 2013 wave of the Institute for Social

Research’s Panel Study of Income Dynamics (PSID, http://psidonline.isr.umich.edu/).

All nominal variables in per-capita values (i.e., household values divided by household

size), and scaled by 10−6 for the estimation. The agents’ wealth and health which are

constructed as follows:

Health Hj Values of 1.0 (Poor health), 1.75 (Fair), 2.5 (Good), 3.25 (Very good) and

4.0 (Excellent) are ascribed to the self-reported health variable of the household

head.

Wealth Wj Financial wealth is defined as risky (i.e. stocks in publicly held corporations,

mutual funds, investment trusts, private annuities, IRA’s or pension plans) plus

riskless (i.e. checking accounts plus bonds plus remaining IRA’s and pension assets)

assets.

The dependent variables are the observed portfolios, consumption, health expenditure

and health insurance, and are constructed as follows:

Portfolio πj Money value of financial wealth held in risky assets.

Consumption cj Inferred from the food, utility and transportation expenditures that

are recorded in PSID, using the Skinner (1987) method with the updated shares of

Guo (2010).

Health expenditures Ij Out-of-pocket spending on hospital, nursing home, doctor,

outpatient surgery, dental expenditures, prescriptions in-home medical care.

Health insurance xj Spending on health insurance premium.
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