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Abstract

The Human Capital (HK), and Statistical Life Values (VSL) differ sharply in their

empirical pricing of a human life and lack a common theoretical background, to justify

these differences. This paper makes four contributions to the theory, and measurement

of the latter. First, we provide a unified framework to formally define, and relate the

Hicksian willingness to pay (WTP) to avoid death risks, the HK, and the VSL. Second,

we use this setting to introduce a third life value calculated at Gunpoint (GPV), i.e.

the maximal WTP to avoid certain, instantaneous death. Third, we associate a flexible

human capital model to the common framework to characterize the WTP and the three

life valuations in closed-form. Fourth, we structurally estimate these solutions. Our

results confirm that the strong curvature of the WTP explains why the VSL (8.43 M$)

is much higher than either the HK (438 K$) or the GPV (452 K$) values.
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The life you save may be your own (Schelling, 1968)

1 Introduction

1.1 Motivation and outline

Motivation Evaluating the price of a human life has long generated a deep interest

in economic research.1 Indeed, life valuations are often relied upon in public health and

safety debates, such as for cost/benefit analyses of life-saving measures in transporta-

tion, environmental, or medical settings. Economic life values are also resorted to in

occupational, or end-users’ wrongful death litigation.

Three main sources of difficulty render the pricing of life particularly challenging.

First, a human life is by definition non-divisible. This implies that any marginal valuation,

e.g. via small incremental risks to life, must eventually be integrated back into a unitary

life value. Second, a human life is non-marketed. The absence of equilibrium prices

implies that the economic value of a human life must be inferred from relevant and

measurable proxies such as foregone income, or responses to changes in mortality risks.

Finally, ethical considerations induce significant discomfort in computing – and eventually

comparing – the life values of identified persons.

The two most-widely used life valuation frameworks differ in how these challenges are

dealt with. The Human Capital (HK) approach associates the value of an individual’s life

to the economic value embodied in his human capital. Relying on standard asset pricing,

the HK value is the present value of the dividend stream associated with human capital,

where the dividend is proxied by the marketed labor income, net of the measurable ex-

penses needed to maintain that capital. The Value of a Statistical Life (VSL), introduced

by Drèze (1962) and Schelling (1968), relies on a stated, or inferred, willingness to pay

(WTP) to avert (resp. attain) small increases (resp. reductions) in exposure to death

risks. Under appropriate assumptions, a collective WTP to save one unidentified (i.e.

statistical) life can be recovered through a linear aggregation of the individual WTP’s.

Focusing on the value of an unidentified, rather than personalized, life thus conveniently

1Landefeld and Seskin (1982) make reference to human-capital based evaluations of the value of life
dating back to Petty (1691).
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avoids addressing the uncomfortable ethical issues associated with computing the value

of someone’s life.

Notwithstanding cautionary claims to the contrary,2 both the HK and the VSL are

ultimately gauging the value of an identical underlying object and should presumably

come up with similar answers to the question of how much a human life is worth.

However, despite pricing a common element, these two valuations yield vastly different

values in practice.3 Understanding these differences is complicated by the absence of

common theoretical underpinnings that encompass both valuations. Consequently, most

HK and VSL evaluations are reduced-form empirical exercises that rely on minimal

theoretical foundations and are performed within disjoint settings that further complicate

comparisons. Our main objective is to provide this common framework and exploit it to

formally identify and empirically measure the two life values.

Contributions This paper makes four different contributions to the theory and the

measurement of life values. Our first contribution proposes a unified theoretical back-

ground linking both the Human Capital and Statistical Life values. We start from a

generic dynamic human capital problem in which an agent facing an uncertain horizon

selects investment in his human capital, where the latter augments labor income. Assum-

ing the existence of a solution to this problem satisfying weak preference for life over death,

we use standard asset pricing to define the HK value as the discounted dividend stream,

i.e. the income, net of investment, along the optimal dynamic path. Second, we rely on

the associated indirect utility (i.e. the welfare at the optimum) which we combine with

the Hicksian Equivalent Variation (EV, Hicks, 1946) to formally define the willingness to

pay to avoid any exogenous change in death risk exposure. The theoretical VSL can then

be defined formally in two equivalent ways: (i) as the (negative of the) marginal rate of

substitution (MRS) between death exposure and wealth, calculated through the indirect

2In his opening remarks, Schelling (1968, p. 113) writes

“This is a treacherous topic and I must choose a nondescriptive title to avoid initial
misunderstanding. It’s not the worth of a human life that I shall discuss, but of ‘life
saving’, of preventing death. And it’s not a particular death, but a statistical death. What
it is worth to reduce the probability of death – the statistical frequency of death – within
some identifiable group of people, none of whom expects to die except eventually. ”

3For example, Huggett and Kaplan (2016) identify HK values between 300 K–900 K$, whereas the
U.S. Department of Transportation recommends using a VSL-type amount of 9.4 M$ (U.S. Department
of Transportation, 2016).
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utility and (ii) as the marginal WTP (MWTP) with respect to death risk. This common

setup ensures that the HK and the VSL are both evaluated from a single underlying

dynamic problem.

Our second contribution also relies on this unified theoretical framework to define a

third valuation alternative that forthrightly addresses the measurement challenges and

can serve as comparison benchmark. The objectives are to gauge the economic value of a

human life without recourse to indirect proxies and/or arbitrary aggregation assumptions.

Instead, we address the non-divisibility and non-marketability by resorting to the unitary

shadow value of life accruing to its main beneficiary, i.e. the willingness to pay that leaves

an agent indifferent between living and dying in a highwaymen threat. The Hicksian EV

again provides a natural theoretical background to elicit this shadow value. We refer to

the corresponding amount as the Gunpoint Value of Life (GPV).4 To paraphrase Schelling

(1968)’s seminal title, in our highwaymen valuation, ‘the life you save is your own’.

Compared to the HK and VSL alternatives, the Gunpoint Value presents several

advantages that are discussed in further details in Section 1.2. First, the Gunpoint

Value does not uniquely ascribe the economic worth of an agent to the labor income

he generates, but instead accounts for all pledgeable disposable resources, including

financial wealth. Second, the GPV does not extrapolate measurable responses to small

probabilistic changes in the likelihood of death, but instead explicitly values a person’s

life as an entity and does so without external assumptions regarding integrability from

marginal to total value of life. Finally, any ethical discomfort in valuing someone else’s

life is addressed by having that person compute his own intrinsic value.

4Explicit references to a Gunpoint Value of life can be found in the academic literature (with emphasis
added):

“We argue that living, like other goods, has diminishing marginal utility–the willingness
to pay for an additional year of life falls with how many years one has to live. This is
in contrast to how the value of a statistical life-year is taught and explained: it is often
prefaced with claiming that it is not how much people are willing to pay to avoid having
a gun put to their head (presumably ones wealth). However, terminal care decisions are
often exactly of that nature.” (Philipson et al., 2010, p. 2)

or in the media:

“But how do you put a dollar value on a life, even in a generic sense? It wouldn’t work
for researchers to survey Americans at gunpoint and ask how much they would pay not to
die. Instead, an unlikely academic field has grown up to extrapolate life’s value from the
everyday decisions of average Americans.” (Fahrenthold, 2008)
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Our third contribution is also theoretical and consists of analytical calculations of the

WTP, as well as of the Human Capital, Statistical Life and Gunpoint Values of life. To

do so, we rely on a flexible human capital model that is applicable to alternative capital

definitions (e.g. skills or health). This model guarantees weak preference for life over

death and yields closed-form solutions, allowing us to compute the analytic expressions

corresponding to the life values. Since these solutions stem from the same underlying

model, they are thus directly comparable. We can therefore assess the contribution to

value of fundamentals, such as preferences, risk distributions, or technology, as well as

financial and human resources and thus investigate how the WTP, HK, VSL and GPV

are theoretically related to one another.

Our fourth and final contribution is empirical and consists of structural estimates of

the three different life valuations. More precisely, we adopt a revealed-preference perspec-

tive to estimate the structural parameters of the model, using PSID data that correspond

to the optimal investment, consumption, portfolio and health insurance policies. We

can then combine the structural parameters with observed wealth and health status to

calculate the analytical expressions for the Human Capital, Statistical and Gunpoint

Values of life. Whereas the latter is new and has not been previously estimated, the

HK and the VSL can be contrasted with reduced-form estimates in an out-of-sample

assessment of our results.

Main findings Our analytical results reveal that the willingness to pay, as well as all

three life valuations are increasing in the value of the human capital. The latter reflects

technological and distributional parameters, but is independent of preferences. Moreover,

standard properties of the indirect utility, that are verified for our model, imply that the

willingness to pay is increasing and concave in the increment in death risk. It follows that

the slope for small, finite increments (corresponding to the empirical VSL) – understates

the marginal WTP (corresponding to the theoretical VSL). Moreover, when the elasticity

of inter-temporal substitution (EIS) is larger than one, we show that the WTP is well-

defined for any detrimental change and that it is bounded above by a finite limiting

value.

The Gunpoint value is equal to net total wealth, i.e. financial wealth, plus the shadow

value of human capital, minus capitalized subsistence consumption. It is independent of
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both preferences and mortality exposure. Since death is instantaneous and certain in

a highwayman threat, the agent is willing to pay out all pledgeable resources, net of

unpledgeable subsistence requirements. For the same reasons, attitudes towards towards

risk, or time, as well as current level of death risk play no role in the GPV. Furthermore,

the Gunpoint and Human Capital Values display similarities in calculating the net present

value of optimal foregone net consumption (GPV) and of foregone net income (HK).

Finally, the Gunpoint is equal to the limiting WTP when the EIS is larger than one. The

curvature of the WTP then implies that both the empirical and theoretical VSL overstate

the value an agent attributes to his own life.

Our structural estimation shows that the model’s parameters are realistic and confirm

that the estimated EIS is larger than one, i.e. that the limiting WTP is the GPV. The

predicted life valuations are also realistic. Indeed, the estimates for the mean HK value

(438 K$) and the mean VSL (8.43 M$) are well in line with those obtained in the reduced-

form literature. The average Gunpoint Value (452 K$) is in the same range as the HK

valuation. Importantly, our results confirm the strong concavity of the willingness to

pay. This curvature – rather than disjoint valuation concepts – is thus the main element

explaining the much higher values of life obtained under the VSL, compared to alternative

values.

After a review of the relevant literature in Section 1.2, the rest of the paper is organized

as follows. We first introduce the formal links between the HK, WTP, VSL and GPV in

Section 2. Sections 3 and 4 present the benchmark model and corresponding life values.

The empirical strategy is discussed in Section 5, with structural parameters and values

of life estimates reviewed in Section 6 and concluding remarks presented in Section 7.

1.2 Related literature

1.2.1 Human Capital values of life

The HK model associates the economic value of a person to the value of his human

capital that is entirely depreciated at death. That value is obtained by pricing the

expected discounted stream of its associated dividends that are foregone upon death, i.e.

the lifetime labor income flows, net of associated investment.5 Well-known issues related

to this approach include the appropriate rate of discounting, the endogeneity of income

5See Jena et al. (2009); Huggett and Kaplan (2013, 2016) for applications.
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and investment, as well as the treatment of non-labor activities.6 As for HK models,

we do calculate the net present value of the stream of human capital dividends that are

lost upon death. Unlike HK models however, that value is computed in closed-form. In

particular, we fully account for the endogeneity of the human capital stock and therefore of

its associated income and investment expenditures. We therefore encompass the relevant

technological and distributional considerations, such as the capital production technology,

its deterministic and stochastic depreciation, the income-capital gradient, as well as the

duration of the dividends stream.

1.2.2 Value of a Statistical Life

The empirical VSL alternative relies on explicit and implicit evaluations of the Hicksian

WTP for a small reduction in fatality risk which is then linearly extrapolated to obtain the

value of life. Explicit VSL uses stated preferences for mortality risk reductions obtained

through surveys or lab experiments, whereas implicit VSL employs a revealed preference

perspective in using decisions and outcomes involving fatality risks to indirectly elicit

the Hicksian compensation.7 Examples of the latter include responses to prices and

fines in the use of life-saving measures such smoke detectors, speed limitations, or seat

belt regulations. The Hedonic Wage (HW) variant of the implicit VSL evaluates the

equilibrium willingness to accept (WTA) compensation in wages for given increases in

work dangerousness. Controlling for job/worker characteristics, the wage elasticity with

respect to job fatality risk can be estimated and again extrapolated linearly to obtain the

VSL (e.g. Aldy and Viscusi, 2008).

Ashenfelter (2006) provides a critical assessment of the VSL’s theoretical and empirical

underpinnings. He argues that the assumed exogeneity of the change in fatality risk can

be problematic. For instance, safer roads will likely result in faster driving, which will in

turn increase the number of fatalities. He also argues that agency problems might arise

and lead to overvaluation in cost-benefit analysis when the costs of safety measures are

borne by groups other than those who benefit (see also Sunstein, 2013; Hammitt and

Treich, 2007, for agency issues). Ashenfelter further contends that it is unclear whose

6Conley (1976) provides additional discussion of HK approaches while Huggett and Kaplan (2016)
address the discounting issues.

7A special issue directed by Viscusi (2010) reviews recent findings on VSL heterogeneity. A meta
analysis of the implicit VSL is presented in Bellavance et al. (2009). See also Doucouliagos et al. (2014)
for a meta-meta analysis of the stated- and revealed-preferences valuations of life.
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preferences are involved in the risk/income tradeoff and how well these arbitrage are

understood. For example, if high fatality risk employment attracts workers with low

risk aversion and/or high discount rates, then generalizing the wages risk gradient to the

entire population could understate the true value of life. Moreover, because wages are an

equilibrium object in the HW variant of the VSL, they encompass both labor demand and

supply considerations with respect to mortality risk. Hence, a high death risk gradient in

wages could reflect high employer aversion to the public image costs of employee deaths,

as much as a high aversion of workers to their own death. Finally, as was the case for HK

measures, HW estimates relate primarily to workers and are hardly adaptable to other

non-employed groups, such as young, elders, or the unemployed.

Moreover the passage from statistical towards personalized life valuations is unclear.

Pratt and Zeckhauser (1996) argue that concentrating the costs and benefits of death

risk reduction leads to two opposing effects on valuation. On the one hand, the dead

anyway effect leads to higher payments on identified (i.e. small groups facing large

risks), rather than statistical (i.e. large groups facing small risks) lives. In the limit,

they contend that an individual might be willing to pay infinite amounts to save his own

life from certain death. On the other hand, the wealth or high payment effect has an

opposite impact. Since resources are limited, the marginal utility of wealth increases

with each subsequent payment to avoid increases in risk, thereby reducing the WTP as

risk increases.8 Although the net effect remains uncertain, Pratt and Zeckhauser (1996,

Fig. 2, p. 754) argue that the wealth effect is dominant for larger changes in death risk,

i.e. for those cases that naturally extend to our Gunpoint Value. Their conjecture is

warranted in our calculations. When faced with certain death, an individual is willing to

pay much less than what can be inferred from the VSL.

Hall and Jones (2007) propose a semi-structural measure of life value. They adopt

a marginal value perspective by equating the VSL to the marginal cost of saving a

human life. The cost of reducing mortality risk can be imputed by specifying and

estimating a health production function and by linking health status to death risks.

Dividing this cost by the required change in death risk amount yields a VSL-inspired

life value, e.g. corresponding to 1.9 M$ for an individual aged 40-44 (Hall and Jones,

8Pratt and Zeckhauser (1996, p. 753) point out that whereas a community close to a toxic waste
dump could collectively pay $1 million to reduce the associated mortality risk by 10%, it is unlikely that
a single person would be willing to pay that same amount when confronted with that entire risk.
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2007, Tab. 1, p. 60). Like them, we model and estimate the health production and

death distribution. However, our valuations framework does not exclusively rely on

technological and distributional parameters, but includes preferences and health and

wealth statuses.

Our approach offers other advantages in calculating the value of life. First the

theoretical and empirical values stem from a common model and are thus directly com-

parable and interpretable. Second, we rely on a widely-used panel (PSID) accounting for

households’ consumption, financial and health-related decisions to elicit the WTP and

life valuations. Consequently, these values are representative and can be generalized to

the entire population. Third, we make no assumption on the shape of the WTP function

but rather derive its properties from the indirect utility function measured at the optimal

allocation. Indeed, we show that, consistent with economic intuition, the marginal value

ascribed to small increases in death intensity is positive, but falling in the latter.
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2 A Common Framework for Life Valuation

This section outlines a common framework that will be relied upon to formally define and

compare the Human Capital, Statistical, as well as Gunpoint Values of Life. Our main

building block is an underlying human capital problem for which the optimal policies

and associated indirect utility function can be solved. We combine these solutions with

standard asset pricing and Hicksian variational analysis to characterize the three life

valuations.

2.1 Underlying Human Capital Problem

Consider an agent’s human capital problem defined by a stochastic age at death Tm, an

instantaneous death probability P ∈ [0, 1], a human capital H and associated increasing

income function Y (H), a financial wealth W , as well as the relevant distributional

assumptions with respect to mortality, human and financial assets. For this program,

the agent selects the money value of investment in his human capital I and other controls

X (e.g. consumption, asset allocation, . . . ) so as to maximize utility U :

V (W,H,P) = sup
I,X

U, subject to:

dH = dH(H, I),

dW = dW (W,Y (H), I,X).

(1)

We assume that the agent’s preferences and constraints in (1) satisfy standard properties

such that the indirect utility V = V (W,H,P) is monotone increasing and concave in W .

We further assume weak preference for life over death. In particular, the indirect utility

is well-defined, decreasing and convex for all levels of death risk exposure P and satisfies:

V (W,H,P) ≥ V m > −∞, ∀W,H,P , (2)

where V m denotes the finite utility at death. Standard examples of the latter include

the seminal Yaari (1965); Hakansson (1969) paradigm (V m ≡ 0), or ‘warm glow’ effects

of bequeathed wealth (V m = V m(WTm), e.g. Yogo (2016); French and Jones (2011); De

Nardi et al. (2009)). Observe that monotonicity, curvature and finite utility assumptions
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imply the existence of decreasing and convex indifference curves in the wealth and life

probability (1− P) space.

2.2 Human Capital Value of Life

As previously mentioned, the Human Capital Value of life is the market value of the

net dividend flow associated with human capital and that is foregone upon death (e.g.

Huggett and Kaplan, 2016, 2013). In our setting, this net dividend is the marketed

income Y (H), minus the money value of associated investment expenses I, where both

are evaluated at the optimum to problem (1):

Definition 1 (HK value of life) The Human Capital Value of life vh,t = vh(Wt, Ht,P0)

is the expected discounted present value over stochastic horizon Tm of labor revenue flows,

net of investment costs:

vh,t = Et

∫ Tm

0

mt,τ [Y (H∗τ )− I∗τ ] dτ, (3)

where mt,τ is a stochastic discount factor induced by the assets’ prices and (H∗, I∗) are

evaluated along the optimal path solving (1).

As a canonical example with Poisson mortality, assume constant values for the death

intensity λm, the interest rate r and the non-stochastic growth rate gn for net income

Y n = Y (H)− I. The HK value then simplifies to:

vh =
Y n

r + λm − gn
. (4)

The human capital value of life in this special case is therefore decreasing in both the

death risk λm and interest rate r and is increasing in both the net income level Y n, as

well as net growth rate gn.

2.3 Willingness to pay

Next, consider a permanent exogenous change ∆ in the instantaneous probability of death

from base level P0. We rely on the indirect utility (1) to define the Hicksian Equivalent

Variation as follows:
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Definition 2 (WTP) The maximal willingness to pay v = v(W,H,P0,∆) to avoid a

permanent change ∆ in death risk exposure P is implicitly given as the solution to:

V (W − v,H,P0) = V (W,H,P0 + ∆) , (5)

where V (W,H,P) solves (1).

For unfavorable changes ∆ > 0, equation (5) indicates indifference between paying the

equivalent variation v > 0 to remain at base risk and not paying, but face higher death

risk. For favorable changes ∆ < 0, the agent is indifferent between receiving compensation

−v > 0 and foregoing lower death risk exposure.9

Observe that if the indirect utility is well-defined over all P , then the willingness to

pay is well-defined over all change in death risk ∆. Note also that the monotonicity and

curvature assumptions on the indirect utility V (W,H,P) in (1) are sufficient to yield a

monotone increasing and concave willingness to pay with respect to increment in death

risk ∆. To see this, substitute v(W,H,P0,∆) in (5), take derivatives and re-arrange to

obtain:

∂v

∂∆
=
−VP
VW

≥ 0, (6a)

∂2v

∂∆2
=
VPP − VWW (∂v/∂∆)2

−VW
≤ 0. (6b)

Monotonicity VW ≥ 0 and preference for life VP ≤ 0 therefore induce a willingness to pay

v that is increasing in ∆, whereas the diminishing marginal utility of wealth VWW ≤ 0,

and of survival probability VPP ≥ 0 are sufficient to induce a concave WTP function in

mortality risk exposure.

9An alternative formulation relies instead on the Hicksian willingness to accept compensation (WTA)
to face ∆, implicitly defined as the solution to:

V (W + va, H,P0 + ∆) = V (W,H,P0) .

This WTA perspective is however not suitable for Gunpoint settings in the absence of bequests. Indeed,
whereas paying out the WTP in a highwaymen threat is rational, accepting compensation against certain
death when terminal wealth in not bequeathed and life is preferred is not. Since we abstract from bequests
in our benchmark model in Section 3, we therefore adopt the WTP perspective in (5).
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2.4 Value of Statistical Life

The VSL is a measure of the marginal rate of substitution between the probability of life

and wealth, evaluated at base risk (e.g. Aldy and Smyth, 2014; Andersson and Treich,

2011; Bellavance et al., 2009). In the context of the model (1), it is thus the negative

of the MRS between P and W evauated at continuation utility V (W,H,P). The WTP

property (6a) establishes that this MRS is also the marginal willingness to pay (MWTP)

evaluated at base risk:

Definition 3 (VSL) The Value of a Statistical Life vs = vs(W,H,P0) is the negative of

the marginal rate of substitution between the probability of death and wealth and also the

marginal WTP evaluated at base risk:

vs =
−VP(W,H,P)

VW (W,H,P)

∣∣∣∣
P=P0

= lim
∆→0

v(W,H,P0,∆)

∆
, (7a)

=
∂v(W,H,P0,∆)

∂∆

∣∣∣∣
∆=0

, (7b)

where V (W,H,P) solves (1) and v(W,H,P0,∆) solves (5).

Figure 1 illustrates the indifference curve (in blue) in the wealth and life probability

space. The VSL in (7a) is the slope of the red tangent evaluated at base death risk P0

and is equivalent to the total wealth spent to save one life corresponding to the distance

[a,d] (e.g. Andersson and Treich, 2011, Fig. 17.1, p. 398).

Moreover, contrasting the theoretical definition of the VSL as a MWTP in (7a) with

its empirical counterpart reveals that the latter can also be interpreted as the slope of the

willingness to pay to avoid small changes in death risk. To see this, consider a canonical

example (e.g. Aldy and Viscusi, 2007), whereby we suppose that each agent i = 1, 2, . . . , n

has WTP of vi(W i, H i,P0,∆) for a common reduction ∆ = n−1 in death risk. Assuming

identical preferences, wealth and capital, the empirical value of a statistical life is obtained

as:

ves =
n∑
i=1

vi(W i, H i,P0,∆) = n v(W,H,P0,∆) =
v(W,H,P0,∆)

∆
, (8)
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and represents the collective willingness to pay to save one unidentified individual and

is equal to a slope of the WTP for ∆ small. The theoretical measure of the VSL (7b) is

therefore the limiting value of the slope in (8) when the change ∆ tends to zero.

Figure 2 illustrates the links between the WTP and the theoretical and empirical

measures of the VSL. From properties (6), the willingness to pay v = v(W,H,P0,∆) (in

blue) is an increasing, concave function of the change in death risk ∆. The theoretical

VSL vs in (7b) is the marginal willingness to pay, i.e. the slope of the red tangent

evaluated at base death risk (∆ = 0). If the willingness to pay can be computed for all

∆, then the VSL is equivalent to the linear projection corresponding to the total wealth

spent to save one person (i.e. reach P0 + ∆ = 1.0) and is equal to the distance [a,d]. The

empirical Value of a Statistical Life ves in (8) is computed for a small change ∆e > 0 and

corresponds to the slope of the green line; equivalently, it is the distance [e,f]. As Figure 2

makes clear, the empirical VSL measure ves will understate its theoretical counterpart vs

when ∆e is large and when the WTP is concave.

2.5 Gunpoint Value of Life

We next introduce the Gunpoint Value (GPV) as a third valuation of life. To do so, we

combine preference for life (2) with the Hicksian Equivalent Variation in (5) to define the

GPV as follows:

Definition 4 (GPV) The Gunpoint Value vg = vg(W,H,P0) is the maximal WTP to

avoid certain, instantaneous death and is implicitly given as the solution to:

V (W − vg, H,P0) = V m (9)

where V (W,H,P) solves (1) and satisfies (2).

The Gunpoint Value vg(W,H,P0) in (9) is implicitly defined as the maximal payment

that leaves the agent indifferent between paying vg and remaining at base death risk P0

and not paying and face instantaneous and certain death and attain utility V m. The

willingness to pay vg can thus be interpreted as the maximal amount paid in order

to survive an ex-ante unforecastable and ex-post credible highwaymen threat. As will

become clear shortly, if the willingness to pay v(W,H, λm0,∆) can be computed for any
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∆, then the Gunpoint value corresponds to the limiting WTP when death is certain

as represented by the distance [b,c] in Figure 2. A concave WTP entails that a linear

extrapolation under either the theoretical, or the empirical VSL will thus over-estimate

the value attributed to one’s own life.
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3 A benchmark human capital model

In order to compute the theoretical life values defined in Section 2 we introduce a

parametrized human capital model corresponding to its generic counterpart in (1).

3.1 Economic environment

Consider a depreciable human capital model whose law of motion is given by:

dHt =
[
Iαt H

1−α
t − δHt

]
dt− φHtdQst. (10)

The term δ ∈ (0, 1) is a deterministic depreciation, whereas dQst is a Poisson depreciation

shock with constant intensity λs0, whose occurrence further depreciates the capital stock

by a factor φ ∈ (0, 1).

The law of motion (10) applies to alternative interpretations of human capital. If Ht

is associated with skills (e.g. Ben-Porath, 1967; Heckman, 1976), then investment It com-

prises education and training choices made by the agent whereas dQst can be interpreted

as stochastic unemployment, or obsolescence shocks that depreciate the human capital

stock. If Ht is instead associated with health (e.g. Grossman, 1972; Ehrlich and Chuma,

1990), then investment takes place through medical expenses or healthy leisure whereas

the stochastic depreciation occurs through morbidity shocks.

In addition to stochastic depreciation, the agent is exposed to Poisson mortality risk

with constant intensity λm0. Within the context of this continuous-time model, the

instantaneous death probability P introduced earlier can be obtained by noting that:

Pr[Death(t, t+ h)] = λm0 h+ o(h), (11)

for a small h. In the subsequent life valuation, we will analyze exogenous changes ∆ in

death risk P resulting from permanent changes in the exogenous death risk exposure λm0.

Second, financial wealth W evolves according to the dynamic budget constraint:

dWt = [rWt + Yt − ct − It] dt+ πtσS [dZt + θdt] + xt [dQst − λs0dt] , (12)

Yt = y + βHt, (13)
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where r it the interest rate and θ = σ−1
S (µ − r) is the market price of financial risk. In

addition to investment It, the control variables include ct as consumption, πt as the risky

portfolio and xt is the units purchased of actuarially-fair depreciation insurance. The

latter pays one unit of the numeraire per unit of contract purchased, upon occurrence

of the depreciation shock and can be interpreted as unemployment insurance (if Ht is

associated with skills) or as medical, or disability insurance (if Ht is associated with

health). The income process in (13) comprises an exogenous component y, whereas the

expression βH reflects a positive income gradient for agents with higher human capital.

Finally, the indirect utility of an alive agent is defined as:

V (Wt, Ht) = sup
(c,π,x,I)

Ut,

where preferences are:

Ut = Et

∫ Tm

t

(
f(cτ , Uτ )−

γ|στ (U)|2

2Uτ

)
dτ , (14)

with

f(ct, Ut) =
ρUt

1− 1/ε

((
ct − a
Ut

)1− 1
ε

− 1

)
. (15)

The utility U in (14), combined with the Kreps-Porteus aggregator function f(c, U) in (15)

corresponds to the stochastic differential utility proposed by Duffie and Epstein (1992).

It is characterized by subjective discount rate ρ > 0, minimal subsistence consumption

a > 0 and disentangles the elasticity of inter-temporal substitution (EIS) ε ≥ 0, from the

agent’s constant relative risk aversion with respect to financial risk γ ≥ 0. As explained in

Hugonnier et al. (2013) and confirmed in Theorem 1 below, the homogeneity properties

of non-expected utility guarantee that the agent prefers life over death, with minimal

consumption requirement ct ≥ a implying positive continuation utility and preference of

life over death Vt ≥ V m ≡ 0.

3.2 Optimal rules

The baseline human capital model of Section 3.1 can be solved in closed form, yielding

the following result.
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Theorem 1 Assume that the following conditions hold:

0 < A(λm0)−max
(
0, r − λm0 + θ2/γ

)
, (16a)

β < (r + δ + φλs0)
1
α . (16b)

Then the indirect utility for the agent’s problem is:

Vt =Θ(λm0)N0(Wt, Ht) ≥ 0, (17)

and generates the optimal rules:

ct =a+ A(λm0)N0(Wt, Ht) ≥ 0,

πt =(θ/(γσS))N0(Wt, Ht),

xt =φP0(Ht) ≥ 0,

It =
(
α

1
1−αB

α
1−α

)
P0(Ht) ≥ 0,

(18)

where any dependence on death intensity λm0 is explicitly stated. The nonnegative human

capital value and net total wealth are given as:

P0(Ht) = BHt, (19)

N0(Wt, Ht) = Wt +
y − a
r

+ P0(Ht), (20)

where B > 0 solves g(B) = 0, s.t. g′(B) < 0 in:

g(B) = β − (r + δ + φλs0)B − (1− 1/α)(αB)
1

1−α (21)

and where the marginal value of net total wealth and the marginal propensity to consume

are:

Θ(λm0) = ρ̃A(λm0)
1

1−ε ≥ 0, ρ̃ = ρ
−ε
1−ε (22)

A(λm0) = ερ+ (1− ε)
(
r − λm0 + 0.5 θ2/γ

)
≥ 0. (23)

Both the indirect utility (17) and the optimal rules (18) are increasing functions of

the market value of the human capital capital P0(Ht). The price of human capital B
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in (19) can be interpreted as a Tobin’s-Q. It is implicitly defined in (21) as an increasing

function of the income gradient β and is declining in the rate of interest r and the

expected depreciation δ + φλs0. The market value of human capital is combined with

financial wealth Wt and the NPV of the base income stream, net of minimal consumption

(y − a)/r, to recover net total wealth N0(Wt, Ht) in (20). Observe that both human

capital value and net total wealth are independent of the death intensity λm0. This

independence results from the well-known equivalence between discounting at rate ρ, with

Poisson mortality and finite lives and an infinite horizon plus discounting at augmented

rate ρ+ λm0.

Two features of the optimal rules are particularly relevant for life valuation. A first

property is that the exposure to exogenous death risk λm0 affects welfare via Θ(λm0)

in (22), through its impact on the marginal propensity to consume (MPC) A(λm0)

exclusively. Equation (23) establishes that this impact crucially depends on the elasticity

of inter-temporal substitution ε. An increase in death risk λm0 induces heavier discounting

of future utility flows, leading to two opposite outcomes on the marginal propensity to

consume.

On the one hand, more discounting of future consumption requires shifting current

towards future consumption to maintain utility (i.e. by lowering the MPC). This effect is

dominant at low elasticity of inter-temporal substitution ε ∈ (0, 1). In the latter case, the

MPC in (23) is monotone decreasing and is no longer positive beyond an upper bound

given by:

λ̄m0 =

(
ε

1− ε

)
ρ+

(
r +

θ2

2γ

)
. (24)

It follows that the transversality condition (16a) is violated and both the value function

and the optimal rules are not well-defined when the EIS is low and the death risk λm0 is

above threshold (24).

On the other hand, heavier discounting makes future consumption less desirable and

shifts future towards current consumption (i.e. by increasing the MPC). This Live Fast

and Die Young effect is dominant at high elasticity of inter-temporal substitution ε > 1.

In this case, the dual regularity conditions of positive MPC and transversality remain

verified everywhere, such that both the indirect utility and optimal rules are well-defined

even at high levels of death risk exposure. Note in closing that unit elasticity implies
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exact cancellation of the two effects and results in a mortality risk-independent MPC

that is equal to the subjective discount rate ρ. Consequently, the marginal value of net

total wealth Θ is also independent of the exposure to death λm0 when ε = 1.

A second key property is that the welfare in (17) is monotone increasing and linear

in both wealth and human capital stock and is unconditionally monotone decreasing and

convex in death risk exposure since:

Θ′(λm0) = −ρ̃A(λm0)
ε

1−ε ≤ 0, (25a)

Θ′′(λm0) = ρ̃εA(λm0)
2ε−1
1−ε ≥ 0. (25b)

Hence, whereas the sign of the effects of death risk λm0 on the MPC (23) depends on

the EIS, preference for life implies that it always reduces the marginal value of total

wealth (22).
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4 Corresponding Values of Life

We next calculate the model-implied life valuations of Section 2 relying on the solution

for the benchmark human capital model of Section 3.10 We will assume throughout that

the optimal rules outlined in Theorem 1 are being followed by the agents and will restrict

our attention to detrimental changes in death risk ∆ ≥ 0.

4.1 Human Capital Value of Life

The HK value of life outlined in Definition 1 is computed as follows.

Proposition 1 (HK value) The Human Capital Value of life solving (3) is:

vh(H,λm0) = C0y + C1P0(H) (26)

where the non-negative constants C0, C1 are defined by:

C0 =
1

r + λm0

,

C1 =
r − (αB)

α
1−α

r + λm0 − (αB)
α

1−α
,

and where P0(H) is given in (19).

The HK value in (26) is thus an increasing affine function of the economic value of

human capital stock P0(H). A wealth-independent optimal investment in (18) implies

that vh is also independent of W . The first term C0 is the standard NPV of base income

y, lowered for exogenous exposure to death risk λm0 (see equation (4)). The second term

C1 is the net present value along the optimal path of the βH∗ component of income, net of

spending I∗. Indeed, the optimal rules in (18) reveal that the investment-to-capital ratio

is I/H = (αB)1/(1−α) and enters negatively in C1. A higher Tobin’s-Q has two conflicting

effects on the HK value. One the one hand, a higher market value P0(H) = BH entails a

larger vh. On the other hand, a higher price of capital justifies a higher investment ratio

I/H and lowers vh.

10Time subscripts will henceforth be abstracted from to alleviate notation.
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4.2 Willingness to pay to avoid a finite increase in death risk

Next, we can substitute the indirect utility V (W,H, λm0) given by (17) in Definition 2,

and solve for v = v(W,H, λm0,∆) as follows:

Proposition 2 (willingness to pay) The willingness to pay to avoid a change from

λm0 to λ∗m0 = λm0 + ∆ solving (5) is an increasing and concave function of ∆ given by:

v(W,H, λm0,∆) =

[
1− Θ(λ∗m0)

Θ(λm0)

]
N0(W,H); (27)

1. when ε ∈ (0, 1) and ∆ < ∆̄ = λ̄m0 − λm0, or

2. when ε > 1 and ∀∆,

where net total wealth N0(W,H) is given in (20), the marginal value Θ(λm0) is given

in (22) and where λ̄m0 is given in (24).

The WTP in (27) equals zero when the increment ∆ = 0 or under unit elasticity

of inter-temporal substitution for which case Θ is independent from λm0. For the other

cases, it was shown earlier that the marginal value of total wealth Θ(λm0) ≥ 0 in (22)

is a decreasing and convex function. Consequently, the weights Θ(λ∗m0)/Θ(λm0) ∈ [0, 1]

for detrimental changes ∆ ≥ 0 and the willingness to pay is an increasing function of net

total wealth N0(W,H).

Furthermore, equation (6) established that a decreasing and convex effect of mortality

risk on welfare entails a monotone increasing and concave willingness to pay to avoid

death. These properties of the indirect utility were verified in (25) and the implications

for the WTP are again confirmed in (27). They are also consistent with standard economic

intuition of diminishing marginal valuation of exposure to death (e.g. Philipson et al.,

2010; Córdoba and Ripoll, 2017).

The applicable domain of the willingness to pay depends on the elasticity of inter-

temporal substitution. At low EIS (case 1), the previous discussion established that the

dual restrictions of positive MPC and transversality (16a) are violated when λ∗m0 ≥ λ̄m0

in (24). Consequently, neither the marginal value Θ(λ∗m0) nor the willingness to pay are

well-defined for large changes ∆ ≥ ∆̄. When the elasticity is high ε > 1 (case 2), positivity

and transversality requirements are met for all detrimental changes ∆ ≥ 0. Consequently,

21



both the marginal value Θ(λ∗m0) and the willingness to pay are well-defined everywhere,

as shown in the following.

Corollary 1 (limiting WTP) If ε > 1, then the willingness to pay in is bounded above

by:

lim
∆→∞

v(W,H, λm0,∆) = N0(W,H). (28)

Hence the maximal willingness to pay is finite and is equal to net total wealth when the

elasticity of inter-temporal substitution is larger than one.

4.3 Value of a Statistical Life

Using Definition 3, and welfare (17), we can calculate the theoretical expression for the

VSL implied by the benchmark model as follows.

Proposition 3 (Value of Statistical Life) The Value of a Statistical Life is:

vs(W,H, λm0) =
−Θ′(λm0)

Θ(λm0)
N0(W,H), (29)

where total wealth N0(W,H) is given in (20) and the marginal value Θ(λm0) is given

in (22).

As explained earlier, the marginal value of total wealth Θ(λm0) is unconditionally de-

creasing in death risk. It follows that the VSL is an increasing function of net total wealth

N0(W,H). Again unit elasticity of inter-temporal substitution entails that Θ′(λm0) = 0,

such that the VSL is zero.

Remark 1 (discrete changes per period) The theoretical calculations of the VSL in

equation (29) are valid for permanent, infinitesimal changes in the death intensity. In the

spirit of the empirical VSL literature, the value of a statistical life can also be computed

as the willingness to pay to avoid an exogenous increase ∆ in the probability of death

over a given time interval (e.g. a change ∆ = 0.1% per one year period), divided by

∆ (see ves in equation (8)). This calculation can also be obtained in closed-form, and

involves two steps. First, the new value of the endowed intensity λ∗m0(∆, T ) is computed,

corresponding to a change in death risk ∆ occurring over a duration of T :
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Lemma 1 A higher likelihood of death of ∆ per time interval of s ∈ [0, T ] corresponds

to a permanent increase in the endowed intensity to λ∗m0(∆, T ) > λm0 given by:

λ∗m0(∆, T ) =
−1

T
log
[
e−λm0T −∆

]
. (30)

Second, we can substitute Θ(λ∗m0(∆, T )) in the WTP (27), and divide by ∆ to obtain the

corresponding empirical Value of a Statistical Life.

4.4 Gunpoint Value of Life

Combining Definition 4 and welfare function (17) reveals the following result.

Proposition 4 (Gunpoint value of life) The willingness to pay to avoid certain death

solving (9) is given by:

vg(W,H) = N0(W,H), (31)

where N0(W,H) is the net total wealth in (20).

In the absence of a bequest motive, the agent who is forced to evaluate life at gunpoint

is thus willing to pledge all available resources, i.e. his entire financial wealth W , plus

the capitalized value of his fixed income endowment y/r. Since human capital is non-

transferable and entirely depreciated at death, the agent is also willing to give up the

shadow value of his capital P0(H) = HB, an increasing function of the human capital

stock and of its Tobin’s-Q. However, the previous discussion emphasized that the minimal

consumption level a is required at all periods for subsistence. Its costs therefore cannot

be pledged in a highwaymen threat, and must be subtracted from the Gunpoint value.

It can also be shown that net total wealth N0(W,H) is equal to the expected dis-

counted present value of excess consumption along the optimal path.11 In order to

survive, the agent is thus willing to pledge the total value of his optimal consumption

stream (net of minimal subsistence). This result can be traced to the homegeneity

11In particular, Hugonnier et al. (2013, Prop. 2) show that

Et

∫ ∞
t

mt,τ (c∗τ − a)dτ = N0(W,H).
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property under which the foregone utility is measured in the same units as the foregone

excess consumption. This interpretation also foreshadows the similarities between the

HK (foregone net income stream) and the GPV values of life (foregone net consumption

stream).

The links between the WTP in (27) and GPV in (31) crucially depend on the EIS.

On the one hand, for ε > 1, Proposition 2 established that the willingness to pay can be

computed for all mortality risk increments ∆, while Corollary 1 showed that the WTP

is bounded above by net total wealth. The GPV in (31) therefore corresponds to that

maximal WTP. On the other hand, at low ε ∈ (0, 1), the willingness to pay is not defined

for high ∆ ≥ ∆̄ and its limiting value cannot be computed. Regardless, the Gunpoint

Value again corresponds to net total wealth. The reason stems from the way the GPV is

characterized in Definition 4, i.e. the agent pays vg to avoid receiving the utility V m ≡ 0

that is associated with certain and immediate death. Because the utility at death is a

finite given primitive, the Gunpoint Value – unlike the WTP – is always computable

for all EIS levels. For the same reason, the Gunpoint Value of life vg in (31) is also

independent from the agent’s preferences (ρ, ε, γ), and from the death intensity (λm0).

Because the outcome of death is certain when life is evaluated at gunpoint, the attitudes

towards time and risk, as well as the level of exposure to death risk become irrelevant.

Since death is instantaneous, attitudes towards inter-temporal substitution are irrelevant

as well.

Remark 2 (aging) Our closed-form expressions for the willingness to pay and the three

life valuations has abstracted from aging processes. The latter can be incorporated for a

wide pattern of age-dependencies, although at some non-negligible computation cost. In

particular, Hugonnier et al. (2013, Appendix B) show that any admissible time variation

in λm0t, λs0t, φt, δt, or βt results in age-dependent MPC and Tobin’s-Q that solve the

system of ODE’s:

Ȧt = A2
t −

(
ερ+ (1− ε)

(
r − λm0t + θ2/(2γ)

))
At,

Ḃt = (r + δt + φtλs0t)Bt + (1− 1/α)(αBt)
1

1−α − βt,
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subject to the boundary condition:

lim
t→∞

(r − λm0t + θ2/(2γ)− At) < 0,

lim
t→∞

((αBt)
α
a−α − r − δt − φtλs0t) < 0.

Allowing for aging and solving forAt, Bt implies that the expressions C0t, C1t, the marginal

value Θ(λm0t), as well as the human and total wealth P0t(H), N0t(W,H) are also age-

dependent and all the relevant calculations can be modified accordingly to compute the

WTP and the life values at any age level t.
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5 Structural estimation

In order to structurally estimate the willingness to pay and the life valuations, we follow

a long tradition associating the agent’s human capital to his health (e.g. see the Hicks’

lecture by Becker, 2007, for a review). We then estimate the technological, preferences and

stochastic parameters for the benchmark model outlined in Section 3 by combining the

observed health and wealth statuses with the observed decisions corresponding to (18).

Once the structural parameters have been estimated, they can be relied upon to compute

the closed-form expressions for the life valuations in Section 4.

5.1 Econometric model

For identification purposes, the econometric model assumes that agents follow the first-

order optimal rules to the benchmark model and that they are heterogeneous with respect

to their health and wealth statuses, whereas they are homogeneous with respect to the

distributional, technological, revenue and preference parameters. To structurally estimate

the latter, we use the closed-form expressions given in Theorem 1 to which we append

the income equation (13). Specifically, denote by Yj = [cj, πj, xj, Ij, Yj]
′ the 5× 1 vector

of observed decisions and income for agent j = 1, 2, . . . , n, let Xj = [1,Wj, Hj]
′ capture

his current wealth and health statuses. Also let B(θ) denote the 5× 3 matrix of closed-

form expressions for the optimal rules implicit in equation (18), that are functions of

the structural parameters θ. The econometric model relies on Maximum Likelihood to

structurally estimates θ in:

Yj = B(θ)Xj + uj (32)

where the uj’s are (potentially correlated) Gaussian error terms. In order to ensure

theoretical consistency and augment identification, we estimate the structural parameters

in (32) imposing the regularity conditions (16). Note that the key EIS parameter ε is

unconstrained and therefore allowed to take positive values below or above one. In light

of the strong nonlinearities not all the deep parameters can be identified and a subset of

parameters denoted θc are calibrated.
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Remark 3 (semi-structural estimation) The structural econometric model in (32)

exploits all cross-equations and regularity restrictions by estimating the fully-constrained

model. A somewhat simpler semi-structural approach exploits instead the triangular iden-

tification by recursively solving for the deep parameters through a sequence of reduced-

form estimations. That approach is presented in Appendix D and can be relied upon to

generate starting values for the structural model, or when empirical identification issues

are observed.

5.2 Data

We use a sample of n = 8,378 individuals taken from the 2013 wave of the Institute

for Social Research’s Panel Study of Income Dynamics (PSID). The data construction

is detailed in Appendix E. We proxy the health variables through the polytomous self-

reported health status (Poor, Fair, Good, Very Good and Excellent) that is linearly

converted to numeric values from 1 to 4. The financial wealth comprises risky and riskless

assets. Using the method in Skinner (1987), we infer the unreported total consumption

by extrapolating the food, transportation and utility expenses reported in the PSID.

Finally, health spending and health insurance expenditures are taken to ve the out-of-

pocket spending and premia paid by agents. All nominal values are scaled by 10−6 for

the estimation.

Tables 1, and 2 present descriptive statistics for the main variables of interest, per

health status and per wealth quintiles. Table 2.a shows that financial wealth remains

very low for the first three quintiles (see also Hubbard et al., 1994, 1995; Skinner, 2007,

for similar evidence). Moreover no clear relation between health and wealth can be

deduced. The level of consumption in panel b is increasing in financial wealth, consistent

with expectations. However, the effects of health remain ambiguous, except for the least

healthy who witness a significant drop in consumption.

In panel c, stock holdings are very low for all but the fourth and fifth quintiles, illus-

trating the well-known non-participation puzzle (e.g. Friend and Blume, 1975; Mankiw

and Zeldes, 1991). Again, a clear positive wealth gradient is observed, whereas health

effects are weakly positive. The health insurance expenses in panel d are modest relative

to consumption. They are increasing in wealth and devoid of clear health gradients.
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Finally, health spending in panel e is of the same order of magnitude as insurance. It is

strongly increasing in wealth and also sharply decreasing in health status.
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6 Results

6.1 Structural parameters

Table 3 reports the calibrated (with subscripts c) and estimated (standard errors in

parentheses) model parameters. Overall, the latter are precisely estimated and are

consistent with other estimates for this type of model (e.g. Hugonnier et al., 2013, 2017).

First, the health law of motion parameters in panel a are indicative of significant

diminishing returns in adjusting health status (α = 0.6843). Although deterministic

depreciation is relatively low (δ = 1.25%), additional depletion brought upon by sickness

is important (φ = 1.36%). Second, exposure to mortality risk is realistic (λm0 = 0.0283),

corresponding to a remaining expected lifetime of ` = λ−1
m0 = 35.3 years, given mean

respondent age of 45.68 years in Table 1.12

Third, the income parameters in panel c are indicative of a significant positive effect

of health on labor income (β = 0.0092), as well as an estimated value for base income

that is close to poverty thresholds (y × 106 = 12.2 K$).13 The financial parameters

(µ, σS, r) are calibrated from the observed moments of the S&P500 and 30-days T-Bills

historical returns. Finally, the preference parameters in panel d indicate realistic aversion

to financial risk (γ = 2.8953). The minimal consumption level is realistic and larger than

base income (a × 106 = 14.0 K$). As for other cross-sectional estimates using survey

data (Gruber, 2013; Hugonnier et al., 2017), the elasticity of inter-temporal substitution

is larger than one (ε = 1.2416) and is consistent with a Live Fast and Die Young effect

whereby a higher risk of death increases the marginal propensity to consume. Importantly,

a high EIS confirms that the willingness to pay is well defined everywhere, that its limiting

value exists and that the maximal WTP corresponds to the GPV.

6.2 Estimated valuations

Human Capital Value of Life Using the estimated parameters in Table 3, we can

compute the HK value of life vh(H) given in (26) and reported in Table 4.a. Overall, the

human capital values are increasing in H, common across W and are realistic. Indeed, the

12The remaining life expectancy at age 45 in the US in 2013 was 36.1 years (all), 34.1 (males) and 37.9
(females) (Arias et al., 2017).

13For example, the 2016 poverty threshold for single-agent households under age 65 was 12.5 K$ (U.S.
Census Bureau, 2017).
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estimated HK values range from 252 K$ (Poor health) to 536 K$ (Excellent health), with

a mean (median) value of 438 K$ (465 K$). These figures compare advantageously with

other HK estimates and provide a first out-of-sample confirmation that the structural

estimates are realistic.14

Value of Statistical Life Table 4.b reports the Values of Statistical Life vs(W,H, λm0)

in (29) by observed health and wealth statuses. First, the VSL mean (median) value is

8.43 M$ (8.79 M$), with valuations ranging between 2.16 M$ and 13.27 M$. These

values are well within the ranges usually found in the empirical VSL literature.15 The

concordance of these estimates with previous findings provides additional out-of-sample

evidence that our structural estimates are well grounded.

Second, the VSL is increasing in both wealth and especially health. Positive wealth

gradients have been identified elsewhere (Bellavance et al., 2009; Andersson and Treich,

2011; Adler et al., 2014) whereby diminishing marginal value of wealth and higher finan-

cial values at stake both imply that richer agents are willing to pay more to improve

survival probabilities. The literature has been more ambivalent with respect to the

health effect (e.g. Andersson and Treich, 2011; Robinson and Hammitt, 2016; Murphy and

Topel, 2006). On the one hand better health increases the value of life that is at stake,

on the other hand, healthier agents face lower death risks and are willing to pay less to

attain further improvements (or prevent deteriorations). Our benchmark model abstracts

from endogenous mortality (see the robustness discussion below) whereas better health

increases net total wealth N0(W,H), such that our estimates unambiguously indicate

that the former effect is dominant and that improved health raises the VSL.

Gunpoint Value Table 4.c reports the Gunpoint values vg(W,H) in (31). The mean

(median) GPV is 453 K$ (472 K$) and its values are increasing in both health and wealth

14Huggett and Kaplan (2016, benchmark case, Fig. 7.a, p. 38) find HK values starting at about 300 K$
at age 20, peaking at less than 900 K$ at age 45 and falling steadily towards zero afterwards.

15A meta-analysis by Bellavance et al. (2009, Tab. 6, p. 452) finds mean values of 6.2 M$ (2000
base year, corresponding to 8.6 M$, 2016 value). Survey evidence by Doucouliagos et al. (2014) ranges
between 6 M$ and 10 M$. Robinson and Hammitt (2016) report values ranging between 4.2 and 13.7 M$.
Finally, guidance values published by the U.S. Department of Transportation were 9.6 M$ in 2016 (U.S.
Department of Transportation, 2016), whereas the Environmental Protection Agency relies on central
estimates of 7.4 M$ (2006$), corresponding to 8.8 M$ in 2016 (U.S. Environmental Protection Agency,
2017).
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and range between 116 K$ and 712 K$. The Gunpoint Value is thus of similar magnitude

to the Human Capital Value of life and both are much lower than the VSL.

Accounting for the large VSL A first potential explanation for the large VSL is

related to aggregation bias. More precisely, our large theoretical estimate could overstate

the true collective willingness to pay to save someone by failing to account for idiosyncratic

differences between agents’ willingness to pay.

To address this issue, we can compute the aggregate willingness to pay by summing

over the individual WTP’s (27) to avoid a change equal to one over the size of the

population. More precisely, we calculate:

ves =
n∑
i=1

vi(W i, H i,P0,∆) =

[
1− Θ(λ∗m0)

Θ(λm0)

] n∑
i=1

N0(W i, H i)

=

[
1− Θ(λ∗m0)

Θ(λm0)

]
nN0(W̄ , H̄) =

[
1− Θ(λ∗m0)

Θ(λm0)

]
N0(W̄ , H̄)

∆
. (33)

Setting ∆ = 1/8, 378 and λ∗m0 = λm0+∆ in (33), we recover an aggregate VSL of 7.54 M$,

which, as expected, is lower, but still close to the mean theoretical value of vs(W,H, λm0)

= 8.43 M$. We can also use Lemma 1 to fix an arbitrary duration T and use (30) to

identify λ∗m0. Setting T = 1 and ∆ = 1/n yields λ∗m0 = 0.0284, which can be substituted

in (33) to recover an empirical value of ves = 7.75 M$. This VSL is again lower, but

nonetheless close to the theoretical value. We conclude that accounting for aggregation

bias in computing the empirical VSL does not alleviate the large discrepancies with HK

and GPV valuations.

In order to better understand these differences, it is useful to plot the estimated WTP

v(W,H, λm0,∆) as a function of the change in death intensity ∆ in Figure 3.16 First, the

estimated WTP in blue displays a pronounced curvature, consistent with our theoretical

results. Second, we saw from (28) and (31) that that the limit of the willingness to pay

when death becomes certain is the net total wealth N0(W,H) and that this limiting value

is also the gunpoint value vg(W,H) plotted in red. Third, as explained in Proposition 3,

the VSL vs(W,H, λm0) is the value of the slope of the yellow tangent of v(W,H, λm0,∆)

evaluated at ∆ = 0. The strongly diminishing MWTP in Figure 3 is informative as to

why the VSL is much larger than the Human Capital and Gunpoint values. Indeed,

16These valuations are calculated from (27) at the estimated parameters and relying on the mean
wealth and health status in Table 1.a (W = 38, 685$× 10−6, H = 2.58).
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the agent is willing to pay 356 K$ to avoid an increase of ∆ = 0.15 which would lower

expected remaining lifetime from 35.3 to 5.6 years. This value is already close to the

HK and GPV values of 438 K$ and 454 K$ who are both much lower than the VSL of

8.4 M$. Put differently, the linear extrapolation of marginal values that is relied upon in

the VSL calculation overstates the willingness to protect one’s own life when the WTP

is very concave in the death risk increment.

6.3 Robustness

In order to verify robustness of the results, we consider a more general model of human

capital. Hugonnier et al. (2013) study a demand for health framework that is similar

to our benchmark, with two key differences. First, the model allows for self-insurance

against morbidity and mortality risks by introducing health-dependent intensities:

λs(Ht−) = η +
λs0 − η

1 + λs1H
−ξs
t−
∈ [λs0, η],

λm(Ht−) = λm0 + λm1H
−ξm
t− .

Hence, better health lowers exposure to sickness and death risks and our benchmark model

of Section 3 is an exogenous restricted case that imposes λs1, λm1 = 0. Second, preferences

are modified to allow for source-dependent aversion against financial, morbidity and

mortality risks. In particular, our preferences in (14) are replaced by:

Ut = Et

∫ Tm

t

(
f(cτ , Uτ−)− γ|στ (U)|2

2Uτ−
−

s∑
k=m

Fk(Uτ−, Hτ−,∆kUτ )

)
dτ ,

with the Kreps-Porteus aggregator (15) unchanged, and with penalties for exposure

against Poisson sickness and death risks:

Fk = Ut− λk(Ht−)

[
∆kUt
Ut−

+ u(1; γk)− u
(

1 +
∆kUt
Ut−

; γk

)]
, where

∆kUt = Et−[Ut − Ut−|dQkt 6= 0], and u(x; γk) =
x1−γk

1− γk
.

Our benchmark specification is thus a restricted case that imposes risk-neutral attitudes

towards morbidity (γs = 0) and mortality (γm = 0) risks.
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In a separate technical appendix (available upon request), we show that the ap-

proximate closed-form expressions for the WTP, HK, VSL and GPV valuations can be

obtained. These expressions encompass some adjustments for the endogeneity of health

risks exposure and source-dependent risk aversion, yet remain otherwise qualitatively

similar. We structurally estimate the Hugonnier et al. (2013) model and compute the life

values. These values remain in the same range as our benchmark estimates, with mean

HK of 493 K$, VSL of 8.14 M$ and GPV of 460 K$ and again confirm the strong concavity

of the WTP. We conclude that our main findings are qualitatively and empirically robust

to more general specifications.

33



7 Conclusion

Computing the money value of a human being has generated a profound and continued

interest, with early records dating back to the late XVIIth century. The two main

valuation frameworks have centered on the marginal rate of substitution between the

probability of living and wealth (VSL) and on a person’s human capital value that is

destroyed upon death (HK). Despite pricing a common element, the two life valuations

yield vastly divergent measures, with the VSL being 10-20 times higher than the HK. Both

the very different settings in which the two values are calculated as well as the absence of

common theoretical underpinnings complicate any comparison exercise between the HK

and VSL.

Our main contribution has been to show that is nonetheless possible to address

both issues by relying on a unique human capital problem to analytically compute and

structurally estimate the theoretical VSL and HK values. We have also introduced a

third valuation reflecting the maximum amount an agent would be willing to pay to

save himself from instantaneous and certain death (GPV) as a useful benchmark. These

three closed-form for the life values were estimated jointly using a common econometric

model and data set. This approach and thus provided direct comparability as well as a

unique opportunity to identify the role of the preferences, distributional, and technological

parameters on life valuations. Our main findings are twofold. First, we confirmed the

relevance of reduced-form estimates with a GPV value of 453 K$, close to the HK value

of 438 K$, both of which are much lower than the VSL of 8.43 MM$. Second, we

confirmed the standard economic intuition that the willingness to pay to avert death risk

is increasing, but strongly concave and finite in mortality exposure. Allowing for a more

general model with endogenous sickness and death intensities as well as source-dependent

risk aversion only reaffirmed our findings.

Two potential explanations justify the wide disparities between the VSL and other

measures. First, as famously pointed out by Schelling (1968), the VSL should be inter-

preted as the aggregate willingness to pay for infinitesimal changes in the mortality risk

affecting an entire population. Conversely, the Human Capital and the Gunpoint values

measure a market- and individual-based willingness to pay to avoid a large change in death

risk (i.e. life versus certain death) that affects a single individual. There is therefore no

ex-ante reason why the Statistical Life and other values should be equal. However, we saw
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that calculating an aggregate WTP, while correctly accounting for aggregation bias yields

the same values as for the theoretically correct measure of marginal rate of substitution.

Equivalently, the aggregate versus individual WTP explanation for the large VSL does

not appear to warrant the large gaps with the other life values.

Second, we formally show and empirically verify that the differences are related to the

strong curvature and finiteness of the WTP. The theoretical VSL is a linear projection

from the marginal willingness to pay, whereas the empirical VSL is a linear approximation

to that MWTP. When the WTP is strongly concave and computable everywhere, both

theoretical and empirical VSL will strongly overestimate the limiting willingness to pay

that corresponds to the Gunpoint Value. The empirical similarities between the HK and

GPV values relate to the close parallels in the measured object. The HK measures the

net present value of the foregone dividend stream associated with human capital (i.e.

income, minus investment costs). The GPV measures the NPV of the foregone utility

stream associated with living. The homogeneity properties entail that the latter is also

the NPV of the foregone consumption above minimal subsistence requirements.

We saw that the model is fully amenable to a wide variety of aging processes, although

at some computation cost. Aging was abstracted from at the estimation stage, but we can

conjecture that it would reduce all three life valuations. Indeed, biological limitations to

expectancy, increasing depreciation and exposure to sickness as well as death risks would

induce optimal dis-savings in both financial assets and human capital and thereby lower

net total wealth (Hugonnier et al., 2017). One caveat of our approach is the absence

of bequest motives. This omission is related to the technical difficulty in solving our

benchmark when bequeathed wealth is optimally chosen. Although it remains unclear

how our results would be affected, we can however conjecture that a likely effect would be

to reduce the GPV even further. Indeed, the warm glow effect of bequest would attenuate

the cost of dying and consequently also the WTP to avert death (Philipson et al., 2010).

Moreover, bequeathed wealth is illiquid, to the extent that it is set aside for surviving

heirs and not to ensure one’s own survival. Without affecting human capital, the amount

of disposable financial resources that can be pledged in a money-or-death threat would

therefore be reduced and consequently so would the VSL and the GPV.
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A Figures

Figure 1: Indifference curves, MRS and Value of Statistical Life

Notes: Reproduced and adapted from Andersson and Treich (2011, Fig. 17.1, p. 398).

Indifference curves for indirect utility (1) in blue. vs: Theoretical Value of Statistical Life

in (7a) is the negative of the MRS, i.e. the slope of red tangent equal to distance [a,d].
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Figure 2: Willingness to pay and life valuations

Notes: P: instantaneous probability of death. v: Willingness to pay to avoid change ∆ in death

risk (in blue), evaluated at (W,H) and for base risk P0. vs: Theoretical Value of Statistical

Life in (7b) is slope of red tangent equal to distance [a,d]. ves: Empirical Value of Statistical

Life in (8) is slope of green line and equal to distance [e,f]. vg: Gunpoint Value of Life in (9) is

equal to distance [b,c].
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Figure 3: Estimated WTP, HK, VSL and GPV Values of life (in M$)
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of life; vs(W,H, λm0) is the Value of statistical life and the slope of the yellow tangent evaluated

at ∆ = 0. In MM$.
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B Proofs

B.1 Theorem 1

The benchmark human capital model of Section 3 is a special case of the one considered

in Hugonnier et al. (2013). In particular, the death, and depreciation intensities are

constant at λm0, λs0 (corresponding to their order-0 solutions) and the source-dependent

risk aversion is abstracted from (i.e. γs = γm = 0). Imposing these restrictions in

Hugonnier et al. (2013, Proposition 1,Theorem 1) yields the the optimal solution in (18).

�

B.2 Proposition 1

The proof follows from Hugonnier et al. (2013, Prop. 1) which computes the value of the

human capital P0(H) from

P0(H) = Et

∫ ∞
0

mt,τ [βH∗τ − I∗τ ] dτ,

= BH.

Straightforward calculations adapt this result to a stochastic horizon Tm, and include the

fixed income component y in income (13).

�

B.3 Proposition 2

Combining the Hicksian EV (5) with the indirect utility (17) and the net total wealth

in (20) reveals that the WTP v solves:

Θ(λ∗m0)N0(W,H) = Θ(λm0)N0(W − v,H)

= Θ(λm0) [N0(W,H)− v]

where we have set λ∗m0 = λm0 + ∆, and using the linearity of the welfare function with

respect to wealth. The WTP v = v(W,H, λm0,∆) is solved directly as in (27).
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Next, by the properties of the marginal value of net total wealth, Θ(λ∗m0) in (25) is

monotone decreasing and convex in ∆. It follows directly that the WTP

v(W,H, λm0,∆) =

[
1− Θ(λ∗m0)

Θ(λm0)

]
N0(W,H)

is monotone increasing and concave in ∆. When ε ∈ (0, 1), the marginal value Θ(λ∗m0),

cannot be calculated for λm0 ≥ λ̄m0 by the non-negativity and transversality condi-

tion (16a). For ε > 1, the marginal value Θ(λ∗m0) = 0, as ∆ → ∞. Substituting in (27)

reveals that the WTP converges to N0(W,H) as stated in (28).

�

B.4 Proposition 3

By the VSL definition (7a), and the properties of the Poisson death process (11):

vs =
−VP(W,H,P)

VW (W,H,P)

∣∣∣∣
P=P0

=
−Vλm0(W,H, λm0)

VW (W,H, λm0)

From the properties of the welfare function (17), we have that Vλm0 = Θ′(λm0)N0(W,H),

whereas VW = Θ(λm0). Substituting yields the VSL in (29). �

B.5 Lemma 1

A higher likelihood of death of ∆ over a time interval of s ∈ [0, T ] corresponds to an

increase in the endowed intensity to λ∗m0(∆) > λm0:

∆ = Pr [Tm ≤ T | λ∗m0]− Pr [Tm ≤ T | λm0] ,

Observing that:

Pr [Tm ≤ T | λ] = 1− E
[
e−

∫ T
0 λds

]
= 1− e−Tλ,

and substituting solves for λ∗m0 reveals that the latter as stated in (30). �
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B.6 Proposition 4

Combining the Hicksian EV (9) with the indirect utility (17) and the net total wealth

in (20) reveals that the WTP v solves:

V m ≡ 0 = Θ(λm0)N0(W − vg, H)

= Θ(λm0) [N0(W,H)− vg]

Solving for vg reveals that it is as stated in (31). Because net total wealth is independent

of ε, so is the Gunpoint Value. �
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C Tables

C.1 Data

Table 1: PSID data statistics

Mean Std. dev. Min Max

Health (H) 2.58 0.80 1 4

Wealth (W ) 38 685 122 024 0 1 430 000

Consumption (c) 9 835 11 799 1.047 335 781

Risky holdings (π) 20 636 81 741 0 1 367 500

Insurance (x) 247 718 0 17 754

Health investment (I ) 721 2 586 0 107 438

Income (Y ) 21 838 37 063 0 1 597 869

Age (years) 45.68 16.46 16 100

Notes: Statistics in 2013 $ for PSID data used in estimation (8 378 observations). Scaling for

self-reported health is 1.0 (Poor), 1.75 (Fair), 2.50 (Good), 3.25 (Very good) and 4.0 (Excellent).
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Table 2: PSID data statistics (cont’d)

Wealth quintiles

Health Hj 1 2 3 4 5

a. Wealth Wj ($)

Poor 1.00 0 139 2 063 11 831 152 151

Fair 1.75 0 145 1 741 12 027 123 083

Good 2.50 0 168 1 802 11 908 120 467

Very good 3.25 0 199 1 823 12 197 118 738

Excellent 4.00 0 192 1 823 12 099 122 135

b. Consumption cj ($)

Poor 1.00 3 281 4 906 6 558 10 052 7 752

Fair 1.75 4 095 6 888 8 795 11 196 13 368

Good 2.50 5 086 6 526 9 745 11 269 13 336

Very good 3.25 5 989 7 517 10 181 11 131 13 626

Excellent 4.00 5 276 6 897 10 002 12 099 14 628

c. Stocks πj ($)

Poor 1.00 0 0 0 725 46 497

Fair 1.75 0 5 279 2 309 76 721

Good 2.50 0 1 268 4 320 55 379

Very good 3.25 0 5 192 4 756 68 768

Excellent 4.00 0 0 334 5 801 90 147

d. Insurance xj ($)

Poor 1.00 165 191 503 723 856

Fair 1.75 181 196 497 775 1 095

Good 2.50 206 219 401 564 852

Very good 3.25 190 284 313 522 797

Excellent 4.00 203 254 366 429 807

e. Investment Ij ($)

Poor 1.00 549 552 2 341 2 936 6 003

Fair 1.75 400 468 968 621 1 250

Good 2.50 243 238 383 500 962

Very good 3.25 276 226 275 435 596

Excellent 4.00 151 192 230 307 451

Notes: Statistics in 2013 $ for PSID data used in estimation. Means per quintiles of wealth and

per health status
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C.2 Benchmark model

Table 3: Estimated and calibrated structural parameter values, benchmark model

Parameter Value Parameter Value

a. Law of motion health (10)

α 0.6843 δ 0.0125

(0.3720) (0.0060)

φ 0.0136c

b. Sickness and death intensities

λs0 0.0347 λm0 0.0283

(0.0108) (0.0089)

c. Wealth and income (12), (13)

y 0.0120 β 0.0092

(0.0049) (0.0044)

µ 0.108c r 0.048c

σS 0.20c

d. Preferences (14), (15)

γ 2.8953 ε 1.2416

(1.4497) (0.3724)

ac 0.0140 ρc 0.0500

Notes: Estimated structural parameters (standard errors in parentheses); c: calibrated param-

eters. Econometric model (32), estimated by ML, subject to the regularity conditions (16).
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Table 4: Estimated Values of Life, benchmark model (in $)

Health level Wealth quintile

1 2 3 4 5

a. Human Capital vh(W,H, λm0) in (26)

Poor 251 968

Fair 323 127

Good 394 287

Very Good 465 446

Excellent 536 606

All

- mean 437 756

- median 465 446

b. Value of Statistical Life vs(W,H, λm0) in (29)

Poor 2 163 175 2 165 769 2 201 602 2 383 566 4 997 543

Fair 4 370 666 4 373 362 4 403 105 4 594 717 6 663 544

Good 6 578 156 6 581 286 6 611 719 6 799 989 8 822 301

Very Good 8 785 647 8 789 345 8 819 610 9 012 869 10 997 579

Excellent 10 993 137 10 996 714 11 027 098 11 218 530 13 268 351

All

- mean 8 429 649

- median 8 787 965

c. Gunpoint Value vg(W,H) in (31)

Poor 116 121 116 260 118 183 127 951 268 271

Fair 234 620 234 765 236 362 246 647 357 703

Good 353 120 353 288 354 921 365 028 473 587

Very Good 471 619 471 818 473 442 483 817 590 357

Excellent 590 119 590 311 591 942 602 218 712 254

All

- mean 452 509

- median 471 744

Notes: Averages of individual values in the PSID sample, computed at estimated parameter

values, multiplied by 1 M$ to correct for scaling used in estimation.
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D Semi-structural estimation

Data requirements This approach requires a subset of the data used for the structural

model, i.e. W,H, Y, I, π, c, as well as a sickness indicator S = 1sick, and use of the Life

Tables. The parameters ρ, r, θ, σS are calibrated as in the full procedure.

Recursive identification The key parameters and functions are identified recursively

as follows:

1. Intensities for the Poisson shocks:

(a) Sickness:

λ̂s0 = − log(1− E(S))

(b) Death:

λ̂m0 = 1/`(t̄)

where ` is the remaining life expectancy evaluated at at mean age.

2. Law of movement health:

∆H

H
= −δ +

(
I

H

)α
− φS + uH

estimated by NLLS, identifies (δ̂, α̂, φ̂).

3. Income:

Y = y + βH + uY

estimated by OLS, identifies (ŷ, β̂).

4. Tobin’s-Q:

B =
β̂ +

(
1−α̂
α̂

)
E
(
I
H

)
r + δ̂ + λ̂s0φ̂

.
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identifies B̂.

5. MPC and minimal consumption:

c = a+ A

(
ŷ − a
r

)
+ AW + AB̂H + uc

by OLS, identifies (â, Â).

6. Human capital and net total wealth:

P0(H) = B̂H

N0(W,H) = W +
ŷ − â
r

+ P0(H)

identifies P̂0(H), N̂0(W,H). Substituted in (31) to compute the Gunpoint value.

7. Risk aversion:

π = (θ/(γσS))N̂0(W,H) + uπ

by OLS or NLLS, identifies γ̂.

8. Elasticity of inter-temporal substitution:

ε =
Â− (r + λ̂m0 + 0.5θ2/γ̂)

ρ− (r + λ̂m0 + 0.5θ2/γ̂)
, ρ̃ = ρ

−ε̂
1−ε̂

identifies (ε̂, ρ̃).

9. Human capital marginal values:

C0 =
1

r + λ̂m0

, C1 =
r − (α̂B̂)

α̂
1−α̂

r + λ̂m0 − (αB̂)
α̂

1−α̂
,

identifies (Ĉ0, Ĉ1), which can be combined with P̂0(H) in computing the HK value (26).

10. Marginal value of total wealth:

Θ(λm0) = ρ̃
[
ε̂ρ+ (1− ε̂)(r − λm0 + 0.5θ2/γ̂)

] 1
1−ε̂

Θ′(λm0) = −ρ̃
[
ε̂ρ+ (1− ε̂)(r − λm0 + 0.5θ2/γ̂)

] ε̂
1−ε̂
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identifies the functions Θ̂(λm0), Θ̂′(λm0) for any λm0. Can be combined with λ̂m0

and N̂0(W,H) to compute the WTP v(W,H, λ̂m0,∆) in (27), or to compute the

VSL vs(W,H, λ̂m0) in (29).

As generated regressors are used for identification, the corresponding standard errors can

be calculated through Bootstrap or numerical derivatives.
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E Data

The data construction follows the procedure in Hugonnier et al. (2013). We rely on a

sample of 8,378 U.S. individuals obtained by using the 2013 wave of the Institute for Social

Research’s Panel Study of Income Dynamics (PSID, http://psidonline.isr.umich.edu/).

All nominal variables in per-capita values (i.e., household values divided by household

size) and scaled by 10−6 for the estimation. The agents’ wealth and health which are

constructed as follows:

Health Hj Values of 1.0 (Poor health), 1.75 (Fair), 2.5 (Good), 3.25 (Very good) and

4.0 (Excellent) are ascribed to the self-reported health variable of the household

head.

Wealth Wj Financial wealth is defined as risky (i.e. stocks in publicly held corporations,

mutual funds, investment trusts, private annuities, IRA’s or pension plans) plus

riskless (i.e. checking accounts plus bonds plus remaining IRA’s and pension assets)

assets.

The dependent variables are the observed portfolios, consumption, health expenditure

and health insurance and are constructed as follows:

Portfolio πj Money value of financial wealth held in risky assets.

Consumption cj Inferred from the food, utility and transportation expenditures that

are recorded in PSID, using the Skinner (1987) method with the updated shares of

Guo (2010).

Health expenditures Ij Out-of-pocket spending on hospital, nursing home, doctor,

outpatient surgery, dental expenditures, prescriptions in-home medical care.

Health insurance xj Spending on health insurance premium.
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