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Abstract

Near the end of life, health declines, mortality risk increases and curative is

replaced by uninsured long-term care, accelerating the fall in wealth. Whereas

standard explanations emphasize inevitable aging processes, we propose a com-

plementary closing down the shop justification where agents’ decisions affect their

health and the timing of death. Despite preferring to live, individuals optimally

deplete their health and wealth towards levels associated with high death risk and

gradual indifference between life and death. Reinstating exogenous aging processes

reinforces the relevance of closing down. Using HRS-CAMS data for elders, a

structural estimation of the closed-form decisions identifies, tests and confirms the

relevance of closing down.

JEL classification: D15, I12

Keywords: End of life; Life cycle; Dis-savings; Endogenous mortality risk; Unmet

medical needs; Right to refuse treatment.



1 Introduction

Health declines steadily throughout the life cycle and deteriorates faster as we approach

the last period of life.1 Because how healthy we currently are is a significant predictor

of future major health onsets,2 exposure to death risk also rises at an increasing rate.3

However, falling health is not uniform across individuals, but varies significantly with

socioeconomic status (SES). Indeed, poor agents suffer faster deterioration in health4 and

in longevity,5 with SES gradients being strongest around mid life and falling thereafter.6

Moreover, health spending augments and changes in composition,7 with long-term care

out-of-pocket expenses increasing sharply towards the end of life, leading to a rapid drain

in financial resources.8

The standard demand-for-health framework (Grossman, 1972; Ehrlich and Chuma,

1990) does allow for optimal declines in health when the net return on health investment

is sufficiently low. Accelerating deterioration obtains when suitable exogenous aging dy-

namics are appended, such as age-increasing depreciation or sickness risks. Consequently,

curative expenses are curtailed to accompany, but not revert, the age-induced decline in

health and longevity. Given an exogenous remaining life horizon, the wealth draw-down

objectives consist of ensuring sufficient resources to reach the end of life and, potentially,

leave bequests (De Nardi et al., 2016; van Ooijen et al., 2015; St-Amour, 2018).

However, such models fail to capture part of the life cycle and cross-sectional ev-

idence.9 They counterfactually predict that decline in health is wealth- and health-

independent, and assume it is inconsequential for mortality risk. Conditional on age,

technology, risk distributions and preferences, all agents face the same rates of deterio-

ration and mortality risk, independent of financial resources and current health status.

In addition, these predictions are at odds with the observation that the health decline is

strongest among the poor and that the SES health gradients weaken in the last phase of

life.

This paper addresses these life cycle and cross-sectional shortcomings in a model

emphasizing endogenous longevity obtained by appending health-dependent mortality to

a demand-for-health setup. We ensure preference for life through recursive preferences

and dynamically-consistent decisions. End-of-life dynamics can then be rationalized

as closing down the shop whereby individuals who prefer life over death nonetheless

optimally relinquish their financial, health and life capital stocks.
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First, agents optimally select a dynamic path towards death involving depletion of

both health and financial capital, as well as an increasing exposure to mortality risk.

This path is enacted by curtailing health investment in order to initiate (and eventually

hasten) the health decline. While the latter induces a corresponding increase in death

risk, dynamic consistency ensures that agents gradually become indifferent between life

and death in the last phase of life. Second, accelerating dynamics emerge independently

of aging when health is an input to producing better health and longer life expectancy and

when the decision to invest or not depends on the (adjustable) planning horizon. Finally,

rich individuals delay entering this path for longer than poorer agents. However, optimal

declines in wealth entail that all agents eventually choose to let health and longevity

deteriorate. This guarantees that SES health and mortality gradients are initially strong,

but gradually weaken in the later part of life.

Our main theoretical contribution is to prove the optimality of closing down dynamics

near the end of life. Agents that prefer life over death nonetheless simultaneously act in a

manner that results in a short terminal horizon, and they select a depletion strategy that

is consistent with this horizon. This simultaneous feedback between decisions and horizon

makes the solution of this model particularly challenging. To our knowledge, this is the

first attempt to rationalize end-of-life health and wealth dynamics, rather than model

them as ex-post responses to an irreversible sequence of exogenous health and/or wealth

declines.10 Remarkably, this optimal depletion reinforces a biological aging explanation,

and reintroducing aging makes closing down even more relevant.

Our second contribution is to assess whether closing down dynamics are empirically

meaningful. Taking a structural econometric characterization of the health and wealth

loci where these strategies are to be expected, we test conditions and identify thresholds

under which closing down does, or does not take place. Using HRS-CAMS data for

relatively old (mean 75) agents, our results provide evidence that the bulk of agents

optimally select to close down the shop.
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2 Theoretical background

2.1 Life cycle model

Our analysis of the life cycle dynamics of health and wealth builds upon on the theoretical

framework developed in Hugonnier et al. (2013), briefly reproduced here for completeness.

First, the dynamics for the agent’s health are:

dHt = ((It/Ht−)α − δ)Ht−dt− φHt−dQst, H0 > 0, (1)

where α, δ, φ ∈ (0, 1) and It > 0 is investment (health expenses).11 We denote by Ht− =

lims↑tHs the agent’s health prior to the realization of the morbidity shock Qst, where the

latter follows a Poisson distribution with exogenous intensity λs0.12 Second, the age at

death Tm is also distributed as Poisson, although with endogenous death intensity:

lim
h→0

(1/h)Pt [t < Tm ≤ t+ h] = λm0 + λm1H
−ξm
t− ≡ λm(Ht−), (2)

whereby healthier agents face a lower likelihood of dying.

Third, the dynamics for financial13 wealth Wt are given by:

dWt = (rWt− + Yt − Ct − It)dt+ ΠtσS (dZt + θdt) +Xt (dQst − λs0dt) (3a)

with constant (e.g. annuity) income:

Yt = y0. (3b)

We denote C as consumption of nondurables and services, including health-related ex-

penses that do not readily classify as investment I,14 Π as the portfolio invested in the

risky asset with Brownian motion Z and market price of financial risk θ = (µ − r)/σS,

and X as the actuarially-fair insurance against morbidity shock.

Fourth, the agent’s objective is to solve:

V (Wt, Ht) = sup
(C,Π,X,I)

1{Tm>t}Ut (4)
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subject to (1)–(3). Preferences are defined from the continuous-time analog of the

Epstein-Zin recursive preferences (Stochastic Differential Utility, Duffie and Epstein,

1992) where the continuation utility solves the recursive integral:

Ut = Et

∫ ∞
t

e−
∫ τ
t (λm(Hv)

1−γm )dv

(
f(Cτ , Hτ−, Uτ−)− γ|στ (U)|2

2Uτ−
−Fs(Uτ−,∆s Uτ )

)
dτ. (5a)

The exposure to Brownian financial risk is σt = 1/dt d〈U,Z〉t, while the Kreps-Porteus

aggregator f(C,H,U) and the penalty Fs(U,∆sU) for exposure to Poisson morbidity

shocks in utility ∆sUt = 1{dQst 6=0} (Ut − Ut−) are given by:

f(C,H,U) =
ρU

1− 1/ε

(
((C − a+ βH)/U)1−1/ε − 1

)
, (5b)

Fs(U,∆U) = λs0

[
∆U

U
+

1− (1 + ∆U/U)1−γs

1− γs

]
U. (5c)

In this formulation, a > 0 denotes minimal (subsistence) consumption, β captures

utilitarian service flows from health15 and ρ is a discount rate. The elasticity of inter-

temporal substitution ε ≥ 0 is disentangled from the source-dependent risk aversion

parameters γ ≥ 0 (financial risk), γm ∈ (0, 1) (death risk) and γs ≥ 0 (sickness risk).

The homogeneity of preferences ensures weak preference for life over death: V (Wt, Ht) ≥

0. Moreover, this model nests the Grossman (1972); Ehrlich and Chuma (1990) as

a special case where morbidity and insurance are both abstracted from, mortality is

exogenous, and preferences are VNM (see Section B.3 for implications):

λs0, φ,Xt, λm1, γm, γs = 0, and γ = 1/ε. (6)

It is also straightforward to show that the functional forms we rely upon for health

accumulation technology in (1) and costs in (3a) encompass other ones found in the

literature.16

2.2 Optimal allocation

The optimal rules for this model are obtained as follows.
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Theorem 1 (Optimal rules) Assume that conditions (17) of Appendix A hold true and

define net total wealth as:

N0(Wt−, Ht−) = Wt− +BHt− + (y0 − a) /r. (7)

Up to a first order approximation, the indirect utility and optimal policy functions are

given by:

V (Wt−, Ht−) =
(

Θ− V1H
−ξm
t−

)
N0(Wt−, Ht−) (8a)

I∗(Wt−, Ht−) = KBHt− + I1H
−ξm
t− N0(Wt−, Ht−) (8b)

X∗(Wt−, Ht−) = φBHt− + X1H
−ξm
t− N0(Wt−, Ht−) (8c)

C∗(Wt−, Ht−) = a+
(
A+ C1H

−ξm
t−

)
N0(Wt−, Ht−) (8d)

Π∗(Wt−, Ht−) = (θ/(γσS))N0(Wt−, Ht−) (8e)

where B ≥ 0 solves (18), K = α
1

1−αB
α

1−α , the parameters (A,Θ) ≥ 0 are defined in (19),

and where the constants (V1, I1) ≥ 0 and (X1, C1) R 0 are defined in (20) in Appendix A.

Proof. See Hugonnier et al. (2013, Thms. 1, 2, and Remark 3) for the general case and

evaluate the optimal policies at the restricted exogenous morbidity case λs1 = 0. �

The net total wealth N0(Wt−, Ht−) in (7) is the sum of financial assets and cap-

italized future income, net of subsistence consumption expenditures a, where B ≥ 0

in (18) represents the shadow price (i.e. Tobin’s-Q) of health. The expressions involving

V1, I1,X1 and C1 capture the effects of endogenous mortality λm1H
−ξm
t− on welfare and

on the optimal rules, and are all zero when mortality is exogenous. Indeed, the death

intensity in (2) mechanically increases from base risk λm0 when λm1 > 0. Because life is

valuable, higher death risk is unconditionally welfare reducing in (8a) (since V1 > 0),

and because mortality can be adjusted, investment consequently increases in (8b) (since

I1 > 0). The effects on consumption and insurance critically depend on preferences.

Highly morbidity-risk averse agents (γs > 1) demand more insurance against health

shocks in (8c) when exposed to higher death risks. Moreover, agents with high elasticity of

inter-temporal substitution (ε > 1) compensate against a shorter life horizon by increasing

current consumption – including non-investment health-related expenses – in (8d), thus

5



substituting better quality for less quantity of life. Observe that for all cases, the effects

of endogenous mortality are compounded for agents with high net total wealth N0(W,H).

Importantly, the optimal rules in (8) are defined only over an admissible state space,

i.e. the set of wealth and health levels that provides minimal resources requirements to

ensure survival, as well as strict preference for life over death:

C∗(Wt−, Ht−)− a > 0 ⇐⇒ V (Wt−, Ht−) > 0 ⇐⇒ N0(Wt−, Ht−) > 0 (9)

This admissible region A thus requires positive net total wealth in (7):

A = {(W,H) ∈ R× R+ : W ≥ x(H) = − (y0 − a) /r −BH} , (10)

where we assume that base income y0 is insufficient to cover subsistence consumption a:

(y0 − a)/r < 0. (11)

to ensure consistency with observed financial choices.17

2.3 Optimal health and wealth dynamics

The agent’s health and wealth evolve on the optimal path given by (1) and (3) evaluated

at the optimal rules (8). This stochastic differential system cannot be studied with

standard phase portraits, and we instead analyze the instantaneous expected changes in

health (1) and wealth (3).18

We focus on admissible depletion regions DH ,DW ⊂ A of the (W,H) space where

health and wealth are expected to fall. Moreover, we also study the region AC ⊂ DH
where the health depletion is accelerating, i.e. where a fall in health induces a larger cut

in investment, leading to further depletion. Propositions 1, 2 in Appendix B solve for

the necessary and sufficient conditions for relevant depletion and acceleration regions, i.e.

(DH ,DW ,AC) 6= ∅. Proposition 3 gives more stringent sufficient conditions for relevance:
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δ̃1/α > β, δ̃ = δ + φλs0, (12a)

ε > 1, (12b)

A >
θ2

γ
+ r ⇐⇒ ε(ρ− r) + (ε− 1)

λm0

1− γm
> (1 + ε)

θ2

2γ
. (12c)

Condition (12a) states that expected health depreciation is high relative to the health

gradient in utility β. A high depreciation in the absence of investment (δ), or conditional

upon sickness (φ), as well as a high likelihood of morbidity shocks (λs0) are all to be

expected in the last years of life. Other conditions require high elasticity of inter-temporal

substitution (12b) and high marginal propensity to consume (12c), obtained through high

impatience ρ, and/or high aversion to death risk γm ∈ [0, 1), and/or high unconditional

risk of dying λm0, all of which are relevant for end of life.

Under sufficient conditions (12), Propositions 1, 2 of Appendix B identify the depletion

and accelerating regions as:

DH =

{
(W,H) ∈ A :

1

dt
Et−[dHt | Wt− = W,Ht− = H] < 0

}
=
{

(W,H) ∈ A : W < y(H) = x(H) +DH1+ξm
}
, (13a)

AC =
{

(W,H) ∈ DH : IhH(W,H) > 0
}
,

=

{
(W,H) ∈ DH : W < min

[
y(H), z(H) = x(H) +

BH

1 + ξm

]}
, (13b)

DW =

{
(W,H) ∈ A :

1

dt
Et−[dWt | Wt− = W,Ht− = H] < 0

}
=

{
(W,H) ∈ A : W > w(H) =

x(H)[l(H) + r]

l(H)
+
k(H)

l(H)

}
, (13c)

where

D = I−1
1

[
δ̃1/α −BK

]
> 0

l(H) = A− θ2

γ
− r + (I1 + C1)H−ξm > 0

k(H) = y0 − a+H(β −KB).
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The depletion and accelerating dynamics (13) can be analyzed through the local

phase diagram in Figure 1. First, the admissible region A is bounded below by the red

x(H) locus (10), with complementary non-admissible area NA in shaded red region.

The horizontal intercept of x(H) is the capitalized base income deficit −(y0 − a)/r > 0

under (11), whereas its vertical intercept is H̄1 = −(y0 − a)/(rB) > 0. From (9), the red

x(H) locus is characterized by zero net total wealth, consumption at subsistence level and

indifference between life and death, with the negative slope suggesting a corresponding

tradeoff between health and wealth.19

Figure 1: Joint health and wealth dynamics

Notes: Non-admissible set NA: shaded red area under red x(H) line, admissible A is area above

x(H). Health depletion set DH : shaded green area under green y(H) green curve. Acceleration

set AC: hatched green area under blue z(H) curve. Wealth depletion set DW : area above w(H)

black curve.
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Second, the health depletion region DH is the shaded green area located below the

green y(H) locus in (13a), a U-shaped function bounded below by W̄3 = y(H̄3) where:

H̄3 =

(
B

D(1 + ξm)

) 1
ξm

> 0. (14)

The reasons for the non-monotonicity stem from the effects of health on Ih(W,H) =

I(W,H)/H. At low health H < H̄3, better health raises the value of the health capital

BH and therefore net total wealth N0(W,H), thereby increasing the investment to capital

ratio Ih. Constant (and zero) growth thus requires an offsetting reduction in W . At high

health H > H̄3, being healthier lowers the incentives for investing to control for mortality

risk and therefore reduces Ih. Constant growth requires increasing W .

Third, the accelerating locus z(H) in (13b) is plotted as the blue line in Figure 1; the

accelerating region is the dashed blue subset of DH . Appendix B shows that this locus

intersects the x(H), y(H) loci at the same −(y0 − a)/r intercept and that it intersects

the H−axis at H̄2 = H̄1(1 + ξm)/ξm > H̄1; consequently, the admissible accelerating

region x(H) < W < z(H) is non-empty for all health levels. Moreover, it also intersects

the health depletion locus y(H) at lower bound H̄3 in (14). Consequently, there exists a

threshold wealth level W̄3 = y(H̄3) below which all agents expect a health decline, and a

threshold health level H̄3 below which all agents in the depletion region are also in the

accelerating subset.

Fourth, the wealth depletion locus w(H) in (13c) is represented as the black curve in

Figure 1 whereby the wealth depletion regionDW is the area above this locus. Appendix B

establishes that this locus has the same H− intercept −(y0 − a)/r and it must lie above

the admissibility locus x(H). Since w(H) is located between the admissible and the

health depletion loci, the joint depletion region (DW ∩ DH) is non-empty for every H

under sufficient conditions (12), i.e. there exists an admissible range of W for which

agents optimally expect both their health and their wealth to fall.

The local expected dynamics of health are represented by the horizontal (health) and

vertical (wealth) arrows in Figure 1 with agents j = A, B, C and D described by their

(Hj,Wj) statuses. First, agent A is sufficiently rich (i.e. W > y(H)) and can expect a

growth in health towards the steady-state locus y(H), e.g. following a morbidity shock.

Agent B is poorer and is located in the DH region in which the health stock is expected to
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fall, yet is nonetheless sufficiently rich and healthy (W > z(H)) to optimally slow down

– but not reverse – the depreciation of his health capital (i.e. IhH < 0). However, for

agents C and D, wealth is below the z(H) locus such that the health depletion accelerates

(i.e. IhH > 0, illustrated by the thick vector) as falling health is accompanied by further

cuts in the investment-to-health ratio. All three agents A, B and C expect their wealth to

fall, whereas agent D, is located at very low wealth levels in the AC region where rapidly

receding health expenses I(W,H) allow for expected increases in wealth.

2.4 Discussion

2.4.1 Closing Down the Shop

These joint end-of-life dynamics of health and wealth are consistent with a deliberate

closing down the shop strategy when the conditions in Propositions 1, 2, and 3 are

satisfied. Sufficiently rich (W > y(H)) and healthy agents reinvest in their health, with

the latter returning to the steady-state locus y(H) following a sickness shock. However,

falling wealth is also optimally chosen, leading agents to eventually enter the DH region

where health depletion and increasing mortality risks are optimally selected.20 Such

dynamics are consistent with strong positive SES gradients for health outcomes, as well

as for longevity.21 Furthermore, they are also consistent with the inverted U shape in

the life cycle of the SES gradients that peak after middle age and fall in the last period

of life.22 Indeed, the model predicts that rich agents (W > W̄3) initially prevent health

declines but that all ultimately enter the health depletion region after which wealth is

less relevant with respect to health outcomes.

Moreover, the depreciation of the health stock accelerates once falling health and

wealth draws agents into the AC region. Our model thus supports threshold effects

whereby falling health is initially slowed down and then accelerated for H < H̄3 and is

thus pro-factual with the accelerating deterioration in both health and longevity that is

observed after age 70.23 From the endogenous death intensity (2), falling health is invari-

ably accompanied by an increase in mortality and a decline towards the admissible locus

x(H) characterized by zero net total wealth, subsistence consumption and indifference

between life and death. Importantly, this optimal relinquishment occurs even when life is

strictly preferred. Indeed, as discussed earlier, the non-separable preferences (5) ensure
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strictly positive continuation utility under life in (9). The agents we are considering

therefore have no proclivity in favor of premature death when they deliberately initiate

closing down strategies. Finally, as discussed earlier, endogenous mortality, increases

investment (I1 > 0), as well as consumption of non-durables and services – including

comfort care – if the elasticity of inter-temporal substitution is high (ε > 1 =⇒ C1 > 0).

The empirical results below are consistent with 0 < I1 < C1, i.e. higher mortality caused

by falling health induces agents to shift in favor of more Ct than It, consistent with an

end-of-life change in the composition of health expenses towards more comfort care than

curative care.24

2.4.2 Comparison with the standard model

Our model nests the seminal Grossman (1972); Ehrlich and Chuma (1990) framework

under restriction (6). In particular, these restrictions abstract from endogenous mortality

λm1 = 0, leading to V1, I1,X1, C1 = 0 in the optimal rules. Appendix B.3 derives the

corresponding dynamics reproduced in Figure 2. Under sufficient condition (12a), the

health depletion region is the entire admissible set, whereas no accelerating region exists.

The standard model predicts common and constant depletion rates for health, that are

independent of wealth or health statuses, that do not accelerate near the end of life and

that have no incidence on death risk which remains counter-factually independent of age

and of financial and health levels. This contradicts the evidence of strong positive SES

gradients and on the life cycle of these gradients that peak at mid-life and fall thereafter.

2.4.3 Aging

The model can be modified to account for realistic aging processes involving age-increasing

depreciation, sickness and death risks exposure:

δ̇t, φ̇t, λ̇s0t, λ̇m0t ≥ 0. (15)

In that perspective, Hugonnier et al. (2013) show that the optimal rules in Theorem 1

remain valid, although with age-dependent parameters that can be solved in closed form.

The predicted loci remain valid and inherit age-dependency: xt(H), yt(H), zt(H), wt(H).

In addition to making it more likely that sufficient conditions (12) are met, it can be shown
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Figure 2: Joint health and wealth dynamics: Exogenous mortality

Notes: Effects of exogenous mortality λm1 = 0. Non-admissible set NA: shaded red area under

red x(H) line, admissible A is area above x(H). Health depletion set DH : shaded green area

under green y(H) green curve. Wealth depletion set DW : area above w(H) black curve.

that the aging process (15) generates counter-clockwise rotations in both xt(H), yt(H)

loci entails that all agents are now closer to DH (see Figure 3).25 We conclude that aging

is complementary to and reinforces the closing-down process.

3 Empirical evaluation

The optimal health and wealth depletion strategy is arguably more appropriate for agents

nearing death, than for younger ones. Indeed, a high health depreciation (δ), sickness

likelihood (λs0) and/or consequence (φ) all seem legitimate for old agents in the last period

of life, yet less so for younger ones. Moreover, a high marginal propensity to consume

in (12c), potentially stemming from non-curative LTC expenses, is suitable for elders

nearing the end of life. Using a database of relatively old individuals (HRS-CAMS),

12



Figure 3: Joint health and wealth dynamics: Effects of aging

Notes: Effects of aging process (15). Non-admissible set NAt: shaded red area under red xt(H)

line, admissible At is area above xt(H). Health depletion set DHt: shaded green area under

green yt(H) green curve. Acceleration set ACt: hatched green area under blue zt(H) curve.

Wealth depletion set DWt: area above wt(H) black curve.

we next verify empirically whether or not these conditions are valid and whether the

admissible, depletion and acceleration subsets have economic relevance.

3.1 Econometric model

Assuming that agents j = 1, 2, · · · , N follow the optimal rules in Theorem 1, we consider a

tri-variate nonlinear structural econometric model defined by the optimal investment (8b),
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the consumption equation (8d), and the risky asset holdings (8e):

Ij = KBHj + I1H
−ξm
j N0(Wj, Hj) + uIj , (16a)

Cj = a+
(
A+ C1H

−ξm
j

)
N0(Wj, Hj) + uCj (16b)

Πj = (θ/(γσS))N0(Wj, Hj) + uΠ
j , (16c)

where N0(W,H) denotes net total wealth in (7), the parameters (K,B, I1, A, C1) are

outlined in Appendix A and where (uIj , u
C
j , u

Π
j ) are correlated error terms. Optimal

insurance (8c) is omitted from our specification under near-universal Medicare coverage

for elders.

A subset of the technological, distributional and preference parameters are estimated

using the joint system (16), imposing the regularity conditions (17) (see Appendix A). Due

to significant non-linearities, not all the parameters can be identified. We calibrate certain

parameters (i.e. µ, r, σS, ρ) with standard values from the literature. For others however

(i.e. φ, γm, γs), scant information is available and we rely on a thorough robustness

analysis.

The estimation approach is an iterative two-step ML procedure. In a first step, the

convexity parameter ξm is fixed and a maximum likelihood approach is conducted on the

remaining structural parameters. In a second step, the latter are fixed and the likelihood

function is maximized with respect to ξm. The procedure is iterated until a fixed point

is reached for all the estimated structural parameters. The likelihood function is written

by assuming that there exist some cross-correlations between the three equations, i.e.

Cov(uIj , u
C
j , u

Π
j ) 6= 0. For the first two equations, the cross-correlation can be justified by

the fact that we use an approximation of the exact solution (see Hugonnier et al., 2013,

for details).

The database is the 2002 wave of the Health and Retirement Study (HRS, Rand

data files) corresponding to the last HRS wave with detailed information on health

spending. The HRS data set is merged with the 2001 Consumption and Activities Mail

Survey (CAMS) for observable data corresponding to consumption equation (8d) (see

Appendix C for details). A main advantage of CAMS data is that its detailed categories

allow us to distinguish between curative and comfort care expenses (e.g. home health

care or dental visits, . . . ) that can reasonably be considered as consumption rather than
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investment. For consistency with our model of end-of-life health and wealth dynamics,

with bequest motives abstracted from, we restrict our analysis to elders (i.e. agents

aged 65 and more), who are singles, and with positive financial wealth (1,124 remaining

observations).

We report the sample statistics in Table 1, while Table 2 reports the median values

stratified by wealth quintiles and self-reported health. Consistent with empirical evidence,

financial wealth seems to be relatively insensitive to health,26 health investment increases

slowly in wealth, but falls sharply in health,27 whereas risky asset holdings are higher for

healthier and wealthier agents.28 Consumption is highest for rich, less healthy agents.

Table 1: HRS-CAMS data statistics

Mean Std. dev. Min Max

Consumption (C) 16 507 17 765 0 217 510

Wealth (W ) 79 423 164 837 1 1 675 001

Investment (I) 1 959 2 978 0 36 049

Risky holdings (Π) 38 631 116 958 0 1 500 000

Health (H) 1.84 0.82 0.5 3.5

Age (t) 75.92 6.99 65 97

Notes: Statistics for HRS-CAMS data (in 2002 $ for nominal variables) used in estimation.

Scaling for self-reported health is 0.5 (Poor), 1.25 (Fair), 2.00 (Good), 2.75 (Very good) and 3.5

(Excellent).

4 Results

4.1 Structural parameters

Table 3 reports the calibrated and estimated deep parameters (panels a–d), the induced

parameters to define the various subsets (panel e), as well as the sufficient conditions that

are relevant to Propositions 1, and 2 (panel f). The standard errors indicate that all the

estimates are precisely estimated and are significant at the 5% level.

First, the law of motion parameters in panel a are consistent with significant dimin-

ishing returns to the health production function (α = 0.73). Depreciation is important

(δ = 4.6%) and sickness is consequential, with an additional depreciation of φ = 1.1%
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Table 2: HRS-CAMS data statistics (cont’d)

Variable Wealth quintile

1 2 3 4 5

a. Poor health (H = 0.5)

Consumption (C) 11 708 10 563 20 881 30 056 35 841

Wealth (W ) 31 1 459 10 481 55 492 308 243

Investment (I) 26 379 22 792 25 127 32 048 26 948

Risky share (Π/W ) 0.00 0.00 0.25 0.63 0.86

b. Fair health (H = 1.25)

Consumption (C) 15 672 13 090 13 319 19 237 24 722

Wealth (W ) 29 2 008 12 469 51 375 237 487

Investment (I) 26 162 14 850 10 459 18 728 24 242

Risky share (Π/W ) 0.00 0.02 0.26 0.45 0.62

c. Good health (H = 2.0)

Consumption (C) 14 873 14 603 14 124 18 426 23 190

Wealth (W ) 34 1 915 14 300 54 334 300 252

Investment (I) 10 637 16 420 11 592 9 749 14 965

Risky share (Π/W ) 0.00 0.01 0.27 0.40 0.83

d. Very good health (H = 2.75)

Consumption (C) 13 255 12 705 15 181 17 948 20 585

Wealth (W ) 34 2 142 14 198 51 266 306 920

Investment (I) 4 768 21 220 6 876 8 060 10 285

Risky share (Π/W ) 0.03 0.04 0.19 0.41 0.72

e. Excellent health (H = 3.5)

Consumption (C) 12 418 11 749 15 340 18 947 21 254

Wealth (W ) 68 2 114 12 679 60 140 358 548

Investment (I) 2 456 5 159 7 199 8 079 5 593

Risky share (Π/W ) 0.00 0.00 0.32 0.50 0.82

Notes: Mean values (in 2002 $ for nominal variables) per health status and wealth quintiles for

HRS-CAMS data used in estimation.

suffered upon realization of the health shock. The intensity parameters in panel b indicate

a high and significant likelihood of health shocks (λs0 = 0.08). The death intensity (2)

parameters reject the null of exogenous exposure to death risk (λm1, ξm 6= 0), validating

16



Table 3: Estimated and calibrated parameter values

Parameter Value Parameter Value Parameter Value

a. Law of motion health (1)

α 0.7285∗ δ 0.0460∗ φ 0.011c

(0.2066) (0.0148)

b. Sickness and death intensities (2)

λs0 0.0813∗ λm0 0.0665∗

(0.0233) (0.0299)

λm1 0.0219∗ ξm 2.2498∗

(0.0074) (1.0845)

c. Income and wealth (3)

y0 0.0085c$ r 0.048c

µ 0.108c σS 0.20c

d. Preferences (5)

a 0.0126∗$ β 0.0091∗

(0.0064) (0.0023)

ε 1.7364∗ γ 2.5721∗

(0.4192) (1.1925)

ρ 0.025c γm 0.75c γs 7.40c

e. State space subsets (10), (24a), (25b), (30b)

(y0 − a)/r −0.0836∗$ B 0.0966∗ H̄1 0.8661∗

D 0.1674∗ I1 0.1572∗ K 5.88e− 04∗

H̄3 0.4692∗ W̄3 0.0523∗$ H̄2 1.1193∗

C1 2.5298∗ A 0.1065∗

f. Sufficient conditions (12) (must be negative)

β − δ̃1/α −0.0059∗ θ2/γ + r − A −0.0235∗

Notes: Econometric model (16). *: Estimated structural and induced parameters (standard

errors in parentheses), significant at 5% level; c: calibrated parameters; $: In $M.

the assumption that agent’s health decisions are consequential for their expected life

horizon.
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Third, the returns parameters (µ, r, σS) are calibrated at standard values in panel c.

The base income y0 in equation (3b) is calibrated to a value of $8,500 in 2002 dollars

($11,927 in 2018). Fourth, the preference parameters in panel d suggest a significant

subsistence consumption a of $12,600 ($17,530 in 2018), which is larger than base income

y0. Both subsistence and base income values are realistic.29 Our estimate of the inter-

temporal elasticity ε = 1.74 is larger than one, as required for sufficient condition (12b)

and as identified by others using micro data.30 Aversion to financial risk is realistic (γ =

2.57), whereas aversion to mortality and morbidity risks are calibrated in the admissible

range (0 < γm < 1) and similar to the values set by Hugonnier et al. (2013). Finally, the

subjective discount rate is set at usual values (ρ = 2.5%). Overall, we conclude that the

estimated and calibrated structural parameters are economically plausible.

4.2 Induced parameters and relevance of closing down

Table 3.e reports the induced parameters that are relevant for the admissible, depletion

and accelerating subsets. Table 3.f shows that the sufficient conditions (12a) and (12c) are

verified at these induced parameters. These composite parameters allow us to evaluate

the values of the four loci x(H), y(H), z(H) and w(H) at the various self-reported health

levels in Table 4 and to plot the corresponding subsets in Figure 4 using the same scaling

as the one for the estimation. Finally, we can rely on the joint distribution in Table 2 in

order to plot the quintile values of wealth as blue dots for Qi for the poor (H = 0.5) and

fair (H = 1.25) health statuses.

First, the large negative value for (y0− a)/r corresponds to a capitalised base income

deficit of 83,630$ in 2002 dollars and confirms that condition (11) is verified. Second, we

identify a relatively large marginal-Q of health B = 0.0966 in panel e, suggesting that

health depletion can remain optimal despite health being very valuable.31 Third, the

value for D in Table 3.e is large and significant. From the definition of y(H) in (13a),

a large value of D also entails a steep health depletion locus in Figure 4. It follows

that its minimum is attained at a low H̄3 = 0.4692, with corresponding realistic value of

W̄3 = $52,262. Since this value is larger than most observed wealth levels (see Tables 1

and 2), it follows that the bulk of the population is located in the health depletion subset.

Fourth, our estimates are consistent with a narrow accelerating region AC. Indeed,

the values for B, (y0 − a)/r, ξm are such that intercepts H̄1, H̄2 are relatively low (i.e.
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Table 4: Estimated values of loci

A DH AC DW
Level H % Pop. x(H) y(H) z(H) w(H)

Poor 0.50 12.74 0.04 0.05 0.05 0.04

Fair 1.25 28.16 −0.04 0.31 −0.00 −0.03

Good 2.00 33.77 −0.11 1.48 −0.05 −0.08

Very good 2.75 18.90 −0.18 4.30 −0.10 −0.11

Excellent 3.50 6.43 −0.25 9.56 −0.15 −0.12

Notes: Values (in M$) of admissible A : W ≥ x(H); health depletion DH : W < y(H);

accelerating AC : W < min[y(H), z(H)]; and wealth depletion DW : W > w(H) at observed

health levels.

between Fair and Poor self-reported health) and close to one another (less than one

discrete increment of 0.75). This feature of the model is reassuring since we would expect

accelerating phases where agents are cutting down expenses in the face of falling health

to coincide with the very last periods of life where health is very low. Fifth, our finding of

0 < I1 < C1 is consistent with stronger positive effects of increasing endogenous mortality

on consumption – including comfort care – than on investment, i.e. curative care (see

discussion in Section 2.4.1).

Finally, the estimated wealth depletion locus w(H) is lying between the x(H) and

y(H) loci (see Proposition 2). It is also very low, confirming that most of the agents are

also in the wealth depletion region. It follows that unless very wealthy and very unhealthy,

the bulk of the population would be located in the (DH∩DW ) regions. Indeed, as Table 4

makes clear, the population with at least a Fair level of health and non-negative financial

wealth is located in the joint health and wealth depletion. Put differently, our estimates

unambiguously confirm the empirical relevance of optimal closing-down strategies.

4.3 Simulation analysis

The analysis presented thus far has abstracted from exogenous depletion processes asso-

ciated with aging and has focused upon optimal local expected changes for health and

wealth. In order to assess whether such small anticipated depletion translate into realistic

life cycle paths for health and wealth, we conduct a Monte-Carlo simulation exercise

19



Figure 4: Estimated depletion, accelerating and non-admissible regions

Notes: Non-admissible set NA: shaded red area under red x(H) line. Health depletion set

DH : shaded green area under green y(H) green curve. Acceleration set AC: hatched green area

under blue z(H) curve. Wealth depletion set DW : area above w(H) black curve. Position of

loci and areas evaluated at estimated parameters in Table 3. Quintile levels for wealth quintiles

Q2, . . .Q4 are taken from Table 2 and are reported as blue points for poor and fair health levels.

described in further details in Appendix D. To summarize, the simulated life cycles draw

initial health and wealth statuses from uniform distributions at age 75 and for a sample

of 1,000 individuals. For each period, a common financial market shock is then drawn,

whereas agent-specific sickness and death shocks are drawn using the corresponding

exogenous morbidity and the endogenous mortality Poisson distributions. The health

and wealth statuses are updated using (1) and (3a), evaluated at the theoretical optimal

rules in Theorem 1; the process is replicated for 500 times.

Figure 5 plots a random sample of the 500,000 simulated optimal trajectories for health

level Ht (panel a), the investment-to-consumption ratio It/Ct (panel b), financial wealth

Wt (panel c), as well as the net total wealth N0(Wt, Ht) (panel d). A common color

across each panel corresponds to a common individual path. Curtailed paths indicate
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death and/or non-admissibility (i.e. preference for death over life). Unsurprisingly, these

results confirm all our previous findings. Consistent with the data, our simulated life

cycles feature end-of-life depletion of both health (Banks et al., 2015; Case and Deaton,

2005; Smith, 2007; Heiss, 2011) and wealth (De Nardi et al., 2015; French et al., 2006;

De Nardi et al., 2010, 2009). Indeed, the optimal strategy is to bring down net total

wealth N0(Wt, Ht) in panel d to zero (i.e. reach the lower limits of admissible set A) at

terminal age at which stage agents are indifferent between life and death. This objective

is attained by running down wealth very rapidly in panel c (consistent with our finding of

low w(H) locus) and a somewhat slower decline for (utility services-providing) health in

panel a. The health decline is achieved by curtailing investment in favor of consumption

(including comfort care) spending in panel b, consistent with our empirical finding of

C1 > I1. These pro-factual life cycle profiles confirm that the Closing Down model can

reproduce the data even without the self-reinforcing incidence of biological aging.

Figure 5: Simulated optimal trajectories

74 76 78 80 82 84
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74 76 78 80 82 84

0.04

0.06
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74 76 78 80 82 84
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1

c. Financial wealth Wt  ($M)

74 76 78 80 82 84
0

1

2
d. Total wealth N 0t

Notes: Sample of simulated trajectories from 1,000 individuals × 500 replications. Each

color corresponding to a common admissible policies for surviving individual. Curtailed paths

correspond to death and/or non-admissibility. See Appendix D for details.

Contrasting individual paths reveals that, as expected, health (panel a) and wealth

(panel c) depletion are both faster for the poor and unhealthy agents. The joint health

and wealth depletion means that the latter approach the non-admissible subset more
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rapidly. Moreover, worse health entails that exposure to death risk is higher for the poor,

resulting in lower survivorship, consistent with stylized facts (Bosworth et al., 2016). Put

differently, our simulations indicate that agents entering the last period of life optimally

select an expected lifespan given current health and wealth and choose allocations that

are consistent with optimal closing down. High initial wealth has a moderating effect on

the speed of the depletion, but not on its ultimate outcome.

We conclude by emphasizing endogenous mortality as a key element in reproducing

the end-of-life dynamic and cross-sectional evidence. Reinstating realistic aging processes

makes our optimal dynamic strategies even more relevant. Put differently, aging is not a

substitute to, but is a reinforcing complement to closing-down.

Notes

1See Banks et al. (2015, Fig. 5, p. 12), Heiss (2011, Fig. 2, p. 124), Smith (2007, Fig. 1, p. 740), Case

and Deaton (2005, Fig. 6.1, p. 186), or Van Kippersluis et al. (2009, Figs. 1, 2, p. 820, 823, 824) for

evidence.

2Smith (2007, Tabs. 1–3, pp. 747–752).

3See Benjamins et al. (2004); Heiss (2011); Smith (2007); Hurd et al. (2001); Hurd (2002) for evidence

and discussion. See also Arias (2014, Tab. B, p. 4) for Life Tables.

4Smith (2007, 1999); Attanasio and Emmerson (2003).

5For example, longevity for males from a 1940 cohort in HRS based on deciles of career earnings are

73.3 years (1st decile), 77.9 (3rd decile), 81.8 (6th decile), and 84.6 (10th decile) (Bosworth et al., 2016,

Tab. IV-4, p. 87). See also Attanasio and Emmerson (2003) for mortality-SES gradient evidence.

6Van Kippersluis et al. (2009); Baeten et al. (2013); Case and Deaton (2005).

7Whereas curative expenses (e.g. doctor visits, hospital stays, drugs, . . . ) tend to stagnate, nursing

homes and other long-term care (LTC) spending increase sharply (De Nardi et al. (2015, Fig. 3, p. 22)).

LTC expenditures are more income- and wealth-elastic than curative care and can be associated with

comfort care consumption (De Nardi et al. (2015); Tsai (2015); Marshall et al. (2010)). In addition, LTC

expenses are not covered by Medicare and are rarely insured against through private markets.

8De Nardi et al. (2016, 2015); Marshall et al. (2010); Love et al. (2009); French et al. (2006); Palumbo

(1999)

9See Grossman (2000); Galama (2015) for reviews. We also provide further details on these short-

comings for the base Grossman (1972) model with analytical solutions discussed in Section 2.4.2 and

Figure 2, with formal arguments made in Theorem 4.

10Other exceptions with endogenous mortality include Pelgrin and St-Amour (2016); Kuhn et al.

(2015); Dalgaard and Strulik (2014, 2017); Blau and Gilleskie (2008); Hall and Jones (2007). However,
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none of these papers focus on end-of-life joint dynamics for health and wealth. The closest paper

is Galama (2015) who also emphasizes the shortcomings of the canonical Grossman (1972) model as

motivation for generalizations, while stressing the importance of combining investment with the law

of motion for health to characterize the optimal (equilibrium) time paths of the latter, and to generate

declining health over the life cycle. The main differences are stochastic mortality, morbidity and financial

processes, more general preferences, as well as structural estimation that are abstracted from in Galama

(2015).

11The positive investment restriction is necessary since It is to the power α ∈ (0, 1) in the Cobb-

Douglas technology (1). Moreover, it is required to prevent degenerate cases where the agent could

hasten the death timing by investing negative amounts, inconsitstent with both the monetary expense

interpretation and the preference for life over death assumption.

12Hugonnier et al. (2013) also consider a more general setup with health-dependent sickness intensity

which we abstract from.

13Our analysis focuses on financial wealth only and omits housing, a non-negligible determinant

of disposable resources for elders. Unlike financial wealth, housing provides direct utilitarian service

flows, involves additional life-cycle decisions to those we consider, as well as complex budget constraint

considerations (e.g. leverage effects, (non) inclusion in means-tested programs, . . . ) that would have to

be modeled for completeness. Moreover, a simpler approach of adding net housing to financial wealth

yielded similar empirical results. For these two reasons, we thus maintain our current perspective on

financial assets only, and we prefer to leave housing on the resarch agenda.

14In the empirical application of Section 3, we thus include elements such as long-term care, personal

health care and dental visits in C. See Appendix C for details.

15The model also admits an alternative interpretation where preferences f(C,H,U) in (5b) are health-

independent, and with health-increasing income (3b) replaced by Yt = y0 + βHt− (Hugonnier et al.,

2013, Remark 3). The theoretical results are unaffected by this change in perspective.

16In particular, a change of variable from I to Ig, Ih reveals the following equivalent formulations:

New control in (4) (I/H)α in (1) I in (3a)

Ig ≡ IαH1−α (Ig/H) (Ig/H)1/αH

Ih ≡ (I/H) (Ih)α IhH

The optimal dynamics we recover under either Ig or Ih are identical to the ones we obtain in the original

formulation with I, provided both (1) and (3a) are modified accordingly. The linear technology in Ig

in dHt is resorted to by Grossman (1972), whereas Ehrlich and Chuma (1990) add convex costs as in

(Ig)1/α. A concave technology (Ih)α formulation is used notably by Galama (2015).

17Although not necessary for the main theoretical results, restriction (11) is also tested and confirmed

empirically in Section 4 and will be relied upon in the discussion of these results. Moreover, it helps

ensure that portfolio shares Π∗/Ware increasing in wealth, consistent with the data (e.g. Wachter and

Yogo, 2010).
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18See also Laporte and Ferguson (2007) for an analysis of expected local changes of the Grossman

(1972) model with Poisson shocks.

19See also Finkelstein et al. (2013, 2009) for evidence and discussion regarding health effects on marginal

utility of wealth.

20It is worth noting that the optimal risky asset holdings in (8e) are positive when net total wealth and

risk premia are both positive. Moreover, the investment in (8b) is monotone increasing in wealth, such

that a sufficiently long sequence of high positive returns on financial wealth could pull the agents away

from the depletion region DH . Put differently, falling health and higher mortality is locally expected,

yet is not absolute for agents in the depletion region. See however the simulation exercise in Section 4.3

for realistic life cycle patterns consistent with depletion.

21See Smith (2007, 1999) for SES gradients on health outcomes and (Bosworth et al., 2016) for

longevity.

22See Case and Deaton (2005); Van Kippersluis et al. (2009); Baeten et al. (2013) for evidence of

diminishing SES gradients over the life cycle.

23See for Banks et al. (2015); Van Kippersluis et al. (2009) health deterioration and Arias (2014) for

longevity.

24See De Nardi et al. (2015); Marshall et al. (2010) for evidence and discussion.

25In particular, the aging process (15) yields age-decreasing Ḃt, K̇t, L̇mt, İ1t ≤ 0 and age-increasing

Ḋt ≥ 0. The combination of the two entails counter-clockwise rotations in all the loci, with common

intercept (y − a)/r unaffected.

26See Hugonnier et al. (2013); Michaud and van Soest (2008); Meer et al. (2003); Adams et al. (2003)

for additional evidence.

27Similar findings with respect to wealth (e.g. Hugonnier et al., 2013; Meer et al., 2003; DiMatteo,

2003; Gilleskie and Mroz, 2004; Acemoglu et al., 2013). In addition, consumption is highest for rich,

unhealthy agents and health (e.g. Hugonnier et al., 2013; Smith, 1999; Gilleskie and Mroz, 2004; Yogo,

2009) have been discussed elsewhere.

28Similar positive effects of wealth on risky holdings have been identified in the literature (e.g. Hugonnier

et al., 2013; Wachter and Yogo, 2010; Guiso et al., 1996; Carroll, 2002) whereas positive effects of health

have also been highlighted (e.g. Hugonnier et al., 2013; Guiso et al., 1996; Rosen and Wu, 2004; Coile

and Milligan, 2009; Berkowitz and Qiu, 2006; Goldman and Maestas, 2013; Fan and Zhao, 2009; Yogo,

2009).

29For example, the 2002 poverty threshold for elders above 65 was $8,628 (source: U.S. Census Bureau).

30For example, Gruber (2013) finds estimates centered around 2.0, relying on CEX data.

31Adapting the theoretical valuation of health in Hugonnier et al. (2013, Prop. 3) reveals that an

agent at the admissible locus (i.e. with N0(W,H) = 0) would value a 0.10 increment in health as

wh(0.10,W,H) = 0.10. ∗B ∗ 106 = $9,656.

24



References

Acemoglu, D., Finkelstein, A., and Notowidigdo, M. J. (2013). Income and health

spending: Evidence from oil price shocks. Review of Economics and Statistics,

95(4):1079 – 1095.

Adams, P., Hurd, M. D., McFadden, D., Merrill, A., and Ribeiro, T. (2003). Healthy,

wealthy, and wise? tests for direct causal paths between health and socioeconomic

status. Journal of Econometrics, 112(1):3–56.

Arias, E. (2014). United States life tables, 2010. National Vital Statistics Report, 63(7):1–

62.

Attanasio, O. P. and Emmerson, C. (2003). Mortality, health status, and wealth. Journal

of the European Economic Association, 1(4):821–850.

Baeten, S., Ourti, T. V., and Doorslaer, E. V. (2013). The socioeconomic health gradient

across the life cycle: what role for selective mortality and institutionalization? Social

Science and Medicine, 97:1–20.

Banks, J., Blundell, R., Levell, P., and Smith, J. P. (2015). Life-cycle consumption

patterns at older ages in the US and the UK: can medical expenditures explain the

difference? IFS Working Papers W15/12, Institute for Fiscal Studies, London.

Benjamins, M. R., Hummer, R. A., Eberstein, I. W., and Nam, C. B. (2004). Self-reported

health and adult mortality risk: An analysis of cause-specific mortality. Social Science

& Medicine, 59(6):1297 – 1306.

Berkowitz, M. K. and Qiu, J. (2006). A further look at household portfolio choice and

health status. Journal of Banking and Finance, 30(4):1201–1217.

Blau, D. M. and Gilleskie, D. B. (2008). The role of employee health insurance in the

employment behavior of older men. International Economic Review, 49(2):475–514.

Bosworth, B. P., Burtless, G., and Zhang, K. (2016). Later retirement, inequality in old

age, and the growing gap in longevity between rich and poor. Economic Studies at

Brookings, Brookings Institute.

25



Carroll, C. D. (2002). Portfolios of the rich. In Guiso, L., Haliassos, M., and Jappelli, T.,

editors, Household Portfolios, chapter 10, pages 389–429. MIT Press, Cambridge MA.

Case, A. and Deaton, A. (2005). Broken down by work and sex: How our health declines.

In Wise, D. A., editor, Analyses in the Economics of Aging, chapter 6, pages 185 –

205. University of Chicago Press, Chicago.

Coile, C. and Milligan, K. (2009). How household portfolios evolve after retirement: The

effect of aging and health shocks. Review of Income and Wealth, 55(2):226 – 248.

Dalgaard, C.-J. and Strulik, H. (2014). Optimal aging and death: Understanding the

preston curve. Journal of the European Economic Association, 12(3):672 – 701.

Dalgaard, C.-J. and Strulik, H. (2017). The genesis of the golden age: Accounting for

the rise in health and leisure. Review of Economic Dynamics, 24:132 – 151.

De Nardi, M., French, E., and Jones, J. B. (2009). Life expectancy and old age savings.

American Economic Review, 99(2):110–115.

De Nardi, M., French, E., and Jones, J. B. (2010). Why do the elderly save? The role of

medical expenses. Journal of Political Economy, 118(1):39–75.

De Nardi, M., French, E., and Jones, J. B. (2016). Savings after retirement: A survey.

Annual Review of Economics, 8:177–204.

De Nardi, M., French, E., Jones, J. B., and McCauley, J. (2015). Medical spending of

the U.S. elderly. Working Paper 21270, National Bureau of Economic Research.

DiMatteo, L. (2003). The income elasticity of health care spending: A comparison of

parametric and nonparametric approaches. European Journal of Health Economics,

4(1):20–29.

Duffie, D. and Epstein, L. G. (1992). Asset pricing with stochastic differential utility.

Review of Financial Studies, 5(3):411–436.

Ehrlich, I. and Chuma, H. (1990). A model of the demand for longevity and the value of

life extension. Journal of Political Economy, 98(4):761–782.

26



Fan, E. and Zhao, R. (2009). Health status and portfolio choice: Causality or

heterogeneity? Journal of Banking and Finance, 33(6):1079 – 1088.

Finkelstein, A., Luttmer, E. F., and Notowidigdo, M. J. (2009). Approaches to estimating

the health state dependence of the utility function. American Economic Review,

99(2):116 – 121.

Finkelstein, A., Luttmer, E. F., and Notowidigdo, M. J. (2013). What good is wealth

without health? The effect of health on the marginal utility of consumption. Journal

of the European Economic Association, 11(s1):221–258.

French, E., De Nardi, M., Jones, J. B., Baker, O., and Doctor, P. (2006). Right before the

end: Asset decumulation at the end of life. Federal Reserve Bank of Chicago Economic

Perspectives, 30(3):2 – 13.

Galama, T. J. (2015). A contribution to health-capital theory. CESR-Schaeffer Working

Paper Series 2015-004, USC Dornsife, USC Schaeffer.

Gilleskie, D. B. and Mroz, T. A. (2004). A flexible approach for estimating the effects of

covariates on health expenditures. Journal of Health Economics, 23(2):391 – 418.

Goldman, D. and Maestas, N. (2013). Medical expenditure risk and household portfolio

choice. Journal of Applied Econometrics, 28(4):527 – 550.

Grossman, M. (1972). On the concept of health capital and the demand for health.

Journal of Political Economy, 80(2):223–255.

Grossman, M. (2000). The human capital model. In Culyer, A. J. and Newhouse, J. P.,

editors, Handbook of Health Economics, volume 1, chapter 7, pages 347–408. North-

Holland, Amsterdam.

Gruber, J. (2013). A tax-based estimate of the elasticity of intertemporal substitution.

Quarterly Journal of Finance, 3(1):1 – 20.

Guiso, L., Jappelli, T., and Terlizzese, D. (1996). Income risks, borrowing constraints,

and portfolio choice. American Economic Review, 86(1):158–172.

Hall, R. E. and Jones, C. I. (2007). The value of life and the rise in health spending.

Quarterly Journal of Economics, 122(1):39–72.

27



Heiss, F. (2011). Dynamics of self-rated health and selective mortality. Empirical

Economics, 40(1):119 – 140.

Hugonnier, J., Pelgrin, F., and St-Amour, P. (2013). Health and (other) asset holdings.

The Review of Economic Studies, 80(2):663–710.

Hurd, M. D. (2002). Portfolio holdings of the elderly. In Guiso, L., Haliassos, M., and

Jappelli, T., editors, Household Portfolios, pages 431–472. MIT Press, Cambridge MA.

Hurd, M. D., McFadden, D., and Merrill, A. (2001). Predictors of mortality among the

elderly. In Wise, D. A., editor, Themes in the economics of aging, NBER Conference

Report series, pages 171–97. University of Chicago Press, Chicago and London.

Kuhn, M., Wrzaczek, S., Prskawetz, A., and Feichtinger, G. (2015). Optimal choice of

health and retirement in a life-cycle model. Journal of Economic Theory, 158(Part

A):186 – 212.

Laporte, A. and Ferguson, B. S. (2007). Investment in health when health is stochastic.

Journal of Population Economics, 20(2):423 – 444.

Love, D. A., Palumbo, M. G., and Smith, P. A. (2009). The trajectory of wealth in

retirement. Journal of Public Economics, 93(1-2):191–208.

Marshall, S., McGarry, K. M., and Skinner, J. S. (2010). The risk of out-of-pocket health

care expenditure at end of life. Working paper 16170, National Bureau of Economic

Research.

Meer, J., Miller, D. L., and Rosen, H. S. (2003). Exploring the health-wealth nexus.

Journal of Health Economics, 22(5):713–730.

Michaud, P.-C. and van Soest, A. (2008). Health and wealth of elderly couples: Causality

tests using dynamic panel data models. Journal of Health Economics, 27(5):1312–1325.

Palumbo, M. G. (1999). Uncertain medical expenses and precautionary saving near the

end of the life cycle. Review of Economic Studies, 66(2):395–421.

Pelgrin, F. and St-Amour, P. (2016). Life cycle responses to health insurance status.

Journal of Health Economics, 49:79–96.

28



Rosen, H. S. and Wu, S. (2004). Portfolio choice and health status. Journal of Financial

Economics, 72(3):457–484.

Smith, J. P. (1999). Healthy bodies and thick wallets: The dual relation between health

and economic status. Journal of Economic Perspective, 13(2):145–166.

Smith, J. P. (2007). The impact of socioeconomic status on health over the life-course.

Journal of Human Resources, 42(4):739 – 764.

St-Amour, P. (2018). The lifetime dynamics of health and wealth. In Oxford Research

Encyclopedia of Economics and Finance. Oxford University Press.

Tsai, Y. (2015). Social security income and the utilization of home care: Evidence from

the social security notch. Journal of Health Economics, 43:45 – 55.

Van Kippersluis, H., Van Ourti, T., O’Donnell, O., and van Doorslaer, E. (2009).

Health and income across the life cycle and generations in Europe. Journal of Health

Economics, 28:818–830.

van Ooijen, R., Alessie, R., and Kalwij, A. (2015). Saving behavior and portfolio choice

after retirement. De Economist, 163(3):353 – 404.

Wachter, J. A. and Yogo, M. (2010). Why do household portfolio shares rise in wealth?

Review of Financial Studies, 23(11):3929 – 3965.

Yogo, M. (2009). Portfolio choice in retirement: Health risk and the demand for annuities,

housing, and risky assets. NBER Working Paper 15307, National Bureau Of Economic

Research.

29



A Parametric restrictions

Regularity and transversality restrictions The theoretical model is solved under

three regularity and transversality conditions that are reproduced for completeness:

β <
(
r + δ̃

) 1
α
, (17a)

max

(
0; r − λm0

1− γm
+ θ2/γ

)
< A, (17b)

0 < A−max

(
0, r − λm0

1− γm
+ θ2/γ

)
− F (−ξm), (17c)

where δ̃ = δ + φλs0 and we define

χ(x) = 1− (1− φ)−x < 0,

F (x) = x(αB)
α

1−α − xδ − λs0χ(−x),

Lm = [(1− γm)(A− F (−ξm))]−1 > 0.

The shadow price of health B is defined by:

g(B) = β − (r + δ + φλs0)B − (1− 1/α) (αB)
1

1−α

= β − (r + δ̃)B +

(
1− α
α

)
BK = 0

(18a)

subject to:

g′(B) = −(r + δ̃) + (αB)
α

1−α

= −(r + δ̃) +
BK

αB
< 0,

(18b)

where we denote by δ̃ = δ + φλs0 the sickness-adjusted expected depreciation rate of

health and where K = α
1

1−αB
α

1−α ≥ 0. The shadow price B in (18) is independent of

preferences and increases in the health gradient β in preferences, while falling in the

sickness and depreciation parameters (λs0, φ, δ). The marginal propensity to consume

parameter A is defined in (18) and in (19a).
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Closed-form solutions for optimal rules parameters The closed-form expression

for the parameters in the optimal rules are obtained as follows:

A = ερ+ (1− ε)
(
r − λm0

1− γm
+
θ2

2γ

)
≥ 0. (19a)

Θ =
(
ρ−εA

) 1
1−ε ≥ 0. (19b)

as well as:

V1 = λm1ΘLm ≥ 0, (20a)

I1 = λm1 (ξmK/(1− α))Lm ≥ 0, (20b)

X1 = λm1χ(ξm) (1/γs − 1)Lm R 0, (20c)

C1 = λm1A(ε− 1)Lm R 0. (20d)

B Main theoretical results and proofs

B.1 Health dynamics

The following result characterizes both the health depletion and the acceleration regions

of the state space.

DH =

{
(W,H) ∈ A :

1

dt
Et−[dHt | Wt− = W,Ht− = H] < 0

}
(21)

AC =
{

(W,H) ∈ DH : IhH(W,H) > 0
}
, (22)

Proposition 1 (Health depletion and acceleration) Assume that the agent follows

the approximate optimal rules in Theorem 1. Then, the health depletion set DH in (21)

is non-empty if and only if:

BK < δ̃1/α. (23)

Under condition (23):
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1. The health depletion zone is given by:

DH = {(W,H) ∈ A : W < y(H)} ,

where the health depletion locus is

y(H) = x(H) +DH1+ξm , (24a)

D = I−1
1

[
δ̃1/α −BK

]
> 0.

2. The accelerating region (22) is given by:

AC = {(W,H) ∈ DH : W < min [y(H), z(H)]} , (25a)

where the acceleration locus is

z(H) = x(H) +
BH

1 + ξm
. (25b)

Proof. The expected local change in health capital is given by:

1

dt
Et−[dHt] =

[
Ih(Wt−, Ht−)α − δ̃

]
Ht−. (26)

The investment-to-health ratio evaluated at the optimal investment in (8b) is given by:

Ih(Wt−, Ht−) =
I∗(Wt−, Ht−)

Ht−
= BK + I1H

−ξm−1
t− N0(Wt−, Ht−). (27)

Substituting the investment-to-capital ratio (27) in the expected local change for health (26)

and using the definition of net total wealth (7) shows that:

1

dt
Et−[dHt | Wt− = W,Ht− = H] =

{[
BK + I1H

−ξm−1N0(W,H)
]α − δ̃}H,

< 0 ⇐⇒ W < y(H) = x(H) +DH1+ξm ,

where D = I−1
1

[
δ̃1/α −BK

]
.

Assume that necessary and sufficient condition (23) is violated. Because I1 > 0

in (20b), we have that D < 0. Consequently, we have that y(H) ≤ x(H),∀H and it
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follows that

DH = {(W,H) ∈ A : W < y(H)} = ∅.

Hence a non-empty health depletion set obtains if and only if restriction (23) is verified,

under which D > 0.

Second, observe that the health depletion locus is characterized by:

yH(H) = −B + (1 + ξm)DHξm


< 0, if H < H̄3,

= 0, if H = H̄3,

> 0, if H > H̄3,

and

yHH(H) = ξm(1 + ξm)DHξm−1 > 0.

The locus y(H) is therefore convex and U-shaped under condition (23) and attains a

unique minimum at H̄3 in the (H,W ) space, where H̄3 is given in (14), with corresponding

wealth level W̄3 = y(H̄3).

Next, taking the derivative of the investment-to-health ratio (27) with respect to H

and rearranging shows that the accelerating region can be characterized by:

IhH(W,H) = −(1 + ξm)H−ξm−2I1N0(W,H) +H−ξm−1I1B

> 0 ⇐⇒ W < z(H) = x(H) +
BH

1 + ξm
.

Since B, ξm > 0, x(H) ≤ z(H), i.e. this locus lies above the x(H) locus and is therefore

admissible, i.e. AC ⊂ A. Observe furthermore that z(0) = x(0) = y(0) = −(y0 − a)/r

and that:

z(H)− y(H) = H

[
B

1 + ξm
−DHξm

]

> 0, if H < H̄3

= 0, if H = H̄3

< 0, if H > H̄3

again using the definition of H̄3 in (14). Consequently, the z(H) locus is downward-

sloping, has the same intercept and intersects y(H) at its unique minimal value H̄3 and
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lies above (below) the y(H) locus for H < H̄3 (H > H̄3). It follows that the acceleration

set (i.e. the health depletion subset where IhH > 0) is the entire DH for H ∈ [0, H̄3] and

otherwise the area between y(H), z(H), as given in (25).

�

B.2 Wealth dynamics

The following proposition characterizes the wealth depletion zone:

DW =

{
(W,H) ∈ A :

1

dt
Et−[dWt | Wt− = W,Ht− = H] < 0

}
, (28)

Proposition 2 (Wealth depletion) Assume that the agent follows the approximate

optimal rules in Theorem 1 and that condition (23) in Proposition 1 is verified. Then,

the wealth depletion set DW in (28) is non-empty if and only if there exists health levels

H such that:

l(H) = A− θ2

γ
− r + (I1 + C1)H−ξm > 0. (29)

Under condition (29), the wealth depletion zone is given by:

DW = {(W,H) ∈ A : W > w(H)} , (30a)

where the wealth depletion locus is

w(H) =
x(H)[l(H) + r]

l(H)
+
k(H)

l(H)
, (30b)

k(H) = y0 − a+H(β −KB). (30c)

Proof. Observing that the expected net return on actuarially fair insurance contracts (3)

is zero, the expected local change in wealth is:

1

dt
Et−[dWt] = [rWt− + Y (Ht−)− C∗(Wt−, Ht−)− I∗(Wt−, Ht−)

+Π∗(Wt−, Ht−)σSθ] .

(31)
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We can use the definition of net total wealth (7) and substitute the optimal invest-

ment (8b), as well as the optimal consumption (8d) and risky portfolio (8e) in the expected

local change for wealth (31) to obtain:

1

dt
Et−[dWt | Wt− = W,Ht− = H] = {rW + k(H)−N0(W,H)[l(H) + r]}

< 0 ⇐⇒ Wl(H) > x(h)[l(H) + r] + k(H),

where,

l(H) =

[
A− θ2

γ
− r + (I1 + C1)H−ξm

]
,

k(H) = (y0 − a) +H(β −BK),

as given in (29), (30c).

Assume that necessary and sufficient restriction (29) is violated such that l(H) < 0,

then Et−[dWt | Wt− = W,Ht− = H]/dt < 0 obtains if:

W < w(H) =
x(H)[l(H) + r]

l(H)
+
k(H)

l(H)
.

Since l(H) < 0, it follows that

w(H) ≤ x(H) ⇐⇒ x(H)r + k(H) ≥ 0.

Relying on the definition of g(B) in (18a) and from necessary and sufficient condition (23)

shows that

x(H)r + k(H) = H[β −B(r +K)]

= HB[δ̃ −K/α]

= HB[δ̃ − (BK)α] > 0.

When (29) is violated and l(H) < 0 the wealth depletion zone thus simplifies to:

DW = {(W,H) ∈ A : W < w(H)} = ∅
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since w(H) ≤ x(H). Consequently, a non-empty wealth depletion set obtains if and only

if restriction (29) is verified and is delimited by:

DW = {(W,H) ∈ A : W > w(H)} ,

where w(H) is given by (30b), as stated. It is straightforward to show that:

lim
H→0

l(H) + r

l(H)
= 1, lim

H→0

k(H)

l(H)
= 0, =⇒ lim

H→0
w(H) = x(0) = −(y0 − a)/r

such that the w(H) shares the same intercept with x(H), y(H), z(H) and which is non-

negative under condition (11). �

Proposition 3 (sufficient conditions) Assume that the agent follows the approximate

optimal rules in Theorem 1. The following conditions:

δ̃1/α > β, (32a)

ε > 1, (32b)

A >
θ2

γ
+ r (32c)

are sufficient for non-empty individual DH ,DW and joint depletion sets (DW ∩ DH).

Proof. This simplifies to showing:

w(H) ≤ y(H) ⇐⇒ rx(H) + k(H) ≤ l(H)DH1+ξm

⇐⇒ β −Br − δ̃1/α ≤ DHξm

[
A− θ2

γ
− r
]

+ C1D

Since β < δ̃1/α under (32a), the left-hand side is negative, whereas D > 0. Moreover (32b)

implies that C1 ≥ 0, whereas the right-hand term in square bracket is also positive under

condition (32c). It follows that the right-hand side is positive, and consequently sufficient

for w(H) ≤ y(H), as required. �

B.3 Standard model

The well-known demand-for-health framework of Grossman (1972); Ehrlich and Chuma

(1990) can be analyzed as a restricted case relying on (6).
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Proposition 4 (Exogenous mortality) Assume that the exposure to mortality risk

cannot be adjusted, i.e. λm1 = 0. Then, the health depletion set is non-empty if and

only if condition (23) is verified, under which:

1. Health depletion is expected everywhere in the admissible set:

DH = A, (33)

2. The accelerating subset is empty:

AC = ∅, (34)

3. The wealth depletion set is non-empty if and only if condition (32c) is verified, under

which Dw remains delimited by (30a), where the wealth depletion locus is modified

as:

w(H) =
x(H)[l + r]

l
+
k(H)

l
> x(H), (35a)

l = A− θ2

γ
− r (35b)

and k(H) remains as in (30c).

Proof. First, setting λm1 = 0 results in the first-order adjustment I1 = 0 in (20b).

Consequently, the investment-to-capital ratio in (27) is constant and given by Ih = BK.

Substituting in (26) reveals that so is the expected growth rate:

Et−[dHt] =
[
(BK)α − δ̃

]
Ht−dt,

and that the latter is negative under condition (23) for all admissible health and wealth

levels. Consequently, the health depletion subset corresponds to the entire admissible

set, as stated in (33). Moreover, a constant Ih implies that it is orthogonal to the health

status; consequently no accelerating region exists as stated in (34).

Finally, setting λm1 = 0 also sets I1, C1 = 0 in equation (29) for l(H). Condition (32c)

implies that l > 0 in (35b) and as showed in Appendix B.2, is necessary and sufficient for

DW 6= ∅. The wealth depletion locus w(H) is modified accordingly by using l in (35a).
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Because the health depletion set is the entire admissible set, the conditions relating w(H)

and y(H) are irrelevant and the joint health and wealth depletion set is everywhere non-

empty. �

C Data

The database is the 2002 wave of the Health and Retirement Study (HRS, Rand data

files), merged with the 2001 Consumption and Activities Mail Survey (CAMS), with 1,124

observations used for estimation.

Consumption The CAMS consumption data used to construct Cj includes nondurables

expenses on utilities (electricity, water, heating, phone, cable), house and yard

supplies, food, recreation (dining out, vacations, tickets, hobbies) and others (gifts,

contributions). Health expenses not considered as investment (drugs, personal

health services and medical supplies, insurance, nursing homes, home health care

and special facilities, dental visits) are appended to consumption.

Wealth and risky assets We construct financial wealth Wj as the sum of safe assets

(checking and saving accounts, money market funds, CD’s, government savings

bonds and T-bills), bonds (corporate, municipal and foreign bonds and bond funds),

retirement accounts (IRAs and Keoghs) and risky assets (stock and equity mutual

funds) Πj.

Health investment Health investments Ij are obtained as the sum of OOP expenses

on hospital, doctor visits, medication, and outpatient surgery.

Health Health status Hj is evaluated using the self-reported general health status with

the following scaling: 0.5 (poor), 1.25 (fair), 2.00 (good), 2.75 (very good) and 3.50

(excellent).32

D Monte-Carlo simulation

The Monte-Carlo framework used to simulate the dynamic model is as follows:
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1. Relying on a total population of n = 1,000 individuals, we initialize the health and

wealth levels at base age t = 75 by drawing uniformly W75 ∼ [Wmin,Wmax], and

H75 ∼ [Hmin, Hmax] taken from Table 1.

2. We simulate individual-specific Poisson health shocks dQs ∼ P (λs0), as well as a

population-specific sequence of Brownian financial shocks dZ ∼ N(0, σ2
s) over a

10-year period t = 75, . . . , 85.

3. At each time period t = 75, . . . , 85 and using our estimated and calibrated param-

eters:

(a) We use the optimal rules I(Wt, Ht), c(Wt, Ht),Π(Wt, Ht), X(Ht), as well as

income function Y (Ht) and the realized sickness and financial shocks dQst, dZt

in the stochastic laws of motion dHt, dWt.

(b) We update the health and wealth variables using the Euler approximation:

Ht+1 = Ht + dHt(Ht, It, dQst)

Wt+1 = Wt + dWt [Wt, C(Wt, Ht), I(Wt, Ht),Π(Wt, Ht), X(Wt, Ht), dQs,t, dZt]

4. For each agent with health Ht, we generate the Poisson death shocks with endoge-

nous intensities dQm ∼ P [λm(Ht)] and keep only the surviving agents at each date.

5. We verify admissibility, for each agent with health and wealth (Ht,Wt) and keep

only surviving agents in the admissible region A : Wt ≥ x(Ht).

6. We replicate the simulation 1–5 for 500 times.
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