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This appendix investigates empirically the increase in cash holdings in the US, and provides

an assessment of the net position of investors, also in the US. Then it analyzes welfare, and

finally develops extensions to the model. These include: 1) bubbles; 2) preference and growth

shocks; 3) partial capital depreciation; 4) financial intermediaries; 5) inefficient saving technol-

ogy; 6) idiosyncratic uncertainty about investment opportunities; 7) nominal bonds; 8) nominal

rigidities.

1 Empirical analysis

1.1 Decomposing cash holdings in the US

This section investigates the rise in cash holdings occurring at the ZLB by focusing on the US.

First, we use the balance-sheet tables of the Households and Nonprofit Organizations (B.101),
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Figure 1: Checkable Deposits and Currency, billions of 2010 USD

Source: Financial accounts of the US, Federal Reserve, International Financial Statistics, au-
thors’ calculations.

of the Nonfinancial Corporate Business (B.103) and of the Nonfinancial Noncorporate Business

(B.104) from the Financial Accounts of the US. The series used are the Checkable Deposits

and Currency (FL153020005, FL103020005 and FL113020005). These are deflated by the CPI,

obtained from the International Financial Statistics. The results are shown in Figure 1. The

figure shows that both households and the nonfinancial businesses increase their cash holdings

at the end of 2008, when the Fed funds rate started approaching zero. Among the nonfinancial

businesses, the corporate sector accounts for most of the increase. This is consistent with our

model, as the demand for money for saving purposes arises for the less constrained agents in

the economy.

Second, we use the Survey of Consumer Finances (SCF) to decompose cash holdings by

households into different household categories. We consider checking account holdings only,

as currency is not available in the survey. We aggregate this variable within some categories

of households, trying to reflect the split between households who participate in financial mar-

kets (our investors) and households who do not participate in financial markets (our hand-to-
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Figure 2: Households’ checking account holdings, billions of 2010 USD

Source: Survey of Consumer Finances, Federal Reserve System, authors’ calculations.

mouth workers). We use several proxies: households above the 90th percentile of net worth

versus those below; households above the 90th percentile of liquid wealth versus those below;

households owning a business or some stocks versus those owning neither; non hand-to-mouth

households versus hand-to-mouth households (HTM). Aggregated holdings are deflated by the

CPI, obtained from the International Financial Statistics.

The definition of liquid wealth follows Kaplan et al. (2014): it consists of checking, saving,

money market, and call accounts as well as directly held mutual funds, stocks, corporate bonds,

and government bonds, minus the sum of all credit card balances that accrue interest, after the

most recent payment. The definition of HTM households also follows Kaplan et al. (2014), but

is even more inclusive. HTM households are those whose average liquid wealth balances are

positive (to capture the fact they are not borrowing), but are equal to or less than half their

earnings per pay period. as a pay period, we use a month instead of two weeks, to obtain a

higher share of HTM households. The proposrtion of non-HTM is therefore more conservative.

We obtain a proportion of HTM that is around 0.36 on average between 2001 and 2013.

3



The results are represented in Figure 2. The figure shows that the bulk of the increase

in cash holdings between the 2007 and 2013 surveys, among households, comes mainly from

households with a high net worth, liquid wealth, households owning a business or stocks and

especially, non-HTM households.

1.2 Estimation of investors’ net position

We evaluate the investors’ net position as the net position of the nonfinancial corporate business

and households who participate to financial markets. We always find a negative position,

suggesting that l̄ < 0.

To calculate the corporate net position in interest-bearing assets, we use the balance-sheet

tables of the Nonfinancial Corporate Business (B.103) from the Financial Accounts of the

US. We calculate the net positions as follows: Time and savings deposits (FL103030003) +

Money market fund shares (FL103034003) + Security repurchase agreements (FL102051003) +

Credit market instruments (FL104004005) + Trade receivables (FL103070005) - Credit market

instruments (FL104104005) - Trade payables (FL103170005)- Taxes payable (FL103178000).

We find a large negative net position of -5000 Billion USD.

To calculate the net position of “participating” households, we use the same proxies as

in Section 1.1: households above the 90th percentile of net worth; households above the 90th

percentile of liquid wealth; households owning a business or some stocks; non hand-to-mouth

households following the definition of Kaplan et al. (2014). Using the 2013 Survey of Consumer

Finances, we compute for each group the average net position in interest-bearing assets as

Certificates of deposit + Savings in bonds + Directly held bonds - Debt. We exclude pensions

and life insurance as these assets are usually not liquid and hence cannot be used for investment.

The weighted average of these net positions is about -160 thousand USD for households above

the 90th percentile of net worth; -135 thousand USD for households above the 90th percentile

of liquid wealth; -145 thousand USD for households owning a business or some stocks; -100

thousand USD for non hand-to-mouth households.
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2 Welfare

2.1 Intertemporal utility of investors

In a steady state, the utility of investors in their investing phase is given by

U =
log(cI) + β log(cS)

1− β2
=

log(βr) + (1 + β) log
(
(1− β)(1− φ)αy

)
1− β2

.

The first term on the numerator reflects consumption smoothing and depends positively on the

real interest rate. The second term reflects the level of the whole consumption path and depend

on output. In the case of autarkic investors, the difference of utility in the liquidity trap and

the cashless steady state is then given by:

(1− β2)(ULT − U cashless) = − log(θrS) + (1 + β)
α

1− α
log((1− φ)β/θ + φθ/β)

= − log(1− θ∆) + (1 + β)
α

1− α
log
(

1− (θ − β)∆

1 + β/θ − β∆

)
where ∆ is the interest rate gap. Both logarithms are strictly negative when ∆ > 0. The first

term is therefore positive, reflecting better consumption smoothing in the liquidity trap. The

second term is negative, due to lower capital and output. However, the second term is first

order in θ − β, and is likely to be small for any realistic calibration of these parameters, since

they are both close to 1. The first term can be rewritten − log(1− β∆)− log
(
1− (θ−β)∆

1−β∆

)
and

is 0-order in θ−β. Therefore, unless α is very close to 1, the first term should be strictly larger

than the second term.

A similar reasoning applies to the utility of investors in their saving phase.

2.2 Efficient allocations

The following proposition characterizes efficient allocations.

Proposition 1 (Efficient allocations) An allocation {kt+1, c
I
t , c

S
t , c

w
t } satisfying the resource

constraint yt = kt+1 + cIt + cSt + cwt is Pareto efficient if and only if kt+1 = βαyt and cwt+1/c
w
t =

cIt+1/c
S
t = cSt+1/c

I
t = βρt+1 = yt+1/yt.
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Proof. Denote by the superscript 1 (2) the group of investors in their saving (investing) phase

in even (odd) periods. A Pareto-efficient allocation maximizes
∑∞

t=0 β
t(λ1 log c1

t + λ2 log c2
t +

λw log cwt ) under the resource constraint yt = kt+1 + c1
t + c2

t + cwt , where λi, i = 1, 2, w are Pareto

weights associated to both groups of investors and workers which sum to 1. The maximization

can be carried out in two steps. First, maximize (c1
t )
λ1(c2

t )
λ2(cwt )λ

w s.t. Ct = c1
t + c2

t + c3
t in any

period, which gives constant shares of aggregate consumption cit = λiCt. Then, maximize∑∞
t=0 β

t logCt s.t. yt = kt+1 + Ct. This well-known maximization problem has the first-

order condition Ct+1/Ct = βρt+1 = βαkα−1
t+1 and is solved by kt+1 = βαyt. Having individual

consumptions equal to constant shares of aggregate consumption is equivalent to having all

individual consumption grow at the same rate, which is also the rate of output growth.

We can check that for l̄ ≥ l̄max, the steady state is Pareto-efficient and satisfies the charac-

teristics described in Proposition 1.

2.3 Pareto-improving Policy with Additional Policy Instruments

Consider the following additional policy instruments: a capital subsidy γt (such that one unit

of capital is paid 1− γt by investors), a consumption tax ηt (such that one unit of consumption

costs 1 + ηt to consumers), and a corporate tax τ kt paid by S-investors on their profits. With

these additional policy instruments, the (binding) borrowing constraint (3) becomes bt+1 =

φt(1− τ kt+1)ρt+1kt+1 = φt(1− τ kt+1)αyt+1, and Equations (14) and (15) respectively become:

βα(1− τ kt )(1− φt−1)yt =
1

rt+1

[(
(1− τ kt+1)φtα + l̄t

)
yt+1 +mS

t+1

]
, (32)

(1− γt)kt+1 + πt+1m
S
t+1 +

1

rt+1

l̄tyt+1 = β
[(

(1− τ kt )α + l̄t−1

)
yt +mS

t

]
. (33)

Consumption of all three agents follows:

cSt =
1

1 + ηt
(1− β)[α(1− τ kt )yt − bt], (34)

cIt =
1

1 + ηt
(1− β)

[
bt + l̄t−1yt +mS

t

]
, (35)

cwt =
1

1 + ηt

[
Twt
Pt

+
Mw

Pt
+
lwt+1

rt+1

− lwt
]
. (36)
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Finally, the government budget constraint is now:

Mt+1

Pt
+
lgt+1

rt+1

+ τ kt αyt + ηt(c
w
t + cIt + cSt ) =

Mt

Pt
+
Tw

Pt
+ lgt + γtkt+1. (37)

Consider an economy in a liquidity trap steady state at t = −1. Suppose that the gov-

ernment has already implemented an open-market operation to increase debt to the limit of

the cashless equilibrium, such that l̄−1 = l̄T (φ) (using the definitions of Proposition 3) and

mS
0 = 0 in period t = −1. The following Proposition shows that an appropriate debt policy,

together with the three policy instruments mentioned above, can lead to a Pareto-improving

and Pareto-efficient equilibrium from t = 0 on.

Intuitively, this policy consists in increasing debt sufficiently to be in the cashless equilibrium

in all periods. Getting the right level of investment during the transition is done with the capital

subsidy. Engineering transfers from investors to workers is done through a consumption tax

(together with the lump-sum transfers to workers already assumed in the baseline model).

Finally, smoothing investors’ consumption during the transition is done through the tax on

corporate profits.

Proposition 2 (Pareto-efficient policy) Consider constant leverage {φ, l̄w}. Suppose the

economy is initially in a liquidity trap steady state at t = −1 with l̄g−1 + l̄w = l̄T (φ), mS
0 = 0

and zero taxes and subsidies: γ−1 = η−1 = τ k−1 = 0. Define a policy by a sequence {l̄gt , γt, ηt, τ kt }

for t ≥ 0 and suppose that Mt+1 = θMt and that transfers Twt adjust the government budget

constraint (37). There is a policy such that the associated equilibrium:

• is not a liquidity trap (it+1 > 1 for all t ≥ 0),

• is Pareto-efficient as described in Proposition 1,

• Pareto-improves on the initial steady state.

Proof. We provide a proof by construction. Consider arbitrary λ1, λ2, λw in (0, 1) with λ1 +

λ2 + λw = 1.
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Consider now the candidate policy defined in the following way.

1 + ηt =
α(1− β)

1− αβ
l̄−1 + αφ

αλ2
t ≥ 0,

1− τ k0 = φ+
λ1

λ2

( l̄−1

α
+ φ
)
,

1− τ k1 = (1− τ k0 )
φ

1− φ
+

1

1− φ
l̄−1

α
,

τ kt = τ kt−2 t ≥ 2,

γt = τ kt+1 t ≥ 0,

l̄g0 = α(1− τ k0 )
1− 2φ

1− φ
− φ

1− φ
l̄−1 − l̄w,

l̄gt = l̄gt−2 t ≥ 1.

We now show all three statements of the Proposition in turn. First, the equilibrium is

cashless. Indeed, start looking for a cashless equilibrium with ms
t = 0. Plugging the candidate

policy into (32) we get rt+1 = yt+1/(βyt). From the money market equilibrium (16), we have

Pt+1/Pt = θyt/yt+1. As a result, we get a gross nominal rate it+1 = Pt+1rt+1/Pt = θ/β > 1

from Assumption 1, which confirms that we are indeed in a cashless equilibrium.

Second, plugging the candidate policy together with the equilibrium real interest rate

into (33), we get kt+1 = βαyt. Plugging the policy in (34) and (35), we get cIt+1/c
S
t = cSt+1/c

I
t =

yt+1/yt. Consumption growth of workers cwt+1/c
w
t = yt+1/yt follows from the aggregate resource

constraint yt = kt+1 + cIt + cSt + cwt . From Proposition 1, this implies that the equilibrium is

Pareto efficient.

Finally, plugging the policy into (34) and (35) at t = 0 with b0 = φαy0, we get cS0 =

λ1(y0 − k1) = λ1(cS0 + cI0 + cw0 ) and cI0 = λ2(cS0 + cI0 + cw0 ). This implies that λ1, λ2, λw are the

Pareto weights associated to both groups of investors and workers, where the superscript 1 (2)

denotes the group of investors in their saving (investing) phase in even (odd) periods, as in the

proof of Proposition 1. As the choice of these weights was not constrained, it is always possible

to choose them in such a way that all agents get at least the utility they had in the initial

steady state. Therefore, the equilibrium Pareto-improves on the initial steady state.
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3 Extensions

3.1 Bubbles

Consider an infinitely-lived asset in fixed unitary supply with no intrinsic value—a bubble.

Denote zt its relative price in terms of consumption goods. The real return of the bubble as

of time t is zt+1/zt. For the bubble to be traded, this rate of return must be equal to the real

interest rate: zt+1/zt = rt+1. With rt+1 different from 1, the bubble would either asymptotically

disappear or diverge to an infinite value. Then, a bubbly steady state necessarily has a zero real

interest rate: r = 1. With positive long run inflation, 1 > 1/θ, the bubble strictly dominates

money as a saving instrument. Therefore, S-investors would hold the bubble and would not

hold money.1 In the case of autarkic investors, such a bubbly steady state is described by:

z = α[(1− φ)β − φ]y (38)

k = βαy − (1− β)z (39)

where (38) is the Euler equation of savers and (39) the aggregate budget constraint of investors.

As can be seen from equations (19) and (21), the bubbly steady state is formally equivalent

to a liquidity trap steady state with mS = z and θ = 1. The bubble plays the same role as

investor-held money in the liquidity trap, but offers a higher real return. This allows us to

derive the following Proposition.

Proposition 3 (Bubbly steady state with autarkic investors) Suppose 0 < φ < φmax

and θ > 1. Define φB = β/(1 + β) and φK = β2/(θ + β2). We have φB > φT > φK.

(i) If φ ≥ φB, there is a unique cashless steady state as described by Proposition 1.

(ii) If φT ≤ φ < φB, there is a cashless steady state with r = φ/[β(1 − φ)] < 1 and a bubbly

steady state with r = 1.

(iii) If φ < φT , there is a liquidity-trap steady state with r = 1/θ < 1 as described in Proposi-

tion 1 and a bubbly steady state with r = 1.
1With negative long-run inflation, bubbles would be dominated by money and could never arise in equilib-

rium.
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(iv) In the bubbly steady state, the real (nominal) interest rate is given by r = 1 (i = θ), z/y

is decreasing in φ and k is increasing in φ.

(v) Capital and output are strictly lower in the bubbly steady state than in the cashless steady

state. They are lower in the bubbly steady state than in the liquidity-trap steady state

when φK ≤ φ < φT and larger in the bubbly steady state than in the liquidity-trap steady

state when φ < φK.

Proof. Points (i) to (iv) directly follow from Proposition 1 using the formal equivalence between

bubbly steady states and liquidity-trap steady states mentioned in the text. From (38) and

(39), we get k1−α = α
(
β − (1− β)[(1− φ)β − φ]

)
in the bubbly steady state. Comparing this

with the cashless and liquidity trap steady states, we get point (v).

As the Proposition shows, a bubble can help the economy exit the liquidity trap if θ > 1.

The bubble raises the nominal interest rate from i = 1 to i = θ. S-investors then substitute the

bubble for money in their portfolio. For a given money supply, this also reflates the economy

as the price level increases to accomodate the lower money demand.

However, the bubbly steady state is qualitatively similar to a liquidity trap. As with money,

holding the bubble takes out resources from investment and output is lower in the bubbly

equilibrium than in the cashless steady state. In the intermediate case where φT ≤ φ < φB, a

bubble prevents the downward interest rate adjustment that would restore the cashless level of

capital and output. In the case of low leverage φ < φT , bubbles increase the real interest rate,

which may or may not increase capital and output compared to the liquidity trap. A higher

real interest rate decreases the price of liquidity but increases the net liquidity of investors,

with an ambiguous total effect on investment depending on the level of net liquidity. This is

similar to the ambiguous effect of inflation described in Section 4.

3.2 Preference and Growth Shocks

To study the effect of β on output, we make the simplifying assumption of autarkic investors:

l̄ = 0. This is without loss of generality as the investors’ net debt matters only in the cashless

economy. We derive the following Proposition:
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Proposition 4 (Effect of β on the steady state with autarkic investors) Define βT =

θφ/(1− φ) and φmax = 1/2.

If 0 < φ < φmax, then there exists a locally constrained steady state with r < 1/β.

(i) If, additionally, β ≤ βT , then the steady state is cashless.

(ii) If β > βT , then the steady state is a liquidity trap.

(iii) In the cashless steady state, the real interest rate r and the nominal interest rate i are

decreasing in β, mS = 0 and k is increasing in β.

(iv) In the liquidity-trap steady state, the real interest rate r is invariant in β, mS/y is in-

creasing in β and k is increasing in β.

Proof. The proof derives from Lemma 1. Note simply that β > βT is equivalent to φ < φT ,

which defines the liquidity trap steady state. We then derive r, k and mS with respect to β in

the cashless and liquidity trap steady states.

An increase in β makes the long-run interest rate fall, and eventually hit the zero-lower

bound. In both the cashless and liquidity-trap steady states, an increase in β increases the

investors’ propensity to save, which increases the capital stock in the long run. As a result,

whereas an increase in β can explain the emergence of a liquidity trap, it cannot explain the

slowdown in investment. In the presence of trend growth, the same conclusions would hold in

case of a growth slowdown. In particular, with lower trend growth, less investment is required

to keep the capital stock on its trend. Therefore a given amount of saving leads to an upward

shift in the capital intensity of production, and hence in the investment rate.

3.3 Partial Capital Depreciation

We assume here that δ < 1, so that capital depreciates only partially from period to period.

For consistency, we focus on the case where investors are net debtors l̄ ≤ 0. All our results

generalize provided some mild condition on l̄, as shown in the following Proposition:

Proposition 5 (Steady state when entrepreneurs are net debtors) Define φmax(l̄) = (1−

[1− β(1− δ)]l̄/α)/2 and φT (l̄) = (β− [θ− β2(1− δ)]l̄/α)/[θ+ β− (θ2− β2)(1− δ)l̄/α]. If l̄ ≤ 0

and 0 < φ < φmax, then there exists a locally constrained steady state with 0 < r < 1/β.
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(i) If, additionally, φ ≥ φT , then the steady state is cashless.

(ii) If, φ < φT , then the steady state is a liquidity trap.

(iii) In the cashless steady state, the real interest rate r and the nominal interest rate i are

increasing in φ if l̄ > −1/β(1− δ), and increasing in l̄ if l̄ > −1/[1 + β(1− δ)], mS = 0,

k is decreasing in φ and decreasing in l̄ in the neighborhood of l̄ = 0.

(iv) In the liquidity-trap steady state, the real interest rate r and the nominal interest rate i

are invariant in φ and l̄, mS/ρk is decreasing in φ and l̄ and k is increasing in φ and

independent of l̄.

Proof. With partial depreciation, using f(k) = [ρ(k) − (1 − δ)]k/α, we can show that the

dynamic system at the cashless steady state satisfies

rβ(1− φ)ρ(k) = φρ(k) +
l̄

α
[ρ(k)− (1− δ)] (40)

r = βr

[
ρ(k) +

l̄

α

(
1− 1

βr

)
[ρ(k)− (1− δ)]

]
(41)

We derive r∗ as follows. We use (41) to express ρ as a function of r and replace in (40).

This gives P (r) = 0 where P is a second-order polynomial defined by

P (r) = β(1− φ)

[
1 + β(1− δ) l̄

α

]
r2 −

(
φ+

l̄

α

)
r + φ(1− δ) l̄

α

This polynomial admits two roots. We have P (0) = φ(1 − δ) l̄
α
≤ 0 as l̄ ≥ 0 and φ > 0, so it

admits only one positive root, which we then take as our solution for r.

This solution is lower than 1/β as long as P (1/β) > 0. This is equivalent to φ < φmax.

Finally, i = rθ > 0 is guaranteed by P (1/θ) < 0, which implies φ > φT . In that case, the

economy is cashless and follows 40 and 41. This proves result (i). Otherwise, the economy is

in a liquidity trap and follows

β(1− φ)

θ
ρ = φρ+

l̄

α
[ρ− (1− δ)] +

mS

k
(42)

1 = βρ− (θ − β)

(
l̄
α

[ρ− (1− δ)] +
mS

k

)
(43)

12



This proves result(ii).

To establish result (iii), we totally differentiate P with respect to φ . Using the fact that r

is the upper root of P so that P ′(r) > 0 , we can show that r is increasing in φ if and only if

β

[
1 + β(1− δ) l̄

α

]
r2 + r − (1− δ) l̄

α
> 0

This is the case for −1/β(1− δ) ≤ l̄ ≤ 0 as r is positive.

Similarly, we totally differentiate P with respect to l̄. Using the fact that r is the upper

root of P so that P ′(r) > 0, we can show that r is increasing in l̄ if and only if

r − (1− φ)(1− δ)β2r2 − φ(1− δ) > 0

As β2r2 < 1, a sufficient condition is r > 1 − δ. This is the case for l̄ > −1/[1 + β(1 − δ)], as

this guarantees P (1− δ) < 0.

We then express r as a function of ρ using (40) and replace in (41). We find that Q(ρ) = 0

where Q is a second-order polynomial defined by

Q(ρ) = β

[(
φ+

l̄

α

)(
1 +

l̄

α

)
− (1− φ)

l̄

α

]
ρ2−

(
φ+

l̄

α

)[
1 + 2β(1− δ) l̄

α

]
ρ+(1−δ) l̄

α

[
1 + β(1− δ) l̄

α

]

We select the upper root of this polynomial for similar reasons. We thus have

ρ =

(
φ+ l̄

α

) [
1 + 2β(1− δ) l̄

α

]
+

√(
φ+ l̄

α

)2

− φ(1− φ)β(1− δ)
[
1 + β(1− δ) l̄

α

]
2β
[(
φ+ l̄

α

)(
1 + l̄

α

)
− (1− φ) l̄

α

]
We compute Q(1/β) and show

Q(1/β) = −[1− β(1− δ)] l̄
α

[
1− 2φ− [1− β(1− δ)] l̄

α

]

This is positive if l̄ < 0, which implies that ρ < 1/β.

To study the effect of φ on k, we totally differentiate Q with respect to φ. Using the fact

that ρ is the upper root of Q so that Q′(ρ) > 0, we can show that ρ is increasing in φ if and

13



only if

(βρ− 1) + 2
l̄

α
β[ρ− (1− δ)] < 0

For l̄ < 0, βρ < 1. Besides, as the non-negativity on k imposes ρ ≥ 1− δ, then the second term

is also negative in that case. As a result, ρ is increasing in φ, which implies that k is decreasing

in φ.

Similarly, to study the effect of l̄ on k, we totally differentiate Q with respect to l̄. Using

the fact that ρ is the upper root of Q so that Q′(ρ) > 0, we can show that ρ is increasing in l̄

if and only if

[
1 + 2β(1− δ)

(
φ+ 2

l̄

α

)]
ρ− 2β

(
φ+

l̄

α

)
ρ2 − (1− δ)

[
1 + 2β(1− δ) l̄

α

]
> 0

This is the case both for l̄ = 0, for which ρ = 1/β. Therefore, ρ is increasing in l̄ in the

neighborhood of l̄ = 0. Since k is inversely related to ρ, k is decreasing in l̄ in the neighborhood

of l̄ = 0.

To derive result (iv), consider Equations (42) and (43), which describe the liquidity-trap

steady state. They yield

ρ = θ
β2+(θ2−β2)φ

mS

k
=

[
β
θ
(1− φ)− φ− l̄

α

]
ρ+ (1− δ) l̄

α

As θ > β, ρ is decreasing in φ, which implies that k is increasing in φ. We can also see that ρ

and hence k are independent of l̄. Similarly, as i = 1 and r = 1/θ in a liquidity trap, i and r are

independent of φ and l̄. Regarding mS/k, since ρ is decreasing in φ, then mS/k is decreasing

in φ. Finally, since ρ is independent of l̄ and ρ > 1− δ, then mS/k is decreasing in l̄.

3.4 Financial Intermediation

In the benchmark model, money is modeled as outside money directly supplied by the gov-

ernment. However, in practice, cash holdings usually take the form of deposits, which are a

liability of banks, and could in principle be intermediated to capital investment. This extension

shows that this is not the case. At the ZLB, banks are unable to channel deposits to credit
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constrained I-investors for the same reason that savers are unable to do it in the benchmark

model. Instead, banks increase their excess reserves at the central bank.

Consider a simple model of endogenous money. The monetary authority now only controls

base money M0
t+1, which is assumed to be made entirely of banks’ reserves. Total money Mt+1

is made of deposits endogenously supplied by banks. In Equations (8) and (9) of the benchmark

model, money supply Mt+1 has then to be replaced by base money M0
t+1.

There is a unit measure of banks owned by the representative worker. Banks receive a

charter from the government which allows them to issue deposits Mt+1, a zero nominal interest

liability that can be used for transactions in the cash-in-advance constraint of workers. On their

asset side, banks buy central bank reservesM0
t+1 and bonds for a nominal amountMt+1−M0

t+1.

Banks maximize next-period profits, which they rebate (period by period) to households. In

order to limit money creation, the bank charter subjects them to a reserve requirement: their

buying of bonds cannot exceed a fraction µ of the net present value of deposits:2

Mt+1 −M0
t+1 ≤ µ

Mt+1

it+1

.

The market clearing condition for bonds, given by Equation (10) in the benchmark model,

has to be modified to account for bond demand by banks:

bt+1 + lwt+1 + lgt+1 = at+1 + rt+1

Mt+1 −M0
t+1

Pt
. (44)

It is useful to define M̃0
t+1, an indicator of excess reserves of banks, by:

M̃0
t+1 = M0

t+1 −
(
1− µ

it+1

)
Pt(1− α)Yt.

We obviously have M̃0
t+1 = 0 in the cashless equilibrium.3 In the general case, the bond market

equilibrium can be rewritten

bt+1 + lwt+1 + lgt+1 = at+1 + µ
Pt
Pt+1

(1− α)Yt +
MS

t+1 − M̃0
t+1

Pt+1

.

2While the precise form of the reserve requirement does not matter, this expression yields tractable results.
3When it+1 > 1, banks issue as much money and buy as little reserves as they can and the reserve requirement

is binding. Banks’ reserves are then equal to M0
t+1 = (1− µ/it+1)Mt+1 = (1− µ/it+1)(1− α)Ptyt.
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Note that a fraction µ of workers’s money holdings for transaction purposes is channeled by

banks to the bond market. At the zero-lower bound, banks are indifferent between buying

bonds or reserves, the reserve requirement does not bind, and excess reserves M̃0 ≥ 0.

We can now rewrite the main equations of the benchmark model, the Euler equation (14)

and the aggregate budget constraint (15) as

βα(1− φt−1)yt =
1

rt+1

[
(φtα + l̄t)yt+1 − µ

Pt
Pt+1

(1− α)yt +
M̃0

t+1

Pt+1

]
, (45)

kt+1 +
M̃0

t+1

Pt
+ l̄t

yt+1

rt+1

− µ Pt
Pt+1

yt
rt+1

= β

[
(α + l̄t−1)yt − µ

Pt−1

Pt
(1− α)yt−1 +

M̃0
t

Pt

]
. (46)

There are only two changes compared to the benchmark model. First, the net supply of bonds

from the rest of the economy is decreased by the share µ of workers’ deposits lent by banks to

investors: l̄tyt+1 has to be replaced by l̄tyt+1 − µPt/Pt+1(1− α)yt. Second, money holdings by

investors MS is replaced by excess reserves M̃0 at the Central Bank. In this extended model,

the increase in cash holdings by investors at the zero lower bound shows up as an increase in

excess reserves at the Central Bank. Results on the steady state of the benchmark model extend

to the case of endogenous money with the simple change of parameter l̄→ l̄ − µ(1− α)/θ.

3.5 Inefficient saving technology

Suppose there is an inefficient storage technology available to savers with return σ ∈ (θ−1, β−1).

This technology provides an alternative saving instrument to bonds and money holdings. There

is an installation cost: investing a fraction x of saving in this technology only yields a fraction

Ψ(x) that is actually stored, with Ψ twice differentiable, Ψ(0) = 0, Ψ′(0) = 1, Ψ′(1) > 0,

Ψ′(x) > 0, and Ψ′′(x) < 0. For simplicity, we focus on the case of autarkic investors.

Investors in their saving phase choose x to maximize the total return on their saving ρSt+1 =

(1− xt)rt+1 + σΨ(xt). When φ is large enough so that rt+1 ≥ σ, the storage technology is too

inefficient to be used. For lower values of φ, the storage technology starts being used and the

first-order condition with respect to x is rt+1 = σΨ′(xt). The real interest rate decreases with

the use of the inefficient technology. The cashless steady state is described by the following
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equations:

βσ(1− φ)(1− x)Ψ′(x) = φ, (47)

k = βαy − βαy(1− φ)[x− βσΨ(x)], (48)

where (47) replaces the Euler equation and (48) is the aggregate budget constraint of investors.

From (47), it is clear that a lower leverage φ is associated with a higher use x of the inefficient

storage technology, and therefore with a lower interest rate. From (48), this crowds out invest-

ment k in the efficient production technology. It is easy to check that the average productivity

of capital invested in both technologies is decreasing in φ. This negative reallocative effect of

low interest rates on aggregate productivity is similar to the one studied by Buera and Nicolini

(2016).

In a liquidity trap equilibrium, the use of the inefficient technology is pinned down by

inflation: θσΨ′(x) = 1. Then, deleveraging shocks are adjusted by higher real money holdings

which crowd out good capital as in the benchmark case, while leaving investment in inefficient

storage unaffected. The liquidity trap equilibrium is indeed described by:

mS = α

[
(1− x)(1− φ)

β

θ
− φ
]
y, (49)

k = βαy − βαy(1− φ)[x− βσΨ(x)]− (θ − β)mS. (50)

The key result of the benchmark model remains valid: mS/y (k/y) decreases (increases) with φ.

Note that the storage technology puts a strictly positive lower bound to the shadow rate,

contrary to the benchmark model where the shadow rate went to 0 in the limit φ→ 0. Indeed,

setting φ to 0 in (47), we get x = 1, with a corresponding shadow rate rS = σΨ′(1) > 0.

These results are summarized by the following Proposition.

Proposition 6 (Inefficient storage technology) Suppose θ < 1/[σΨ′(1)]. Define φE =

βσ/(1 + βσ) and φTE =
β
(
1−Ψ′−1(1/σθ)

)
θ + β

(
1−Ψ′−1(1/σθ)

) . We have φmax > φE > φTE > 0.

(i) If φE ≤ φ < φmax, there is a unique cashless steady state with x = 0 similar to the one

described by Proposition 1.
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(ii) If φTE ≤ φ < φE, there is a unique cashless steady state with x > 0, where r and k are

increasing in φ, and x is decreasing in φ.

(iii) If 0 ≤ φ < φTE, there is a unique liquidity-trap steady state with r = 1/θ < 1 and x > 0,

where x is invariant in φ, mS/y is is decreasing in φ, and k is increasing in φ.

(iv) The shadow rate rS is increasing in φ. When φ goes to 0, the shadow rate goes to a lower

bound σΨ′(1) corresponding to x = 1.

Proof. We start by deriving Equations (47) to (50). The optimization problem of investors

is the same as in the benchmark model, with the total return ρS replacing the interest rate

r. With log utility, investors still choose to save a fraction β of their wealth. The demand for

bonds and money by saving investors is a fraction (1 − x) of their saving β(1 − φ)αy. In the

cashless steady state, it has to be equal to the supply of bonds by investors φαy/r. Using the

first-order condition with respect to x, r = σΨ′(x), we get (47). In the liquidity trap steady

state, the demand for bond and money has to be equal to the supply of bonds θαy plus real

money holdings θmS, which gives (49).

To get the aggregate budget constraint of investors, note that their aggregate wealth is equal

to αy + σΨ(x)β(1 − φ)αy + mS. The first term is profits from the efficient sector, the second

term is the return of the inefficient storage technology, and the last term is money holdings. The

save a fraction β of this wealth to buy capital k, invest xβ(1− φ)αy in the storage technology,

and acquire money θmS. This gives Equations (48) and (50).

The storage technology is not used as long as the first-order condition with respect to x

is a corner solution: −r + σΨ′(0) ≤ 0. Then, we are in the cashless steady state of the

benchmark model with r = φ/[β(1 − φ)]. With Ψ′(0) = 1, the first-order condition becomes

φ ≥ φE. This proves Point (i). The comparative statics of Point (ii) directly derive from

Equations (47) and (48), together with the first-order condition r = σΨ′(x). Note in particular

that x−βσΨ(x) on the right-hand side of (48) is strictly increasing in x. Indeed, its derivative

is given by 1− βσΨ′(x) > 1− βσ > 0 since Ψ′(x) < Ψ′(0) = 1.

When the inefficient technology is in use, the shadow rate is the one that solves

βrS(1− φ)
(
1−Ψ′

−1
(rS/σ)

)
= φ
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where we have substituted the first-order condition with respect to x in (47). It is decreasing

in φ. For φ = 0, we have x = 1 from (47) and the shadow rate is then rS = σΨ′(1), which

proves Point (iv). The steady state is cashless as long as rSθ > 1. This obtains for φ > φTE,

which ends proving Point (ii).

The comparative statics of Point (iii) are straightforward given Equations (49) and (50)

when x = Ψ′−1(1/θσ).

3.6 Idiosyncratic Uncertainty

In this Appendix we examine a stochastic transition between saving and investing phases. We

assume the following 2-state Markov process for individual investors:

• an investor with no investment opportunity at time t − 1 receives an investment oppor-

tunity at time t with probability ω ∈ (0, 1],

• an investor with an investment opportunity at time t − 1 receives no investment oppor-

tunity at time t.

While investors face some risk at the individual level, they do not face risk at the aggregate

level, as the fraction of investors with investment opportunity is always ω.

A modified aggregate Euler equation of savers Consider an investor i, and denote Ωi
t

her wealth at the beginning of period t. With log utility, her consumption cit is a fraction 1−β

of wealth Ωi
t, and the Euler equation of an (unconstrained) saver is 1/cit = βrt+1 Et[1/c

i
t+1],

which implies 1/Ωi
t = βrt+1 Et[1/Ω

i
t+1]. For an investor in her saving phase in period t, wealth

in period t+1 is given by Ωi
t+1 = ait+1 +M i

t+1/Pt+1. As there is no aggregate risk, Pt+1 is known

in t, so Ωi
t+1 is known in t and we have βΩi

t = Ωi
t+1/rt+1. Aggregating over saving investors, we

get

β

∫
St(i)Ω

i
tdi =

1

rt+1

∫
St(i)[a

i
t+1 +M i

t+1/Pt]di =
1

rt+1

(
at+1 +

MS
t+1

Pt+1

)
(51)

where St(i) is an indicator equal to 1 if investor i has no investment opportunity at time 1 and

0 if she has, and a and MS denote aggregate bond and money holdings by savers, as in the

benchmark model. To compute the left-hand side of (51), note that investors in their saving
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phase at time t are made of a fraction 1 − ω of investors in their saving phase at time t − 1

and all investors in their investment phase at time t− 1. The latter enter period t with wealth

Ωi
t = ρtk

i
t − bit. This implies:

∫
St(i)Ω

i
tdi = (1− ω)

∫
St−1(i)Ωi

tdi+

∫
[1− St−1(i)]Ωi

tdi

= (1− ω)

(
at +

MS
t

Pt

)
+ ρtkt − bt,

where k and b are aggregate capital and aggregate debt of borrowers. As long as ρt > rt, which

will be the case in equilibrium, investors with an investment opportunity will leverage up as

much as possible until they hit their borrowing constraint. Thus, we have bit = φt−1ρtk
i
t, which

aggregates to bt = φt−1ρtkt = φt−1αyt. Substituting these expressions back into Equation (51),

and using the market-clearing condition (10), we find:

β(1− ω)

[
(φt−1α + l̄t−1)yt +

MS
t

Pt

]
+ βα(1− φt−1)yt =

1

rt+1

[
(φtα + l̄t)yt+1 +

MS
t+1

Pt+1

]
. (52)

This equation extends Equation (14) from the benchmark model to the case of idiosyncratic

uncertainty. It only differs by the first term on the left hand side. This term represents demand

for saving instruments at time t from savers that were already savers at time t− 1. The lower

ω, the larger the share of savers, the higher this additional demand for saving instruments

compared to the benchmark model. The term vanishes when ω = 1.

This is the only difference between the extended model and the benchmark. Indeed, we can

aggregate the budget constraints of all investors, regardless of whether they save or borrow, to

get the same aggregate budget constraint (15) as in the benchmark model.

Steady state with autarkic equilibrium This extended model behaves quite similarly to

the benchmark model. Consider for example the case of autarkic investors (l̄ = 0) treated in

Proposition 1 for the benchmark model. In the extended model, the steady state is determined
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by:

β(1− ω)(φαy +mS) + βα(1− φ)y =
1

r
(φαy +mS),

k + (θ − β)mS = βαy.

When β/(θ + ωβ) ≤ φ < 1/(1 + ω), the steady state is cashless with mS = 0, a constant

capital stock k = (βα)1/(1−α) as in the benchmark model, and

r =
φ

β(1− ωφ)
.

A lower ω is associated with a lower interest rate: because there are more savers, channeling

saving to investment is more difficult and requires a lower interest rate compared to the bench-

mark model. The interest rate is still strictly increasing in φ, but dr/dφ is increasing in ω:

with a larger share of savers (i.e. a lower ω), the interest rate is lower but less responsive to φ.

Note also that the upper bound on φ in the cashless equilibrium is larger than φmax = 1/2: it

is easier to have binding borrowing constraints when there are more savers. Likewise, the lower

bound is larger than φT : it is easier to be in the liquidity trap equilibrium when there are more

savers.

When 0 < φ < β/(θ + ωβ), the steady state is a liquidity trap with r = 1/θ, and

k1−α = α
ωβ2 + φ

(
θ2 − β[ωβ + (1− ω)θ]

)
θ − (1− ω)β

,

mS = α

[
(1− ωφ)β − φθ
θ − (1− ω)β

]
y.

A lower ω, that is, a higher share of savers, leads to a stronger demand for money mS/y and

a lower stock of capital k. In the liquidity trap, we get the unusual result that more saving

actually leads to less investment. As in Proposition 1, k is strictly increasing in φ, and mS/y is

strictly decreasing in φ. In addition, dk/dφ is decreasing in ω and d(mS/y)/dφ is increasing in

ω. A larger share of savers (i.e. a lower ω) implies steeper slopes of k and mS/y with respect

to φ.

Overall, the results we have in the benchmark model become stronger when investment
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opportunity arrive randomly to saving investors instead of in deterministic way.

3.7 Nominal Government Bonds

We have assumed so far that government bonds were issued in real terms. In reality though, a

large share of government bonds are nominal. In our deterministic setting, assuming that bonds

are nominal instead of real is innocuous, but the capacity of producing real saving instruments

by issuing nominal bonds is somehow hampered in the liquidity trap as nominal bonds generate

inflation.

In the cashless case, prices are determined by the stock of money through a classical quantity

equation. Indeed, the money equilibrium (16) becomes P = θM/(1 − α)y when MS = 0.

Therefore, for a given level of money M , the amount Lg of outstanding nominal bonds has no

effect on the price level and directly determines the amount of real debt lg = Lg/P . A 1%

increase in nominal debt then translates into a 1% increase in real debt.

This is no longer true in the liquidity trap, as prices are now determined by the total stock

of government nominal liabilities. From Equation (27), we now have P = θ(M+Lg)/[(1−α)y+

θ(s− l̄w)]. Because the market for money merges with the market for bonds, Lg is inflationary,

just like money. However, the increase in prices following an increase in nominal debt, for

M constant, is less than proportional, so the increase in nominal debt is not fully offset by

the increase in prices. A 1% increase in nominal debt then does translate into an increase of

real debt, though by less than 1%. The assumption of real bonds is therefore without loss of

generality.

3.8 Sticky Wages, Employment, and Output

3.8.1 Labor market with Calvo wage-setting

This section extends the model to a New Keynesian framework with sticky wages and endoge-

nous labor supply. Workers supply labor ht to a unit measure of employment agencies which

produce differentiated labor and engage in monopolistic competition. Agency i transforms hi,t

units of homogenous labor into Hi,t units of variety i with nominal wage Wi,t. Employment

agencies are owned by workers and transfer their profits to them period by period. A com-
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petitive sector then aggregates those differentiated varieties of labor into composite labor Ht

with production function Ht =
[∫

H
ε−1
ε

i,t di
] ε
ε−1

. The corresponding aggregate nominal wage is

Wt =
[∫
W 1−ε
i,t di

] 1
1−ε . Firms then hire this composite labor to produce yt = F (kt, Ht).

Workers

The representative worker has a utility function Uw
t = Et

∑∞
s=0 β

su(cwt+s, ht+s) and is subject to

the budget constraint

cwt +
Mw

t+1

Pt
+ lwt = wtht +Dt +

Mw
t

Pt
+
Twt
Pt

+
lwt+1

rt+1

, (53)

where wt is the real wage paid to workers by employment agencies. Compared to Equation (4),

this budget constraint adds dividends Dt paid by employment agencies (which can be negative)

as a source of income. Workers are also subject to the borrowing constraint (6) and the cash-

in-advance constraint.

Denote respectively λt, µt, and γt the Lagrange multipliers on the budget constraint, the

cash-in-advance constraint, and the borrowing constraint. Maximization implies the following

first order conditions:

u′c(c
w
t , h

w
t ) = λt + µt,

−u′h(cwt , ht) = wtλt,

λt = β
Pt
Pt+1

(λt+1 + µt+1),

γt = λt + µt − βrt+1(λt+1 + µt+1).

We can show that µt = γt + (it+1 − 1)λt. This implies that the cash-in-advance constraint is

always binding, even at the zero lower bound, as long as the borrowing constraint is binding,

23



which we assume throughout. The optimal decision by the worker is then given by:

cwt =
Mw

t + Twt
Pt

+ lwt+1 − rtlwt (54)

−u′h(cwt , ht) = wtλt (55)

lwt+1 = rt+1l
w
t+1, (56)

with

λt = β
Pt
Pt+1

u′c(c
w
t+1, ht+1).

Employment agencies

Employment agencies are subject to a nominal friction, namely Calvo wage-setting. In each

period, agencies can only reoptimize their wage Wi,t with probability 1−η. With probability η,

agencies simply adjust their nominal wage of the preceding period by the gross rate of steady

state inflation θ: Wi,t = θWi,t−1. We make the usual assumption that agencies receive a subsidy

τ per unit of output, financed out of their profits by a lump sum tax. Later, we will set the

subsidy to τ = (ε − 1)−1 to offset the distortion from monopolistic competition in the steady

state. This assumption, together with wage indexation, makes sure that the steady state of

this model is identical to a flexible wage economy without monopolistic employment agencies.

Consider agency i. It faces a demand for its differentiated labor Hi,t =
(
Wi,t

Wt

)−ε
Ht. With

probability η, it cannot reoptimize its wage Wi,t. Then, Wi,t = θWi,t−1 and the associated value

function is given by

V S
i,t(Wi,t) = λt

(
(1 + τ)

Wi,t

Pt
− wt

)
Hi,t + βλt+1

(
ηV S

i,t(θWi,t) + (1− η)V R
i,t+1

)
where V R is the value of reoptimizing the nominal wage. It is given by:

V R
i,t = max

Wi

λt

(
(1 + τ)

Wi

Pt
− wt

)
Hi,t + βλt+1

(
ηV S

i,t(θWi) + (1− η)V R
i,t+1

)
,

where the maximization is subject to the demand for labor Hi,t. The optimal reset wage W ∗
t is
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given by:

W ∗
t =

Γ1
t

Γ0
t

Pt (57)

where

Γ0
t = λtHt + βη

(
Wt+1

θWt

)ε
θPt
Pt+1

Γ0
t+1,

Γ1
t = λtHtwt + βη

(
Wt+1

θWt

)ε
Γ1
t+1,

where we have set the subsidy to τ = (ε− 1)−1.

Aggregating across agencies, we get the evolution of the nominal wage of composite laborWt:

Wt =
[
η(θWt−1)1−ε + (1− η)(W ∗

t )1−ε] 1
1−ε . (58)

The aggregate demand for homogeneous labor by employment agencies is
∫
Hi,tdi = ∆tHt with

∆t =
∫ (Wi,t

Wt

)−ε
di capturing wage dispersion across agencies. Market clearing on the labor

market yields:

∆tHt = ht. (59)

The evolution of price dispersion is given by

∆t = η
( Wt

θWt−1

)ε
∆t−1 + (1− η)

(W ∗
t

Wt

)−ε
. (60)

Finally, the aggregate dividends received by workers are given by Dt = WtHt/Pt − wtht.

To close the model, the return paid by firms to investors is now ρt = αkα−1
t H1−α

t + (1− δ)

and the real wage paid by firms to employment agencies is given by

Wt

Pt
= (1− α)

(
kt
Ht

)α
. (61)

Cashless dynamics In cashless equilibria, the model can be log-linearized to get a standard

New Keneysian framework. For simplicity, consider the case of autarkic investors. Denoting x̃t

the log-deviation from an initial steady state associated with φt = φ0, and choosing separable
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preferences for workers u(c, h) = log c− h1+σ−1
/(1 + σ−1), we get:

ỹt = ỹt+1 −
[̃
it+1 − π̃t+1 −

( φ0

1− φ0

φ̃t−1 + φ̃t

)
︸ ︷︷ ︸

natural rate

]
, (62a)

π̃wt = βπ̃wt+1 +
(1− η)(1− βη)

η

[
π̃t+1 + ỹt+1 +

σ−1

1− α
(ỹt − αk̃t)−

α

1− α
(k̃t − ỹt)

]
, (62b)

π̃wt = π̃t +
α

1− α
[(k̃t − ỹt)− (k̃t−1 − ỹt−1)] (62c)

k̃t+1 = ỹt (62d)

π̃t = −(ỹt − ỹt−1), (62e)

where π̃ is inflation, and π̃w nominal wage inflation. In the cashless equilibrium, the model

behaves similarly to a conventional new-keynesian model: (62a), the log-linearized version of

the Euler equation, is the standard new-keynesian IS curve, where the deleveraging shock shows

up as a natural rate shock; (62b) is the new-keynesian Phillips curve for wages; (62c) is the

relation between wage and price inflation; (62d) is the log-linear version of (15) with mS = 0;

and (62e) is implied by the constant money growth rate.

Replacing our assumption of a constant money growth rule by a more usual Taylor rule is

straightforward. For example, it could be replaced by

ı̃t+1 = φ̃t +
φ0

1− φ0

φ̃t+1 + ψπ̃t (63)

where the first two terms represent the log-deviation of the natural rate from the initial steady

state.

3.8.2 The augmented IS curve

We derive our augmented IS curve by substituting the money market equilibrium (16) into the

Euler equation of savers (14):

βα(1− φt−1)PtYt︸ ︷︷ ︸
nominal demand

for assets by savers

+ (1− α)PtYt︸ ︷︷ ︸
money demand

by workers

= (φtα + l̄t)
Pt+1Yt+1

it+1︸ ︷︷ ︸
nominal supply of bonds

+ Mt+1︸ ︷︷ ︸
money
supply

. (64)
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This relationship equates the total demand for assets to the total supply of assets in the econ-

omy. When i > 0, money and bond markets operate independently. Indeed, (16) becomes a

quantity equation Mt+1 = (1 − α)Ptyt. The terms related to money demand and supply then

drop from Equation (64), which simply becomes an equality between the demand for bonds by

savers and the supply of bonds, i.e. an IS curve. Using the notation x̃t for log-deviations, it

can be rewritten as the familiar IS curve of the New-Keynesian model, with the deleveraging

shocks showing up as a natural rate shock:

ỹt = ỹt+1 −
[
ı̃t+1 − π̃t+1 −

( φ0

1− φ0

φ̃t−1 +
αφ0

αφ0 + l̄0
φ̃t +

l̄0
αφ0 + l̄0

l̃t

)
︸ ︷︷ ︸

natural rate

]
,

where π̃ is log-linearized inflation and the subscript 0 in l̄0 and φ0 refers to values in the

initial steady state. As in the New Keynesian model, monetary policy is able to fully offset

deleveraging shocks as long as the economy does not hit the ZLB.

When it+1 = 1, the simple quantity equation of the cashless dynamics ceases to hold, bonds

and money are perfect substitutes and their corresponding markets merge. As in the standard

New Keynesian model at the ZLB, a deleveraging shock (a negative shock to the natural rate)

has to be accommodated by a drop in nominal output, which decreases the demand for assets.

However, there is a noticeable difference: here, money supply Mt+1 appears explicitly as a

component of the asset supply. An increase in money supply Mt+1 can therefore make the

adjustment much easier.

To see this, iterate Equation (64) forward:

[(βα(1− φt−1) + 1− α)]PtYt =
∞∑
s=0

[
s−1∏
j=0

θ(αφt+j + l̄t+j)

βα(1− φt+j) + 1− α

]
Mt+1. (65)

With constant values of φ and l̄, the ratio of money supply to nominal output quickly converges

(after one period) to Mt+1/(PtYt) = [βα(1− φ)− θ(αφ+ l̄) + 1− α]. The apparent velocity of

money decreases after a deleveraging shock on φ or l̄. If prices are very sticky and the stock of

money does not change, then a deleveraging shock is fully absorbed by a drop in real output,

until prices have adjusted enough to provide the desired real money holdings. However, an

appropriate increase in money supply can potentially offset this transitory effect of the shock.
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Table 1: Calibration
Parameter Value

β 0.94
δ 0.10
α 0.33
η 0.75
ε 13
σ 1

Calibration The model is calibrated as described in Table 1. We define a period to be a

year. All parameters are standard, except the discount rate β. Indeed, in the cashless autarkic

steady state of this model, the inverse of the discount rate is equal to the rate of return on

capital, not to the interest rate r. We set β to match a rate of return of 6 percent per year

annually.

3.8.3 Adjustment at the ZLB

Figure 3 represents the response of the sticky wage model (with partial depreciation of capital

δ < 1) to a deleveraging shock on investors in the liquidity trap, in the case of autarkic investors.

Here we assume a constant money supply, with θ = 1. In period 0, the economy is in an initial

steady state with φ = φT , that is, at the limit of the ZLB. In period 1, φ decreases permanently

and unexpectedly by 1 percent. Outside of the ZLB, real variables would not react at all to

such a shock, which would be entirely accommodated by a drop in the nominal interest rate i.

The adjustment process is completely different in the liquidity trap.

Consider first the case of flexible wages, represented by the thin black line. When the shock

hits, S-investors start demanding money (panel b) and the equilibrium adjustment comes from

a drop in the price level (panel f). This works through a Pigou-Patinkin effect: the lower price

level increases workers’ real money holdings and makes them consume more, exchanging some of

their money against goods to S-investors who want to hoard cash. This flexible price dynamics

is different from models with a representative agent such as Krugman (1998) or models of

moneyless economies such as Eggertsson and Krugman (2012): in these works, there is no

Pigou effect and the price level has to decrease enough to generate inflation expectations that
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Figure 3: Transitory dynamics after a permanent tightening of the borrowing constraint at the
ZLB. Thick red line: sticky wages. Thin black line: flexible wages. Dashed blue line: sticky
wages with a permanent monetary expansion when the shock hits. All variables are relative
deviation from initial steady state, in percent, except rates of return, inflation andM s/M which
are in absolute deviation from initial steady state, in percent.

overcome the ZLB. By contrast, with heterogeneous agents and an explicitly modeled money

demand, the price decrease has distributional effects which dampens the effect of the shock.

Consider now the case of sticky wages, represented by the thick red line in Figure 3. Because

of staggered contracts, the nominal wage, and therefore the price level Pt, can only adjust

gradually after the shock hits (panel f), triggering a long lasting deflationary process which

raises the interest rate (panel g). Absent the drop in the price level, adjustment comes instead

from lower employment and a lower output (panels d and e): total output falls because worker

consumption cannot offset the fall in investment. With a lower production, capital accumulation

drops sharply at impact (panel c). The demand for loans by I-investors is negatively affected

by expected deflation, which raises the real interest rate, and by the lower expected return

on capital (panel a). With a lower supply of saving instruments by I-investors, S-investors

increase their demand for money even more than with flexible prices. As time goes by and

prices gradually adjust, employment and output increase back to their flexible-price level and

the economy converges to the liquidity trap steady state.
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Therefore, with sticky wages, a deleveraging shock large enough to move the economy to

the ZLB, creates a negative output gap in the short run, as in the existing New Keynesian

literature. Contrary to that literature, the economy stays at the ZLB with a lower capital stock

and lower level of output, even after wages have adjusted and the output gap has closed.

3.8.4 Alternative monetary policy

Consider now a monetary expansion taking the form of transfers to workers. In the simulation

represented by the dashed blue line, the government increases M once and for all when the

shock hits. The increase is calibrated so that the nominal wage converges back to its initial

value in the new steady state. As the figure shows, the resulting dynamics of real variables is

very close to the dynamics with flexible wages. By increasing money supply, monetary policy

substitutes to the fall in the price level that would obtain with flexible prices. Workers receiving

monetary transfers feel richer exactly as they would with a lower price level. As a result they

increase their consumption and sustain a higher level of output.

This result stands in sharp contrast to existing work, for instance Krugman (1998), where

money creation taking the form of transfers has no effect at the ZLB with pre-set prices (see

footnote 11 of this work). It comes from the non-ricardian structure of the model, which gives

rise to the Pigou-Patinkin effect described above. However, if a policy of monetary transfers

can be very effective in closing the output gap in the short-run of this model, it has no effect

in the long run and therefore cannot prevent the long term output losses.

Because the composition of government liabilities at the ZLB does not matter, an increase in

transfers to households financed by government debt would have the same effect as a monetary

expansion.
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