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1 Additional details on asymmetric distributions

The random vector X is distributed as a GH asymmetric t distribution if its joint density is
given by (McNeil, Frey, and Embrechts, 2005):

f(x) = c
K ν+n

2

(√
(ν + φ(x))(γ′Σ−1γ)

)
exp

(
(x−m)

′
Σ−1γ

)
(
√

(ν + φ(x))(γ′Σ−1γ))−
ν+n
2 (1 + φ(x)/ν)

ν+n
2

, (1)

where φ(x) = (x−m)
′
Σ−1(x−m), Kλ(x) is the modified Bessel function of the third kind, and

the normalizing constant is given by: c = (21− ν+n
2 )/((νπ)n/2Γ(ν/2)|Σ|1/2). This distribution

is obtained from the GH distribution when the mixing variable W is drawn from an inverse
gamma distribution, Ig (ν/2, ν/2).

The random vector X is distributed as a non-central t (NCT) distribution if its joint density
is given by (Kshirsagar, 1961; Kotz and Nadarahjah, 2004):

f(x; ξ) =
Γ((ν + n)/2)

(νπ)n/2Γ(ν/2)|Σ|1/2
exp

(
−1

2
γ
′
Σ−1γ

)(
ν

ν + φ(x)

)(ν+n)/2

×
∞∑
k=0

2k/2Γ((ν + n+ 2)/2)

k!Γ ((ν + n) /2)

(
(x−m)

′
Σ−1γ√

ν + φ(x)

)k

.

We denote this process by X ∼ nctn (m, γ, ν, Σ) . The marginal distributions of X are given by
Xi ∼ nct1 (mi, γi, ν,σ2

i ), where σ2
i = Σii. The k-th non-central moment of X̃i = (Xi − mi) is

E[X̃k
i ] = νk/2E[χ−kν ]E[(γi + Zi)

k], where Zi ∼ N(0,σ2
i ).

The moments of a χν distributed variable are given by E[χkν ] = 2k/2Γ ((ν + k) /2) /Γ (ν/2),
so that:

E[χ−1
ν ] =

1

21/2

Γ ((ν − 1) /2)

Γ (ν/2)

E[χ−2
ν ] =

1

2

Γ ((ν − 2) /2)

Γ (ν/2)
=

1

ν − 2

E[χ−3
ν ] =

1

23/2

Γ ((ν − 3) /2)

Γ (ν/2)

E[χ−4
ν ] =

1

22

Γ ((ν − 4) /2)

Γ (ν/2)
=

1

(ν − 2)(ν − 4)
.
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The first four non-central moments of X̃i are given by:

M1[X̃i] = E[X̃i] =
(ν

2

)1/2 Γ ((ν − 1) /2)

Γ (ν/2)
γi,

M2[X̃i] = E[X̃2
i ] =

ν

ν − 2
(σ2

i + γ2
i ),

M3[X̃i] = E[X̃3
i ] =

(ν
2

)3/2 Γ ((ν − 3) /2)

Γ (ν/2)

(
γ3
i + 3σ2

i γi
)

,

M4[X̃i] = E[X̃4
i ] =

ν2

(ν − 2) (ν − 4)

(
γ4
i + 6γ2

i σ
2
i + 3σ4

i

)
.

The variance, skewness, and kurtosis are then defined as:

V [X̃i] = M2[X̃i]−M1[X̃i]
2,

S[X̃i] = E

[
µ3[X̃i]

V [X̃i]3/2

]
= E[X̃i]

[
ν (2νσ2

i − 3σ2
i + γ2

i )

(ν − 2) (ν − 3)
− 2V [X̃i]

]
/V [X̃i]

3/2,

K[X̃i] = E

[
µ4[X̃i]

V [X̃i]2

]
=

[
ν2 (3σ4

i + 6γ2
i σ

2
i + γ4

i )

(ν − 2) (ν − 4)

−E[X̃i]
2

(
ν [(ν + 1) γ2

i + 3 (3ν − 5)σ2
i ]

(ν − 2) (ν − 3)
− 3V [X̃i]

)]
/V [X̃i]

2,

where µk[X̃i] = E[(X̃i −M1[X̃i])
k] denotes the k-th central moments of X̃i. Co-moments can

be obtained using the following relations. The (r, s)-th non-central co-moment of X̃i is given
by:

E[X̃r
i X̃

s
j ] = ν(r+s)/2E[χ−(r+s)

ν ]E[(γi + Zi)
r (γj + Zj)

s].

From the joint normality of Z, we know that E[ZiZj] = σij, E[ZiZjZk] = 0, and E[ZiZjZkZl] =
σijσkl + σikσjl + σilσjk. Therefore, the last term on the right-hand-side of E[X̃r

i X̃
s
j ] is defined

as follows for r + s = 2, 3, and 4:

E[(γi + Zi) (γj + Zj)] = γiγj + σij,

E[(γi + Zi) (γj + Zj) (γk + Zk)] = γiγjγk + γiσjk + γjσik + γkσij,

E[(γi + Zi) (γj + Zj) (γk + Zk) (γl + Zl)] = γiγjγkγl + γiγjσkl + γiγkσjl + γiγlσjk

+γjγkσil + γjγlσik + γkγlσij + σijσkl + σikσjl + σilσjk.
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The first non-central co-moments of X̃ are then given by:

E[X̃iX̃j] =
ν

ν − 2
(γiγj + σij),

E[X̃iX̃jX̃k] =
(ν

2

)3/2 Γ ((ν − 3) /2)

Γ (ν/2)
(γiγjγk + γiσjk + γjσik + γkσij) ,

E[X̃iX̃jX̃kX̃l] =
ν2

(ν − 2) (ν − 4)
(γiγjγkγl + γiγjσkl + γiγkσjl + γiγlσjk + γjγkσil

+γjγlσik + γkγlσij + σijσkl + σikσjl + σilσjk),

from which we can easily deduce the covariance, co-skewness, and co-kurtosis.

The NCT is able to capture rather large asymmetry in asset returns. Figure 1 shows the
range of skewness and kurtosis that can be captured by the NCT. The maximal range is given
by S2 < K − 1. For the NCT, the minimum kurtosis is 3, corresponding to normality. Then as
the kurtosis increases, larger and larger levels of skewness can be reached.

Second, the NCT is able to generate rather general patterns describing the dependence
between the processes. As an illustration, Figure 2 compares the contour plot for the NCT
with the GH asymmetric t distribution studied by Mencia and Sentana (2009). For purposes
of comparison, the same parameters are used for both distributions: ν = 5, ρ = 0.5, together
with γ = (−1,−1)′ and γ = (1,−1)′. We observe that the NCT has a less extreme behavior in
the tails than the asymmetric t distribution. As it appears clearly from top figures, the NCT
distribution generates less lower-tail dependence and more upper-tail dependence, such that
it produces more balanced levels of tail dependence. As it is shown below, the NCT allows
calibrating the magnitude of the tail dependence on both sides of the distribution.
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Figure 1: Domain of definition of the NCT
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Figure 2: Countour plot of the GH Asymmetric t and the NCT distributions
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2 Proof of Theorem 2

This theorem is presented in Gudendorf (2008). We adopt notations close to those already
used in Banachewicz and van der Vaart (2008). F1 and F2 denote the marginal cdfs of X1 and
X2, F−1

1 and F−1
2 the corresponding generalized inverse functions, f1 and f2 the pdfs, and f1,2

the joint pdf of (X1,X2). To determine the TDC of the NCT distribution, we consider the
following random variables:

X1 =
γ1 + Z1

S/
√
ν

and X2 =
γ2 + Z2

S/
√
ν

, (2)

where (Z1,Z2) is a bivariate normal vector with means 0, variances 1, and correlation ρ, and
S2 is a random variable distributed as a χ2

ν . The conditional distribution of Z1 given Z2 = z2

is normal with mean ρz2 and variance 1− ρ2. It can be seen as the distribution of the random
variable (ρz2 +

√
1− ρ2 Y ), where Y is a standard normal variable, independent of Z2 and S.

Last, we use the notation: f(x) � g(x) for x→ a if f(x)/g(x)→ 1 as x→ a.

Defining g(x) = F−1
1 ◦ F2(x), using the notation x = F−1

2 (1− u), and relying on l’Hôpital’s
rule, we can rewrite the right tail coefficient as:

λ+ = lim
u↓0

Pr[F1(X1) ≥ 1− u |F2(X2) ≥ 1− u] = lim
x→+∞

Pr[X1 ≥ F−1
1 ◦ F2(x)|X2 ≥ x]

= lim
x→+∞

Pr[X1 ≥ g(x),X2 ≥ x]

Pr[X2 ≥ x]
= lim

x→+∞

∫∞
g(x)

∫∞
x
f1,2(s, t)dt ds

Pr[X2 ≥ x]

= lim
x→+∞

∫∞
g(x)

f1,2(s,x)ds+
∫∞
x
f1,2(g(x), t)dt g

′
(x)

f2(x)

= lim
x→+∞

(
Pr[X1 ≥ g(x)|X2 = x] + Pr[X2 ≥ x|X1 = g(x)]

f1(g(x))g′(x)

f2(x)

)

= lim
x→+∞

(Pr[X1 ≥ g(x)|X2 = x] + Pr[X2 ≥ x|X1 = g(x)]) . (3)

The last equality comes from the fact that, using the formula for the differentials of inverse
functions and the chain rule, we have:

g′(x) = (F−1 ◦ F2)
′
(x) = (F−1

1 )
′ ◦ F2(x)F

′

2(x) =
1

F
′
1(F−1

1 ◦ F2(x))
f2(x) =

f2(x)

f1(g(x))
.

It is easier to work with expression (3) than with the original definition of the right tail
coefficient, as we can work immediately with the conditional distributions of X1 and X2. We
now exploit the fact that the random variables X1 and X2 are the quotient of a normal variable
over a chi-square variable.

Preliminary results.

For the sake of comprehension, the proof is divided into three preparing lemmas and the
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main proof. All three lemmas given below are concerned with the asymptotic expansion of
the function g(·). The first lemma prepares the field for the following ones and is taken from
Banachewicz and van der Vaart (2008).

Lemma 1. Let F be a cdf of a distribution on [0,∞) and F−1 its quantile function.

1. If 1− F (x) � cx−k as x→∞, then F−1(1− u) � (c/u)1/k as u ↓ 0.

2. If F (x) � cxk as x→ 0 for some k > 0, then F−1(u) � (u/c)1/k as u ↓ 0.

3. If 1−F (x) � cxke−γx as x→∞ for some γ > 0, then F−1(1−u) � − log(u)/γ as u ↓ 0.

Proof : See Banachewicz and van der Vaart (2008).

Lemma 2. As x→ +∞:

g(x) � cγ1,γ2 x,

with cγ1,γ2 =
(
dγ1
dγ2

)1/ν

and dγ = νν/2−1e−γ
2/2

√
πΓ(ν/2)

∑∞
k=0 Γ

(
ν+k+2

2

) (
√

2γ)k

k!
.

Proof. Let define c = vν/2e−γ
2/2

√
πΓ(ν/2)

. Then we have from the NCT distribution:

1− F1(x) = c

∫ ∞
x

(ν + t2)−(ν+1)/2

∞∑
k=0

Γ

(
ν + k + 2

2

)
(
√

2γ1)k

k!

(
t2

ν + t2

)k/2
dt

� c

(
∞∑
k=0

Γ

(
ν + k + 2

2

)
(
√

2γ1)k

k!

)∫ ∞
x

t−(ν+1)dt as x→∞

= dγ1

[
−t
−ν

ν

]∞
x

= dγ1 x
−ν .

Using point (1) of Lemma 1 above, we find that F−1
1 (1 − u) = d

1/ν
γ1 u−1/ν , as u ↓ 0. We can

now calculate the asymptotic expression for g(x):

g(x) = F−1
1 ◦ F2(x) � d1/ν

γ1
(dγ2x

−ν)−1/ν =

(
dγ1
dγ2

)1/ν

x = cγ1,γ2 x. �

Lemma 3. As x→ +∞, the asymptotic distribution for S̃2 = X2
2S

2/ν conditional on X2 = x

is given by:

pS̃2|X2=x(t) ∝ t
ν+1
2
−1 exp

(
−1

2

(
t1/2 − γ2

)2
)

. (4)
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Proof. By Bayes’ rule, the conditional density of S2|X2 = x is: pS2|X2=x(t) ∝ pX2|S2=t(x) ×
pS2(t). As Z2 = X2

√
S2/ν − γ2 is distributed N(0, 1), we obtain that, conditionally on S2 = t,

X2 is normally distributed with mean γ2

√
ν/t and variance ν/t. It follows that:

pS2|X2=x(t) ∝
√
t

ν
exp

(
−1

2

t

ν

(
x− γ2

√
ν/t
)2
)
tν/2−1 exp

(
− t

2

)
∝ t

ν+1
2
−1 exp

(
−1

2

t

ν
(x2 + ν)

)
exp

(
γ2ν

−1/2t1/2x
)

exp

(
−1

2
γ2

2

)
.

Using the relation S̃2 = X2
2S

2/ν, letting x tend to +∞, and regrouping terms, we deduce that
the density of S̃2 conditional on X2 = x is asymptotically proportional to:

pS̃2|X2=x(t̃) ∝ t̃
ν+1
2
−1 exp

(
−1

2

(
t̃1/2 − γ2

)2
)

,

as x→ +∞. In the following, we denote this distribution by gν+1,γ2(t) ≡ pS̃2|X2=x(t). �

In the main proof, we also use the following approximations. Let x be a realization of X2

and s2 be a realization of S2. Then, the equation x2s2/ν = t has the unique positive solution
s = ν1/2t1/2x−1, for x > 0. Let z2 be a realization of Z2 and x be a realization of X2. We
deduce from the definition of X2 that z2 = ν−1/2xs− γ2.

Proof of Theorem 2. Let z2 and s be realizations of Z2 and S. For the right tail coefficient,
we start with the first element on the right-hand-side of equation (3):

lim
x→+∞

Pr[X1 ≥ g(x)|X2 = x] =

= lim
x→+∞

∫
Pr

[
γ1 + Z1

sν−1/2
≥ g(x)|X2 = x, S̃2 = t

]
gν+1,γ2(t)dt

= lim
x→+∞

∫
Pr
[
ρz2 +

√
1− ρ2Y ≥ ν−1/2g(x)s− γ1|X2 = x, S̃2 = t

]
gν+1,γ2(t)dt

= lim
x→+∞

∫
Pr

[
Y ≥ ν−1/2g(x)s− γ1 − ρ(ν−1/2xs− γ2)√

1− ρ2

]
gν+1,γ2(t)dt

= 1− lim
x→+∞

∫ ∞
0

Φ

(
ν−1/2s(g(x)− ρx)− γ1 + ργ2√

1− ρ2

)
gν+1,γ2(t)dt.

We can exchange the order of limit and integral and replace the asymptotic approximations
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found above in the normal cdf, so that we obtain:

lim
x→+∞

Pr[X1 ≥ g(x)|X2 = x] = 1−
∫ ∞

0

Φ

(
ν−1/2sx(cγ1,γ2 − ρ)− γ1 + ργ2√

1− ρ2

)
gν+1,γ2(t)dt

= 1−
∫ ∞

0

Φ

(
t1/2(cγ1,γ2 − ρ)− γ1 + ργ2√

1− ρ2

)
gν+1,γ2(t)dt.

The second part of equation (3) is obtained in a similar way. It is easy to establish that,
for large values of x, an asymptotic approximation for s is s = ν1/2t1/2g(x)−1 and that z1 =
ν−1/2g(x)s− γ1. The density appearing in the integral has the asymptotic form:

pX2
1S

2/ν|X1=g(x)(t̃) ∝ t̃
ν+1
2
−1 exp

(
−1

2
(t̃1/2 − γ1)2

)
.

Therefore, we deduce:

lim
x→+∞

Pr[X2 ≥ x|X1 = g(x)] = 1− lim
x→+∞

∫ ∞
0

Φ

(
ν−1/2xs− γ2 − ρz1)√

1− ρ2

)
gν+1,γ1(t)dt

= 1−
∫ ∞

0

Φ

(
t1/2(c−1

γ1,γ2
− ρ)− γ2 + ργ1√
1− ρ2

)
gν+1,γ1(t)dt.

Summing the two terms of equation (3) gives the right TDC given in equation (10).�
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3 Additional empirical results

3.1 Model with unfiltered returns

For unfiltered size portfolio return, the NCT provides a good fit of the tail dependence coef-
ficients, but does not pass the goodness-of-fit test for the complete distribution. In contrast,
once returns are filtered for AR-GARCH effects, the NCT reproduces the asymmetry in tail
dependence found in actual data, while at the same time it passes the goodness-of-fit test.

Table 1 reports the parameter estimates of the NCT for unfiltered returns. For each column,
index 1 corresponds to the market return and index 2 to the portfolio return. As the table
reveals, almost all of the asymmetry parameters γi are negative and highly significant. The
asymmetry of the market return, γ1, is in the range (−0.09;−0.05). For the portfolio returns,
the asymmetry is more pronounced for small firms and past winners and is less pronounced
for large firms and past losers. We also observe that the degree of freedom, ν, is low for all
pairs, ranging from 2.5 to 3.7. This result suggests that the estimated joint distribution is
not consistent with a finite kurtosis and (in some cases) a finite skewness, due to unaccounted
GARCH effects. Last, the correlations with the market innovation are between 0.78 and 0.99.
They are close to the sample correlations reported in Table 1.

The table reports goodness-of-fit test statistics based on hit regressions proposed by Christof-
fersen (1998) and extended by Patton (2006). The hit test compares the theoretical and empir-
ical number of realizations of pairs of innovations in a set of regions in the unit square. To test
if the hits are time independent, they are regressed on past hits (one day, one week, and one
month past) using ML estimation. Under the null of time independence, all of the coefficients
of past hits are jointly zero for all regions. See Patton (2006) for details. The results reported
in the table clearly demonstrate that the estimated models are not able to fit the data. In all
cases, the p-value of the hit test is equal to 0.

Finally, the table reports the sample and estimated TDC. It reveals that the NCT performs
well in capturing the level of the sample TDC and the sign of the asymmetry between λ− and
λ+. However, the NCT fails at estimating the size of the observed asymmetry. As already
suggested, this failure presumably comes from the inability of the model to capture the time
dependency found in actual returns.

The inability to fit the actual characteristics of the data is illustrated in Figure 3, which
presents the theoretical and empirical number of realizations for some regions of interest in
the unit square, corresponding to the goodness-of-fit test. These regions correspond to [ui <
F1(r1,t) < ui+1,ui < F2(r2,t) < ui+1], with u ∈ [0; 0.05; · · · ; 0.95; 1]. The figure reveals that
the model is unable to reproduce the number of realizations for regions in the center of the
distribution for most portfolios, in particular for large firms and growth firms.

3.2 Unconditional coverage

In this section, we compare the relative coverage of the various models. The models are the
model with unfiltered returns, the model with AR-GARCH filtered returns, and the model
with time-varying correlations. We consider the regions of the bivariate distributions with some
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Table 1: Parameter estimates of the NCT (Unfiltered returns)

Note: This table reports parameter estimates of the NCT distribution and measures of
goodness-of-fit and of tail dependence for unfiltered returns. These measures include: the
log-likelihood of the model; the Hit test statistic of goodness of fit (with p-value in parenthe-
ses); the sample and estimated measures of tail asymptotic dependence, λ(−) and λ(+); and the
t-stat for the difference λ̂(−) − λ̂(+).

Smallest Size 2 Size 3 Size 4 Largest
γ1 -0.074 (0.012) -0.073 (0.015) -0.080 (0.017) -0.075 (0.017) -0.094 (0.015)
γ2 -0.148 (0.012) -0.134 (0.016) -0.134 (0.017) -0.098 (0.017) -0.068 (0.015)
ν 2.904 (0.065) 3.050 (0.071) 3.250 (0.078) 3.300 (0.079) 3.205 (0.076)
σ1 0.352 (0.007) 0.366 (0.007) 0.386 (0.008) 0.393 (0.008) 0.381 (0.008)
σ2 0.315 (0.007) 0.409 (0.008) 0.396 (0.008) 0.390 (0.008) 0.396 (0.008)
ρ 0.798 (0.004) 0.870 (0.003) 0.917 (0.002) 0.955 (0.001) 0.990 (0.000)

− logL 24903 23792 20702 16753 7140
Hit test 660.0 (0.000) 740.1 (0.000) 801.6 (0.000) 728.8 (0.000) 961.9 (0.000)

λ(−) λ(+) λ(−) λ(+) λ(−) λ(+) λ(−) λ(+) λ(−) λ(+)

sample 0.619 0.472 0.665 0.611 0.758 0.712 0.797 0.805 0.905 0.921
estim. 0.557 0.531 0.633 0.612 0.696 0.679 0.772 0.762 0.895 0.890
t(λ(−) − λ(+)) 43.707 20.377 12.760 4.572 0.986

Growth B/M 2 B/M 3 B/M 4 Value
γ1 -0.068 (0.022) -0.072 (0.026) -0.064 (0.023) -0.059 (0.018) -0.061 (0.043)
γ2 -0.060 (0.025) -0.058 (0.025) -0.051 (0.023) -0.051 (0.017) -0.054 (0.045)
ν 3.439 (0.084) 3.322 (0.078) 3.077 (0.070) 2.954 (0.065) 2.982 (0.067)
σ1 0.402 (0.008) 0.402 (0.008) 0.379 (0.007) 0.368 (0.007) 0.367 (0.007)
σ2 0.496 (0.010) 0.400 (0.008) 0.356 (0.007) 0.327 (0.006) 0.393 (0.008)
ρ 0.970 (0.001) 0.967 (0.001) 0.945 (0.001) 0.928 (0.002) 0.893 (0.002)

− logL 15564 15026 17704 19031 22514
Hit test 839.7 (0.000) 689.2 (0.000) 712.0 (0.000) 669.5 (0.000) 627.3 (0.000)

λ(−) λ(+) λ(−) λ(+) λ(−) λ(+) λ(−) λ(+) λ(−) λ(+)

sample 0.751 0.820 0.867 0.805 0.797 0.743 0.727 0.681 0.689 0.627
estim. 0.809 0.802 0.803 0.796 0.755 0.747 0.724 0.715 0.666 0.655
t(λ(−) − λ(+)) 0.962 0.723 0.912 2.109 0.139

Past losers Mom. 3-4 Mom. 5-6 Mom. 7-8 Past winners
γ1 -0.045 (0.010) -0.056 (0.012) -0.053 (0.013) -0.065 (0.019) -0.065 (0.018)
γ2 -0.016 (0.010) -0.026 (0.012) -0.033 (0.012) -0.066 (0.020) -0.130 (0.022)
ν 2.338 (0.046) 2.610 (0.053) 2.868 (0.061) 2.923 (0.065) 2.842 (0.062)
σ1 0.314 (0.006) 0.337 (0.007) 0.366 (0.007) 0.365 (0.007) 0.353 (0.007)
σ2 0.466 (0.010) 0.344 (0.007) 0.343 (0.007) 0.365 (0.007) 0.513 (0.010)
ρ 0.876 (0.002) 0.937 (0.001) 0.960 (0.001) 0.959 (0.001) 0.926 (0.002)

− logL 25773 19008 15783 16196 22089
Hit test 801.0 (0.000) 775.0 (0.000) 728.1 (0.000) 572.4 (0.000) 490.4 (0.000)

λ(−) λ(+) λ(−) λ(+) λ(−) λ(+) λ(−) λ(+) λ(−) λ(+)

sample 0.576 0.583 0.731 0.716 0.793 0.754 0.754 0.785 0.638 0.638
estim. 0.670 0.664 0.753 0.747 0.795 0.790 0.792 0.784 0.728 0.712
t(λ(−) − λ(+)) 8.547 7.644 5.400 7.467 18.391

11



Figure 3: Actual and estimated number of realizations in some regions
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Panel C: Momentum portfolios - Unfiltered returns
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economic interest, i.e., the 20 regions defined by [ui < F(1)(r
(1)
t ) < ui+1,ui <(2) (r

(2)
t ) < ui+1],

with u ∈ [0; 0.05; · · · ; 0.95; 1]. Then, we compute the number of actual observations in each of
these regions in the sample, Ni, where i corresponds to a given region. We also compute the
number of observations found in these regions for a given model, N̂

(m)
i for model m. Finally,

we compute the relative coverage of the model for this region, (N̂
(m)
i −Ni)/Ni.

Figure 3 displays the relative coverage for each of the regions for size portfolios, book-to-
market portfolios, and momentum portfolios, respectively. We observe that the relative coverage
of models with filtered returns is almost always close to the zero line than the relative coverage
of models with unfiltered returns. The model with AR-GARCH filtered and the model with
time-varying correlations are in general much closer to each other. We notice, however, that the
model with time-varying correlations provides a much better fit for book-to-market portfolios
and intermediate momentum portfolios.
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Figure 3: Relative coverage in the regions of interest
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Panel C: Momentum portfolios
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