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1 The Minimum Distance Estimator (MDE)

An alternative estimator, which does not rely on QMLE, has been proposed by Baillie

and Chung (2001) in the context of a GARCH(1,1) process. This minimum distance

estimator (MDE) is motivated by the idea of replicating some properties of the data. A

typical example of such properties is the autocorrelogram of the aggregate squared returns.

The objective of the estimator is then to minimize the distance between the theoretical

autocorrelations and their empirical counterparts. It is described more precisely in the

following definition.

Definition 1 The Minimum-Distance Aggregation-Corrected Estimator MD-ACE(KΛ,

KΦ,Kρ), denoted by θMD
AC = (Λ1, · · · , ΛKΛ

, Φ1, · · · , ΦKΦ
)′, is defined as:

θMD
AC ∈ arg min

θ
(ρ̂− ρ (θ))′W (ρ̂− ρ (θ)) , (1)

where ρ (θ) =
(
ρ1(θ), · · · , ρKρ(θ)

)′
and ρ̂ =

(
ρ̂1, · · · , ρ̂Kρ

)′
denote the first Kρ theo-

retical autocorrelations of an ARMA(KΛ, KΦ) process and their empirical counterparts,

respectively, and W is a weighting matrix. The constant term is estimated by Ωp =

(1−
∑KΛ

k=1 Λk)E [Xp,t].

A usual choice for the weighting matrix W is a consistent estimate of the inverse of the

covariance matrix of ρ̂. The theoretical autocorrelations ρ (θ) are obtained using the ap-

proach described in Brockwell and Davis (1991, section 3.3). The asymptotic distribution

of the MDE is given by:
√
T (θ̂MD

AC − θ0) ∼ N(0, V MD
0 ),

where V MD
0 = (D′0C

−1
0 D0)−1 is the asymptotic covariance matrix of θ̂MD

AC , C0 is the asymp-

totic covariance matrix of ρ̂, and D0 = ∂ρ(θ)/∂θ is evaluated at the true parameter value

θ0.

As the innovation vp,t is not an i.i.d. process, we follow the robust approach proposed

by Baillie and Chung (2001). The asymptotic covariance matrix of ρ̂, C0, is estimated

using the Newey and West (1987) procedure, ĈNW = γ̂−2
0 V̂v, where γ̂0 = (1/T )

∑T
t=1 v

2
p,t
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and

V̂v = Γ̂0 +

q∑
j=1

(
1− j

1 + q

)
(Γ̂j + Γ̂′j),

with Γ̂j = (1/T )
∑T

t=j+1 Z
∗
t Z
∗′
t−j and

Z∗t =


vp,tvp,t−1 − ρ1(θ̂)v2

p,t

...

vp,tvp,t−Kρ − ρKρ(θ̂)v2
p,t

 .

2 Performance of the estimators

This section aims at evaluating the finite-sample properties of the estimator. This evalua-

tion is based on Monte-Carlo simulations, which reproduce the properties of a large sample

of U.S. equities. We find that the ACE provides unbiased estimates of the parameters

driving the aggregate squared returns.

2.1 Calibration based on U.S. equities

The calibration of the individual parameters for the Monte-Carlo simulations is based on

a sample of 70 U.S. companies between January 1988 and December 2013 for a total of

T = 6, 783 daily observations.1 This subsection aims at describing the main properties of

the parameter estimates, which will be used for the simulations.

Table 1 reports some summary statistics on the individual variance parameters of

each of the 70 individual stocks and the covariance parameters of each of the 2,415 pairs

of stocks, using the flexible GARCH approach of Ledoit et al. (2003). The cross-section

mean estimates of the variance parameters αi, βi, and γi are 0.054, 0.938, and 0.991,

respectively (Panel A), the mean estimates of the covariance parameters αij, βij, and γij

are 0.036, 0.944, and 0.980, respectively (Panel B).2 For the calibration of the individual

parameters, we adjust a Beta distribution to each set of parameters (αi, αij, βi, βij, γi, γij).

1The sample is composed of all the companies belonging to the S&P 100 at the end of 2013, for which
prices were available over the 1988-2013 period. The estimations starts in 1988 because the October 1987
crash was found to affect the estimation of the model.

2These numbers are consistent with the restrictions α2
ij < αiαj and β2

ij < βiβj , required to ensure the
positive semi-definiteness of A and B (Assumption 1). This obviously results in the same observation for
the persistence parameter, i.e., γ2

ij < γiγj .
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The table reports the estimates of parameters p and q for each distribution. As there are

some significant differences between the characteristics of the variance parameters and the

covariance parameters, we mostly focus in the sequel on the covariance parameters, which

have the dominant role in the aggregate variance (97.2% of the terms involved). Figure

1 displays the histogram of the parameters {ϑij} and the estimated Beta distribution

fϑ(ϑ), for ϑ = α, β, and γ. The fit of the actual parameters is very good for all the sets of

parameters. We notice that the range of values is in fact rather narrow. All the estimates

of αij range between 0.01 and 0.06 and all the estimates of γij are above 0.94.

For simulation purpose, another important property is the dependence between the

individual parameters. Clearly, we cannot simulate α and β independently from each other

because it could imply values of γ larger than 1. To address this issue, we measure the

correlation between the individual parameters estimated on U.S. equities (Panel C). The

table reveals that γij is positively and strongly correlated with βij but weakly correlated

with αij (0.820 and −0.136, respectively). Therefore, in the Monte-Carlo experiments, we

simulate parameters αi and γi from independent Beta distributions with the parameters

p and q reported in Panel A. Parameters αij and γij are also drawn from independent

Beta distributions with the parameters p and q reported in Panel B. Then, we define

βi = γi − αi and βij = γij − αij.

Similarly, simulating ω and γ independently from each other could generate extremely

erratic values for h = ω/(1− γ), when γ is close to 1. From Panel C, we notice that the

correlation is highly negative between γij and ωij but weakly positive between γij and

hij (−0.659 and 0.225, respectively). Therefore, we draw the unconditional variances hi

from a symmetric Beta distribution with phv = qhv = 3 in the range
[
hv, hv

]
and the

unconditional covariances hij from a Beta distribution with phc = qhc = 3 in the range

[hc, hc].
3 We then define the constant terms as ωi = (1− γi)hi and ωij = (1− γij)hij.

3More precisely, if h̃i is drawn from a standard Beta(ph,qh) distribution, the unconditional variance is
defined as from hi = h+ (h− h)h̃i, where h and h denote the minimum and maximum estimates of the
unconditional variances, respectively. The choice of ph = qh = 3 ensures that the resulting hi are rather
dispersed in the interval

[
h, h

]
.
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2.2 Simulation: baseline case

For each simulation, samples of variance parameters (αi, γi, hi) and covariance parameters

(αij, γij, hij) for i, j = 1, · · · , N, are drawn from their respective distribution, as described

in the previous subsection. Then N time-series of individual innovations {zi,t}t=1,··· ,T

are drawn from a normal N(0, 1) distribution and the unexpected returns {εi,t}t=1,··· ,T are

constructed for i = 1, · · · , N . The portfolio unexpected return {εp,t}t=1,··· ,T is obtained by

aggregation with portfolio weights w = (1/N, · · · , 1/N)′ . Finally, the parameters driving

the aggregate squared return Xp,t = ε2
p,t are estimated from aggregate data only.

We consider two alternative estimators in order to evaluate the magnitude of the bias

induced by imposing parameter homogeneity when deriving the aggregate squared return

dynamics. The first one is the QMLE of the strong GARCH(1,1) process, which implicitly

assumes parameter homogeneity:

hp,t = Ωp + Ψ1Xp,t−1 + Φ1hp,t−1. (2)

The second estimator is the Least-Square ACE of the weak GARCH(KΛ,KΦ) process,

which allows parameter heterogeneity:4

Xp,t = Ωp +

KΛ∑
k=1

ΛkXp,t−k + vp,t −
KΦ∑
k=1

Φkvp,t−k. (3)

In the baseline case, the number of observations is T = 6, 000 and the number of assets is

N = 20 or 40. Each experiment is based on 1,000 replications. It should be noticed that

these simulation experiments are not designed to exactly match all the features observed

on U.S. equity returns, but rather to mimic some of their main properties.5

Table 2 reports summary statistics of parameter estimates for the QMLE and ACE

procedures. We begin with the case N = 20, which is a realistic number of asset classes in

a strategic allocation approach. For the ACE, we report the estimates of {Ωp,Ψ1,Φ1,Λ1},

for comparability with the QMLE, as well as the estimates of the Beta parameters p and

4The Least-Square ACE estimator is based on KΛ = 10, 20, and 40 lags and KΦ = 5 lags, so that the
first five terms Φi, i = 1, · · · , 5, are freely estimated.

5For instance, actual data may be generated by asymmetric GARCH processes and/or fat-tailed
innovations. These features are not introduced in the experiment.
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q. As expected, the QMLE provides biased estimates of the variance parameters. The

most striking result is the severe downward bias in the γ-type parameter (Λ1 = Ψ1 + Φ1).

The median estimate is 0.835, while the expected value is 0.97. This bias is not due to

the estimation of the α-type parameter (Ψ1), as its median estimate is equal to 0.041,

which is rather close to the expected value 0.033 with a narrow confidence interval. On

the opposite, the median estimate of the β-type parameter (Φ1) is far from the expected

value (0.794 instead of 0.937) with a large uncertainty across simulations. Increasing the

number of assets does not help estimating the persistence parameter, as the value of Λ1 is

still severely underestimated even with N = 40 (with a median estimate of 0.777). This

result indicates that the QMLE is not able to generate the high persistence found in the

simulated aggregate squared returns.

With regard to the ACE, the table reveals that for N = 20 the persistence parameter

Λ1 is correctly and precisely estimated to be 0.977 for both values of KΛ (20 and 40). This

result suggests that a moderate number of additional lags is sufficient to correct for the

aggregation bias. The parameter Ψ1 is also very well estimated, with median estimates

of 0.034 and 0.039, respectively. Increasing the number of assets in the portfolio does not

alter the parameter estimates significantly. This result is important, because it suggests

that the ACE is able to reproduce rather closely the properties of the aggregate process,

even for a relatively small number of assets.

2.3 Simulation: robustness check

To evaluate the robustness of the results presented above, we performed additional sim-

ulation experiments based on alternative assumptions regarding the range of the uncon-

ditional correlations, the distribution of the innovation process, and the choice of the

portfolio weight vector. All simulation results, based on T = 6, 000 and N = 40 assets,

are reported in Table 3.6

6Other experiments essentially left the patterns already described unaltered. In particular, there is no
sizable effect on the parameter estimates when the number of lags in the ACE (KΦ and KΛ) is increased
or when the range of the unconditional variances is widened. The results, not reported in order to save
space, are available upon request.
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The first experiment relies on the effect of increasing the correlation between the assets.

As outlined by Zaffaroni (2006), dynamic conditional heteroskedasticity of the aggregate

process requires a sufficiently strong cross-correlation. While the baseline case was cali-

brated with a moderate positive correlation using the mean value found on U.S. stocks

(0.167), this experiment considers the case of highly correlated assets (ρij ∈ [0.75; 0.9]).

As Panel A reveals, the median estimate of the persistence parameter Λ1 obtained from

the QMLE is slightly larger than in the baseline case (0.804), and therefore far below the

expected value. The estimate of Ψ1 remains close to the expected value. The ACE turns

out to be very robust to changes in the range of correlations across assets. The estimate

of Λ1 only slightly decreases towards its expected value.

In the second experiment, the innovation process has a non-normal distribution. Al-

though zi,t has been assumed to be normally distributed so far, it is well known that

the empirical distribution of asset returns is often asymmetric and/or fat-tailed. The

interaction between the variance dynamics and the distribution properties of returns has

been highlighted by Engle (1982) and more recently by He and Teräsvirta (1999). To

illustrate the consequences of innovations drawn from distributions with fat tails, Panel

B reports the results for a t distribution with 5 degrees of freedom. As expected, the

magnitude of the bias in the QMLE is increased. The median estimates of the param-

eter Λ1 produced by the QMLE is increased from 0.777 for normal innovations to 0.871

for t(5) innovations. Introducing asymmetry into the innovation distribution through a

skewed t distribution does not further affect these parameter estimates with any signifi-

cance. Again, the properties of the ACE are not altered by the change in the conditional

distribution regardless of the number of lags KΛ. This result is consistent with the fact

that the ACE, which is based on Least-Square estimation, does not rely on any particular

distributional assumption (provided the innovation’s fourth moment is finite).

The last experiment evaluates the effect of the portfolio weights on the performance of

the estimators. While the previous simulations were based on equal weights, we consider

now a portfolio with short sales allowed: weights are randomly drawn between −0.2 and

0.2, with the sum of the weights equal to 1. Again, the table reveals that the QMLE

severely underestimates the persistence parameter, although to a lesser extent (Panel
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C). On the opposite, the ACE produces parameter estimates that are very close to the

expected values. These results suggest that positivity restrictions on portfolio weights are

not required to obtain consistent estimators of the parameters driving aggregate squared

returns. The ACE easily accommodates portfolios with different weights or even with

short sales.

3 Aggregate return and FIGARCH process

The literature has put forward that squared returns often display some long memory fea-

tures, in particular through a slowly decreasing autocorrelation function. This result was

conjectured by Ding and Granger (1996), in the light of the empirical evidence reported

by Ding, Engle, and Granger (1993). Kazakevicius et al. (2004) and Zaffaroni (2006)

have shown that in fact long memory does not hold in the n-component specification

analyzed by Ding and Granger. The autocorrelation function is indeed slowly decaying,

but the aggregate process is still covariance stationary. This result holds provided one as-

sumes the individual processes to be fourth-order stationary. This is admittedly a strong

assumption, although it is relatively standard in the literature.

To investigate this issue more in detail, we estimate a FIGARCH(1,d,1) process on

the aggregate data, following the approach developed by Baillie et al. (1996). With our

notations, we have:

(1− L)dXp,t = Ω̃p + Λ̃1(1− L)dXp,t−1 + vp,t − Φ̃1vp,t−1, (4)

where 0 < d < 1 is the parameter of fractional differenciation. When d > 0, the process

has long memory, in the sense that the sequence of absolute autocorrelations does not

converge to a finite limit.

Parameter estimates are reported in Table 4. The long-memory parameter d turns

out to be significant with a p-value of 1.3%. However, its value (0.27) is relatively low

compared to usual estimates found on other markets (such as commodities or currencies).
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This suggests that there are some long memory features, although they are likely to be

limited.

Finally, we compare the autocorrelation function obtained with the data to the one

obtained with the QMLE, the ACE, and the FIGARCH process. For the FIGARCH

process, we simulate a long sample (10 million draws with the parameters reported in

the table). The autocorrelation function is displays in Figure 1. As the figure shows, the

autocorrelation function of the ACE decreases much more slowly than the strong GARCH

process, but faster than the FIGARCH process. The ACE is also closer to the data.
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Table 1: Summary statistics for the parameter estimates of conditional variance and
covariance processes

αi βi γi ωi(×100) hi(×100)

Panel A: Conditional variances

Mean 0.054 0.938 0.991 0.357 0.520
Std dev. 0.020 0.023 0.009 0.288 0.403
Skewness 1.230 -1.066 -3.042 2.372 3.295
Kurtosis 5.462 4.103 14.413 8.837 16.678

p 9.445 149.456 149.045 – –
std err. (0.261) (4.294) (4.711)
q 184.909 8.899 1.140 – –
std err. (5.236) (0.249) (0.029)

Ṽ (w)1/2 0.015 0.018 0.007 – –

S̃(w) 0.598 -0.607 -1.834 – –

K̃(w) 3.503 3.512 7.970 – –

αij βij γij ωij(×100) hij(×100)

Panel B: Conditional covariances

Mean 0.036 0.944 0.980 0.128 0.067
Std dev. 0.008 0.014 0.010 0.071 0.033
Skewness 0.415 -0.842 -1.531 1.184 2.073
Kurtosis 3.218 4.110 6.196 5.630 13.849

p 20.624 289.620 227.805 – –
std err. (0.602) (8.187) (6.743)
q 548.987 17.351 4.724 – –
std err. (16.218) (0.484) (0.133)

Ṽ (w)1/2 0.008 0.013 0.009 – –

S̃(w) 0.415 -0.436 -0.886 – –

K̃(w) 3.247 3.265 4.147 – –

αij βij γij ωij hij

Panel C: Correlation matrix

αij 1
βij -0.679 1
γij -0.136 0.820 1
ωij 0.161 -0.581 -0.659 1
hij 0.032 0.148 0.225 0.503 1

Note: The parameters of the conditional variance and covariance processes are estimated
for U.S. equity returns over the 1988-2013 sample. Parameters are (αi, βi, γi, ωi, hi)
for conditional variances (Panel A) and (αij, βij, γij, ωij, hij) for conditional covariances
(Panel B). Summary statistics are the mean, standard deviation, skewness, and kurtosis
of the empirical distribution, the ML estimates of the parameters p and q of the corre-
sponding Beta distribution (with the standard error in parentheses), and the standard
deviation, skewness, and kurtosis implied by the estimated Beta distribution. Panel C
provides the cross-correlations between the parameter estimates (αij, βij, γij, ωij, hij) of
the conditional covariance processes.
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Table 2: Simulation experiments: Estimates of the aggregate GARCH parameters

Expected value QMLE ACE(10, 5) ACE(20, 5) ACE(40, 5)

Panel A: N = 20, T = 6, 000

Ωp 0.008 0.025 0.005 0.006 0.006
(0.040) (0.008) (0.002) (0.013)

Ψ1 0.035 0.036 0.034 0.032 0.033
(0.009) (0.041) (0.009) (0.022)

Φ1 0.939 0.823 0.935 0.941 0.935
(0.218) (0.067) (0.012) (0.084)

Λ1 0.973 0.858 0.970 0.970 0.970
(0.221) (0.035) (0.011) (0.073)

Panel B: N = 40, T = 6, 000

Ωp 0.008 0.031 0.005 0.003 0.005
(0.034) (0.008) (0.006) (0.009)

Ψ1 0.035 0.030 0.030 0.030 0.033
(0.011) (0.034) (0.039) (0.045)

Φ1 0.939 0.718 0.931 0.931 0.927
(0.262) (0.081) (0.072) (0.089)

Λ1 0.973 0.748 0.961 0.961 0.960
(0.267) (0.063) (0.047) (0.065)

Note: The table provides the median of the GARCH parameter estimates for the QMLE
and the ACE. The ACE is based on KΛ = 10, 20 and 40 lags and KΦ = 5 lags. The
median of the absolute deviations from the median is reported in parentheses.
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Table 3: Simulation experiments: Estimates of the aggregate GARCH parameters –
Robustness analysis

Expected value QMLE ACE(10, 5) ACE(20, 5) ACE(40, 5)

Panel A: High correlations (ρij ∈ [0.75; 0.9])

Ωp 0.008 0.029 0.008 0.008 0.008
(0.032) (0.009) (0.009) (0.007)

Ψ1 0.035 0.035 0.035 0.031 0.032
(0.010) (0.026) (0.022) (0.024)

Φ1 0.939 0.768 0.909 0.911 0.909
(0.244) (0.074) (0.074) (0.062)

Λ1 0.973 0.804 0.944 0.943 0.941
(0.249) (0.065) (0.067) (0.053)

Panel B: t distribution (ν = 5)

Ωp 0.008 0.036 0.007 0.007 0.007
(0.036) (0.012) (0.009) (0.008)

Ψ1 0.035 0.043 0.032 0.031 0.030
(0.010) (0.011) (0.012) (0.010)

Φ1 0.939 0.828 0.941 0.942 0.942
(0.165) (0.080) (0.034) (0.035)

Λ1 0.973 0.871 0.973 0.973 0.973
(0.168) (0.049) (0.030) (0.032)

Panel C: Alternative weight vector with short sales

Ωp 0.008 0.023 0.005 0.005 0.005
(0.030) (0.007) (0.007) (0.005)

Ψ1 0.035 0.041 0.036 0.034 0.035
(0.010) (0.035) (0.037) (0.037)

Φ1 0.939 0.782 0.923 0.925 0.924
(0.238) (0.072) (0.074) (0.063)

Λ1 0.973 0.823 0.959 0.959 0.959
(0.242) (0.051) (0.053) (0.042)

Note: The table provides the median of the GARCH parameter estimates for the QMLE
and the ACE under various changes in the baseline experiment. The ACE is based on
KΛ = 10, 20 and 40 lags and KΦ = 5 lags. The median of the absolute deviations from
the median is reported in parentheses.
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Table 4: Estimation of a FIGARCH process on aggregate return

Parameter estimate Robust standard error

Ω̃p (×100) 0.0011 0.0006

Λ̃1 0.2391 0.3940

Φ̃1 0.4512 0.4691
d 0.2700 0.1206

Note: The table reports the estimation of a FIGARCH process (Equation (4)) on aggre-
gate returns.
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Figure 1: Empirical and estimated ACF of aggregate squared returns
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Note: This figure displays the empirical ACF of aggregate squared returns is compared
to the estimated ACF obtained from the QMLE, ACE(15, 3), and a FIGARCH(1,d,1)
process for the U.S. equity portfolio. The empirical ACF has been smoothed to emphasize
its trend.
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