
Estimating the Price Impact of Trades in a

High-Frequency Microstructure Model with Jumps ∗
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Abstract

We estimate a general microstructure model of the transitory and permanent impact

of order flow on stock prices. Jumps are detected in both the transaction price (ob-

servation equation) and fundamental value (state equation). The model’s parameters

and variances are updated in real time. Prices can be altered by both the size and

direction of trades, and the effects of buy-initiated and sell-initiated trades are differ-

ent. We estimate this model using tick-by-tick data for 12 large-capitalization stocks

traded on the Euronext-Paris Bourse. We find that, at tick frequency, the overnight

return, the intraday jumps, and the continuous innovations represent approximately

7%, 8.5%, and 36.7% of the total variation of stock returns. The microstructure

model explains on average 47.7% of the total variation. Once jumps are filtered and

parameters are estimated in real time, we also find that the price impact of trades

is symmetric on average. However, the price of highly liquid stocks with a large

proportion of sell-initiated orders tends to be more sensitive to buy trades, whereas

the price of less liquid stocks with a large proportion of buy-initiated orders tends to

be more sensitive to sell trades.
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1 Introduction

A main focus of the market microstructure literature is the formation of prices of securities

traded at high frequency. In most of these models, the difference between the transaction

price and the fundamental (or equilibrium) value of a security allows for identification of

the main factors driving the price dynamics. The dynamics of the fundamental value is

primarily driven by revisions in traders’ beliefs, which may have two sources: (1) new

public information and (2) changes in order flow (Glosten and Milgrom, 1985, and Glosten

and Harris, 1988).

In standard microstructure models (Glosten and Milgrom, 1985, or Kyle, 1985), trans-

action price departs from the fundamental value because of asymmetric information. Fur-

thermore, transient discrepancies between transaction price and fundamental value reflect-

ing dealer’s compensation for order processing or inventory costs (see also Roll, 1984, and

Amihud and Mendelsohn, 1986). The residual term then captures the effects of stochastic

rounding errors.

The first papers to estimate fully fledged versions of this model using transaction-level

data are Brennan and Subrahmanyam (1996) and Madhavan, Richardson, and Roomans

(1997, thereafter MRR). Several extensions of the model have been proposed. Sadka (2006)

introduces the size of trades as a driver of changes in order flow. Dufour and Engle (2000)

and Engle and Sun (2007) introduce the effect of duration between trades of a given

stock as an important driver of the volatility of fundamental innovations, confirming the

importance of a transaction-level analysis (following theoretical models of Diamond and

Verrecchia, 1987, and Easley and O’Hara, 1992). Other contributions estimating market

microstructure models in tick time are Rydberg and Shephard (2003), Frijns and Schotman

(2004), and Bos (2008).

Although it is essential to understand how transaction prices are determined at the

tick level, estimation of these models is plagued by the statistical properties of tick-by-

tick data. These properties are the focus of another strand of literature that addresses

“microstructure noise” in the measurement of return volatility at high frequency. In this

literature, the object of interest is the volatility of the fundamental value. The difference
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between the observed price and the fundamental value is interpreted as noise caused by

microstructure factors such as liquidity or information frictions, tick-size discretization,

rounding errors, and so forth (see Bandi and Russell, 2008). The measure of the true

variance (integrated variance) is thus contaminated by microstructure noise, so that its

estimate (realized variance) diverges from the true variance. Diebold and Strasser (2013)

have investigated the magnitude of the bias due to the correlation between the fundamental

value and the microstructure noise in a set of structural models. Most statistical papers

address this issue by reducing the sampling frequency to mitigate the effect of the noise

(Andersen et al., 2001, Barndorff-Nielsen and Shephard, 2002). There is no consensus

about the optimal sampling frequency, however, leading Aı̈t-Sahalia, Mykland, and Zhang

(2005) to conclude that “modeling the noise and using all the data is a better solution,

even if one misspecifies the noise distribution.”

An additional difficulty in the measurement of integrated variance is the presence of

extreme price changes (or jumps) in the data process, jumps typically caused by large

orders. Jumps constitute an additional, probably more severe, source of divergence of

realized variance from integrated variance, as the former also incorporates the effects of

jumps. In continuous-time models, bipower variation measures provide consistent estimates

of integrated variance, even in the presence of stochastic volatility and large but infrequent

jumps (Barndorff-Nielsen and Shephard, 2004 and 2006). The detection of jumps has also

been investigated in a parametric framework by Johannes, Polson, and Stroud (2009), Bos

(2008), and Duan and Fulop (2007), papers that rely on simulation techniques such as

Markov Chain Monte Carlo algorithms or particle filters.

To our knowledge, this paper is the first to estimate a complete microstructure model

with time-variability of parameters and large but infrequent jumps. We start by extending

the model proposed by MRR (1997) and Sadka (2006), and incorporating into it most of

the tick data stylized facts. Our model describes the joint dynamics of the transaction

price and the fundamental value: changes in beliefs are captured by innovations in order

flow but also by innovations in order size (Sadka, 2006). As we use tick data, we can

capture the effects of durations between trades on return volatility (Dufour and Engle,

2000). Following a recent contribution of Hameed, Kang, and Viswanathan (2010), sell and
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buy orders are allowed to have asymmetric effects on prices. Our model also incorporates

seasonal patterns of the variables and time-varying parameters and variances. The model

parameters, the variances, and the fundamental value are updated in real time. Jumps

are identified through an outlier detection procedure, without the need for parametric

assumptions about their distribution, frequency, or size. This procedure allows us to

detect jumps in real time in both fundamental value (permanent or innovation jumps) and

transaction price (transitory or observation jumps) dynamics, following the approach of

Maiz, Miguez, and Djuric (2009).

Our estimation strategy relies on the particle filter technique, which estimates the un-

observable fundamental value using the observed transaction price. Sadka (2006) uses OLS

regressions to estimate model’s parameters. MRR estimate the complete model (with fun-

damental value dynamics) using GMM technique over different intraday trading intervals

to allow parameter variability. We do not pursue these estimation approaches because our

goal is to estimate the dynamics of the parameters and detect jumps in real time. Unlike

the Kalman filter, the particle filter accommodates non-linear models and non-Gaussian

innovations, for instance when innovations are perturbed by jumps. The particle filter also

allows for sequential or online filtering, so that model parameters and variances can be

estimated in real time after detection and deletion of jumps (Kitagawa, 1998).

We illustrate our methodology using 12 of the largest-capitalization stocks traded on

the Euronext-Paris Bourse. By focusing on all trades over a two-month period, with

numbers of trades ranging between 686 and 4,468 per day, we identify several regularities

across time (intradaily seasonality patterns) and across firms (differences in price impact).

We find that, at tick frequency, overnight return, the intraday jumps, and the continuous

innovations represent approximately 7%, 8.5%, and 36.7% of the total variation of stock

returns. The microstructure model explains on average 47.7% of the total variation. In

addition, the estimates of the price impact of trades increase by 10 to 30% when the

model’s parameters are time-varying and jumps are taken into account. We then investigate

asymmetries in price impact, depending on whether the trade is buy- or sell-initiated.

While previous work on block trades by institutional investors reports that buy trades

have greater price impact than sell trades (Holthausen, Leftwich, and Mayers, 1987, Chan
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and Lakonishok, 1993, Keim and Madhavan, 1995), we find that this asymmetry can be

reversed in the case of relatively less liquid firms with a large proportion of buy-initiated

orders. This result is consistent with the theoretical analysis of Saar (2001).

The rest of the paper is organized as follows. Section 2 presents the general microstruc-

ture model and summarizes our estimation methodology, which is described with more

details in the Appendix. Section 3 presents our data set of large-capitalization stocks on

Euronext-Paris and provides some preliminary results on the tick-by-tick price dynamics.

Section 4 reports our results of the estimation of the microstructural model and analyzes

the price impact of trades. Section 5 concludes.

2 A Microstructure Model for Prices

2.1 A General Model

In this section, we describe our general microstructure model of price formation. As the

model is formulated in tick time, we denote by tk the time of the k-th trade on a given

day. Observations are randomly spaced through time, so we introduce τk = tk − tk−1,

the duration between trades k − 1 and k. We consider an efficient market in which the

fundamental value of a stock, denoted mk, varies through time according to changes in

the beliefs of market participants. We assume that revisions of beliefs are correlated with

innovations in order flow (as in Glosten and Milgrom, 1985, and MRR, 1997) and with

the innovation in the net order imbalances (as in Glosten and Harris, 1988, and Madhavan

and Smidt, 1991). The actual transaction price of a stock, denoted yk, departs from the

fundamental value due to the transitory effects of the incoming trade. We assume that the

difference between the actual price and the fundamental value reflects the effects of the

order flow and the net order imbalance but that it may also reflect the cost of processing

the order as well as rounding errors or stale quotes (Roll, 1984). Before describing the

model, we define the two main drivers of the price dynamics. The first driver is the trade

direction, denoted by Dk, which takes a value of +1 if a trade at time tk is buy-initiated,

i.e., if the trade takes place on the ask side of the order book, and a value of −1 if
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the trade is sell-initiated. To distinguish potential asymmetries in the dynamics of the

order book, we will separately consider the effects of buy-initiated and sell-initiated trades.

Consequently, we introduce the dummies I+
k (I−k ), which take a value of 1 if the trade at

time tk is buy (sell)-initiated and 0 otherwise. Clearly, Dk = I+
k − I

−
k . The second driver

is the signed trade size, which captures trade informativeness (Hasbrouk, 1991, Foster and

Viswanathan, 1993, Brennan and Subrahmanyam, 1996). We denote the trade size by

Vk = log(Nk), where Nk is the number of shares traded at trade k. The signed trade size

is then defined as DVk = DkVk. Finally, we also allow fundamental value to depend on

durations between trades. Diamond and Verrecchia (1987), Easley and O’Hara (1992), and

Parlour (1998) emphasize the theoretical relationship between news and trade frequency,

an effect that has been empirically measured in various papers: Dufour and Engle (2000)

find that no trade implies no information, while Engle and Sun (2007) show that volatility

is related to duration but less than linearly.

The model describing the price dynamics can be summarized by the following two

equations:

yk = mk + φ̄k Dk + λ̄k DVk + εy,k, (1)

mk = mk−1 + µk τk + φk(Dk − Ek−1[Dk]) + λk(DVk − Ek−1[DVk]) + εm,k, (2)

where εy,k and εm,k denote the error terms, which we describe in detail below. All of

the parameters are indexed by k, as they are updated with each new observation. In

the transaction price dynamics (Equation (1)), φ̄ measures the transitory effect of the

trade direction, while λ̄ measures the transitory effect of the net order imbalance. In the

fundamental value dynamics (Equation (2)), the first parameter µk measures the trade

duration impact. The parameter φ measures the permanent effect of the trade direction

innovation, while λ measures the permanent effect of the net order imbalance innovation.

This formulation allows us to distinguish between the fixed effect of the order flow per

trade (measured by φ and φ̄) and the variable effect per share traded (measured by λ and

λ̄) (see Glosten and Harris, 1988, and Sadka, 2006). The ultimate price impact of the trade

will be a combination of these various effects.
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Let us now describe how we model the error terms in Equations (1) and (2) to incor-

porate jumps. A key feature of our model is that jumps are allowed to affect both the

transaction price and the fundamental value equations. Error terms are defined as:

εy,k = σy,k zy,k + Jy,k, (3)

εm,k = σm,k zm,k + Jm,k, (4)

where zy,k and zm,k denote the innovation terms, with V [zy,k] = V [zm,k] = 1, and σy,k and

σm,k denote the time-varying variances of the continuous shocks, and Jy,k and Jm,k denote

the transitory and permanent jumps, respectively. Permanent jumps will typically reflect

firm or macroeconomic news, which often entail large price changes at the time they are

released, whereas transitory jumps may be associated with temporary liquidity shortages.1

Although price jumps are an important research topic in continuous time finance, they

have been mostly ignored in the microstructure literature, perhaps due to the difficulty of

filtering them out (see Duan and Fulop, 2007, for an exception). In our model, jumps may

convey new information about the fundamental value of a stock. Moreover, these jumps

are likely to contaminate the estimation of the model parameters and therefore must be

accounted for.

Finally, both innovation terms zy,k and zm,k would ideally be Gaussian white noise.

However, that is not likely to be the case for several reasons. First, Aı̈t-Sahalia and Jacod

(2009) have shown, from a theoretical perspective, that innovations could be generated by

jumps with infinite activity, i.e., small but frequent jumps. As we are interested in filtering

out jumps that may affect the estimation of the model parameters, we primarily focus

on large but infrequent jumps. Second, empirically, price changes display some features

that cannot be captured by a Gaussian distribution. For instance, tick-size discretization

implies that some price changes are more likely than others. There is also a high frequency

of zero price changes (approximately 50% in our data), which implies a peak at 0 in the

distribution of price changes. We therefore expect the distribution of the transaction-price

innovation to have fat tails. We discuss this point in more detail in Appendix 6.1.

1In this context, a liquidity shortage could, in principle, last for several trades before liquidity is restored.
In this paper, we consider short-lasting shortages.
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As the fundamental value is essentially driven by surprises in order flow, we now describe

how we construct these innovations. To estimate the trade indicator conditional expecta-

tion, we rely on predictive regressions, as in Hasbrouck (1991), Foster and Viswanathan

(1993), Brennan and Subrahmanyam (1996), and Sadka (2006). As a preliminary step, we

consider a specification with past signed-volumes, past price changes, past trade-directions,

and past durations:

DVk = Ek−1[DVk] + εV,k

= a0 +
J∑
j=1

a1jDVk−j +
J∑
j=1

a2j∆yk−j +
J∑
j=1

a3jDk−j +
J∑
j=0

a4jτk−j + εV,k, (5)

where the residual term εV,k represents the surprise in the signed trade volume.

The conditional expectation of the order flow is deduced from the trade volume Equa-

tion (5) by following the approach of Sadka (2006). The probability that the next trade will

be buy-initiated, given the expected signed volume Ek−1[DVk], is Pr[Dk = +1 | Ek−1[DVk]] =

Pr[Ek−1[DVk] > −εV,k]. If we denote by σ2
V the variance of εV,k, we find that the conditional

probability of a buy order is 1 − F [−Ek−1[DVk]/σ
2
V ], where F is the cdf of the surprise

in the signed volume. Assuming that this distribution is symmetric, Ek−1[Dk] = 1 −

2F [−Ek−1[DVk]/σ
2
V ]. We eventually compute the trade surprise as εD,k = Dk − Ek−1[Dk].

Equations (1) and (2) represent a symmetric version of the model we investigate in this

paper. In our general model, we separately consider the effect of buy-initiated and sell-

initiated trades on both fundamental value and transaction price. Our final specification

for the price dynamics can be summarized as follows:

yk = mk + φ̄+
k D+

k + φ̄−k D−k + λ̄+
k DV +

k + λ̄−k DV −k + σy,k zy,k + Jy,k, (6)

mk = mk−1 + µk τk + φ+
k ε+

D,k + φ−k ε−D,k + λ+
k ε+

V,k + λ−k ε−V,k + σm,k zm,k + Jm,k. (7)

2.2 Estimation Methodology

The microstructure model described above has two main features, from an estimation

perspective: first, it explicitly incorporates permanent and transitory jumps; second, the
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model parameters and innovation variances are time-varying. Our real-time estimation

approach relies on particle filtering within a Bayesian framework, where we update the

parameters not only on a daily basis but as observations materialize.2 The estimation is

based on the following steps:

1. Conditional on the information available at trade k − 1 (parameters, variances, and

state variables), we use the bootstrap filter of Gordon, Salmond, and Smith (1993)

and Maiz, Miguez, and Djuric (2009) to determine the predictive density of the next

transaction price yk. This density is used to detect a jump at trade k.

2. If trade k is a jump, we do not update the model parameters and state variables. We

then move to the next observation.

3. If trade k is not a jump, we update our estimates: Model parameters (µ, φ, λ, φ̄,

and λ̄) are updated in real time, using Bayesian OLS (BOLS), as soon as a new

observation is available. The state variable (mk) and variances (σ2
m,k and σ2

y,k) are

estimated via particle learning (Carvalho et al., 2010).

Jumps are detected in a non-parametric way, using an outlier detection procedure. The

main motivation for such an approach is that it provides a simple way to differentiate

between permanent and transitory jumps, as discussed in Fox (1972). A permanent jump

is associated with a change in regime, whereas a transitory jump is a jump where only

one trade’s price deviates from the general trajectory. This distinction suggests a strategy

for jump detection: Suppose at trade k, price yk is far from the range of values implied

by its distribution predicted using information available at trade k − 1. If at trade k + 1,

the price yk+1 is back to a similar range of values from where it started, we define it as a

transitory jump. If yk+1 remains close to its previous position, we define the jump at k as

a permanent jump. With this strategy, jumps are detected in real time with a maximum

of a one-trade lag, so that the classification of the jumps will require only one additional

observation.

2Recent surveys of these techniques are found in Doucet and Johansen (2009) and Lopes and Tsay
(2011).
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To decide if the price at trade k is a jump, we construct a confidence interval based

on the predictive distribution of price at trade k, conditional on the information up to

trade k − 1. Given the non-Gaussianity of the innovation terms even after removing large

jumps, the predictive distribution is constructed to reflect the actual properties of the price

process distribution. Our approach is to assume a Student t distribution, whose degree

of freedom is equal to the inverse of the tail index estimated over the data. Once the

predictive distribution for trade k is estimated, we define the thresholds for jump detection

as the (α/2) quantile for the negative jumps and the 1 − (α/2) quantile for the positive

jumps.3 See Appendix 6.1 for more details on the estimation methodology.

2.3 Simulations

As detailed in the algorithm above, jumps are detected in a non-parametric way, using an

outlier detection procedure. In this short section, we illustrate how this strategy works on

simulated data. We consider the following simplified data generating process:

yk = mk + σy zy,k + Jy,k,

mk = mk−1 + σm zm,k + Jm,k,

where innovations zy,k and zm,k are uncorrelated i.i.d. N(0, 1) processes and jumps Jy,k

and Jm,k are independent compound Poisson processes. When there is no jump, Jy,k = 0

and Jm,k = 0. When there is a jump, it will be drawn from a Gaussian distribution. The

intensity of the jumps is defined as follows: Jy,k takes a non-zero value with an intensity of

λy = 1/50 and Jm,k has an intensity of λm = 1/50. If a jump occurs, then Jy,k ∼ N(2, 1)

and Jm,k ∼ N(−2, 1).

We simulate a sample with T = 200 observations starting with m0 = 100 and we set

σy = 20% and σm = 10%.4 Such a magnitude for the standard deviations is consistent

3In the empirical application, we consider α = 0.2%, meaning that we classify as jumps all the realiza-
tions below the 0.1% quantile or above the 99.9% quantile.

4This illustration focuses on describing outlier treatment and abstracts intraday volatility variation
for exposition parsimony. We note that in general, outlier detection is contingent upon local volatility
estimation. In our empirical application, we allow volatility to vary intradaily. An exhaustive Monte-
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with our actual data.5 Eventually, we focus on a window covering observations 100 to 200

and apply the algorithm for the jump detection and the parameter estimation described

in Section 2.2 and Appendix 6.2. The results are presented in Figures 1 and 2.

Let us start with the discussion of Figure 1. The observations are represented by an

o symbol and the true values of the state are represented by a +. At each step, the

particle filter provides us with the median estimate of the state. This is represented by

the continuous line. We notice that this line tracks very well the actual states. We also

represent a confidence interval following our modification of the jump detection algorithm

of Maiz, Miguez, and Djuric (2009). This confidence interval is represented with dashed

thin lines.

At observation 133, there is a large negative jump. The algorithm detects this jump and

indicates that it is a permanent (or innovation) jump. This is followed by an immediate

adjustment, backwards, of the estimation of the state once a new observation becomes

known. Because of this backwards step, the estimation of the state is adjusted as can be

seen by inspecting the continuous line, which touches the center of the circle (the cross

would not be known in a real life exercise since this is the latent state).

At observations 101, 124, and 159, we have large positive observations. In these cases,

the jump detection algorithm calls for transitory (or additive) jumps. The observations

are ignored and the state is not updated, which translates into a small horizontal step in

terms of the underlying state estimation and its associated confidence intervals.

Figure 2 corroborates those findings. The upper figure presents the distance between

the actual observations to the filtered estimates. For observation 133 where a jump was

detected, given the way that the algorithm performs the correction of the state estimation,

we find no change in the observation equation. In observations 101, 124, and 159, we have

additive outliers, which the algorithm neglects in the estimation of the state. As the state

is not updated, we obtain large differences between the observation yk and the retained

state mk.

Carlo exercise, including various data generating processes and estimation methods, is of interest and left
for future research.

5We experienced with various signal-to-noise ratios and various parameters and found our method to
perform well in all the experiments we ran.
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If we turn to the lower figure, we verify that, for observation 133, there is a relatively

large change in the state (mk−mk−1), which results from the correction that was made in

recognition of the jump. On the other hand, for innovations 101, 124, and 159, there is no

variation in the state, as the algorithm recognized that there was a transitory jump in the

observation and therefore decided not to update the state.

3 Data and Preliminary Analysis

3.1 Data

Euronext-Paris is an electronic limit order market based on a trading platform called

“Nouveau Système de Cotation (NSC).”Limit orders consist of a limit price and a quantity

to buy or sell at that price. Orders are submitted by investors through brokers and stored in

the limit order book. The matching of orders and corresponding trades follows strict price

and time priorities. Market orders (i.e., orders to buy or sell at the best price available in

the book) are immediately executed and matched with the best orders on the opposite side

of the book. The exchange opens at 9:00 am and closes at 5:30 pm. In this market, liquidity

is provided by the limit order book, as there are no market makers. The functioning of this

system has been described in detail in Biais, Hillion, and Spatt (1995), De Jong, Nijman,

and Röell (1996), and Foucault, Moinas, and Theissen (2007).

The data consist of all transaction prices and quantities from the Euronext-Paris

“BDM” database. The sample used consists of 12 constituent stocks of the CAC40 in-

dex plus one stock that had just exited the index, for the months of January and February

of 2003, i.e., 42 trading days.6 We have chosen stocks to represent various industries

and a wide selection of characteristics, enabling us to investigate the relationship between

price impact and common proxies such as number of trades and average durations between

trades. Transaction prices were adjusted in the following way: trades before 9 am and after

6We also investigated more recent data. One difficulty we encountered was the explosion in the number
of trades from 2005 onward. For the highly liquid stock, Total, the number of trades per day has risen
from 3,440 in 2003 to 9,750 in 2006 and 18,700 in 2009. With so many trades, our procedure still works but
is more time consuming. Additionally, owing to algorithmic trading, the dynamics of the price of highly
liquid stocks has changed. We view our model as applying to stocks with an average liquidity. (Highly
illiquid stocks are auctioned at Euronext-Paris.)
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5:30 pm were eliminated. The opening trade was also eliminated because it corresponds

to an auction. Trades occurring at the same second but at different prices are aggregated

with a single price given by the weighted average of the prices.

We use the best bid and best ask quotes to determine trade direction. If the transaction

price is at or above the best ask quote, the trade is classified as a buy-initiated trade.

Symmetrically, if the price is at or below the best bid quote, the trade is classified as a

sell-initiated trade. In our dataset, only a small percentage of trades (approximately 4%)

was not classified. Venkataraman (2001) also uses data similar to ours and reports that

data from the Paris Bourse are relatively error free as they are produced by the automated

trading system. For unclassified trades, we applied the Lee and Ready (1991) classification

algorithm.7 Using the bid and ask before a trade, we compute the midquote. If the trade

price is above (below) the midquote, the trade is classified as a buy (sell) order. If the trade

price is at the midquote but higher (lower) than the previous traded price, it is classified

as a buy (sell) order. If the trade price is at the midquote and equal to the previous traded

price, then we go further back in time and select the first transaction price which differs. If

the current price is higher (lower) than this price, then the trade is a buyer (seller) initiated

order.

Table 1 provides some summary statistics of the 12 stocks during the sample period.

The total number of trades varies greatly across stocks, revealing the wide spectrum of

liquidity we consider in our application. Liquidity can also be measured by the average

duration between trades. Average duration ranges from 6.7 seconds between two trades

for Alcatel to more than 40 seconds for Sodexho (median durations are 4 seconds and 15

seconds, respectively). The average monetary trading volume ranges between 7,500 euros

for Alstom and 110,460 euros for Total (median values are 2,700 euros and 54,000 euros,

respectively). Based on market capitalization and number of trades, we will classify Total,

France Telecom, and AXA as “highly liquid” stocks, Alstom, Lagardere, and Sodexho as

“less liquid” stocks, and the remaining stocks as “intermediate”.8

7In an empirical analysis involving Nasdaq data, Ellis, Michaely, and O’Hara (2000) report correct
classification with this algorithm of 80% of the trades.

8Alstom left the CAC40 several months before the period under consideration. Orange was a subsidiary
of France Telecom and had a relatively narrow free float, explaining its low number of trades despite its
large market capitalization. Alcatel is in the opposite situation, with a low market capitalization but the
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We also observe wide diversity with respect to the properties of price changes. Figure

3 displays the evolution, over five days in January 2003, of the price and price increments

of two stocks. Starting with top figures, which display the price process, we observe very

large price variations, particularly for the less liquid stock, Sodhexo. For the liquid stock

Total, the largest price changes are −46 bp and +40 bp (approximately to 0.3% of the

price) (Figure 3-a). For Sodexho, if we exclude opening price changes, the largest price

changes are −48 bp and +41 bp (approximately 2% of the price) (Figure 3-b). As bottom

figures reveal, the properties of the price increments differ significantly for highly liquid

and less liquid stocks. For Total, the price discreteness is evident (Figure 3-c), whereas for

Sodexho, whose price dynamics is mostly dominated by the duration between trades, price

discreteness is much less evident (Figure 3-d).

The standard deviations of raw returns range from 6.2 bp for Total to more than 25

bp for Sodexho. If returns are expressed in business time, standard deviations decrease

significantly to 3.5 bp and 10.7 bp, respectively. Comparison between unscaled and scaled

returns demonstrates the importance of the duration between trades in price formation. A

large portion of the price volatility (here between 2 and 3 times) is driven by discontinuities

in the price process. These findings demonstrate, in our view, the importance of taking

into account durations between trades in price formation.

As the skewness and kurtosis of the intraday returns reveal, stock returns are highly

non-normal. For instance, Suez exhibits a highly rightward skewed distribution, whereas

Vivendi exhibits a highly left-skewed distribution. All stock distributions are characterized

by fat tails, as confirmed by large kurtosis values. The tail index also ranges from 0.24 to

0.47, indicating that, for some stocks, the kurtosis and (perhaps) the skewness are infinite.9

largest number of trades during the sample period. One explanation is the low price of a share, enabling
very small trades to take place. This is confirmed by the low trade size of Alcatel (second lowest median
monetary trade size).

9Our estimates are based on the average of the left and right Hill’s estimators of the tail index with a
threshold of 5% of the observations. A tail index of ξ indicates that the moments above 1/ξ may not be
defined.
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3.2 Intradaily Seasonality

Intradaily seasonality patterns of market variables have been highlighted in several papers,

including Andersen and Bollerslev (1997 and 1998) for return volatility, Jain and Joh

(1988) and Foster and Viswanathan (1993) for trading volume, as well as Engle and Russell

(1998) and Dufour and Engle (2000) for duration between trades. It is therefore important

to remove this systematic component before estimating the microstructure model to avoid

biases in the estimation of the model parameters.10

We use a specification similar to Engle and Sun (2007) to obtain deseasonalized price

increments. The volatility of the fundamental value is defined as σ2
m,k = δ2

i σ̃
2
m,k, where

δi captures the seasonality effect and σ̃2
m,k is the variance of the kth return conditional on

information available up to trade (k − 1). Appendix 6.2 describes the robust method we

use to estimate δi, along the lines of Boudt, Croux, and Laurent (2011).

We average the seasonality coefficients δi across all firms to capture the main trend,

and smooth the resulting profiles using the Loess algorithm. Price increments are stan-

dardized by their corresponding averaged and smoothed seasonal component δi. These

periodicity-free returns are then used to estimate the dynamic path of σ̃m,k using the

algorithm described in Appendix 6.1.

For microstructure variables, seasonality is obtained as follows. We consider M = 51

trading intervals i of 10 min (from 9 am to 5:30 pm), i = 1, · · · ,M and compute time-

of-the-day seasonality coefficients for each interval i. For the duration between trades,

the log trading volume (number of shares), and the log monetary volume, we estimate

the seasonality coefficients as the average value of the variable over the trading interval

i. As for periodic volatility, we use the average across firms, smoothed with the Loess

algorithm. Once we have obtained seasonal coefficients, we rescale each new microstructure

observation.

10MRR (1997) adopt a different strategy to address seasonality. They estimate their model for different
intraday trading intervals. They also find significant differences in microstructure parameter estimates
across the intervals.
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To maintain real-time estimation, we only use the first 5 days of the sample to estimate

the seasonality coefficients.11

In Figure 4, we display the intraday seasonality of price change volatility, the duration

between trades, the log trading volume (number of shares), and the log monetary volume.

We observe a U-shaped pattern for return volatility (a pattern found in several previous

papers) and an inverse-U-shaped pattern for duration between trades. We also find that

trading volume increases almost continuously during the day.

3.3 Order Flow Surprises

We considered several specifications to predict the order flow. We eventually retained a

model with 10 lags of signed trade volume, price changes, trade direction, and duration

between trades.

Table 2 presents the regression results. To conserve space, we report the sum of

the 10 parameters and the standard error corresponding to the sum of the parameters.

Signed trade volume is somewhat persistent. The sum of the coefficients of the first 10

lags ranges between about 0.1 and 0.4 across firms and is always highly significant. The

additional contribution of trade direction (Dk−j), conditional on past volumes, is unclear.

The sum of the parameters is in general statistically significant, although signs vary among

stocks. As suggested by Foster and Viswanathan (1993), past returns contribute to the

prediction of subsequent volumes, with a coefficient that is positive for all stocks except

one and significant for six stocks. Finally, the duration between trades has a significant

and positive impact on signed volume, suggesting that the larger is the time interval since

the last trade, the higher is the expected volume. The R2 of the regressions ranges from

1%, for highly liquid stocks (such as Total or France Telecom), to above 5%, for less liquid

stocks (such as Lagardere or Sodexho).

11We experimented several alternative approaches: we used a weighted and unweighted average of sea-
sonality coefficients across firms; we used alternative smoothing algorithms, such as Hodrick and Perscott
or Golay and Solvay; we used different values for the smoothing parameter in Loess algorithm; we used
different subsamples (5 days, 10 days, all days) to estimate the seasonality coefficients. We found no
material differences in the subsequent estimates.
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3.4 Model with Constant Parameters and no Jump Filtering

We start with the model with constant parameters and variances and no jump filtering. The

assumptions of the model are close to those of Sadka (2006). Table 3 reports the parameter

estimates for the model both with (Panel A) and without the microstructure variables

(Panel B).12 Comparison between the two models clearly indicates that microstructure

variables help explaining the dynamics of the stock return. On average, the variance of the

transaction price innovation (σ2
y) is reduced by 20%. The likelihood-ratio test statistics

for the null hypothesis that the microstructure variables have no effect (LR2), reported

in the last row of the table, are all very large and significant. They indicate that the

microstructure variables should be included in the model.

The relevance of the order flow is also revealed through the significance levels and mag-

nitudes of the parameters in the microstructure model. We find that, in the fundamental

value equation, parameters associated with the permanent effect of order flow (φ+, φ−, λ+,

and λ−) are all highly statistically significant and have the expected signs: φ+ and φ− lie

between 1.3 and 6.5, and λ+ and λ− lie between 0.3 and 2.3. The large positive values

of parameters φ+ and φ− indicate that surprises in trade direction have permanent effects

on prices, irrespective of the magnitudes of the trades. This effect is more pronounced for

less liquid stocks. Similarly, the positive signs of λ+ and λ− indicate that an unexpectedly

large trading volume also has a large price impact.

Turning to the transaction price equation, we observe significant deviations from the

equilibrium price due to trading activity. Parameters φ̄+ and φ̄− range from 1.5 to 11.2,

whereas parameters λ̄+ and λ̄− range from −2 to −0.3. The positive sign of parameter

φ̄ suggests that the order flow has a large transitory price impact that eventually reverts

to its long-run level given by φ. On the other hand, the universally negative parameter

λ̄ demonstrates that the transitory price impact of large volumes is negative. This result

suggests a compensation effect between the fundamental value and transaction price dy-

namics. The price is not instantaneously affected by the magnitude of a sell-initiated trade,

as the cumulative effect of the transitory and permanent impacts is almost 0. However,

12The model is estimated with the standard Kalman filter. All of the parameters reported in the table
are multiplied by 100 for ease of reading and can be directly interpreted in basis points.
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the price will eventually converge to the new fundamental value, which incorporates the

negative impact of the sell trade. The same reasoning holds for buy-initiated trades. These

parameter estimates accord with the estimates of Sadka (2006) for NYSE stocks.

The table also reports the likelihood-ratio test statistics for the null hypothesis that

buy- and sell-initiated trades have the same price impact (LR1). The 1% critical level is

exceeded in all but three cases. Thus, buy orders and sell orders will generally differ in

their price impacts. We investigate this asymmetry pattern in more detail in Section 4.4.

4 Microstructure Model and Price Impact of Trades

We now turn to the estimation of the complete microstructure model with time-varying

parameters and jump filtering. We start by presenting some results about the jumps

detected with our particle filter approach. We then present the results for the complete

model with time-varying parameters and jump filtering. This allows us to discuss the

dynamic patterns of the price impact of trades.

4.1 Jump Analysis

As we explained above, we have a jump at trade k if the price change is below the 0.1% or

above the 99.9% quantiles of the predictive distribution (i.e., conditional on the information

available at trade k−1). As detection is performed in real time, it is possible that systematic

over-detections or under-detections occur. Another important feature of our approach is

that the magnitudes of the jumps depend on the properties of the price changes and may

therefore differ markedly from one stock to another.

Summary statistics of the jumps detected by our estimation procedure are reported in

Table 4. A first general comment is that there are wide disparities in the numbers of

jumps across stocks: The average number of jumps per day (J+
y + J−y + J+

m + J−m) varies

from 22, for Alcatel, to just one, for Sodexho (Panels A and B). It is worth emphasizing

that this difference is due not only to the difference in the total number of trades (Alcatel

has only 6.5 times more trades than Sodexho). Indeed, it turns out that the frequency of

jumps per day differs significantly between highly liquid stocks and less liquid stocks (Panel
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C). For highly liquid stocks, we find a frequency of jumps that is slightly above the ex-ante

threshold we use in the detection algorithm (α = 0.2%): we find a frequency of 0.6% for

Orange, 0.5% for Alcatel and AXA, and 0.4% for France Telecom, Total, and Vivendi.

For less liquid stocks, the algorithm detects the expected number of jumps: approximately

0.1%–0.2% for Alstom, Lagardere, LVMH, and Sodexho.13

Another important result concerns the magnitude of jumps (Panel D). If we consider

highly liquid stocks, we observe that the average jump size is relatively small. It is below

20 bp for Total, on average, although only 0.38% of trades in this stock are considered

jumps. For most of the other highly liquid stocks, the average jump size is 30–40 bp.14 For

less liquid stocks, jumps are much larger, approximately 90 bp for Alstom and Lagardere

and 110 bp for Sodexho.

There are also some similarities and differences between transitory and permanent

jumps. On the one hand, on average, the proportion of jumps per day is the same for the

two types of jumps. There are 30% more transitory jumps for Alcatel and Orange, but

40% less for STMicro. On the other hand, transitory jumps are on average larger than

permanent jumps. This is particularly the case for Alstom and Total (approximately 75%

more transitory jumps).

We also investigated the intradaily seasonality of detected jumps by counting, for all

companies, the numbers of certain types of jumps that occurred during various hours of the

day. The results of this investigation are presented in Table 5. The lower panel of the table

is constructed as follows: we denote by Nidh the number of jumps found for company i, on

day d and in hour h. We then define by Th =
∑

i

∑
dNidh the total number of jumps for

a given hour h over the sample. Eventually, we construct fh = 100× 1
12

∑12
i=1

∑
dNidh/Th,

which is the average number of jumps across all companies for a given hour h. As can be

13A possible interpretation of this difference is as follows: The distribution used to define the quantile
is based on observed price changes. The algorithm then defines the quantiles of the distribution of the
innovation (εy,k), i.e., after incorporating the effects of the microstructure variables and the time-varying
volatility. As the model with explanatory variables performs relatively well for highly liquid stocks, the
tails of the innovation distribution are thinner than those of the observed price changes, and therefore
more observations are classified as jumps.

14It should be noted that, for some stocks, the tick size represents a significant fraction of the price
level. For Alstom, Alcatel, and Orange, a variation of 1 cent would correspond to a price change of 23 bp,
16 bp, and 13 bp, respectively. Conversely, for these three firms, an average jump (1%, 0.4%, and 0.5%,
respectively) would correspond to a price change of 4.4 cents, 2.5 cents, and 9 cents, respectively.
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seen, the number of jumps is especially high during the opening and the closing hours.15

As it is well documented, these are the periods when trading activity is most intense,

as also confirmed by the seasonality pattern for the price change volatility (Figure 4).

Our detection of jumps during these moments suggests that more news is generated at

these times. Thirty percent of the detected jumps occur during the first hour of trading,

whereas only 4.3% of the jumps are found to occur between 1 pm and 2 pm (see Table 5,

last column). In the afternoon, the frequency of jumps increases again, and 15% of the

jumps occur between 4 pm and 5 pm. On average, jumps are 7 times more likely during

the first hour than during the fifth hour.

The breakdown into transitory jumps Jy and permanent jumps Jm also provides inter-

esting results. If jumps in the state equation can be associated with fundamental news, our

estimations show that news early in the morning and late in the afternoon is particularly

relevant for the Paris Bourse. Fifty percent of jumps occurring in the first hour are classi-

fied as permanent. Between 1 pm and 2 pm, only 42% of jumps are considered permanent.

Finally, the proportion of jumps increases again at the end of the day, to 45%, between 4

pm and 5 pm.

4.2 Model with Time-Varying Parameters and Jump Filtering

We now consider the model with dynamic parameters and variances and preliminary jump

filtering. Table 6 presents averages of the parameters over the sample and the stan-

dard deviations of the parameter series.16 Comparison of the models with and without

microstructure variables (Panels A and B, respectively) shows that these variables sig-

nificantly contribute to the dynamics of stock returns. On average, the variance of the

transaction price innovation (σ2
y) is reduced by 22%. Overall, microstructure variables

15The last subperiod lasts only 30 minutes (from 17 to 17:30), so that the numbers are not directly
comparable.

16The model is estimated using the particle filter. Again, all the parameters are multiplied by 100.
Clearly, the standard deviations associated to the parameters are not comparable to the standard errors
reported for the Kalman filter estimation. Instead, they reflect the magnitudes of the changes in the
dynamics of the particle filter parameters. Large standard deviations indicate that allowing for time
variability in the model parameters is, in fact, important in obtaining a good description of actual data.
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(with time-varying parameters) and jump filtering reduce the variance of the transaction

price innovation by 30%.

Comparison of these averages with the estimates of Table 3 reveals large differences

between the two models, implying that dynamic parameters and jump filtering significantly

affect the estimation of the microstructure model and thus the measure of the price impact

of order flow. In the fundamental value equation, the parameters φ+ and φ−, which reflect

the direct permanent price impact of trades, are significantly higher. The increase in

parameters ranges from 0.4 to 1.7, suggesting that after removing jumps, the price dynamics

is more sensitive to trades. This effect is sizable, as the permanent price impact increases

from 6% to 101%. We will show below that the magnitude of the effect has important

economic implications. Removing jumps also implies, for most stocks, an increase in the

transitory price impact (parameters φ̄ and λ̄), although to a lesser extent. Finally, the

impact of the duration between trades is considerably reduced and is indeed halved for

most stocks. In sum, the comparison suggests that filtering out jumps enables us to better

capture the microstructure phenomena involved in price formation.

Figures 5 and 6 present the evolution of the parameters of a highly liquid stock (Total)

and a less liquid one (Sodexho). The constant lines are the Kalman filter estimates. All

of the parameters are multiplied by 100 and thus correspond to price impacts measured in

basis points. Starting with Total (Figure 5), we observe that the parameters are relatively

stable, varying within a relatively narrow band. For instance, the four φ parameters range

from 1 bp to 3.5 bp. On the opposite side, Figure 6 shows that, for the less liquid stock,

there is much greater time variability in the model parameters. The φ parameters vary

between −5 bp and 15 bp.

Inspecting the figures corresponding to buy and sell trades, we observe some divergence

between the parameters. Inspection of the average of the parameter estimates suggests that

the asymmetry in the price impact between buy- and sell-initiated trades comes mainly

from the differences in the permanent effect of the order flow: we find that, in general,

φ+ > φ− for highly liquid stocks and φ− > φ+ for less liquid stocks. We also observe

that, in general, λ̄+ > λ̄− for highly liquid stocks and λ̄− > λ̄+ for less liquid stocks,
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suggesting differences in the transitory effects of trading volume. This difference translates

into differential price impacts of trade, as we will now see.

4.3 Contribution Analysis

With our complete model, we can analyze the contribution of the various factors driving the

dynamics of the transaction price. To simplify notations, we rewrite our final specification

for the price dynamics (Equations (6) and (7)) as follows:

yk = mk + Z1,k βy,k + ηy,k + Jy,k, (8)

mk = mk−1 + Z2,k βm,k + ηm,k + Jm,k, (9)

where Z1,k = [ D+
k D−k DV +

k DV −k ] and Z2,k = [ τk ε+
D,k ε−D,k ε+

V,k ε−V,k ], ηy,k =

σy,k zy,k, and ηm,k = σm,k zm,k. The dynamics of the transaction price can be written as:

yk − yk−1 = (mk −mk−1) + (Z1,kβy,k − Z1,k−1βy,k−1) + (ηy,k − ηy,k−1) + (Jy,k − Jy,k−1)

= Z3,k βym,k + (ηy,k − ηy,k−1) + ηm,k + (Jy,k − Jy,k−1) + Jm,k,

where Z3,k = [ Z1,k −Z1,k−1 Z2,k ] and βym,k = [βy,k βy,k−1 βm,k]
′ denote the vectors

of explanatory variables and structural parameters, respectively. We notice that, by con-

struction of our algorithm, jumps of different kinds are not correlated and jumps are not

correlated with continuous innovations ηy,k and ηm,k. In contrast, ηy,k and ηm,k can be

correlated.

Denoting rk = yk − yk−1 the return of the stock at trade k, the total variation in

transaction return is given by:

V [rk] = V [Z3,k βym,k] + V [ηy,k − ηy,k−1] + V [ηm,k] + 2Cov[ηy,k − ηy,k−1, ηm,k]

+V [Jy,k − Jy,k−1] + V [Jm,k].

The first term on the right-hand side corresponds to the contribution of the microstructure

model, the second to fourth terms correspond to the contribution of the continuous inno-
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vations, and the fifth and sixth terms correspond to the contribution of the transitory and

permanent jumps, respectively. To be comparable with the usual definition of the return

process, we need to take the contribution of the overnight return into account. Therefore,

we consider V [rk] as the variance over all the trades, including the overnight return.

As Table 7 shows, the contribution of the intraday jumps is relatively limited: it is

8.5% on average, with a maximum of 12.2% for Orange and a minimum of 5% for Alstom.

This contribution is in fact similar to the contribution of the overnight return. On average,

the overnight return contribute for 7.1% of the total variation, with a maximum of 15.4%

for STMicro and a minimum of 3.7% for Alstom.

These results can be compared to previous estimates of the jump contribution reported

in the literature. Estimates based on similar data (large-capitalization stocks) suggest a

large frequency effect: using daily data, Ball and Torous (1985) find a contribution of jumps

of 47% on average (sample: 1981–1982) and Maheu and McCurdy (2004) find an average

contribution of 29% (sample: 1962–2001). Using intraday (17.5 min) returns, Bollerslev,

Law, and Tauchen (2008) find a contribution of 12% (sample: 2001–2005). Christensen,

Oomen, and Podolskij (2014) also compare, on the same data set, the jump contribution

depending on the sample frequency. On DJIA constituents, they find a contribution of

11.9% for 15 min sampling, 7.3% for 5 min sampling, and finally 1.3% for tick frequency.

All these estimates are based on non-parametric techniques. Although our results are

based on a microstructure approach, our estimates are, therefore, in the ball park of those

reported by Christensen, Oomen, and Podolskij (2014).

The relative contributions of the transaction price innovation and fundamental value

innovation are rather different from one stock to the other. For instance, for STMicro,

LVMH, and Sodexho, the contribution of the fundamental value innovation is close to 20%

of the total return variation, a proportion that is larger or equal to the contribution of the

transaction price innovation. For these firms, most of the continuous volatility comes from

the volatility in the fundamental value. In contrast, for stocks such as Alcatel, Alstom, or

Suez, the contribution of the continuous innovation is dominated by the transaction price

innovation.

23



We now consider the contribution of the microstructure model. The average contribu-

tion is equal to 47.7%, with large contributions for Alcatel, Alstom, and Total (above 58%)

and low contribution for STMicro, Sodexho, and Lagardere (below 40%). These results

suggest that the microstructure model is able to capture a significant part of the variation

in stock returns at tick frequency.

4.4 Price Impact of Trades

Several papers have investigated the price impact of block trades of institutional investors

(Holthausen, Leftwich, and Mayers, 1987, Chan and Lakonishok, 1993, Keim and Madha-

van, 1995), almost universally reporting that buy trades have larger price impacts than sell

trades. The dominant explanation for this finding is based on the short-sale constraints

faced by institutional investors. A decision to buy a stock implies that the institution has

a strong positive opinion about the stock relative to the universe of available stocks. In

contrast, a decision to sell a stock implies a negative opinion about the stock relative to

the stocks held by the institution. Saar (2001) proposes a theoretical model in which this

asymmetry can be reversed. The main implication of his model is that a long run-up in

a stock’s price reduces the asymmetry in the permanent price impact of buy-initiated and

sell-initiated block trades.

We now investigate this question within our framework by considering all the trades of

a stock instead of the block trades only. For this purpose, we consider large buy-initiated

and sell-initiated trades, equal to 10 times the average trade of the stock (from Vk = 75, 000

euros for Alstom to 1, 105, 000 euros for Total). We then evaluate the expected (permanent

and transitory) impact on price. For buy- and sell-initiated trades, we have the following

equations for the permanent (PPI) and transitory (TPI) price impacts, respectively:17

PPI+ = φ+ + λ+ ε+
V,k, PPI− = −φ− + λ− ε−V,k, (10)

TPI+ = φ̄+ + λ̄+ DV +
k , TPI− = −φ̄− + λ̄− DV −k . (11)

17We assume that the expected trade direction is 0 and that the expected trade size is the average trade
size for the given stock over the sample.
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This decomposition is similar to that found in Sadka (2006).

Table 8 reports several important results. First, the price impact estimates are dra-

matically altered when we move from a model with constant parameters and no jump

filtering (Kalman filter) to a model with time-varying parameters and jump filtering (par-

ticle filter). For most of the firms, the price impact is increased by approximately 10 to

30% compared to Kalman filter estimates. Failing to take parameter dynamics and jumps

into account therefore entails systematic underestimation of the price impact.

Second, focusing now on particle filter estimates, we observe that there are large dif-

ferences in price impacts across firms. A generally expected result is that highly liquid

firms are less affected by trades of a given value than less liquid firms. A 10 times larger

than average trade would change the price of Alstom by as much as 13 bp if the trade is

buy-initiated and 18 bp if it is sell-initiated. On the other side of the spectrum, the price

impact of such a trade on Total is only approximately 4 bp regardless of the side of the

trade.

Third, we find, as expected, an asymmetry in the price impact of buy-initiated trades

and sell-initiated trades, but this asymmetry can also be reversed. Buys have a larger

impact than sells for highly liquid stocks with a large proportion of sell-initiated orders. In

contrast, sells have a larger impact than buys for less liquid stocks with a large proportion

of buy-initiated orders. This result holds for the overall price impact but also for the

permanent and transitory components. This finding is consistent with the information

channel, described theoretically by Saar (2001), through which greater trading intensity

and more informative trades are likely to increase the asymmetry of the price effects.

To illustrate this result, Figure 7 displays the total price impact of a buy-initiated

trade and a sell-initiated trade for two highly liquid stocks (Total and France Telecom)

and two less liquid stocks (Alstom and Sodexho). The straight lines correspond to the

Kalman filter case, indicating that price impact is almost systematically under-estimated

under this specification. Buy trades have a greater impact than sell trades for highly liquid

stocks and a smaller impact for less liquid stocks. It should be noticed that the reverse

asymmetry does not hold for all less liquid stocks: The usual asymmetry holds for Alstom

and Sodexho.
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5 Conclusion

In this paper, we have considered a market microstructure model in which stock price

is modeled as gravitating around the fundamental value process. Differences between

transaction price and fundamental value are explained by trade direction and trade size,

whereas changes in the fundamental value are explained by surprises in trade direction and

trade size. As price changes are also affected by (permanent and transitory) jumps, we

develop an estimation strategy based on Bayesian OLS and particle filtering that allows

us to detect jumps in real time.

In the empirical section of this paper, we estimate the model, using all trades of 12

large stocks on Euronext Paris over a two-month period. The jumps detected by our

estimation strategy have interesting properties. First, highly liquid stocks are characterized

by several relatively small jumps per day, whereas less liquid stocks are characterized by

a small number of relatively large jumps per day. Additionally, less liquid stocks tend

to exhibit a larger proportion of permanent jumps than highly liquid stocks. Finally,

jumps of both types tend to occur most frequently during the first and final hours of the

trading day. This result suggests that jumps may partly trigger volatility, which displays

a similar seasonality pattern. The impact of jumps at tick frequency is relatively limited,

however, as their overall contribution to the total variation of stock returns is equal to

8.5% on average. This contribution is similar to the contribution of the overnight jump

(7% on average). This result is consistent with the evidence reported by Christensen,

Oomen, Podolskij (2014), using a non-parametric measure of jumps at tick frequency. The

contribution of the continuous innovations is approximately 36.7% of the total variation

of stock returns, whereas the microstructure model explains on average 47.7% of the total

variation.

Furthermore, we obtain several important results regarding the price impact of trades.

First, measures of the price impact are sensitive to the dynamics of the model’s parame-

ters and the preliminary detection of jumps. Indeed, explicitly modeling the microstructure

variables significantly reduces the variance of the innovation processes. In addition, allow-

ing for dynamic parameters and jumps strongly affects the estimated price impact of trades.
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In our model with jump filtering, we find that the price impact is 10 to 30% higher than in

our model without jump filtering. Second, as expected, less liquid stocks are more sensitive

than highly liquid stocks are to trades. However, we also identify an asymmetry in the

price impact of buy- and sell-initiated trades: highly liquid firms with a large proportion

of sell-initiated orders are more sensitive to buy-initiated trades, whereas less liquid firms

with a large proportion of buy-initiated orders are more sensitive to sell-initiated trades.
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6 Appendices

6.1 Appendix 1: Estimation Methodology

To simplify notations, we rewrite our final specification for the price dynamics (Equations

(6) and (7)) as follows:

yk = mk + Z1,k βy,k + σy,k zy,k + Jy,k, (12)

mk = mk−1 + Z2,k βm,k + σm,k zm,k + Jm,k, (13)

where Z1,k = [ D+
k D−k DV +

k DV −k ] and Z2,k = [ τk ε+
D,k ε−D,k ε+

V,k ε−V,k ]. The

time index on βy,k and βm,k reflects the fact that parameters will be updated with each

new observation.

To start the discussion about the estimation of the model, we consider a simplified model

without jumps. Once this simpler model has been discussed, we will turn to the detection

and treatment of the jumps (Section 6.1.3). In order to take parameters variability into

account, we re-initialize the parameters each day and use each new observation yk to

update the parameter estimates. Such an approach is referred to as online estimation in

the particle filter literature.

6.1.1 Updating Parameters with Bayesian OLS

Before discussing the parameter-learning algorithm for the estimation of the state variable

and the continuous shock variances, we describe the way we update the estimates of βy,k

and βm,k. We assume that Nd trades are available on a given day d. In a traditional OLS

setting, we would simply estimate βy and βm from the regression:

yk − yk−1 = (Z1,k − Z1,k−1)βy + Z2,k βm + εk for k = 1, · · · , Nd. (14)
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With BOLS, each new observation allows to update the parameters βy,k and βm,k.
18 In our

approach, we re-initialize the estimation procedure for each new day. For this reason, we

now distinguish the estimation performed for the first day from the subsequent ones.

For the first day, we initialize hyper-parameters as by0 = bm0 = 0 and we set By0 =

In1 and Bm0 = In2 , where n1 and n2 represent the number of variables in Z1 and Z2,

respectively. We also define

b0 =

 by0

bm0

 , B =

 By0 0

0 Bm0

 , (15)

and, for trade k = 2, · · · , Nd,

Z2:k =


Z1,2 − Z1,1 Z2,2

Z1,3 − Z1,2 Z2,1

...
...

Z1,k − Z1,k−1 Z2,k

 and ∆Y2:k =


y2 − y1

y3 − y2

...

yk − yk−1

 .

As the price yk is made available, the parameters are updated as:

β̂k =
[
β̂′y,k, β̂

′
m,k

]′
=
[
B−1 + Z ′2:kZ2:k

]−1 [
B−1b0 + Z ′2:k∆Y2:k

]
= [SZ′Z;k−1 + Z ′k:kZk:k]

−1
[SZ′Y ;k−1 + Z ′k:k∆Yk:k] , (16)

where SZ′Z;k−1 ≡ B−1 + Z ′2:k−1Z2:k−1 and SZ′∆Y ;k−1 ≡ B−1b0 + Z ′2:k−1∆Y2:k−1 are suffi-

cient statistics for the parameter estimates βk, which can be updated with each new price

observation yk. At the end of each day, we obtain β̂Nd
.

For subsequent days, we initialize the hyper-parameters with b0 = β̂Nd
, meaning that

we start the day by defining as hyper-parameters the parameters we obtained at the close

of the previous day. Furthermore, we set B =
(
n0

Nd
SZ′Z;tNd

)−1

. Then, we proceed updating

the parameters as in Equation (16).

18It is easy to verify that the error term εk is defined as εk = σy,k zy,k − σy,k−1 zy,k−1 + σm,k zm,k. The
OLS estimator is still consistent in this context.
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6.1.2 Estimating State and Variances via Particle Filter

At this stage, we have described how to obtain estimates of model’s parameters. Now we

describe how the state (mk) and the variances of the continuous shocks (σ2
y,k and σ2

m,k) are

estimated via particle learning, as described by Carvalho et al. (2010). As we can estimate

the parameters βy and βm via BOLS, this approach appears to be the most efficient way

according to the simulation experiment reported by Lopes and Tsay (2011). For the time

being, we assume that no jump occurred.

Estimation of the variances.

We distinguish again the first day from the subsequent ones. For the first day, we assume

Bayesian priors, as in Lopes and Tsay (2011):

m0 ∼ N(µ0, c0), (17)

βy ∼ N(by0 , σ
2
yBy0), βm ∼ N(bm0 , σ

2
mBm0), (18)

σ2
y ∼ IG

(n0

2
,
n0

2
σ2
y0

)
, σ2

m ∼ IG
(ν0

2
,
ν0

2
σ2
m0

)
. (19)

In Bayesian literature, it is common to assume that variances follow an inverse-gamma

distribution, IG, as it is a natural conjugate prior for the normal distribution.19

With each new observation, after estimation of the state mk, denoted by m̂k, we update

the following sufficient statistics of sum of squared residuals:

SSRy,0 = n0σ
2
y0
, (20)

SSRy,k = SSRy,k−1 + (yk − x̂k − Z1,k β̂y,k)
2, (21)

SSRm,0 = ν0σ
2
m0
, (22)

SSRm,k = SSRm,k−1 + (m̂k − m̂k−1 − Z2,k β̂m,k)
2. (23)

19In practice, to initialize the algorithm, we set µ0 = y1 the first log-price in the sample and we set
c0 = 2× V̂ [y1:100], where V̂ [y1:100] denotes the estimate of the variance based on the first 100 observations.
Following Lopes and Tsay (2011), we also set n0 = ν0 = 10. In addition, we set σ2

y0
= 5 σ2

y,KF and

σ2
m0

= 5 σ2
m,KF , where σ2

y,KF and σ2
m,KF are the estimates of the innovation variances obtained from the

Kalman filter. We also used other scalings for the variances but our eventual estimates were not changed.
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By defining nk = nk−1 + 1 and νk = νk−1 + 1, we note that resampling standard deviations

can be done by drawing from an inverse-gamma distribution:

σ2
y,k ∼ IG

(
nk
2
,
1

2
SSRy,k

)
and σ2

m,k ∼ IG

(
νk
2
,
1

2
SSRm,k

)
.

For each new day, we re-initialize the SSR with:

SSRy,0 =
n0

Nd

SSRy,Nd
and SSRm,0 =

ν0

Nd

SSRm,Nd
.

The idea of doing so is that the best parameter estimate as the market opens is yesterday’s

close, although the uncertainty surrounding this observation might be large. As the new

day evolves, parameter estimates will adjust to new values and the variances (filtered for

intradaily seasonality) will in principle decrease.

Estimation of the fundamental value with known parameters.

To cast our model within the particle filter literature, we notice that Equations (6) and

(7) can be rewritten as, for k = 1, 2, · · · , Nd:

yk|mk, Zk ∼ p(yk|mk, Zk), (24)

mk|mk−1, Zk ∼ p(mk|mk−1, Zk). (25)

We have regrouped all predetermined variables in a single vector Zk. We denote by p a

generic probabilistic model that needs to be specified depending on the particular prob-

lem.20 If parameters were known, two fundamental approaches could be used to estimate

the latent state mk.

The seminal approach, due to Gordon, Salmond, and Smith (1993), called Bootstrap

Filter, proceeds as follows:

1. At the initial step 0, simulate M particles m
(i)
0 ∼ N(µ0, c0), for i = 1, · · · ,M.

20This general notation allows for a potentially non-linear and non-Gaussian model. Even though our
model is linear, we use the particle filter, as transaction-price innovation is not Gaussian. In addition,
particle filter is a convenient setting to update parameter estimates with each new observation.
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2. At step k, propagate the particle m
(i)
k−1 to m̃

(i)
k using p(mk|mk−1, Zk) (Equation (25)).

3. Resample m
(i)
k from candidate particles m̃

(i)
k by drawing with resampling, where par-

ticle m
(i)
k is chosen with a probability proportional to the weight w

(i)
k ∝ p(yk|m̃(i)

k , Zk).

Having described this algorithm, several remarks are of order. First, in step (2), we

propagate m
(i)
k−1 to m̃

(i)
k by using:

m̃
(i)
k = m

(i)
k−1 + Z2,k βm,k + σm,k z

(i)
m,k,

where z
(i)
m,k is drawn from a Gaussian N(0, 1). In other words, we do not allow for jumps

here. The reason for this is that we want to obtain a conservative value of m̃
(i)
k , which,

when confronted with yk, will allow us to detect if an abnormal realization of yk took place.

And, indeed, a first way to detect jumps is to consider the likelihood p(yk|m̃(i)
k , Zk) for all

the candidate particles. There are cases where, even for a very large amount of particles,

M, all the likelihoods are infinitesimally small. Such cases would clearly qualify as jumps

given that the observations just do not match the model.

Second, if no jump is detected, meaning that likelihoods p(yk|m̃(i)
k , Zk) are not all in-

finitesimally small, it is still possible that the realization of yk be highly unlikely given the

current parameter estimates and mk. To investigate this issue, we construct the predictive

distribution p(yk|yk−1, Zk), where yk = {yk, yk−1, · · · , y1} and Zk = {Zk, Zk−1, · · · , Z1},

and consider if the actual observation yk can come from this posterior distribution with

reasonable probability.21

To obtain this predictive distribution, we follow the approach described by Maiz,

Miguez, and Djuric (2009). The predictive density is defined as:

p(yk|yk−1, Zk) =

∫
p(yk|mk, Z

k)p(mk|yk−1, Zk)dmk. (26)

21We always assume in determining the predictive distribution that the explanatory variables of the
model are known. In practice, as the time of the next trade k and the traded price yk become known, the
other right-hand-side variables for our model also become known.
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To simulate from this density, it is necessary to sample from p(mk|yk−1, Zk), defined as:

p(mk|yk−1, Zk) =

∫
p(mk|mk−1, Z

k)p(mk−1|yk−1, Zk)dmk−1

≈ 1

M

M∑
i=1

p(mk|m(i)
k−1, Z

k). (27)

The reason for this is that the particles resulting from the boostrap filter provide a sam-

ple representation of p(mk−1|yk−1, Zk), see Gordon, Salmond, and Smith (1993, p. 108).

Contemplating Equation (27), we note that the predictive density can be reinterpreted as

a mixture of distributions, from which it is easy to sample. The algorithm is now traced.

We start with simulating from Equation (27) a sample of i′ = 1, · · · ,M ′ draws. To do

so, we uniformly draw from the particles m
(i)
k−1 and for each draw we generate m̃

(i′)
k using

Equation (25). This yields a sample drawn from p(mk|yk−1, Zk).

Then, as a next step, we observe that Equation (26) can be approximated as:

p(yk|yk−1, Zk) ≈ 1

M ′

M ′∑
i′=1

p(yk|m̃(i′)
k , Zk).

Thus, the density of yk is a mixture of distributions from which we can easily sample. We

consider M ′′ draws obtained as:

y
(i′′)
k = m

(i′′)
k + Z1,k βy,k + σy,k z

(i′′)
y,k , for i′′ = 1, · · · ,M ′′. (28)

where the m
(i′′)
k are redrawn among the m̃

(i′)
k (Step 3). The y

(i′′)
k constitute a sample drawn

from the posterior distribution that will be used for jump detection.

Even though the Bootstrap Filter, as explained above, plays a crucial role in the detec-

tion of jumps, it turns out that for the actual parameter estimation the so-called Auxiliary

Particle Filter (APF) of Pitt and Shephard (1999) plays a particular role. Whereas the

Bootstrap Filter starts by propagating and then resampling, the APF is somewhat more

efficient, as it avoids us to throw away some of the resampled m̃
(i)
k . This algorithm is based

on the following steps, where we follow Lopes and Tsay (2011):

1. Resample m̃
(i)
k−1 from m

(i)
k−1 using as weights w

(i)
k ∝ p(yk|g(m

(i)
k−1), Zk).
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2. Propagate m̃
(i)
k−1 to m̃

(i)
k using p(mk|m̃k−1, Zk).

3. Resample m
(i)
k from m̃

(i)
k with weights w

(i)
k ∝ p(yk|m̃(i)

k , Zk)/p(yk|g(m̃
(i)
k−1), Zk).

In the first step of this algorithm, function g denotes for instance the expected value of

mk:

g(m
(i)
k−1) = Ek−1 [mk] = m

(i)
k−1 + Z2,k βm,k.

This implies that in the second step we use particles m̃
(i)
k−1 that are of relevance for yk.

Because of this, the algorithm is generally more efficient for the estimation of the latent

state and the parameters.

Even though the algorithm is more efficient for parameter estimation, it is less adapted

in the case where yk incorporates a jump. Indeed, if a permanent jump took place at trade

k− 1, then mk will have adjusted. This is not taken into account in the APF approach as

only g(m
(i)
k−1) is used. For this reason, we proceed in two steps. First, we use the Bootstrap

Filter to detect jumps and then use an algorithm involving APF for parameter estimation.

Estimation of the fundamental value with unknown parameters.

So far, we assumed the parameters to be known. We now consider the situation where the

parameters have to be estimated. For this purpose, we rely on the Particle Learning

(PL) algorithm of Carvalho et al. (2010). This method requires that parameters can

be estimated from sufficient statistics. Other algorithms for parameter estimation, such

as Storvik (2002), similarly require that parameters can be updated by using sufficient

statistics.

We denote by sk = S(sk−1,mk, yk, Zk) and by smk = K(smk−1, θ, yk, Zk) the parameter-

and state-sufficient statistics. The PL algorithm is given by the following steps, adapted

from Lopes and Tsay (2011):

1. Resample (θ̃, s̃mk−1, s̃k−1) from (θ, smk−1, sk−1) with weights wk ∝ p(yk|smk−1, θ, Zk).

2. Sample mk from p(mk|s̃mk−1, θ̃, y
k, Zk).
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3. Update parameter-sufficient statistics: sk = S(s̃k−1,mk, yk, Zk).

4. Sample θ from p(θ|sk).

5. Update state-sufficient statistics: smk = K(s̃mk−1, θ, yk, Zk).

6.1.3 Complete Algorithm

For our model, we have already seen how sufficient statistics can be obtained for the

estimation of βy,k and βm,k during the day as a new yk becomes available. For the problem

at hand, we adapted the PL algorithm as follows:

Step 1: Initialization of the algorithm.

a) Simulate i = 1, · · · ,M particles for the initial state m
(i)
0 ∼ N(µ0, c0).

b) Simulate i = 1, · · · ,M particles for the variances σ
2(i)
y,1 ∼ IG(n0

2
, n0

2
σ2
y0

) and σ
2(i)
m,1 ∼

IG(ν0
2
, ν0

2
σ2
m0

).

Step 2: Jump detection (Bootstrap filter). In presence of a jump at trade k, all the

statistics would be biased if they were computed using price yk. The objective is therefore

to construct the prediction distribution of yk without using yk and to test for the occurrence

of a jump.

a) Compute σ̄2
y,k and σ̄2

m,k the variances of the observation and state equations by averaging

over the M particles.

b) Propagate m
(i)
k−1 to m̃

(i)
k as:

m̃
(i)
k = m

(i)
k−1 + Z2,k βm,k + σ̄m,k z

(i)
m,k

with z
(i)
m,k drawn from the N(0, 1) distribution (step (2) of the Bootstrap filter).

c) Resample m
(i)
k from particle m̃

(i)
k using weights proportional to p(yk|m̃(i)

k , Zk) (step (3)

of the Bootstrap filter).
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d) Simulate y
(i)
k using:

y
(i)
k = Z1,k βy,k +m

(i)
k + σ̄y,k z

(i)
y,k.

Given the non-Gaussianity of the transaction-price innovation (even after removing

large jumps), we allow z
(i)
y,k to be drawn from a Student t distribution with a degree

of freedom equal to the inverse of the tail index estimated over the data.22 We

construct the predictive distribution for yk and compute the quantiles at 0.1% and

99.9%, denoted by q0.1%
y and q99.9%

y , respectively. These quantiles are used to detect

whether a jump occurred at trade k and whether it is a negative or positive jump.

e) To differentiate between permanent and transitory jumps, we make the following as-

sumption: a transitory jump lasts only one trade, whereas a permanent jump lasts

at least two trades. Therefore, after trade k, we can test whether trade k − 1 was a

transitory or permanent jump:

• If q0.1%
y < yk−1 < q99.9%

y , we conclude that yk−1 was not a jump and go to Step

3.

• If (yk−1 < q0.1%
y < yk) or if (yk < q99.9%

y < yk−1), we conclude that yk−1 was a

transitory jump. We do not change the fundamental value mk−1 and keep the

same predictive distribution. We then go to next trade k + 1.

• If (yk−1 < q0.1%
y and yk < q0.1%

y ) or if (yk−1 > q99.9%
y and yk > q99.9%

y ), we conclude

that yk−1 was a permanent jump. We change the fundamental value mk = yk−1

and go back to Step 2 with trade k to update the predictive distribution. We

then go to the next trade k + 1.

Step 3: Parameter estimation (Auxiliary particle filter with Particle learning).

If trade k does not correspond to a jump, the statistics can be estimated using price yk as

we know that this is not a jump. If trade k is a transitory jump, we just ignore price yk.

22More precisely, we estimate the left and right tail index (using Hill’s estimator with a threshold of 5%
of observations). As the skewness of most of the security returns is close to 0, we take the average of the
left and right tail indices, which gives us an estimate of the degree of freedom of the t distribution.
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If trade k is a permanent jump, we have updated the fundamental value to the previous

price (Step 2). We now update the parameters, the variances, and the fundamental value

for trade k.

a) Update parameters βy,k and βm,k, as described in Section 6.1.1.

b) Simulate the price process, conditional on parameters at trade k and on the fundamental

value at trade k − 1:

y
(i)
k = Z1,k βy,k +m

(i)
k−1 + Z2,k βm,k + σ

(i)
y,k zy,k + σ

(i)
m,k zm,k.

We denote by l(i) the likelihood of particle y
(i)
k conditional on its mean Z1,k βy,k +

m
(i)
k−1 + Z2,k βm,k and its variance σ

(i)2
y,k + σ

(i)2
m,k.

c) Resample from the sufficient statistics (σ
(i)
y,k, σ

(i)
m,k, and m

(i)
k−1) using as weights: w(i) =

l(i)/
∑M

i=1 l
(i). This gives us σ̃

(i)
y,k, σ̃

(i)
m,k, and m̃

(i)
k−1.

d) Propagate the fundamental value m̃
(i)
k−1 to m

(i)
k , using:

m
(i)
k = µ(i) +

√
V (i) z

(i)
m,k,

where the best predictor of the mean is:

µ(i) = V (i) ×

(
yk − Z1,kβy,k

σ̃
2(i)
y,k

+
m̃

(i)
k−1

σ̃
2(i)
m,k

)
,

and the precision for each particle is:

1/V (i) = 1/σ̃
2(i)
y,k + 1/σ̃

2(i)
m,k,

and with z
(i)
m,k drawn from the N(0, 1) distribution.
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e) Update sufficient statistics as in Equations (21) and (23) for all particles:

nk = nk−1 + 1,

SSR
(i)
y,k = SSR

(i)
y,k−1 + (yk −m(i)

k − Z1,k βy,k)
2,

νk = νk−1 + 1,

SSR
(i)
m,k = SSR

(i)
m,k−1 + (m

(i)
k −m

(i)
k−1 − Z2,k βm,k)

2.

and generate new particles for the innovation and observation error variances of the

next trade:

σ
2(i)
y,k+1 ∼ IG

(
nk
2
,
1

2
SSR

(i)
y,k

)
,

σ
2(i)
m,k+1 ∼ IG

(
νk
2
,
1

2
SSR

(i)
m,k

)
.

With this last step, we go back to Step 2 with the next observation yk+1.

6.2 Appendix 2: Intradaily Periodic Volatility

Different approaches have been used in the literature to deal with intradaily periodic volatil-

ity patterns. Some authors have ignored this issue (Duan and Fulop, 2007), others have

estimated their model over arbitrary 30 minute time intervals (MRR, 1997). Still others

include the estimation of this component within the general setting of their model (Engle

and Sun, 2007).

In this section, we build on Boudt, Croux, and Laurent (2011). Their approach rec-

ognize first the possibility that volatility can change from day to day, this is the daily

volatility component. They remove this component in a preliminary step. Since intraday

returns could contain jumps, this daily volatility should be estimated in a manner which

is robust to jumps, which can be achieved by using, for instance, bipower variation.

Specifically, denote by m the intraday sampling frequency, here chosen to be 10 minutes.

Denote by pd,im the price that is closest to the i · m th minute on day d. We have i =

1, · · · ,M. Let the m-minute log-returns be rd,im ≡ pd,im − pd,(i−1)m. The realized bipower
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variation for day d is:

RBVd ≡ µ−2
1

M∑
i=2

|rd,im||rd,(i−1)m|,

where µ1 ≡
√

2/π ' 0.798 under normality, and intradaily standardized returns are then

defined as:

rd,im =
rd,im√
RBVd

.

At this stage, we could proceed computing a standard deviation using the m-minute returns

over several days, as in Taylor and Xu (1997). However, as shown in Boudt, Croux, and

Laurent (2008), such a procedure is not appropriate in the presence of jumps in the data

generating process, as standard deviation is not a robust estimator. In this context, a more

appropriate approach consists in using a scale measure from the robust statistics literature,

as in Boudt, Croux, and Laurent (2011).

This latter approach involves the Shortest-Half-Scale (SHS) estimator of Rousseeuw

and Leroy (1988). The SHS is an equivalent measure to standard deviation, however, it

is outlier-robust. To compute the SHS estimator, we first need to rank returns by size.

In the following, ni denotes the number of sample observations for intraday period i and

{r̄l;i}l=1,··· ,ni
is the sample of observations for this intraday period i. We obtain the order

statistics r̄(1);i ≤ r̄(2);i ≤ . . . ≤ r̄(ni);i. Halves length of hi = bni/2c + 1 contiguous order

observations are defined as r̄(hi);i− r̄(1);i, . . ., r̄(ni);i− r̄(hi−1);i, respectively. The shortest half

scale is the smallest length of all “halves length” corrected for consistency under normality:

ShortHi = 0.741 min{r̄(hi);i − r̄(1);i, . . . , r̄(ni);i − r̄(hi−1);i}.

Finally, we consider:

δ̂ShortHi =
ShortHi√

1
M

∑M
j=1 ShortH2

j

, (29)

whose average of squares is equal to one. Eventually, Boudt, Croux, and Laurent (2011)

propose the use of the so-called Weighted Standard Deviation (WSD) as the intradaily

volatility estimator. The WSD can now be computed for each intraday period across

sample days. This estimator is a robust scale estimator that we use as a proxy for intradaily
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volatility. It is defined as:

δ̂WSD

i =
WSDi√

1
M

∑M
j=1 WSD2

j

,

where

WSDj =

√√√√1.081

∑nj

l=1 w[(rl;j/δ̂ShortHj )2]r2
l;j∑nj

l=1w[(rl;j/δ̂ShortHj )2]
. (30)

The function w(·) in Equation (30) robustifies the standard deviation. It is an indicator

equal to one when its argument can not be rejected to be a realization from a χ2(1) distribu-

tion for a given level of probability, and zero otherwise. In our numerical implementation,

w(z) is equal to one when z ≤ 6.635, which is the 99th percentile of the χ2(1). As noted

in Boudt, Croux, and Laurent (2011), the SHS estimator is highly robust to jumps, but

it has only 37% efficiency with normally distributed rd,i, against 69% for the WSD. This

justifies why the latter is preferred over the former in the paper.
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Figure 1: Price level y with jumps indicators
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Note: The figure displays selected actual observations yk obtained in a simulation exercise
(o) as well as the corresponding true states (+). It also contains the 95% confidence
interval concentrated around the particle-filter estimate of the state mk (dash and dot) as
well as of the posterior distribution of the observation, yk (dashed line). Thin vertical lines
indicate occurrence of permanent jumps (short dashes) or transitory jumps (long dashes).
At observation 133, the algorithm detected an permanent jump in the state equation. At
observations 101, 124, and 159, the simulated data contains a transitory outlier, which
is also identified as such. The continuous line in the center corresponds to the median
estimate of the state.
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Figure 2: Residuals for observation and state equation and jump indicators
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Note: The figure represents for simulated data the residuals of the observation and state
equations, (yk −mk) and (mk −mk−1), respectively. Inspection of the upper figure reveals
that observations 101, 124, and 159 are large outliers. The large deviation of (mk −mk−1)
for observation 133 leads to a successful detection of permanent jump.
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Figure 3: Price and price increment in tick time (5 days)
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Note: The figure represents in (a) the price process (in euro) for a highly liquid company
(Total) and in (b) the price process for a less liquid company (Sodexho). It also represents
in (c) the price increment (in cents of euro) for Total and in (d) the price increment for
Sodexho. The figures present data for 5 days (2, 3, 6, 7, and 8 January, 2003), each being
separated form the next one by some vertical line.
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Figure 4: Intraday seasonality.
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Note: The figure represents intradaily seasonality coefficients for the price change volatility,
the duration between trades, and the log trading volume (in shares and in euro). For the
volatility, the measure is obtained by using a jump-robust non-parametric estimates based
on a multi-power volatility estimation. The figures correspond to the average across the
stocks of the seasonality coefficients.
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Figure 5: Parameter evolution of the complete model for Total.
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(a) Parameters of the fundamental value equation
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(b) Parameters of the transaction price equation

Note: The figure represents the parameter estimates obtained in an online estimation with
daily re-initialization as described in the main text. The straight line corresponds to the
Kalman-Filter estimates. Here, we represent the parameters contributing to the price
impact of trades. The data is filtered for intradaily seasonality.
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Figure 6: Parameter evolution of the complete model for Sodexho.
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(a) Parameters of the fundamental value equation
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(b) Parameters of the transaction price equation

Note: The figure represents the parameter estimates obtained in an online estimation with
daily re-initialization as described in the main text. The straight line corresponds to the
Kalman-Filter estimates. Here, we represent the parameters contributing to the price
impact of trades. The data is filtered for intradaily seasonality.
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Figure 7: Price impact of trades for two highly liquid and two illiquid stocks.
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(b) France Telecom
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(d) Sodexho

Note: The figure represents the price impact of a (buy-initiated or sell-initiated) trade of
10 times the average trade of the stock. The solid line corresponds to a buy trade, the
dashed line to a sell trade. The straight line corresponds to the Kalman-Filter estimates.
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