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Estimating a forward-looking monetary policy rule by the generalized method of moments (GMM) has
become a popular approach. We reexamine estimates of the Federal Reserve reaction function using sev-
eral GMM estimators and a maximum likelihood (ML) estimator. First, we show that over the baseline
period 1979–2000, these alternative approaches yield substantially different parameter estimates. Using
Monte Carlo simulations, we show that the � nite-sample GMM bias can account for only a small part
of the discrepancy between estimates. We � nd that this discrepancy is more plausibly rationalized by the
serial correlation of the policy shock, causing misspeci� cation of GMM estimators through lack of instru-
ment exogeneity. This correlation pattern is related to a shift in the reaction function parameters around
1987. Reestimating the reaction function over the 1987–2000 period produces GMM estimates that are
very close to the ML estimate.
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1. INTRODUCTION

According to the benchmark Taylor rule, central banks set
the short-term interest rate in proportion of the in� ation rate
and the output gap. Since Taylor’s (1993) prominent contribu-
tion, an abundant empirical as well as theoretical literature has
claimed that central banks may have a forward-looking behav-
ior (Clarida and Gertler 1997; Clarida, Galí, and Gertler 1998,
2000). This assumption involves using an adequate estimation
method to overcome the presence of expected in� ation in the
policy rule. Following the in� uential work by Clarida et al.
(1998), a large number of studies have thus used the general-
ized method of moments (GMM) to estimate forward-looking
reaction functions (see, e.g., Mehra 1999; Clarida et al. 2000,
henceforth CGG; Orphanides 2001; Rudebusch 2002).

In this article we reexamine the estimation of the Federal
Reserve forward-looking policy rule and present some orig-
inal empirical results. Although this topic has been widely
studied, there are at least two motivations for our additional in-
vestigation. First, a large body of research over the last decade
has analyzed the properties of GMM estimators and has pro-
duced numerous results that so far have not been incorporated
in the estimationof policy rules. In particular,numerousauthors
have studied the small-sample properties of GMM estimators,
in very different contexts (see the 1996 special issue of JBES,
vol. 14, no. 3). These authors provided evidence that GMM es-
timators may be strongly biased and widely dispersed in small
samples. Fuhrer, Moore, and Schuh (1995) also pointed out
the poor � nite-sample performance of GMM as compared with
that of maximum likelihood (ML). In addition, several alterna-
tive GMM estimators have been proposed (Ferson and Foerster

1994; Hansen, Heaton, and Yaron 1996) that have very differ-
ent small-sample properties. Moreover, alternative procedures
for computing the GMM weighting matrix are likely to provide
contrasting results. One of our aims is to reexamine estimates
of the Federal Reserve reaction function in light of these devel-
opments. The forward-looking reaction function may be seen
as an original � eld for investigatingGMM properties.

A second strong motivation to investigate the Federal Re-
serve reaction function is the issue of parameter stability. The
tenures of Paul Volcker (1979–1987) and Alan Greenspan
(since 1987) as chairman of the Board of Governors of the Fed-
eral Reserve System have been characterized by two very con-
trasting subperiods in terms of interest rate movements, but no
consensus has yet emerged on whether these two eras represent
a single policy regime. Some authors have argued that there has
been no signi� cant difference in the way monetary policy is
conducted since Volcker was appointed chairman in 1979. In
particular, CGG found that during the Volcker–Greenspan pe-
riod, the Federal Reserve has adopted a proactive stance toward
controlling in� ation. Other authors (Judd and Rudebusch 1998;
Rudebusch 2002) concentrated on Greenspan’s tenure. Estima-
tions in this article are found to provide some insight into this
issue.

The article is organized as follows. In Section 2 we review
the speci� cation of the forward-looking monetary policy reac-
tion function. In Section 3 we provide evidence that alternative
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GMM and ML estimation procedures produce very contrasting
estimates of the reaction function over the 1979–2000 period;
however, a standard diagnostic check based on both GMM and
ML estimates does not point to a model misspeci� cation prob-
lem. In Section 4 we show that the dispersion in reaction func-
tion parameters cannot be imputed to the previously reported
poor � nite-sample properties of GMM estimators. In Section 5
we present evidence that the reaction function parameters are
likely to have shifted following the change in the Federal Re-
serve chairman in 1987:Q3.We suggest that this shift is respon-
sible for the large discrepancy between estimation procedures
and also that a shift in variance explains why standard speci� -
cation tests did not detect this misspeci� cation. Finally, in Sec-
tion 6, we � nd that estimates over the 1987:Q3–2000 period are
remarkably close one to each other. In particular, the in� ation
parameter is estimated at a much lower value than that obtained
in some studies over a long sample. Details on the estimation
procedures are relegated in an Appendix available from the au-
thors.

2. THE FORWARD–LOOKING REACTION FUNCTION

According to the baseline policy rule proposed by Taylor
(1993), the central bank is assumed to set the nominal short-
term interest rate (it) as a function of the (four-quarter) in� a-
tion rate (¼ t) and the output gap measure ( yt). As a matter
of fact, most empirical studies investigated “modi� ed” Taylor
rules. First, central banks appear to smooth changes in interest
rates, a behavior found to be motivated on theoretical grounds
(e.g., Sack and Wieland 2000). Second, several authors have
claimed that the behavior of central banks is consistent with
a forward-looking reaction function, in which the interest rate
level is set as a function of expected in� ation and output gap
(Clarida and Gertler 1997; Clarida et al. 1998, 2000; Mehra
1999; Orphanides 2001). Consequently, we specify the empir-
ical policy rule as a partial-adjustment model, in which the
short-term rate adjusts gradually to its target, de� ned in terms
of future annual in� ation and output gap,

it D ½.L/it¡1 C
¡
1 ¡ ½.1/

¢¡
i¤ C ¯.Et¡1¼ tC4 ¡ ¼¤/

C ° Et¡1ytC1
¢

C ´t; (1)

where i¤ is the long-run equilibrium nominal interest rate and
¼¤ is the in� ation target. (The output gap target is assumed to
be 0.) The term ´t can be interpreted as a random policy shock,
which may re� ect the central bank’s failure to keep the interest
rate at the level prescribed by the rule or the deliberate deci-
sion to deviate transitory from the rule. Note that we assume
this shock to be serially uncorrelated for the lags of the interest
rate to be valid instruments in the GMM approach. We de� ne
½.L/ D ½1 C ½2L C ¢ ¢ ¢ C½mLm¡1, with ½.1/ measuring the de-
gree of interest rate smoothing. Later we consider one or two
lags, dependingon the estimation period.

The expression Et¡1 denotes the expectation operator condi-
tional on the information set It¡1 D fit¡1;¼t¡1; yt¡1; : : : g. This
dating of expectations is consistent with current in� ation and
output gap not being observed in real time. It may be argued
that the current interest rate is actually included in the central
bank’s information set, because it is its control variable. How-
ever, for the econometrician,because the current interest rate is

evidently correlated to the error term, it cannot be used as an in-
strument in the GMM approach.Therefore, for convenience,we
include only lagged variables in the information set, an assump-
tion that is not restrictive from an econometrician’s stand point.
Equation (1) is one of the baseline speci� cations estimated by
CGG, Orphanides (2001), or Rudebusch (2002).

The long-run interest rate and in� ation targets (i¤ and ¼¤) are
not identi� ed, because the constant term is proportional to ® D
i¤ ¡ ¯¼¤ D r¤ C .1 ¡ ¯/¼¤, with r¤ D i¤ ¡ ¼¤ the equilibrium
real rate. Although r¤ and ¼¤ are not separately identi� able in
a single-equationapproach, an estimate of the equilibrium real
rate can be obtained from an auxiliary model, including, for
instance, an I–S curve (see Sec. 3.3).

3. A 1979–2000 REACTION FUNCTION: EVIDENCE
FROM ALTERNATIVE ESTIMATORS

3.1 Data

We analyze the Federal Reserve monetary policy reaction
functionover the period 1979:Q3–2000:Q3using quarterly data
drawn from the OECD databases BSDB and MEI. The Federal
funds rate is used as the monetary policy instrument. In� ation is
de� ned the rate of growth of the gross domestic product (GDP)
de� ator (denoted by Pt), so that ¼t D 400.ln.Pt/ ¡ ln.Pt¡1//

and N¼t D 1
4

P3
iD0 ¼t¡i. Output gap is de� ned by the percent

deviation of real GDP (Qt) from potential GDP (Q¤
t ), that is,

yt D 100.ln.Qt/ ¡ ln.Q¤
t //. Following a number of recent stud-

ies (CGG; Rudebusch 2002), we use the output gap series con-
structed by the Congressional Budget Of� ce.

Our sample period covers the tenures of Volcker (1979:Q3–
1987:Q2) and Greenspan (1987:Q3 to now). Using similar data,
CGG, Mehra (1999), and Estrella and Fuhrer (2003) obtained
statistical evidence that the reaction function is essentially sta-
ble over the two tenures. Other studies (e.g., Orphanides 2001;
Rudebusch 2002) prefer to focus on Greenspan’s tenure, raising
the issue of parameter stability. In line with theoretical mod-
els of monetary policy rules, these empirical studies maintain
the assumption that the interest rate and in� ation are station-
ary processes. In a � rst stage, we assume that parameters are
stable over the whole period and, although empirical evidence
is not clear cut (see Fuhrer and Moore 1995), that the model
is stationary. In Section 5 we address the issue of stability of
the policy rule parameters over the two tenures. Therefore, we
introduce the possibility of a shift in the long-run equilibrium
nominal interest rate and in the target in� ation rate in 1987:Q3,
thus weakening the assumption of stationarity.

3.2 GMM Estimates

As is well known, estimating (1) by ordinary least squares
(OLS) using actual future realizations in place of expectated
terms would provide inconsistent estimators, because the asso-
ciated error term "t D ´t ¡ .1 ¡ ½.1//.¯.¼ tC4 ¡ Et¡1¼ tC4/ C
° . ytC1 ¡ Et¡1ytC1// would be correlated with endogenous re-
gressors. This problem can be overcome by using the GMM.
This technique requires only that the error term "t be or-
thogonal to a vector of instruments Zt¡1 belonging to the in-
formation set It¡1, so that E["tZt¡1] D E[gt.µ/] D 0, where
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µ denotes the vector of unknown parameters. An ef� cient
GMM estimator of µ is obtained by minimizing the expression
Ng.µ/0.ST /¡1 Ng.µ/ with respect to µ , where Ng.µ / D 1

T

PT
tD1 gt.µ/

and ST is a consistent estimator of the long-run covariance
matrix of gt.µ/. Provided that instruments are correlated with
endogenous regressors and uncorrelated with the error term,
GMM estimators are strongly consistent and asymptotically
normal (Hansen 1982). Early studies on the use of GMM in
a rational-expectation framework were conducted by Cumby,
Huizinga, and Obstfeld (1983), Hansen and Singleton (1982),
and Hayashi and Sims (1983). In this context, the GMM ap-
proach is very appealing, because it requires only identifying
relevant instruments and does not involve strong assumptions
on the underlying model.

We consider three alternative GMM estimators proposed
in the theoretical literature: the two-step GMM, the iterative
GMM, and the continuous-updating GMM. To our knowledge,
all estimations of the forward-looking reaction function based
on GMM have so far relied on the two-step estimator. These
approaches differ in the way in which the parameter vector and
the long-run covariance matrix interact. Two-step GMM is the
two-step, two-stage least squares procedure initially proposed
by Hansen (1982) and Cumby et al. (1983). The iterative ap-
proach, suggested by Ferson and Foerster (1994) and Hansen
et al. (1996), relies on estimating the parameter vector µ and
the covariancematrix ST iteratively. In the continuous-updating
GMM approach, developed by Hansen et al. (1996) and stud-
ied by Stock and Wright (2000), Newey and Smith (2003), and
Ma (2002), the parameter vector and the covariance matrix are
determined in the minimization simultaneously.

We consider four variants of the covariancematrix estimator.
S1T is the estimator proposed by Newey and West (1987) with
bandwidth parameter L D 4 and a decreasing-weight Bartlett
kernel. Because this estimator is likely to provide inconsis-
tent estimates of ST , we also consider two estimators with
data-dependent bandwidth: S2T , proposed by Andrews and
Monahan (1992), and, S3T , proposed by Newey and West
(1994). Whereas the former is based on an AR.1/ process for
the moment conditions, the bandwidth of the latter is computed
nonparametrically. Finally, S4T is the estimator suggested by
West (1997) with L D 4 and a rectangular kernel. This estima-
tor makes use of the fact that the error term has a moving aver-
age [MA.4/] structure. An Appendixavailable from the authors
provides further details on the GMM procedures.

Before proceeding, we address the issue of instrument
choice. Our instrument set includes four lagged values of the
interest rate, in� ation, and the output gap: it¡1, ¼ t¡1 , yt¡1; : : : ,
it¡4 , ¼ t¡4, yt¡4. This set contrasts with most previous GMM
estimates of the Federal Reserve reaction function, which in-
clude several additional macroeconomic variables as instru-
ments. There are two motivations for choosing such a restricted
information set. First, when a large number of instruments is se-
lected, some instruments may be weakly relevant or redundant,
thus deteriorating the � nite-sample properties of GMM (see the
discussion in Sec. 4). Second, the comparison of alternative
GMM and ML estimators using Monte Carlo simulations (as
performed in Sec. 4) necessitates a plausible data-generating
process for all instruments. We therefore intentionally reduce

the information set to lags of the three variables used in the
structural model discussed later.

Table 1 reports parameter estimates of the reaction function.
We � rst consider the two-step GMM with covariance matrix
estimator S1T (� rst rows of panel A) with only one lagged in-
terest rate (½2 D 0). This case corresponds to the estimation
method adopted by CGG (Table 4, second row), and is con-
sidered throughout the article as the baseline estimate. The
estimate of the response to expected in� ation (¯ D 2:63) is sig-
ni� cantly larger than the coef� cient of 1.5 originally proposed
by Taylor (1993). The estimate of the output gap parameter
(° D :71) is very close to Taylor’s coef� cient of .5, although
it is only weakly signi� cant. These estimates are also close to
those obtained by CGG over the period 1979–1996. In addi-
tion, reestimating equation (1) using the same instrument set as
CGG over our sample did not alter estimation results. Broadly
speaking, the standard, two-step GMM approach provides point
estimates that are rather robust to slight changes in the speci� -
cation.

The iterative and continuous-updating GMM (panels
B and C) yield even larger estimates for the in� ation parameter.
Estimate of ¯ is as high as 3:59 for the iterative GMM and 3:62
for the continuous-updating GMM. The values are larger than
most of those found in the empirical policy rule literature. The
output gap parameter is lower than with two-step GMM and it
is statistically insigni� cant.

We turn now to the choice of the long-run covariance matrix.
The broad picture suggested by our results is that the differ-
ent covariance matrices provide widely dispersed point esti-
mates. Broadly speaking, estimates obtained using S1T and S4T

(which impose the strongest constraints on the covariance ma-
trix) are close to one another. Similarly, estimators based on
S2T and S3T (which do not make any assumption on the order
of the MA process) are very similar. But the two groups dif-
fer signi� cantly. For instance, the in� ation parameter estimated
with continuous-updating GMM decreases from 3:62 with esti-
mator S1T or 3:48 with S4T to 2:72 with S2T and 2:11 with S3T .

The dispersion between estimation approaches also tran-
spires in Hansen’s J statistics. If one were to use the covariance
matrices S2T or S3T , one would strongly reject the overidenti-
fying restrictions, on the basis of the asymptotic p values. This
suggests that some instruments fail to satisfy the orthogonality
conditions. On the contrary, using S1T or S4T , one would not
be able to reject overidentifyingrestrictions. It should be noted,
however, that due to the small size of our sample, the asymp-
totic distribution of the test statistics may fail to approximate
the � nite-sample distribution accurately. We thus computed the
� nite-sample distribution using Monte Carlo simulation as de-
scribed in Section 4. Then, based on � nite-sample p values,
over-identifying restrictions are no longer rejected. Indeed, the
two largest J statistics obtained in Table 1 (corresponding to the
two-step and iterative GMM with the covariance matrix S3T )
have size-adjusted p values equal to 35% and 11%.

On the whole, although the conventional J statistics do not
point to model misspeci� cation, GMM estimates appear to be
widely dispersed. As suggested by Stock and Wright (2000,
p. 1090), this may re� ect the presence of weak instruments or a
speci� cation problem.
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Table 1. GMM Estimates, 1979:Q3–2000:Q3

Panel A: Two-step GMM Panel B: Iterative GMM Panel C: Continuous-updatingGMM

Estimate SE Estimate SE Estimate SE

Covariance-matrix estimator S1T
½1 .831 .043 .782 .061 .766 .053
¯ 2.631 .486 3.591 .566 3.619 .385
° .712 .388 .489 .372 .435 .309
® ¡.585 1.465 ¡2.836 2.479 ¡2.982 2.277
J statistic (statistic/asymptotic p value) 9.765 .370 6.371 .702 6.180 .722

(size-adjusted p value) .813 .867 .846

Covariance-matrix estimator S2T
½1 .875 .031 .938 .030 .837 .014
¯ 3.025 .449 6.000 2.296 2.725 .141
° 1.377 .261 1.725 1.101 1.279 .337
® ¡1.249 1.188 ¡8.117 6.833 ¡.369 .313
J statistic (statistic/asymptotic p value) 23.393 .005 14.006 .122 13.152 .156

(size-adjusted p value) .293 .395 .327

Covariance-matrix estimator S3T
½1 .848 .025 .932 .024 .804 .018
¯ 2.568 .248 6.979 2.302 2.107 .412
° .937 .126 2.312 1.036 1.566 .420
® ¡.208 .811 ¡11.254 6.854 1.755 .802
J statistic (statistic/asymptotic p value) 28.798 .001 29.057 .001 13.330 .148

(size-adjusted p value) .348 .110 .370

Covariance-matrix estimator S4T
½1 .811 .041 .831 .044 .799 .054
¯ 2.507 .442 2.685 .496 3.475 .382
° .364 .242 .385 .292 .300 .262
® ¡.241 1.201 ¡.601 1.463 ¡2.579 2.212
J statistic (statistic/asymptotic p value) 13.914 .177 7.982 .631 7.739 .561

(size-adjusted p value) .313 .680 .678

3.3 ML Estimates

We now focus on the alternative ML estimation procedure.
This approach requires that an auxiliary model be estimated to
forecast the expected variables appearing in the reaction func-
tion (here the in� ation rate and the output gap). An appealing
advantage of ML over GMM, in a forward-looking context, is
that expectations obtained with ML estimation are fully model
consistent. The ML approach is evidentlymore demanding, be-
cause the auxiliary model must be estimated. However, in the
present case, the widely used Phillips curve/I–S curve frame-
work provides a reliable benchmark model of the in� ation out-
put joint dynamics.

The Auxiliary Model. The auxiliary model is inspired by
the model of Rudebusch and Svensson (1999), which embod-
ies the main features of the standard macroeconomicparadigm.
The key relationshipsof the model are

¼t D ®¼1¼t¡1 C ®¼2¼t¡2 C ®¼3¼t¡3

C ®¼4¼t¡4 C ®yyt¡1 C ut (2)

and

yt D ¯y1yt¡1 C ¯y2yt¡2 C ¯r.N{t¡1 ¡ N¼t¡1 ¡ ¯0/ C vt; (3)

where Nxt D 1
4

P3
iD0 xt¡i denotes the four-quarter moving aver-

age of xt . The Phillips curve (2) relates quarterly in� ation (¼t)
to its own lags and to lagged output gap. To preclude any in� a-
tion/outputgap trade-off in the long run, we impose that the four
autoregressive parameters must sum to 1. The constant term is
also set to 0, so that the steady-state value of output gap is 0.
Using the likelihood ratio (LR) test, this joint restriction is not

rejected in our ML estimation (with a p value of .57). The I–S
curve (3) relates the output gap to its own lags and to the four-
quarter moving average of the short real rate. Parameter ¯0 may
be interpreted as the equilibriumreal rate, because it is the value
of the real rate consistent with a steady-state output gap equal
to 0.

The backward-looking nature of this model can be pointed
to as a potential source of misspeci� cation. However, such a
model has proved to be a robust representation of the U.S.
economy. Moreover, no compelling empirical forward-looking
counterpart of the Rudebusch–Svensson model has yet emerged
(see Estrella and Fuhrer 2003). We checked the robustness of
our auxiliary model by estimating the hybrid model proposed
by Rudebusch (2002); our estimate of the reaction function was
essentially unaltered within this framework.

An important issue concerning the auxiliary model is the sta-
bility of parameters over time. To investigate this issue, we
performed a LR test of parameter stability on each equation,
allowing an unknown breakpoint, as suggested by Andrews
(1993) and Andrews and Ploberger (1994). In addition to the
asymptotic p values, we used size-adjusted p values computed
using a bootstrap procedure that reproduces the pattern of
residuals. Due to the heteroscedasticity pattern found in the
I–S residuals, we used a block bootstrap approach to capture
serial dependence in conditional variance. We considered dif-
ferent block lengths, but our results were found to be robust to
the choice of the block length. To save space, results of these
stability tests are not reported here, but are available on request.
Using asymptotic p values as well as size-adjusted p values, we
do not reject the stability of the auxiliary equations. This result
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Table 2. ML Estimates, 1979:Q3–2000:Q3

Reaction function Phillips curve I–S curve

Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE

½1 .713 .060 ®¼1 .501 .120 ¯y1 1.113 .111
¯ 1.879 .272 ®¼2 .022 .150 ¯y2 ¡.192 .101
° .020 .271 ®¼3 .401 .152 ¯r ¡.089 .056
® 1.368 1.312 ®¼4 .076 ¯0 3.193 1.227

®y .127 .043

Statistic p value Statistic p value Statistic p value

Q(4) 5.364 .252 Q(4) .869 .929 Q(4) 5.337 .254
Q(8) 15.973 .043 Q(8) 7.070 .529 Q(8) 8.909 .350
R(4) 36.567 .000 R(4) 4.539 .338 R(4) 19.543 .001
R(8) 47.681 .000 R(8) 10.394 .238 R(8) 36.886 .000
J–B 125.284 .000 J–B 1.405 .495 J–B 25.104 .000
see 1.016 see .793 see .695

log-L ¡295.214

is in accordance with the evidence reported by Rudebusch and
Svensson (1999) and indicates some robustness of the model
with respect to the Lucas critique.

ML Parameter Estimates. The complete model is solved
using the generalized saddlepath procedure developed by
Anderson and Moore (1985) and described in an available Ap-
pendix. The Phillips curve, the I–S curve, and the reaction
function are estimated simultaneously, with a free covariance
matrix of innovations. Stationarity of the model requires that
the following constraints on parameters hold: ¯ > 1; ®y > 0,
and ¯r < 0 (see, e.g., Taylor 1999 or CGG). These boundary
conditions are readily satis� ed on our data, because the three
parameters are estimated to be signi� cantly different from their
boundary value. In addition, the two largest eigenvalues asso-
ciated with the reduced form of the model have moduli of .95,
suggesting that shocks are likely to have a persistent, yet sta-
tionary, effect on the system.

Parameter estimates of model (1)–(3) are reported in Table 2.
Reported standard errors are corrected for heteroscedasticity of
residuals. The effect of output gap on in� ation is quite large
(®y D :127), and the response of output gap to the real rate
is ¯r D ¡:089. These effects are slightly lower than those ob-
tained by Rudebusch and Svensson (1999) over the 1961–1996
period, but they are correctly signed and signi� cantly different
from 0. Summary statistics reveals that for both equations resid-
uals are not serially correlated, although the I–S curve displays
some heteroscedasticity.

Turning to the reaction function, parameter estimates con-
trast sharply with those obtained with GMM. The in� ation
parameter is found to be much lower than all point estimates
obtained by GMM (¯ D 1:88). The estimate of the output gap
parameter ° also differs markedly from GMM estimates, be-
cause it is essentially 0 and nonsigni� cant. Finally, the smooth-
ing parameter ½1 is lower than the GMM estimate (.71 vs. .83).
Residual analysis provides two main results. First, the Ljung–
Box statistic, Q.4/, does not reject the null of no serial correla-
tion up to lag 4, whereas Q.8/ rejects the null only marginally.
Second, the Engle statistics for conditional heteroscedasticity
[denoted by R(k) and computed from a regression of squared
residuals on k own lags], indicates that residuals are strongly
heteroscedastic. Interestingly, heteroscedasticity has already
been pointed out by Sims (2001) to be a major feature of the

Federal Reserve policy rule and as a possible source of mis-
speci� cation of the reaction function. Finally, the Jarque–Bera
test statistic, denoted by J–B, strongly rejects the normality of
reaction function residuals.

4. INVESTIGATING FINITE–SAMPLE PROPERTIES

Here we investigate possible explanations for the wide dis-
crepancy between estimates of the reaction function parame-
ters. As pointed out by Hall and Rossana (1991) in a related
context, two factors are likely to explain this discrepancy. First,
both GMM and ML estimators may suffer from � nite-sample
biases. The GMM � nite-sample bias has been analyzed by
many authors (e.g., Nelson and Startz 1990; Hall, Rudebusch,
and Wilcox 1996; Staiger and Stock 1997). This bias typically
originates in weak instrument relevance (see, e.g., the survey
by Stock, Wright, and Yogo 2002) or in instrument redun-
dance (see Breusch, Qian, Schmidt, and Wyhowki 1999; Hall
and Peixe 2003 for a discussion of this notion). Also, a down-
ward bias on the autoregressive parameter occurs in partial-
adjustment models, even when the model is correctly speci� ed
(Sawa 1978) or when estimators are designed so as to be im-
mune to residual autocorrelation(Hall and Rossana 1991). Sec-
ond, the model may be misspeci� ed. A possible source of
misspeci� cation in our setup is the instability of the reaction
function, which would yield an inconsistencyof GMM and ML
estimators. We � rst assess the � nite-sample properties of GMM
and ML estimators, using Monte Carlo simulations.

4.1 Experiment Design

Simulationsare performed using the complete model (1)–(3),
rewritten in the autoregressivecompanionform. Parameters and
the covariance matrix are those stemming from ML estimation
reported in Section 3.3. For a given sample size T , a sequence
of T C 50 random innovations is drawn from an iid Gaussian
distribution with mean 0 and the covariance matrix estimated
over the sample. We set T D 85, corresponding to the actual
sample size. Initial conditions are set equal to the sample aver-
ages, whereas the � rst 50 entries are discarded to reduce the ef-
fect of initial conditions on the solution path. The Monte Carlo
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experiment is based on N D 2;000 replications. For each arti-
� cial database, estimation is performed as follows. For GMM,
the reaction function is estimated with four lags of (simulated)
in� ation, output gap, and interest rate as instruments. For ML,
the complete model is estimated simultaneously. Two-step and
iterative GMM estimators are obtained by simple matrix com-
putations, whereas continuously updating GMM and ML es-
timators are obtained using a numerical optimization routine.
(Simulations are performed with GAUSS version 3.2 on a Pen-
tium III platform, using the BFGS algorithm of the CO pro-
cedure for constrained optimization. No discrepancies were
found when using alternative algorithms. All estimations are
performed using numerical derivatives.)

In some experiments, the continuous-updating GMM es-
timator failed to converge. Hansen et al. (1996) and Smith
(1999) also reported an important number of crashes and some
dif� culties in obtaining reasonable parameter estimates with
this estimator. Hence, in Table 3 two rows are devoted to the
continuous-updating GMM. The � rst row reports distribution
statistics after we discarded only estimates that reached the
maximum number of iterations (here 200). The second row
presents estimates satisfying the additional criterion that the
smoothing parameter ½1 lies inside the interval [¡1; 1]. For in-
stance, in our Monte Carlo experiment with S1T , 8.3% of es-
timations failed to converge, whereas 3.4% fell outside of this
parameter space, so that 11.7% of estimations were � nally dis-
carded. Note that we used the estimates from two-step GMM
as starting values for the continuous-updatingGMM; using ran-
dom starting values would worsen the properties of this estima-
tor.

4.2 Estimator Biases

The distributions of the GMM and ML estimators are sum-
marized in Table 3. Because parameter ® does not provide in-
cremental insight into the � nite-sample properties, we do not
report results for this parameter. The dispersion of the distri-
bution is measured with both standard deviation and median
absolute deviation (MAD), to avoid misinterpretation in cases
where the distribution is likely to have unbounded moments.
Figures 1 and 2 display the distribution of parameters ½1, ¯ ,
and ° for the ML and the two-step GMM (with S1T ) proce-
dures. The table and the � gures reveal three main results regard-
ing the parameter � nite-sample properties. First, although the
sample size is rather small, we obtain statistically signi� cant,
yet economically unimportant, biases. The autoregressive para-
meter is found to be slightly biased toward 0, consistent with
the analytical result of Sawa (1978). For ¯ , the bias is about :04
for GMM estimators, but as low as ¡:017 with ML. In addition,
parameter ° is underestimated regarding of the estimation ap-
proach. One possible reason why GMM biases are found to be
small relative to those obtained in other contexts (e.g., Fuhrer
et al. 1995) is that weak instrument identi� cation is not a key
issue in the present context. The number of instruments is here
quite small, and only two instruments ( yt¡3 and yt¡4) turn out
to be asymptotically uncorrelated with endogenous variables,
conditional on other variables in the instrument set.

Second, the dispersion of parameter estimates is much lower
with ML than with GMM. For instance, for ¯ , the MAD is :13

with ML and :21 with two-step GMM, :23 with iterativeGMM,
and :30 with continuous-updating GMM (with covariance ma-
trix S1T ). When “unreasonable” outcomes are excluded, the
MAD of the truncated continuous-updating estimator is still as
high as :27. The lower dispersion of ML compared with GMM
re� ects the incorporationof relevant cross-equation restrictions
in the ML procedure.

Third, the distribution of continuous-updating GMM esti-
mator is markedly fat-tailed and asymmetric. The autoregres-
sive parameter is left-skewed, whereas the in� ation parameter
is right-skewed. Interestingly, the use of covariance matrix S4T

allows to dramatically reduce the dispersion of the continuous-
updating estimator. With such a covariance matrix, it is barely
more dispersed than other GMM estimators.

The � nding that the continuous-updating GMM estimator
has fat tails and yields a nonnegligibleproportion of implausi-
ble estimates was previously reported by Hansen et al. (1996).
The poor performance of the continuous-updating GMM was
also documentedby Smith (1999) and Stock and Wright (2000)
for some of their estimates and Monte Carlo experiments. The
overall characteristics of the continuous-updating GMM can
be explained by two factors. (We are grateful to an anony-
mous referee for suggesting these explanations.) First, unlike
two-step and iterative GMM, the objective function is not
quasi-quadratic, because the parameter vector and the covari-
ance matrix are determinedsimultaneously.Therefore, in a non-
negligiblenumber of cases, the objective function is minimized
at arbitrarily large values of the parameter vector (see the � nd-
ings and discussions in Hansen et al. 1996; Stock and Wright
2000). Second, the numerical search algorithm for the mini-
mizer fails sometimes. Because the objective function is not
necessarily well behaved, quasi-Newton optimizationmethods,
such as the BFGS algorithm, may converge to a local minimum
or even diverge to in� nity.

In our context, the poor performance of the continuous-
updating estimator may be arguably exacerbated by two ele-
ments. First, the � nite-sample properties may be worsened by
the very small size of the sample. We found that in a sim-
ilar Monte Carlo experiment with a sample size of 200, the
continuous-updating estimator displays the same distributional
properties as the other GMM estimators. Second, continuous-
updating estimation is particularly unsuccessful with incon-
sistent (S1T ) or nonparametric (S3T ) covariance matrices. As
suggested earlier, imposing relevant constraints on the covari-
ance matrix (as with S4T ) allows to considerably reduce the
frequency of crashes (.9%) and unreasonable outcomes (.7%).
This issue has been previously outlined by Burnside and
Eichenbaum (1996), who argued in a similar context that the
more constrained the covariance matrix, the less biased the
Wald test statistics. On the whole, we may conclude that for
small sample sizes, the dif� culty in solving the optimization
problem is not compensated for by the bene� ts of estimating
the parameters and the covariance matrix simultaneously.

4.3 The J Statistic

The rightmost columns of Table 3 report the rejection rates
and size-adjusted critical values associated with the J statistic.
Rejection rates are the percentages of the 2;000 replications in
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Table 3. Monte Carlo Simulation Asssuming That the Model Is Correctly Speci�ed

J statistic

½1 ¯ ° Size-adjusted
(true value: .71) (true value: 1.88) (true value: .02) Rejection rates critical values

Mean Std Median MAD Mean Std Median MAD Mean Std Median MAD 1% 5% 10% 1% 5% 10%
GMM
Covariance-matrix estimator S1T
Two-step .67 .11 .69 .07 1.96 .42 1.92 .21 ¡.01 .39 ¡.03 .22 .29 .47 .57 45.8 34.7 30.0
Iterative .65 .13 .67 .08 1.95 .46 1.91 .23 ¡.03 .43 ¡.05 .23 .09 .21 .31 32.0 24.0 20.8
Continuous-updating (8.3%) .52 .26 .60 .14 12.71 526.9 1.94 .30 ¡9.86 561.7 ¡.16 .29 .01 .06 .12 20.8 17.3 15.2
Truncated CU (11.7%) .57 .20 .62 .12 1.96 2.13 1.93 .27 ¡.19 1.29 ¡.14 .27 .00 .06 .11 20.5 17.1 15.0

Covariance-matrix estimator S2T
Two-step .67 .12 .69 .07 1.96 .43 1.92 .22 ¡.01 .42 ¡.03 .23 .35 .53 .64 54.4 39.3 32.4
Iterative .63 .17 .66 .09 1.94 .48 1.91 .24 ¡.04 .44 ¡.07 .23 .11 .25 .36 34.4 25.9 22.6
Continuous-updating (1.8%) .59 .19 .63 .11 4.06 89.88 1.93 .29 ¡5.59 103.2 ¡.12 .29 .04 .14 .24 25.5 20.9 18.2
Truncated CU (2.8%) .60 .18 .63 .11 1.98 1.03 1.93 .28 ¡.14 .91 ¡.12 .28 .04 .14 .24 25.0 20.9 18.2

Covariance-matrix estimator S3T
Two-step .67 .13 .69 .07 1.96 .49 1.92 .22 ¡.01 .48 ¡.04 .24 .52 .67 .74 176.6 82.4 56.9
Iterative .62 .18 .66 .09 1.91 .58 1.90 .25 ¡.05 .77 ¡.07 .24 .22 .36 .45 89.5 41.2 30.2
Continuous-updating (12.9%) .59 .22 .62 .12 25.75 1,292.0 1.92 .33 ¡41.8 1,175.2 ¡.13 .32 .08 .19 .30 37.7 23.9 20.2
Truncated CU (14.3%) .59 .18 .63 .11 2.05 4.16 1.93 .31 ¡.13 2.36 ¡.13 .30 .05 .17 .28 28.4 21.9 19.2

Covariance-matrix estimator S4T
Two-step .68 .11 .69 .07 1.96 .41 1.93 .20 ¡.01 .35 ¡.03 .21 .05 .16 .26 28.8 22.0 18.9
Iterative .67 .12 .69 .07 1.97 .44 1.93 .21 0 .37 ¡.03 .22 .03 .10 .17 24.4 19.6 16.9
Continuous-updating (.9%) .64 .15 .67 .08 1.62 10.66 1.94 .24 .21 14.49 ¡.10 .23 .01 .07 .15 22.0 18.2 16.0
Truncated CU (1.6%) .64 .14 .67 .08 1.99 .65 1.94 .23 ¡.08 .63 ¡.10 .22 .01 .07 .15 21.9 18.0 16.0

ML .65 .08 .66 .05 1.87 .22 1.86 .13 ¡.02 .27 ¡.04 .16
NOTE: For the continuous-updating GMM approach, � gures in parentheses indicate the frequency of samples that were discarded before summary statistics were computed.
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(a) (b)

(c) (d)

(e) (f )

Figure 1. Distribution of Parameter Estimators. (a) ML estimator of ½ ; (b) two-step GMM estimator of ½ ; (c) ML estimator of ¯; (d) two-step GMM
estimator of ¯ ; (e) ML estimator of ° ; (f) two-step GMM estimator of ° . Two-step GMM estimators were computed using S1T . The data-generating
process is given by (1)–(3), with parameters obtained by ML (Table 2). Sample size is T D 85.

which the J statistic exceeds the relevant critical value of the
chi-squared distribution, whereas the size-adjusted critical val-
ues are de� ned as the values of the J statistic that are exceeded
by the given fraction of the sample J statistic. Four results are
worth noting. First, in � nite samples, the two-step and itera-
tive GMM tend to reject the overidentifyingrestrictions too of-
ten, whereas the continuous-updating GMM approach has an
empirical size closer to the nominal size. This result is con-
sistent with the recommendation of Hansen et al. (1996) and
Stock and Wright (2000) to base inference on the continuous-
updating criterion. Second, selecting covariance matrices with

data-dependentbandwidths (S2T and S3T ) does not improve the
� nite-sample performances of the J test as compared with the
benchmark S1T . In contrast, the estimator S4T provides cor-
rectly sized J statistics, at least for the iterative and continuous-
updating GMM. Third, the size-adjusted critical values are
substantially larger than the asymptotic critical values taken
from the chi-squared distribution. This in particular leads to
nonrejection of the overidentifying restrictions, as reported in
Table 1. Finaly, unreported investigation reveals that, using the
size-adjusted critical values, the J tests have very low power
against parameter instability (of the form described in Sec. 5).
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(a) (b)

(c) (d)

(e) (f )

Figure 2. Distribution of Estimators of ¯ . (a) Two-step GMM estimator with S1T ; (b) two-step GMM estimator with S2T ; (c) two-step GMM
estimator with S3T; (d) two-step GMM estimator with S4T ; (e) iterative estimator with S1T ; (f) continous-updatingGMM estimator with S1T .

This can be related to theoretical results pointing to the lack of
power of the J test against structral instability (Ghysels and Hall
1990) and explainswhy misspeci� cation may not be detected in
our context.

Overall, our Monte Carlo experiments suggest that (1) the
reported � nite-sample bias of GMM estimators cannot explain
the large discrepancy between estimators; (2) in a small sample
like ours, the continuous-updating GMM is very likely to yield
unreliable estimators; (3) in most cases, the size-adjusted criti-
cal values of the J statistics are so large that the null hypothesis
of a correct speci� cation is never rejected; and (4) the ef� cient
covariance matrix S4T provides correctly sized J statistics.

5. INVESTIGATING PARAMETER STABILITY

Another route for explaining the discrepancy between es-
timators is misspeci� cation of the model or of the moment
conditions. Because the J statistics (reported in Table 1) or the
standard residual check (as in Table 2) did not point to any mis-
speci� cation problem, we now perform an in-depth residuals
analysis to identify the source of discrepancy between parame-
ter estimates.

5.1 Subsample Residual Analysis

Figure 3 displays the residuals of the reaction function. The
� gure suggests two key features in the dynamics of residuals:
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Figure 3. The Reaction Function Residuals Computed From the ML
Joint Estimation of (1)–(3).

First, residuals are very volatile over the � rst part of the sample,
and second they are strongly correlated over the second subpe-
riod. To provide further insight into this issue, we focus on the
residual properties over the two subsamples. The breaking date
is chosen to be 1987:Q3, which corresponds to the change in
Federal Reserve chairman.

Summary statistics, reported in Table 4, show that subsample
residual properties differ markedly from those obtainedover the
whole sample. On one hand, whereas serial correlation is barely
signi� cant over the whole sample, it is very strongly signi� cant
over the 1987–2000 subperiod. It decreases only slowly with
the horizon (.74 at horizon 1, and still .38 at horizon 4), a pat-
tern very suggestive of an AR(1) process. On the other hand,
whereas heteroscedasticityappears as a key feature of the whole
period, it does not turn out to be an issue within each subperiod.
A very simple way to describe the variance process would thus
be to assume that it is constant with a break at a given date.

5.2 Stability Tests

We now interpret the subsample residual properties as symp-
tomatic of a structural shift in (some of ) the reaction func-
tion parameters over the sample period. [Note that this does
not preclude persistency in the monetary policy shock found
by Rudebusch (2002) over the 1987–2000 period. But, as this
author pointed out, there is “econometric near-observational
equivalence of the partial-adjustment rule and the non-inertial
rule with serially correlated shocks” (p. 1164).] This is likely
to prevent consistency of ML as well as GMM estimators, be-
cause constraining parameters to be constant over the sample
period leads to an omitted-variable bias. In addition, the shift
in variance also plays an important role, because it prevents the
standard diagnostic check from detecting residual serial corre-
lation.

To investigate this issue, we perform parameter stability tests
on both ML and GMM estimates. We assume that the shift, if
any, occurs in 1987:Q3. Note that we do not suggest that the
suspected shift occurs at this date precisely; anecdotal evidence
suggests that it may well occur before this date. The period
1979:Q4–1982:Q4, which experienced a change in the operat-
ing procedures of the Federal Reserve, had a coincident sharp
increase in interest rate volatility. However, the joint decrease
in in� ation and interest rate lasted up to 1986, suggesting that
there may be quite signi� cant uncertainty on the date of the
shift. We found it reasonable to treat the break point in 1987:Q3
as known, given the change in chairman as well as the large
number of studies focusing on the post-1987 period. It should
also be emphasized that selecting such a late break point avoids
contaminating the estimation of the reaction function over the
end of the period.

Results of stability tests are presented in Table 5. We adopt
the strategy developed by Andrews and Fair (1988) for known
break point.The test of stability in the ML framework (panel A)

Table 4. Summary Statistics on Sample and Simulated Reaction
Function Residuals

Panel A: Sample data Panel B: Simulated data
(1979:Q3–2000:Q3) [Data-generating process: eqs. (4) and (5)]

Statistic p value Statistic p value

Full sample
Q(4) 5.364 .252 5.902 .207
Q(8) 15.973 .043 13.698 .090
R(4) 36.567 .000 17.961 .001
R(8) 47.681 .000 27.651 .001
J–B 125.284 .000 42.731 .000
see 1.016 .878

First subsample
Q(4) 3.050 .550 3.678 .451
Q(8) 8.715 .367 7.479 .486
R(4) 10.722 .030 2.951 .566
R(8) 15.751 .046 6.685 .571
J–B 4.923 .085 1.403 .496
see 1.559 1.452

Second subsample
Q(4) 75.995 .000 27.152 .000
Q(8) 92.919 .000 34.677 .000
R(4) 8.026 .091 8.082 .089
R(8) 15.457 .051 10.688 .220
J–B 2.605 .272 6.880 .032
see .460 .417
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Table 5. Stability Tests of the Reaction Function Parameters

Power of test:
Estimation results Rejection rates using: : :

Asymptotic Size-adjusted Asymptotic Size-adjusted
Statistic p value p value 5% CV 5% CV

Panel A: ML estimates (LR test)
ML 134.572 .000 .000 .943 .900

Panel B: GMM estimates (Wald test)
Covariance-matrix estimator S1T
Two-step GMM 28.668 .000 .754 .978 .150
Iterative GMM 20.028 .001 .877 .995 .194

Covariance-matrix estimator S2T
Two-step GMM 162.088 .000 .687 .997 .208
Iterative GMM 163.538 .000 .713 .998 .272

Covariance-matrix estimator S3T
Two-step GMM 182.342 .000 .771 .996 .187
Iterative GMM 208.054 .000 .750 .999 .216

Covariance-matrix estimator S4T
Two-step GMM 14.507 .013 .700 .818 .110
Iterative GMM 20.706 .001 .548 .845 .199

NOTE: Results for the continuous-updating estimator are not reported, because the algorithm failed to converge over both subperiods.

is performed using a LR statistic. Under the alternativehypothe-
sis, all parameters (including the shock variance) are allowed to
shift in 1987:Q3. Following the evidence reported by Judd and
Rudebusch (1998), for the 1987–1997 period a second lag of
interest rate is introduced in the reaction function, so that under
the null, the statistic is asymptotically distributed as a Â 2.5/.
Using the asymptotic p values of the statistic, we strongly re-
ject the stability of the reaction function parameters. Given the
small size of the subsamples (32 and 53 observations), we also
computedsize-adjusted p values based on a normal distribution.
Our conclusion on the LR test remains unchanged.

Regarding the GMM estimator (panel B), we report the Wald
test statistics for the two-step and the iterative GMM for the
four long-run covariance matrices. (We do not report results
for the continuous-updating GMM because the algorithmfailed
to converge in many cases, apparently because of the overly
small size of subsamples.)Using asymptoticp values, the null is
strongly rejected for each GMM estimator. In contrast, the cor-
responding size-adjusted p values are very large. This suggests
that the substantial sample size distortionprevents the estimated
test statistics, though very large, from being signi� cant. For in-
stance, with covariance matrices S2T and S3T , the test statistics
exceed 150, so that the asymptotic p values are essentially 0.
Yet once the sample-size distortion is taken into account, the
p values are larger than 66%, and the null of stability cannot
be rejected. Notice that the failure to reject parameter stability
does not preclude instability of moment conditions stemming
from other sources. This issue has been investigated by Hall
and Sen (1999).

To further investigate the discrepancy between ML-based
and GMM-based stability tests, we now evaluate the power
of the tests for both estimation procedures. We measure this
power by simulating 2;000 samples of the model with a shift in
1987:Q3 (with parameter estimates and covariance matrix cor-
responding to Table 7; see Sec. 5) and computing the fraction
of samples for which the null hypothesis is correctly rejected
at the 5% signi� cance level. We consider the asymptotic criti-
cal values as well as the size-adjusted critical values obtained

from the previous simulation experiment (i.e., a simulation of
the model with no shift). Interestingly, the ML-based test has a
very large power, whatever critical values are used. In contrast,
when the sample-size distortion, the power of the GMM-based
test is dramatically low, in no case larger than 30%.

In sum, only the ML estimation procedure demonstrates rea-
sonable power against the alternative hypothesis of a break in
1987:Q3. We thus conclude that the stability of the reaction
function parameters is strongly rejected. Interestingly, some
previous studies using GMM (e.g., Mehra 1999; CGG) tested
such a hypothesis but obtained inconclusive evidence; this may
be attributed to the lack of power of the GMM-based test of
stability.

5.3 Consequences of Heteroscedasticity

An interesting issue raised by our results is that the rejection
of stability of the reaction function appears to be very robust for
the ML estimation approach. Yet, a standard residual check has
been unable to detect such an instability. In fact, the summary
statistics on residuals of the model without a shift detected only
a signi� cant heteroscedasticity, and no serial correlation.

To illustrate why standard residual check failed to detect se-
rial correlation, consider the following stylized model, with a
shift at date ¿ in parameters as well as in the error variance:

yt D ½yt¡1 C "t; "t ! iid.0; ¾ 2
1 /; t < ¿; (4)

yt D ½1yt¡1 C ½2yt¡2 C "t; "t ! iid.0; ¾ 2
2 /; t ¸ ¿:

(5)

Assuming erroneously that the dynamics of yt is given by yt D
Ãyt¡1 C ut with no shift would yield as residual series

Out D
»

"t C .½ ¡ OÃ/yt¡1 for t < ¿

"t C .½1 ¡ OÃ/yt¡1 C ½2yt¡2 for t ¸ ¿ .
(6)

Therefore, omitting the shift in the autoregressive parameters is
likely to induce residual serial correlation. This result appears
to be inconsistentwith our empirical evidence that residuals are
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not signi� cantly correlated over the whole sample. We argue,
however, that our evidence and this stylized model can be rec-
onciled very easily, in � nite samples, by allowing a shift in the
variance of the policy shock.

For this purpose, we simulated 2;000 samples using (4)–(5)
with the parameter estimates and error variance obtained with
our data, except that we imposed ¯ D ° D ® D 0. Therefore,
the experiment was run with ½ D :564; ½1 D 1:293, ½2 D
¡:492, ¾1 D 1:488; ¾2 D :293, and ¿ D :3, as in Table 7 (in
Sec. 6.2). Then, the model with no shift and one lag is esti-
mated. Summary statistics of this estimation are reported in Ta-
ble 4 (panel B), so that it can be compared with the statistics
of the sample residuals. The key results can be summarized as
follows. First, we do not reject the null of no serial correlation
over the � rst subsample, although it appears clear from (6) that
residuals should be correlated over the two subsamples. Thus
the large variance over the � rst subsample precludes estimating
a signi� cant serial correlation. Second, we do not reject the null
of no serial correlation over the whole sample. Here the expla-
nation is that this is the shift in variance (from a high level to
a low level of variance) that precludes detecting serial correla-
tion. In contrast, serial correlation is clearly detected within the
second subperiod. This appears to match our empirical � ndings
quite closely.

Another concern is that the presence of a strong shift in vari-
ance might lead to a spurious break in parameters. To inves-
tigate this issue, we simulated the model with no change in
parameters (½ D ½1 D :564 and ½2 D 0), while maintaining the

assumption of a shift in variance. We tested for stability using a
standard Chow test. Using the asymptotic 5% critical value, we
found that actual � nite-sample size is 4.3% when the variance
is constant throughout the sample and .5% when the variance
shifts. This result suggests that heteroscedasticity of the form
present in the data is very unlikely to create spurious detection
of the break, but rather would obscure evidence for a shift.

6. A 1987–2000 REACTION FUNCTION

We consider now the estimation of the forward-looking reac-
tion function over the Greenspan era (1987:Q3–2000:Q3). For
GMM, we reestimate (1), while allowing a second lag in the dy-
namics of the interest rate. For ML, we maintain the estimation
of the auxiliary model over the period 1979–2000, because the
Phillips curve and the I–S curve have been found to be stable
over the whole sample. But we do allow a shift in the reaction
function parameters in 1987:Q3, and also allow the covariance
matrix of innovations to shift at this date.

6.1 GMM Estimates

Table 6 reports parameter estimates obtained with the dif-
ferent GMM approaches. Several results merit emphasis. First,
the autoregressive component of the reaction function differs
markedly from that estimated over the 1979–2000 period. This
con� rms the evidence of Judd and Rudebusch (1998) and ra-
tionalizes the serial-correlation pattern found when the reaction

Table 6. GMM Estimates, 1987:Q3–2000:Q3

Two-step GMM Iterative GMM Continuous-updatingGMM

Estimate SE Estimate SE Estimate SE

Covariance-matrix estimator S1T
½1 1.327 .097 1.321 .093 1.305 .067
½2 ¡.519 .092 ¡.512 .091 ¡.504 .064
¯ 1.661 .337 1.696 .346 1.755 .247
° .647 .159 .669 .156 .684 .136
® 1.807 .883 1.741 .907 1.536 .768
J statistic (statistical/asymptotic p value) 3.361 .910 2.627 .956 2.440 .965

(size-adjusted p value) .999 .995 .997

Covariance-matrix estimator S2T
½1 1.336 .074 1.330 .075 1.321 .059
½2 ¡.530 .080 ¡.522 .082 ¡.520 .064
¯ 1.648 .295 1.686 .303 1.581 .196
° .689 .151 .737 .145 .896 .132
® 1.826 .776 1.765 .788 2.243 .626
J statistic (statistical/asymptotic p value) 7.014 .535 4.060 .852 3.337 .911

(size-adjusted p value) .998 .974 .998

Covariance-matrix estimator S3T
½1 1.333 .056 1.310 .051 1.297 .041
½2 ¡.527 .062 ¡.494 .059 ¡.504 .043
¯ 1.662 .291 1.717 .308 1.897 .261
° .647 .154 .784 .153 .698 .110
® 1.807 .847 1.671 .909 1.097 .846
J statistic (statistical/asymptotic p value) 7.306 .504 5.779 .672 4.232 .836

(size-adjusted p value) .998 .903 .998

Covariance-matrix estimator S4T
½1 1.301 .129 1.303 .132 1.296 .075
½2 ¡.486 .115 ¡.489 .117 ¡.493 .064
¯ 1.723 .387 1.746 .380 1.767 .198
° .633 .173 .638 .171 .663 .107
® 1.631 .923 1.561 .903 1.496 .510
J statistic (statistical/asymptotic p value) 4.820 .850 4.598 .868 2.959 .937

(size-adjusted p value) .982 .949 .978
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Table 7. ML Estimates, 1987:Q3–2000:Q3

Reaction function Reaction function
(1979:Q3–1987:Q2) (1987:Q3–2000:Q3) Phillips curve I–S curve

Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE

½1 .564 .135 ½1 1.293 .094 ®¼1 .402 .110 ¯y1 1.191 .115
½2 ½2 ¡.492 .079 ®¼2 .011 .087 ¯y2 ¡.243 .126
¯ 1.493 .196 ¯ 1.523 .240 ®¼3 .335 .103 ¯r ¡.051 .039
° ° .511 .187 ®¼4 .252 ¯0 3.434 1.433
® 3.708 .821 ® 2.147 .606 ®y .153 .038

Statistic p value Statistic p value Statistic p value Statistic p value

Q(4) 3.044 .550 Q(4) 3.119 .538 Q(4) 1.424 .840 Q(4) 2.981 .561
Q(8) 8.386 .397 Q(8) 10.146 .255 Q(8) 6.739 .565 Q(8) 5.210 .735
R(4) 14.521 .006 R(4) 1.443 .837 R(4) .744 .946 R(4) 2.966 .564
R(8) 13.733 .318 R(8) 5.286 .948 R(8) 6.680 .878 R(8) 6.743 .874
J–B 3.621 .164 J–B 1.893 .388 J–B 1.448 .485 J–B 2.456 .293
see 1.488 see .293 see .810 see .696

log-L ¡230.571

function is assumed to be stable over the whole sample. Sec-
ond, point estimates of the parameters obtained by the various
GMM procedures are now very close to one another; for in-
stance, estimates of parameter ¯ range between 1:58 and 1:90.
Omitting the continuous-updating estimator, the range is even
narrower (between 1:64 and 1:75). We obtain a similar result
for the other parameters. Third, using different covariance ma-
trices results only in a change in the standard error of parame-
ters, and not in a change in parameter estimates themselves. In
most cases, standard errors decrease from covariance matrices
S1T and S4T to S2T and S3T .

Last, in no case does the J statistic reject the over identify-
ing restrictions, even when the (less conservative) asymptotic
p values are used. In sum, the key insights obtained for the re-
action function over the 1987–2000 period are robust to change
in GMM options.

6.2 ML Estimates

ML estimates of the model with a shift in the reaction func-
tion parameters are presented in Table 7. Note that parameters
of the Phillips curve and the I–S curve are not signi� cantly al-
tered by the shift in the reaction function parameters. As far
as the reaction function is concerned, we obtain two models
with very typical features. Over the � rst period, corresponding
to Volcker’s tenure, the in� ation parameter is ¯ D 1:49, whereas
the output gap parameter is very close to 0 and insigni� cant, so
that it has been constrained to 0 in the estimate reported in the
table. Only one lag of interest rate is signi� cant. Over the sec-
ond subperiod corresponding to Greenspan’s tenure, the reac-
tion function is essentially a dynamicTaylor rule, with ¯ D 1:52
and ° D :51. The partial-adjustment model requires a second
lag of interest rate to � t the data. These parameter estimates are
very similar to those obtained by Rudebusch(2002) over a close
sample period.

Statistical properties of residuals are also reported in Table 7.
The main features concerning the reaction function residuals
are that standard error is divided by 5 between the � rst and
second subperiods, and that the null hypothesis of no serial
correlation is not rejected at any signi� cance level for both sub-
periods, and the heteroscedasticity vanishes over the two sub-
periods. These results con� rm that the serial correlation and the

heteroscedasticityobtained over the 1979–2000 sample were to
a great extent attributable to the shift in parameters. Figure 4
displays the reaction function residuals when a shift is intro-
duced in (1). It con� rms that the reaction function residuals no
longer appear serially correlated.

Overall, the discrepancy between GMM and ML estimates is
fairly small over the 1987–2000 period. For instance, the base-
line estimates of ¯ and ° are 1:65 and :65 for the two-step
GMM, comparedwith 1:52 and :51 for the ML. These estimates
differ substantially from those obtained over the whole period,
assuming parameter stability.We conclude that the assumptions
of a stable outputgap parameter and, more importantly,of a sta-
ble autoregressive dynamics are responsible for the very large
in� ation parameter obtained by GMM over the 1979–2000 pe-
riod. Interestingly, the induced bias has been found to be more
pronounced on GMM estimators than on ML estimators.

7. CONCLUSION

In this article we have reexamined the now-standard dynamic
forward-looking Taylor rule speci� cation of the Federal Re-
serve reaction function, implementing both alternative GMM
and ML estimation procedures. We have provided some orig-
inal empirical results. First, over the 1979–2000 period, the

Figure 4. The Reaction Function Residuals Computed From the ML
Joint Estimation of (1)–(3), Allowing for a Shift in Reaction Function Pa-
rameters in 1987:Q3.
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various GMM procedures yield very contrasting estimates. In
particular, the continuous-updating GMM, which has not been
considered so far in the reaction function literature, produces
particularly high and somewhat unrealistic in� ation parame-
ters. These results are unlikely to be explained by a � nite-
sample bias of GMM, which is found to be negligible within
our setup.

Second, the ML estimate of the in� ation parameter is much
lower than GMM estimates, and more in line with the base-
line Taylor rule. Analysis of the residuals points only to a
strong heteroscedasticity, whereas serial correlation appears to
be unimportant. This result seems to be at odds with the evi-
dence of a large discrepancy between parameter estimates. Yet
further scrutiny of residuals suggests that misspeci� cation may
result from a shift in the reaction function parameters. Indeed,
ML-based stability test points to a shift in the reaction function
parameters somewhere around 1987:Q3.Surprisingly,however,
the shift in the autoregressiveparameter does not yield a signif-
icant serial correlation of residuals. Our interpretation is that a
shift in the policy shock variance obscures evidenceof residuals
serial correlation over the whole sample.

Third, we showed that over the 1987–2000 period, parameter
estimates are very stable across estimation procedures. More-
over, the response to expected in� ation is much lower than over
the 1979–2000 period, yet consistent with the value suggested
initially by Taylor (1993).

In addition to empirical � ndings, we obtained several results
on the properties of estimation procedures for forward-looking
monetary policy rules. First, all GMM parameter estimators
exhibit large dispersion, although they do not suffer from any
economically important � nite-sample bias. In contrast, we ob-
tained that the test statistics (J test as well as stability tests)
perform very poorly in our context. When the sample size dis-
tortion was taken into account, we found that the tests have a
very low power. Our overall assessment of GMM in the case of
the reaction function is thus less critical than that obtained by
Fuhrer et al. (1995) in the case of inventories in terms of pa-
rameter bias, but for small samples such as ours, speci� cation
tests are very likely to yield unreliable conclusions.

Second, the three GMM estimators considered provide con-
trasting performances. The two-step and iterative GMM es-
timators exhibit smaller bias and lower dispersion than the
continuous-updating GMM estimator. Moreover, the latter es-
timator is found to be widely asymmetric and fat-tailed in our
setup. This rationalizes the use of a simple approach, as is usu-
ally done in empirical studies of the reaction function.

Third, ML is a feasible alternative to GMM for estimating a
forward-looking reaction function. A traditional drawback with
ML is that it involves estimating a structural model for forc-
ing variables. However, in the present context, a Phillips curve/
I–S curve model, such as the Rudebusch–Svensson model, pro-
vides a fairly reliable model of the economy. Given the sample
sizes typically available for estimating monetary policy rules,
ML should be viewed as an attractive alternative to the GMM
approach.
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