
ARTICLE IN PRESS
0304-4076/$ - se

doi:10.1016/j.je

�Correspond
E-mail addr
Journal of Econometrics 143 (2008) 375–395

www.elsevier.com/locate/jeconom
Examining bias in estimators of linear rational expectations
models under misspecification

Eric Jondeaua, Hervé Le Bihanb,�
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Abstract

Most rational expectations models involve equations in which the dependent variable is a function of its lags and its

expected future value. We investigate the asymptotic bias of generalized method of moment (GMM) and maximum

likelihood (ML) estimators in such models under misspecification. We consider several misspecifications, and focus more

specifically on the case of omitted dynamics in the dependent variable. In a stylized DGP, we derive analytically the

asymptotic biases of these estimators. We establish that in many cases of interest the two estimators of the degree of

forward-lookingness are asymptotically biased in opposite direction with respect to the true value of the parameter. We

also propose a quasi-Hausman test of misspecification based on the difference between the GMM and ML estimators.

Using Monte-Carlo simulations, we show that the ordering and direction of the estimators still hold in a more realistic

New Keynesian macroeconomic model. In this set-up, misspecification is in general found to be more harmful to GMM

than to ML estimators.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we investigate the asymptotic bias of some well-known alternative estimators in rational
expectations (RE) models under misspecification. We consider the so-called ‘‘hybrid’’ (or second-order) linear
RE model

Y t ¼ of EtY tþ1 þ obY t�1 þ bZt þ et, (1)

where Y t denotes the dependent variable, Zt the forcing variable, et the error term, and Et the expectation
conditional on the information available at date t. This framework has been widely used in theoretical as well
as empirical work, because it provides a convenient framework for representing many macroeconomic
e front matter r 2007 Elsevier B.V. All rights reserved.
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behaviors. When expectations are unobserved, the estimation of (1) typically involves either the generalized method
of moment (GMM) or a full-information maximum-likelihood estimation (MLE). With GMM, the expected
variable is expressed as a function of an instrument set, without imposing more structure on the model. With
MLE, the model is solved in terms of observed variables, taking into account the actual structure of the model.1

The general properties of GMM and ML estimators are rather well known for several kinds of
misspecification. The asymptotic power properties of specification tests with GMM and MLE are investigated
by Newey (1985a, b), respectively. White (1982) addresses the consequences of distributional misspecification
on the ML estimator and examines how to detect such misspecification. Maasoumi and Phillips (1982) and
Hall and Inoue (2003) derive the limiting distribution of instrumental variables (IV) and GMM estimators
under the assumption of non-local misspecification, when the orthogonality conditions are not satisfied. To
our knowledge, the comparison of GMM and ML estimators has not yet been performed in the context of
misspecified RE models. As we will argue, the fact that in this context the endogenous regressor is the expected
lead of the dependent variable has important consequences on the bias of the estimators. More specifically, we
analyze the consequences of omitted dynamics on the asymptotic bias of both GMM and MLE in a very
stylized set-up. In this context, these two approaches can be viewed as alternative procedures to perform the
projection of the expectation terms onto a given information set. Within this framework, we derive the
analytical expression of the asymptotic bias, and we show that the estimators of the forward-looking
parameter of are asymptotically biased in opposite directions with respect to the true value of the parameter.

The results presented in this paper help to rationalize some recent empirical evidence in the estimation of
New Keynesian macroeconomic models. Key components of these models, such as the hybrid Phillips curve
(e.g., Fuhrer, 1997; Galı́ and Gertler, 1999) and the hybrid aggregate demand equation (e.g., Fuhrer, 2000;
Fuhrer and Rudebusch, 2004), are prominent illustrations of second-order RE models. It turns out that the
GMM and MLE procedures produce a sizeable discrepancy in the estimation of the forward-looking
parameter of .

2 We show that the sign and the magnitude of the empirical discrepancy are actually consistent
with our analytical results.

The structure of the paper is as follows. Section 2 presents a stylized hybrid RE model, describes the estimators,
and investigates the finite-sample properties of GMM and ML estimators. Section 3 explores how
misspecification does affect the asymptotic bias of these estimators. Several analytical results concerning the
ranking of estimators are presented, and we propose a quasi-Hausman test for misspecification in RE models. In
Section 4, we examine the properties of a multivariate New Keynesian model, inspired by Rudebusch (2002a, b),
which allows to investigate omitted dynamics. Using Monte-Carlo simulations, we illustrate that the main result
on the ordering of estimators carries on to this more realistic, analytically intractable, multivariate model. In that
set-up, misspecification is also found to be more harmful to GMM estimators than to the ML estimator, in the
sense that it yields larger biases on the forward-looking parameter of . Section 5 provides concluding remarks.

2. A stylized hybrid RE model

In this section, we describe a simplified hybrid RE model, in which analytical results on the asymptotic bias
of estimators under misspecification can be derived.

2.1. The model

The model includes a hybrid equation with one lag and one lead and the dynamics for the forcing variable as
follows:

Model 1:

Y t ¼ of EtY tþ1 þ ð1� of ÞY t�1 þ bZt þ et, ð2Þ

Zt ¼ rZt�1 þ ut, ð3Þ
1See for instance Pesaran (1987) for a review of both approaches.
2See, for instance, Jondeau and Le Bihan (2005) and Nason and Smith (2005) for the hybrid Phillips curve, and Fuhrer and Rudebusch

(2004) for the aggregate demand equation.
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where 0pof p1 and jrjo1. Error terms et and ut are contemporaneously and serially uncorrelated centered
normal random variables, with s2e ¼ E½e2t � and s2u ¼ E½u2

t �. The sum of the forward-looking and backward-
looking parameters is assumed to be equal to one, in accordance with many theoretical derivations in the New
Keynesian macroeconomics (see, e.g., Christiano et al., 2005).3 This assumption provides an identifying
restriction required here given the AR(1) specification for the forcing variable.4 In addition, it allows to obtain
analytical expressions for the biases under misspecification. We assume for the moment that Zt is strongly
exogenous with respect to the parameters of the hybrid equation.

The properties of this model are derived from the characteristic polynomial of (2) given by
ð1� of L�1 � ð1� of ÞLÞ ¼ 0, with roots j1 ¼ ð1� of Þ=of and j2 ¼ 1. According to the conditions for
existence and uniqueness of solution to RE models, established by Blanchard and Kahn (1980), two situations
can be encountered. When of p0:5 (i.e., j1X1), the solution is unique, but Y t is a non-stationary process
regardless of the dynamics of Zt. When of 40:5 (i.e., j1o1) and jrjo1, existence of a stationary solution is
guaranteed, but there are in fact infinitely many solutions characterized by sunspot shocks. A special solution
obtains when sunspot shocks are disregarded. This so-called fundamental solution is given by

Y t ¼ j1Y t�1 þ yZt þ ~et, (4)

with y ¼ b=ðof ð1� rÞÞ and ~et ¼ et=of . We also define ~s2e ¼ E½~e2t � ¼ s2e=o
2
f . In empirical work, the presence

of sunspot shocks may be an issue. In our subsequent analysis, based on Monte-Carlo simulations, we
will simulate a DGP that coincides with the fundamental solution. Finally, our maintained assumptions for
Model 1 are 0:5oof p1 (or, equivalently, 0pj1o1).5
2.2. GMM and ML estimators

The estimation of (2) is typically based on two alternative procedures, namely GMM and MLE, to cope
with the correlation of the regressors with the error term e0t ¼ et � of ðY tþ1 � EtY tþ1Þ. In this section, we
describe very simplified versions of these estimators that sketch their actual working.

GMM relies on using a set of instruments W t uncorrelated with the error term e0t but correlated with the
endogenous regressor (Y tþ1) to form moment conditions:

E½W t � ðY t � of Y tþ1 � ð1� of ÞY t�1 � bZtÞ� ¼ 0. (5)

Since two parameters (of and b) have to be estimated, at least two instruments are required to achieve
identification. The optimal instrument set for (2) is given by the two regressors fY t�1;Ztg in the reduced form
(4). In this context, additional instruments would be redundant (see Breuch et al., 1999). Since the model is just
identified, the probability limits (Plims) of the estimators are directly obtained by solving the moment
conditions (5). Although the GMM approach reduces to IV estimation in this framework, the multivariate
extension in Section 4 resorts to the genuine GMM estimator, so that we stick to the label GMM throughout
the paper.

The MLE relies on using (3) to solve (2) iteratively forward. Since shocks are assumed to be uncorrelated,
the full-information MLE reduces to a two-step approach in this context. In the first step, parameters j1 and y
in (4) and r in (3) are estimated under the constraints 0pj1o1 and jrjo1.6 In the second step, estimators of
of and b are obtained using the relations of ¼ 1=ð1þ j1Þ and b ¼ yof ð1� rÞ. The ML estimator is obtained
under the assumption that forecasts are fully model consistent. The crucial difference between GMM and
MLE is that MLE imposes some constraints upon the way Y tþ1 is projected onto the state variables,
3Parameters of and b may be functions of ‘‘deeper’’ parameters that characterize the preferences and constraints of agents. The results

in this paper can in many cases be cast in terms of these deep parameters. However, the mapping of deep parameters to of and b is specific

to each application, so that we focus on the latter for more generality.
4See Pesaran (1987) or Mavroeidis (2005) for a discussion of the identification issue in RE models.
5It may be argued that the stationarity assumption may itself induce another misspecification, that we do not explore in this paper,

however. Notice that, for more general dynamics for the forcing variable, a stationary process can be attained for lower values of of (see

Section 4).
6When a constraint is binding, the other parameters are re-estimated accordingly. Typically, if j1 is freely estimated to be larger than 1,

the constrained estimate is given by ĵ1 ¼ 1� � and ŷ freely estimated, with � a given small positive value.
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depending on the dynamics of Zt used to solve the model. In contrast, GMM does not impose any constraint
of this type on the first-step regression.

In a correctly specified model, both GMM and MLE provide consistent estimators. Thus, two reasons may
explain the discrepancy between GMM and ML estimators found in many empirical estimates: (1) differences
in the finite-sample properties of the estimators in a correctly specified model; (2) misspecification, resulting in
inconsistency of GMM as well as ML estimators. While the present paper primarily focuses on
misspecification, recent work has suggested that the discrepancy found between GMM and ML estimators
comes from finite-sample bias (Fuhrer and Rudebusch, 2004; Lindé, 2005) or from lack of GMM
identification (Mavroeidis, 2005). Therefore, we first discuss and assess finite-sample and weak-instrument
biases in our set-up.

2.3. Sources of discrepancy in a correctly specified model

There are essentially two sources of bias for the GMM estimator in a correctly specified model. The
first source is weak-instrument relevance that occurs when the correlation between instrument
and endogenous regressors is weak. The recent literature emphasizes that weak identification may be
present even in large samples.7 It has been shown (Bound et al., 1995) that under weak identification the IV
(or GMM) estimator is biased toward the Plim of the (inconsistent) OLS estimator. The magnitude of the
weak-instrument bias is governed by the concentration parameter, which measures the strength of the
instruments.

The GMM estimator also suffers from finite-sample bias. The bias is in that case also in the direction of the
OLS estimator. The magnitude of the bias depends on the sample size, the number of instruments, and the
multiple correlation between the instruments and the endogenous regressors (Nelson and Startz, 1990; Buse,
1992; Bound et al., 1995). A related issue is instrument redundancy, which occurs when some instruments are
not correlated with the endogenous regressor conditionally on the presence of other instruments. This issue
has been analyzed by Breuch et al. (1999) and Hall et al. (2007).

In the context of RE models, an abundant literature has studied the finite-sample properties of the
GMM estimator and shown that this estimator may be severely biased and widely dispersed in small samples
(see, among others, Fuhrer et al., 1995; Hansen et al., 1996). The MLE may also suffer from finite-sample
bias, but this bias is generally found to be negligible in RE models (see Fuhrer et al., 1995; Jondeau
et al., 2004).

In this section, we briefly discuss weak-instrument relevance and investigate the finite-sample bias more in
depth. Since both types of biases are known to point to the direction of the Plim of the OLS estimator, we
begin with the following proposition, which gives the Plim of the (inconsistent) OLS estimator obtained from
the regression of Y t onto fY tþ1;Y t�1;Ztg where the expected lead is replaced by the actual lead. It also gives
the expression obtained in our set-up for the concentration parameter, which governs the magnitude of the
GMM estimator bias under weak instruments.8

Proposition 1 (Plim of the OLS estimator). Let us assume that the DGP is given by Model 1. The (inconsistent)
OLS estimator obtained from (2) has the following Plim:

oOLS ¼
1

2

~s2e þ L2ð1� j1Þ

~s2e þ
1
2
L2½ð1� j2

1Þ þ ð1� j1rÞ
2
�

 !
, ð6Þ

bOLS ¼ bð1þ j1Þ
2� j1 � j1r
2ð1� j1rÞ

~s2e þ L2ð1� j1rÞ

~s2e þ
1
2L

2½ð1� j2
1Þ þ ð1� j1rÞ

2
�

 !
, ð7Þ
7See Bound et al. (1995), Staiger and Stock (1997), Stock and Wright (2000), Stock et al. (2002). Staiger and Stock (1997) propose an

asymptotic framework for IV, while Stock and Wright (2000) extend the approach to GMM. Methods robust to weak instruments have

been proposed by Dufour (1997), Stock and Wright (2000), or Kleibergen (2002) and applied to the New Phillips curve by Nason and

Smith (2005) or Dufour et al. (2006).
8Staiger and Stock (1997) show that ð1þ l2T=KÞ�1 approximates the magnitude of the finite-sample bias of IV relative to OLS estimator,

where K is the number of instruments, and lT the concentration parameter.
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with L ¼ ysu=ð1� j1rÞ. For the instrument set fY t�1;Ztg, the concentration parameter lT is asymptotically

given by

l2T
T
¼

ð1� j2
1Þð ~s

2
e þ L2Þ

ð1þ j2
1Þ ~s

2
e þ ð1� j1rÞ

2L2
.

Proof. See the Appendix.

The expression for the concentration parameter points out that weak identification is likely to occur when
j1 is close to 1, or equivalently of close to 0:5. In this case, which corresponds to a non-stationary dynamics
for Y t, the Plim of the OLS estimator is always smaller than 0.5. Given that the true parameter of is above 0:5,
and that the GMM estimator is biased in the direction of the Plim of the OLS estimator, the GMM estimator
of of is here biased downward. When j1o1, weak identification is asymptotically precluded in our
framework.9 However, even in this case, the finite-sample bias of the GMM estimator points towards the Plim
of the OLS estimator. Contemplating (6), we observe that 0poOLSp0:5, so that the GMM estimator of of is
still biased downward.

To investigate the finite-sample bias more closely, we perform Monte-Carlo simulations of DGP (2)–(3).
Concerning the GMM approach, we consider two instrument sets. The first one is the optimal instrument set,
W t ¼ fY t�1;Ztg, illustrating genuine finite-sample bias. The second set includes L additional (redundant) lags
of W t, illustrating instrument redundancy. It is worth emphasizing that it is a common practice in the
empirical literature to include many instruments, in particular several lags. In this over-identified case, the
two-stage least-square (TSLS) approach yields a consistent estimator, but designing an optimal weighting
matrix requires acknowledging the MA(1) structure of the GMM error term, which results from one-period
ahead expectations. We investigate two alternative approaches: (1) the well-known Newey and West (1987)
weighting matrix with 12 lags (as typically used in Galı́ and Gertler, 1999), and (2) the efficient West (1997)
matrix that assumes the error term to be an MA(1) process.

Table 1 reports the results of the simulation experiment. First, the ML estimator of of is essentially
unbiased, with a low dispersion. The estimator of b is unbiased for small values of r, while there is a slight
positive bias when r is large.10 Second, when the optimal instrument set fY t�1;Ztg is chosen (L ¼ 0), the
GMM estimator of of is not significantly biased, although with a larger dispersion than that of the ML
estimator. The magnitude of the bias increases with the extent of instrument redundancy (as in Hall et al.,
2007). When the instrument set includes L ¼ 7 redundant lags, the bias in the GMM estimator of of is clearly
negative. The higher the true value of of , the larger the magnitude of the bias. The median estimate always
points towards the Plim of the OLS estimator, which is below the true value of the parameter, and the
magnitude of the bias increases with the value of the true parameter of .

The GMM estimator biases under redundant instruments confirm and rationalize previous simulation
evidence reported for instance by Fuhrer and Rudebusch (2004), Lindé (2005), or Mavroeidis (2005). It is
worth noting, however, that the finite-sample bias in of is not likely to account for the empirical conflict
between GMM and ML estimates of hybrid models. Indeed most GMM estimates reported in the empirical
literature point to a large weight on forward-looking expectations relative to lagged terms, suggesting a bias, if
any, towards large values of of . In contrast, in our set-up the finite-sample bias in the GMM estimator is
towards the lower bound 0.5.
3. Asymptotic biases in misspecified models

This section investigates the consequences of misspecification on the asymptotic bias of GMM and ML
estimators, with a focus on omitted dynamics in the dependent variable. Omitted dynamics has been pointed
9In a model where of and ob are not assumed to sum to one, Mavroeidis (2005) identifies additional sources of under-identification that

are related in particular to the dynamics of the forcing variable.
10For r ¼ 0:9, the median estimate of b exceeds 0:1, whatever the true parameter of . This bias is related to the downward bias of OLS in

an autoregressive model. Since b ¼ yof ð1� rÞ, the negative bias in r translates in a positive bias in b.
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Table 1

Finite-sample properties of estimators in the model with a single lag

Structural parameters Statistic GMM ðL ¼ 0Þ GMM ðL ¼ 7Þ GMM ðL ¼ 7Þ ML Plim OLS

(optimal instr.

set)

(NW-12 lags) (West-MA(1))

of r of b of b of b of b of b

0.55 0.0 Median 0.550 0.099 0.523 0.100 0.526 0.102 0.551 0.099 0.492 0.109

MAD 0.049 0.063 0.034 0.063 0.047 0.071 0.014 0.045

0.55 0.9 Median 0.548 0.108 0.534 0.122 0.534 0.124 0.550 0.106 0.459 0.198

MAD 0.022 0.045 0.021 0.052 0.023 0.055 0.002 0.038

0.75 0.0 Median 0.749 0.103 0.690 0.102 0.691 0.106 0.750 0.101 0.498 0.111

MAD 0.074 0.088 0.059 0.084 0.069 0.094 0.043 0.062

0.75 0.9 Median 0.746 0.106 0.699 0.109 0.700 0.111 0.751 0.106 0.488 0.132

MAD 0.054 0.039 0.047 0.041 0.050 0.044 0.020 0.038

0.95 0.0 Median 0.946 0.100 0.852 0.098 0.855 0.101 0.951 0.097 0.500 0.102

MAD 0.106 0.114 0.089 0.105 0.099 0.122 0.072 0.080

0.95 0.9 Median 0.947 0.105 0.855 0.103 0.859 0.107 0.954 0.105 0.499 0.105

MAD 0.088 0.040 0.075 0.040 0.082 0.046 0.049 0.037

This table reports summary statistics on the finite-sample distribution of the GMM and ML estimators of the model with a single lag.

Parameter sets are of ¼ f0:55; 0:75; 0:95g, r ¼ f0; 0:9g, b ¼ 0:1, and se ¼ su ¼ 1. This table reports the median and the median of absolute

deviations from the median (MAD) of the empirical distribution obtained using Monte-Carlo simulations (multiplied by 1.4826 for

comparability with a standard deviation). The experiment is performed as follows. For each parameter set, we simulate 5; 000 samples of

size T ¼ 150. For each simulated sample, a sequence of T þ 100 random innovations are drawn from the Gaussian distribution Nð0;SÞ
with no serial correlation ðS ¼ diagðs2e ; s

2
uÞÞ, and the first 100 entries are discarded to reduce the effect of initial conditions. It also displays

the Plim of the OLS estimator, towards which the GMM estimator is biased, under weak-instrument relevance or instrument redundancy.

For the first GMM estimator, the instrument set only includes the optimal instruments fY t�1;Ztg. For the second and third GMM

estimators, L ¼ 7 redundant lags of these instruments are also included. The weighting matrix of the second estimator is based on the

Newey and West (1987) procedure (with 12 lags), while the third estimator uses the West (1997) procedure, acknowledging the MA(1)

structure of the error term.
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out in several studies as a likely source of misspecification in hybrid RE models (see, e.g., Kozicki and Tinsley,
2002; Rudebusch, 2002a, b). Other forms of misspecification are discussed more briefly.

3.1. The case of omitted dynamics

To illustrate omitted dynamics, the DGP is now assumed to include two lags of the dependent variable:
Model 2:

Y t ¼ of EtY tþ1 þ o1
bY t�1 þ ð1� of � o1

bÞY t�2 þ bZt þ et,

Zt ¼ rZt�1 þ ut, ð8Þ

where the parameters pertaining to lags and lead of inflation sum to one (we define o2
b ¼ 1� of � o1

b). The
characteristic polynomial of (8) is ð1� of L�1 � o1

bL� o2
bL2Þ ¼ 0 with roots j1 ¼ ð1� of Þ=of , j2 ¼ o2

b=of ,
and j3 ¼ 1. Consequently, the reduced form of this model is

Y t ¼ j1Y t�1 þ j2Y t�2 þ yZt þ ~et, (9)

where as before y ¼ b=ðof ð1� rÞÞ and ~et ¼ et=of with ~s2e ¼ s2e=o
2
f . Stationarity conditions of (9) (with an

exogenous stationary forcing variable) are known to be 1� j1 � j240, 1þ j1 � j240, and j24� 1. These
conditions are equivalent to the following conditions for the structural parameters: ð2� 3of � o1

bÞo0 and
�of oo1

bo1.
Fig. 1 displays the area where the reduced form (9) is stationary assuming jrjo1. If we maintain the

assumption that of p1 (or, equivalently, j1X0) to be consistent with the theoretical derivation of the hybrid
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Fig. 1. This figure displays, in the plane fof ;o1
bg, the domain of validity of the hybrid model with two lags. The shaded area corresponds

to the domain of stationarity of an AR(2) process. The area ABC corresponds to the additional constraint that of p1. Area DEF

corresponds to the domain where 0pof ;o1
b;o

2
bp1. The six points in the figure are the pairs fof ;o1

bg selected for Table 2. Last, we denote

o ¼ fof ;o1
b;o

2
bg and j ¼ fj1;j2g.

E. Jondeau, H. Le Bihan / Journal of Econometrics 143 (2008) 375–395 381
model, this yields the triangular area ABC. The segment BC corresponds to the non-stationarity case with
j1 þ j2 ¼ 1. The segment AB is associated with of ¼ 1. Along this segment, the degree of persistence j1 þ j2

increases from�1 to 1. The segment CA corresponds to o1
b ¼ 1, with a degree of persistence decreasing from 1

to �1.
The econometrician is assumed to erroneously select a single-lag specification, so that the estimated

(misspecified) model is a one-lag hybrid model:
Model 20:

Y t ¼ af EtY tþ1 þ ð1� af ÞY t�1 þ bZt þ vt,

Zt ¼ rZt�1 þ ut. ð10Þ

Estimators of parameter af are then used as estimators of the structural parameter of : There is no
misspecification in the limiting case where j2 ¼ 0, i.e., o2

b ¼ 0.
GMM and ML estimators are built as follows. As regards the selection of the GMM instrument set, we

consider two alternative cases that may be reflective of actual practice. The first estimator (GMM1) is based
on the instrument set fY t�1;Ztg that corresponds to the optimal instrument set in the (misspecified)
DGP perceived by the econometrician. The second estimator (GMM2) resorts to the wider instrument set
fY t�1;Y t�2;Ztg, including the omitted variable Y t�2. This is the optimal instrument set in the correctly
specified DGP. In both cases, however, the instruments are not valid for estimating (10) under DGP (8), since
they are correlated with the error term vt: The ML estimator is obtained by estimating by OLS the reduced
form of the postulated Model 20, that is

Y t ¼ fY t�1 þ mZt þ ~vt, (11)

where f ¼ ð1� af Þ=af , m ¼ b=ðaf ð1� cÞÞ, and ~vt ¼ vt=af . Details on the construction of these estimators are
provided in the Appendix. The Plims (or ‘‘pseudo-true values’’) of each estimator are summarized in
Proposition 2.
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Proposition 2 (Plim of estimators with omitted dynamic). Assume that the DGP is given by Model 2 and that the

misspecified Model 20 is estimated. Then, the three estimators have the following Plims:
�

11T
GMM estimator with instrument set fY t�1;Ztg (GMM1):

aGMM1 ¼
1

1þ j1 � j2

� �
~s2e þ ~L2½1þ j2rð�1þ j1 � j2 þ j2rÞ�

~s2e þ ~L2½1þ j2rðj1 þ j2rÞ�

 !
,

bGMM1 ¼ b
ð1þ j1Þð1� j2 � rðj1 þ j2 þ j2rÞÞ
ð1� j1r� j2r2Þð1þ j1 � j2Þ

� �

�

~s2e þ ~L2 1þ j2rðj1 þ j2rÞ
2� j1r� j2r

2 þ r
1� j2 � rðj1 þ j2 þ j2rÞ

� �
~s2e þ ~L2½1þ j2rðj1 þ j2rÞ�

0BB@
1CCA.
�
 GMM estimator with the instrument set fY t�1;Y t�2;Ztg (GMM2):

aGMM2 ¼
1� j1 � j1j2

1� j2
1 � j2

1j2 � j2

� � ~s2e þ ~L2 1þ j2r
�1þ j1 � j2 þ j2r

1� j1 � j1j2

� �
~s2e þ ~L2 1þ j2r

�2j1j2 þ j2r� j2
2r

1� j2
1 � j2

1j2 � j2

� �
0BBB@

1CCCA,

bGMM2 ¼ b
ð1þ j1Þð1� j1 � j2 � rð1� j1 � j1j2Þðj1 þ j2 þ j2rÞÞ

ð1� j1r� j2r2Þð1� j2
1 � j2

1j2 � j2Þ

� �

�

~s2e þ ~L2 1þ j2r
j1ð1þ rÞð1� j1 � j2Þ þ j2rð2þ r� 2j1r� j2rÞ
1� j1 � j2 � rð1� j1 � j1j2Þðj1 þ j2 þ j2rÞ

� �
~s2e þ ~L2 1þ j2r

�2j1j2 þ j2r� j2
2r

1� j2
1 � j2

1j2 � j2

� �
0BBB@

1CCCA.
�
 ML estimator:

aML ¼
1� j2

1þ j1 � j2

� � ~s2e þ ~L2 1þ j2r
2j1 þ j2rð1� j2Þ

1� j2

� �
~s2e þ ~L2½1þ j2rð1þ j1 þ ð1þ rÞj2Þ�

0BB@
1CCA,

bML ¼ b
ð1þ j1Þð1� j2 � rj1Þ

ð1� j1r� j2r2Þð1þ j1 � j2Þ

� � ~s2e þ ~L2 1þ j2r
2j1 � j2

1rþ j2r� j1j2r
2 � r

1� j2 � rj1

� �
~s2e þ ~L2½1þ j2rð1þ j1 þ ð1þ rÞj2Þ�

0BB@
1CCA,

with ~L ¼ ysu=ð1� j1r� j2r
2Þ.
Proof. See the Appendix.

Parameter ~L is directly related to the covariance between Y t and Zt, since ~L2 ¼ ð1� r2ÞE½ZtY t�
2=V ½Zt�.

When j2 ¼ 0, all estimators are asymptotically unbiased, with aGMM1 ¼ aGMM2 ¼ aML ¼ 1=ð1þ j1Þ ¼ of .
Restricting to the case of an iid forcing variable (r ¼ 0), we then obtain the following corollary.11
he same results arise when ~s2e is large relative to ~L2.
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Corollary 1. In the case r ¼ 0, Plims of estimators of af and b are given by

aGMM1 ¼
1

1þ j1 � j2

; bGMM1 ¼ b
ð1þ j1Þð1� j2Þ

1þ j1 � j2

� �
,

aGMM2 ¼
1� j1 � j1j2

1� j2
1 � j2

1j2 � j2

; bGMM2 ¼ b
ð1þ j1Þð1� j1 � j2Þ

1� j2
1 � j2

1j2 � j2

� �
,

aML ¼
1� j2

1þ j1 � j2

; bML ¼ b
ð1þ j1Þð1� j2Þ

1þ j1 � j2

� �
.

Under stationarity ð�1oj1 þ j2o1Þ, the following inequalities hold:

1=2paMLpof paGMM1paGMM2pþ1 if j2X0 ðarea GÞ;

1=3paGMM1paGMM2pof paMLp1 if j2p0 and j1p1 ðarea HÞ;

1=4paGMM1pof paGMM2paMLp2=3 if j2 2 ½�1; j̄� and j1X1 ðarea IÞ;

1=4paGMM1pof paMLpaGMM2p1=2 if j2 2 ½j̄; 0� and j1X1 ðarea JÞ;

and

0pbGMM2pbGMM1 ¼ bMLpb if j2X0;

bGMM2pbpbGMM1 ¼ bML if j2p0;

where j̄ ¼ ð1� j2
1Þ=ð1þ j2

1 � j1Þ is negative when j1X1.

We interpret the discrepancy of estimators obtained above as follows, assuming j240. As regards the
GMM2 estimator, a crucial feature is that a relevant forcing variable is omitted from the estimated equation
but included in the instrument set. As a result, the latter estimator suffers from an upward bias because Ŷ tþ1

partly captures the (positive) effect of the omitted variable Y t�2. Concerning the GMM1 estimator, the
omitted variable is not included in the instrument set. But given the persistence in the dependent variable, the
first-step regression implies that bY tþ1 still captures a part of the omitted variable Y t�2. Therefore, the bias in
the GMM1 estimator of af is still positive. On the contrary, the variable Y t�2 is not included in the reduced-
form equation (11) estimated for the ML estimator. As a consequence, Y t�1 partly captures the effect of Y t�2.
This creates a downward bias in the ML estimator of the forward-looking parameter, through the positive
correlation of Y t�2 with Y t�1.

The two largest areas (G and H) arguably reflect two well-known applications in the context of the New
Keynesian macroeconomics.12 In the New Keynesian Phillips curve, the additional lags are likely to have a
positive cumulative effect so that reduced-form parameters are such that j1o1 and j240 (as in area G). In
this context, the ML estimator of af is expected to have a downward bias, while the GMM estimator is
expected to have an upward bias. In contrast, in the hybrid Euler equation for output gap, j1o1 and j2o0
(as in area H) are typically obtained as reduced-form parameters (e.g., Rudebusch, 2002a, b). In that case, the
GMM and ML estimators point now in the opposite direction with respect to the true parameter
(aGMMpof paML). Section 4 provides simulation evidence suggesting that the biases in the GMM and ML
estimators of these two equations are actually in line with the analytical results.

Setting r ¼ 0 may appear as an overly strong assumption, as compared with the serial correlation typically
obtained for the forcing variable in many RE models. It is possible to show that the rank of the Plims of ML
and GMM estimators is unaltered for most parameter sets. Although a formal proof of this result is not
available, we checked it by computing the Plim of the various estimators using a grid for the structural
parameters (using the expressions given in Proposition 2). For all values of r, as soon as of X0:5, the ranking
of GMM and ML estimators is aMLpaGMM1paGMM2 when j2X0, and aGMM1paGMM2paML when j2p0.13

Notice that, as confirmed by Fig. 1, the case of X0:5 is the only case where we can consider small departure
from the null hypothesis o2

b ¼ 0 (corresponding to the segment DF). Indeed for of o0:5, Y t remains
stationary only for strictly negative values of o2

b.
12Areas G–J are depicted in Fig. 1.
13When of o0:5, the ranking depends on the analogous to parameter j̄, which in general depends on r in a very non-linear way.
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3.2. Other sources of misspecification

Although the results presented in the previous section are specific to the DGP studied above, qualitatively
similar results are obtained with other sources of misspecification. As an illustration, consider the case when a
regressor is omitted in the hybrid equation. Such a case has been studied by Rudd and Whelan (2005) for
the IV estimator in a backward-looking DGP. To generalize their framework, we consider the following
hybrid DGP:

Y t ¼ of EtY tþ1 þ ð1� of ÞY t�1 þ b1Z1;t þ b2Z2;t þ et, ð12Þ

Z1;t ¼ r1Z1;t�1 þ u1;t, ð13Þ

Z2;t ¼ r2Z2;t�1 þ u2;t, ð14Þ

with Eðu1;tu2;tÞ ¼ 0; so that the two forcing variables are uncorrelated. The misspecified equation estimated by
the econometrician is

Y t ¼ af EtY tþ1 þ ð1� af ÞY t�1 þ bZ1;t þ et. (15)

As shown in the Appendix, when 0pr1;r2p1, the following inequalities hold:

aGMM1pof ,

aMLpof paGMM2,

where aGMM1 and aGMM2 are the Plims of the GMM estimators with instrument sets fY t�1;Z1;tg and
fY t�1;Z1;t;Z2;tg, respectively. As shown in a preliminary version of this paper, other misspecifications such as
measurement error in the forcing variable would produce the same result that the GMM2 and the ML
estimators are biased in opposite direction with respect to of .

14

In all these cases, a similar intuition applies: in the second-stage regression of the GMM2 estimation, the
fitted lead of the dependent variable captures the effect of the omitted variable, so that parameter of is over-
estimated. On the opposite, with MLE, the effect of the omitted variable is captured by the lag of the
dependent variable, resulting in parameter of being under-estimated. Notice that in the omitted variable and
measurement error cases, the GMM1 estimator of af always under-estimates of . The reason is that the
instrument set used in the first-step regression does not provide any useful information on the omitted variable
that may be captured by the fitted lead of the dependent variable. By contrast, in the omitted dynamics case,
the dependent variable, Y t�1, does contain valuable information on the omitted lag Y t�2.
3.3. A quasi-Hausman test for misspecification

The result that ML and GMM estimators generally diverge in opposite directions under misspecification
suggests a Hausman-type test. The original Hausman (1978) specification test is based on the difference
between an estimator consistent under the null and alternative hypotheses and an estimator efficient under the
null hypothesis. In our context, under the null, the ML estimator is efficient while the GMM estimator is
consistent. However, under the alternative of misspecification of the equation of interest, none of the
estimators is consistent. We label this test a quasi-Hausman test.15 As established in the previous sections, the
Plims of the respective estimators differ under the alternative, so that the quasi-Hausman test is consistent for
the types of misspecification considered here. It is likely that the test also has power against other
misspecifications.

We define d̂ML and d̂GMM the estimators of d ¼ ðof ;bÞ
0 and VML and VGMM their respective covariance

matrices, estimated by V̂ML and V̂GMM. Under the null that the DGP is correctly specified and assuming
normality of errors, the estimator d̂ML is efficient. Then Hausman (1978)’s lemma applies.
14The role of measurement error in the new Phillips curve estimates is discussed by Lindé (2005).
15This terminology comes from Verbeek and Nijman (1992). Quasi-Hausman tests with the same feature have been proposed in other

contexts, e.g., by White (1982) and Hahn and Hausman (2002).
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Table 2

Plim of estimators and misspecification test in the case of omitted dynamics

Structural parameters Panel A: plim of the estimator Panel B: power of misspecification tests

GMM1 GMM2 Optimal GMM2 ML With GMM2

(NW)

With GMM2

(W)

of o1
b o2

b
j1 þ j2 r af b af b af b af b Hausman J-stat Hausman J-stat

0.40 0.90 �0.30 0.75 0.00 0.308 0.135 0.526 0.053 0.530 0.048 0.538 0.135 0.446 1.000 0.178 1.000

0.40 0.90 �0.30 0.75 0.90 0.410 0.348 0.511 0.193 0.504 0.155 0.577 0.190 0.887 1.000 0.334 0.539

0.60 0.25 0.15 0.92 0.00 0.706 0.088 0.857 0.071 0.666 0.087 0.529 0.088 0.240 0.543 0.053 0.488

0.60 0.25 0.15 0.92 0.90 0.546 0.064 0.561 0.042 0.535 0.068 0.519 0.072 0.313 0.771 0.335 0.687

0.60 0.60 �0.20 0.34 0.00 0.500 0.111 0.536 0.107 0.523 0.118 0.667 0.111 0.878 0.896 0.869 0.889

0.60 0.60 �0.20 0.34 0.90 0.575 0.149 0.601 0.145 0.585 0.165 0.725 0.119 0.890 0.976 0.868 0.977

0.80 �0.10 0.30 0.62 0.00 1.143 0.089 1.217 0.087 0.961 0.090 0.714 0.089 0.478 0.877 0.199 0.855

0.80 �0.10 0.30 0.62 0.90 0.769 0.037 0.804 0.027 0.683 0.056 0.609 0.068 0.370 0.982 0.298 0.897

0.80 0.30 �0.10 0.12 0.00 0.727 0.102 0.730 0.102 0.676 0.103 0.818 0.102 0.387 0.245 0.345 0.207

0.80 0.30 �0.10 0.12 0.90 0.768 0.114 0.771 0.114 0.728 0.123 0.856 0.104 0.504 0.379 0.374 0.305

Bounds

1.00 1.00 �1.00 �1.00 0.00 0.50 0.50 1.00 1.00

1.00 1.00 �1.00 �1.00 1.00 0.50 0.50 1.00 1.00

1.00 �1.00 1.00 1.00 0.00 Infinite Infinite 1.00 1.00

1.00 �1.00 1.00 1.00 1.00 0.50 Infinite 0.50 0.50

0.33 1.00 �0.33 1.00 0.00 0.25 0.50 0.50 0.50

0.33 1.00 �0.33 1.00 1.00 0.25 0.50 0.50 0.50

This table reports the Plim of GMM and ML estimators (Panel A) and the power of misspecification tests (Panel B) in the case of omitted dynamics. Selected pairs of fof ;o1
bg are

displayed in Fig. 1. Other parameter sets are r ¼ f0; 0:9g, b ¼ 0:1 and se ¼ su ¼ 1. The Plims are computed using Proposition 2. Bounds for the Plims of estimators of af and b are

obtained for fof ;o1
bg ¼ fA;B;Cg where A, B, and C are defined in Fig. 1, r ¼ f0; 1g, and se ¼ 0.
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Proposition 3. Under the null hypothesis of no misspecification, the statistic ðd̂GMM � d̂MLÞ
0V̂
�1
ðd̂GMM � d̂MLÞ is

asymptotically distributed as a w2 with k degrees of freedom, where k is the dimension of d and where

V̂ ¼ V̂GMM � V̂ML.

In this proposition, the covariance matrix V̂ is supposed to be positive definite. In some cases, it may be
singular. Hausman and Taylor (1981) show that the same result applies provided one uses a generalized
inverse of V̂ in the estimation of the statistics.16

An additional feature is that in the case of misspecification affecting the ML auxiliary model (Eq. (3)), the
GMM estimator is consistent under the alternative while the ML estimator is not. Rejection of the null
hypothesis can be interpreted as a misspecification of either the equation of interest or the ML auxiliary
equation.
3.4. Numerical evidence

To assess the quantitative importance of the estimator biases under misspecification, we present in Table 2
the Plims of GMM and ML estimators using formulae reported in Proposition 2. We select several pairs for
fof ;o1

bg, corresponding to areas of interest in Fig. 1 (the selected points are displayed in the figure). The values
correspond to a wide range of persistence ðj1 þ j2Þ of the dependent variable. We also consider r ¼ f0; 0:9g,
b ¼ 0:1 and se ¼ su ¼ 1. (Results for other values are similar.) The values for ob2 are chosen to be rather
small, in order to cover moderate departures from model (2)–(3).

To obtain analytical results, Proposition 2 has abstracted from the issue of selecting the optimal weighting
matrix. This is innocuous in the just-identified case (GMM1). However, in the over-identified case (GMM2),
as put forward by Hall and Inoue (2003), different weighting matrices may yield different asymptotic biases
under misspecification. In addition to the TSLS approach adopted in the previous sections, we thus also
consider an estimation based on the efficient weighting matrix proposed by West (1997). In that case, the Plims
are computed using a large-sample simulation.

Table 2 (Panel A) indicates that very large biases are likely to occur. Two important parameters affect the
size of the bias, namely the size and the sign of the omitted lag (o2

b) and the persistence of the forcing variable
(r). For all values of r, a negative parameter o2

b tends to induce a negative bias in GMM estimators, but a
positive bias in the ML estimator. In addition, the magnitude of this bias increases with of for GMM, while it
decreases with of for MLE. With positive o2

b, in the case of no persistence (r ¼ 0), the ML bias is relatively
small, while GMM estimators have a severe upward bias. For instance, when of ¼ 0:8 and o1

b ¼ �0:1
(o2

b ¼ 0:3), the pseudo-true values are aGMM1 ¼ 1:1, aGMM2 ¼ 1:2, and aML ¼ 0:7. Even the optimal GMM
estimator yields an estimate of aGMM2 ¼ 1. In the high persistence case (r ¼ 0:9), the magnitude of the bias
strongly reduces for GMM estimators and the bias turns out to be negative. On the contrary, the ML bias
remains negative and increases in absolute value. It is worth emphasizing that in all cases considered the
ranking of the GMM and ML estimators is not affected by introducing persistence in the forcing variable or
varying the GMM weighting matrix (though the sign of the bias in af with respect to of may be affected).

We turn now to the performances of the proposed quasi-Hausman test statistic relative to the widely used
Hansen’s (1982) J-statistic for misspecification (Panel B). We use a Monte-Carlo experiment with T ¼ 150, a
typical sample size with macroeconomic data. As before, we consider the GMM weighting matrices proposed
by Newey and West (1987) and West (1997). Under the null hypothesis, the two test procedures perform rather
well, their relative performance mainly depending on the weighting matrix used for the GMM estimation.17

The table reports the power of the test statistics when the model (2)–(3) is actually misspecified, i.e., the
percentage of the 5; 000 replications in which the test statistic exceeds the relevant critical value of the w2
16In finite samples, it is also possible that some elements on the diagonal of V̂ are estimated to be negative, because some parameters are

more precisely estimated by GMM than by ML. In such instances, the Hausman test should not be interpreted, since we cannot conclude

on the significance of the difference in point estimates.
17Unreported evidence shows that the tests based on the West (1997) weighting matrix are broadly correctly sized: for a nominal size of

5%, the actual rejection rate is typically between 3% and 10% for the J test and between 4% and 13% for the quasi-Hausman test. Tests

based on the Newey andWest (1987) weighting matrix provide higher rejection rates: between 5% and 14% for the J test and between 10%

and 25% for the quasi-Hausman test. Detailed results are available upon request from the authors.
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distribution for a nominal size of 5%. The two statistics display similar overall performances, and their
relative performance depends on the parameter set. For some sets of parameters (typically, for o2

bo0), the two
statistics display a large power, suggesting that the statistics are able to discriminate these cases quite easily. In
the case where o2

b is positive, the two statistics have rather low power, the quasi-Hausman test performing the
worst. The reason for the relative poor performance of the quasi-Hausman test lies in this case in the finite-
sample bias already noticed. Indeed, for o2

b40, the GMM estimator is asymptotically biased upwards, but the
finite-sample bias partially compensates this first effect, therefore reducing the gap between the two estimators.

4. A multivariate New Keynesian model

In the previous sections, we adopted a stylized model to provide analytical results under misspecification. In
empirical work, however, the forcing variable is not likely to be strongly exogenous and may itself have a
hybrid dynamics. Typical illustrations of such a multivariate hybrid model can be found in the New Keynesian
macroeconomics (see Christiano et al., 2005). The general formulation of the multivariate hybrid RE model
can be written in compact form as follows:

G1Yt ¼ G2EtYtþ1 þ G0Yt�1 þ gt, (16)

where Yt is the vector of dependent variables and gt the vector of shocks, while G0, G1 and G2 are matrices that
depend on structural parameters, denoted x. Shocks gt are assumed to be serially uncorrelated, but they may
be cross-correlated, so that their covariance matrix S is not necessarily diagonal. This model may
accommodate dynamics including several lags or leads, provided Yt is redefined accordingly. Using the
undetermined coefficient approach, the structural form (16) has the following solution:

Yt ¼ B1Yt�1 þ B0gt, (17)

with B1 ¼ ðG1 � G2B1Þ
�1G0 and B0 ¼ ðG1 � G2B1Þ

�1. Numerical procedures have been developed to compute
the reduced form (17) of the model, such as the approach developed by Anderson and Moore (1985).18 Once
the reduced form is obtained, the ML estimator maximizes the concentrated log-likelihood function of the
sample

lnLðxÞ ¼ �T ½1þ lnð2pÞ� �
T

2
ln jŜj þ

T

2
ln jB̂

�1

0 j
2,

where Ŝ ¼ T�1
PT

t¼1 ĝtðxÞĝtðxÞ
0 is the estimated covariance matrix of residuals. Since no analytic solution can

be obtained in this model, our analysis of the asymptotic bias is based on Monte-Carlo simulations.

4.1. The model

We focus on an empirical New Keynesian model inspired by Rudebusch (2002a, b) that is well suited to
investigate explicitly the case of omitted dynamics.19 This model combines a Phillips curve, an aggregate
demand equation and a Taylor-rule type reaction function. It can be viewed as a multivariate extension of the
model studied in the previous sections.

Model 3:

pt ¼ opEtptþ1 þ ð1� opÞ
X4
j¼1

oj
pbpt�j þ byyt þ ep;t, ð18Þ

yt ¼ oyEtytþ1 þ ð1� oyÞ
X2
k¼1

ok
ybyt�k þ brðit � Etptþ1Þ þ ey;t, ð19Þ

it ¼ rit�1 þ ð1� rÞðdppt þ dyytÞ þ ei;t, ð20Þ
18An alternative estimation procedure has been recently put forward by Kurmann (2007) in a closely related context, following the

approach originally developed by Sargent (1979).
19The reader may also refer to Kozicki and Tinsley (2002) for a review of interpretations of the hybrid Phillips curve with additional lags

or to Fuhrer and Rudebusch (2004) for the hybrid aggregate demand equation with additional lags.
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where pt is the inflation rate, yt the output gap and it the short-term nominal rate. ep;t, ey;t, and ei;t denote error
terms. We therefore define Yt ¼ ðpt; yt; itÞ

0 and gt ¼ ðep;t; ey;t; ei;tÞ
0.

The dynamics of inflation (18) is a hybrid Phillips curve with several own lags and the output gap as forcing
variable. We impose the constraint

P4
j¼1 o

j
pb ¼ 1 to be consistent with the natural rate hypothesis. Similarly,

the aggregate demand equation for output gap (19) includes several own lags and the short-term nominal
interest rate as forcing variable, with

P2
k¼1 o

k
ybp1. Finally, (20) is a Taylor rule with interest-rate smoothing.

It should be mentioned that this model includes the output gap as forcing variable in the Phillips curve, in
place of the more theoretically grounded marginal cost, suggested by Galı́ and Gertler (1999). We adopt this
specification because it provides a convenient multivariate representation for investigating the biases in the
GMM and ML estimators. Another advantage of this model is that we can use the parameter estimates
reported by Rudebusch (2002a, b) to calibrate our Monte-Carlo experiment. A multivariate model involving
the marginal cost as forcing variable would raise be more problematic to calibrate, since no simple well-
established model for the joint dynamics of inflation and marginal cost has been proposed to our knowledge.

Now, we explore the asymptotic bias of GMM and MLE in a misspecified model, in which only one lag is
introduced in the dynamics of inflation and output gap. The assumed misspecified model is thus designed by
setting o1

pb ¼ o1
yb ¼ 1 and o2

pb ¼ o3
pb ¼ o4

pb ¼ o2
yb ¼ 0 in Model 3:

Model 30:

pt ¼ apEtptþ1 þ ð1� apÞpt�1 þ byyt þ vp;t, ð21Þ

yt ¼ ayEtytþ1 þ ð1� ayÞyt�1 þ brðit � Etptþ1Þ þ vy;t, ð22Þ

it ¼ rit�1 þ ð1� rÞðdppt þ dyytÞ þ vi;t. ð23Þ

4.2. Simulation results

The design of the Monte-Carlo simulation experiment relies on the model estimated by Rudebusch
(2002a, b). For all parameters but op and oy, we use the parameters reported by Rudebusch: o1

pb ¼ 0:67,
o2

pb ¼ �0:14, o
3
pb ¼ 0:4, o4

pb ¼ 1� o1
pb � o2

pb � o3
pb ¼ 0:07, by ¼ 0:13, o1

yb ¼ 1:15, o2
yb ¼ �0:27, br ¼ �0:09,

r ¼ 0:73, dp ¼ 1:53, dy ¼ 0:93, and the standard deviations of innovations are sep ¼ 1:01, sey ¼ 0:83, and
sei ¼ 0:36. Then, we investigate several parameter sets for fop;oyg from 0:25 to 0:75.

Concerning the MLE, Model 30 is estimated simultaneously, using the procedure described above. As
regards GMM, the estimator follows the standards of the empirical literature and thus departs from the TSLS
version used in previous section. Given the multivariate nature of the model and consistently with most
previous work, valid instruments are assumed to be dated t� 1 or earlier. The Phillips curve and the aggregate
demand equation are estimated jointly in order to capture the possible correlation between moment
conditions. The instrument set contains fYt�1; . . . ;Yt�4g, in accordance with the number of lags in the reduced
form of the correctly specified model (18)–(20).20 The weighting matrix is computed using the West (1997)
procedure. (Using the Newey–West weighting matrix yields similar results.)

In Table 3, we present two types of results. First, we report the Plim of the GMM and ML estimators,
computed using a large sample of 100; 000 observations. Second, we report the median and the MAD of the
finite-sample distribution of the estimators, based on 5; 000 samples of 150 observations. As regards GMM
estimation, we obtain very large asymptotic biases when the forward-looking component in the Phillips curve
is small to moderate. Whatever the value of the true parameter op (from 0:25 to 0:75), the Plim of the GMM
estimate ranges between 0:7 and 0:87. Even worse, unreported estimates indicate that, even when op ¼ 0:05
(with oy ¼ 0:5), the Plim of the GMM estimate is still as high as 0:63. Thus GMM is not able to discriminate
between a Phillips curves with a dominant backward-looking component and one with a dominant forward-
looking component. In addition, in most cases, the output-gap parameter (by) is found to be negative although
the true parameter is positive. The aggregate demand equation is much less prone to an asymptotic bias in the
forward-looking parameter (ay). The forward-looking component is not strongly affected, except in the case of
20We also investigated a GMM1-type estimator in which the lags of inflation and output gap beyond pt�1 and yt�1 were excluded from

the instrument set. The results were not significantly altered, so that they are not reported to save space.
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Table 3

Asymptotic and finite-sample properties of estimators in the hybrid multivariate model with omitted dynamics

Structural parameters Statistic GMM ML Power of misspecification tests

op oy ap by ay br ap by ay br Hausman J-stat

0.50 0.50 Plim 0.751 �0.029 0.568 �0.069 0.543 �0.008 0.577 �0.052 0.745 0.972

Median 0.690 0.001 0.559 �0.055 0.575 0.042 0.614 �0.044

MAD 0.048 0.041 0.026 0.028 0.030 0.021 0.023 0.013

0.25 0.25 Plim 0.701 �0.008 0.484 �0.022 0.529 �0.002 0.328 �0.111 0.923 0.999

Median 0.646 �0.002 0.490 �0.019 0.536 �0.003 0.293 �0.171

MAD 0.042 0.017 0.021 0.018 0.035 0.011 0.188 0.120

0.75 0.75 Plim 0.869 �0.105 0.771 �0.085 0.764 0.068 0.786 �0.072 0.591 0.626

Median 0.790 0.002 0.732 �0.076 0.768 0.081 0.791 �0.077

MAD 0.057 0.107 0.038 0.033 0.043 0.052 0.036 0.020

0.25 0.75 Plim 0.747 �0.025 0.773 �0.057 0.618 �0.046 0.757 �0.063 0.872 0.928

Median 0.667 �0.007 0.737 �0.055 0.606 �0.031 0.778 �0.063

MAD 0.050 0.027 0.038 0.027 0.048 0.040 0.029 0.010

0.75 0.25 Plim 0.784 0.097 0.392 �0.096 0.745 0.091 0.397 �0.084 0.707 0.976

Median 0.735 0.084 0.452 �0.053 0.742 0.092 0.391 �0.092

MAD 0.041 0.028 0.042 0.035 0.043 0.018 0.092 0.049

This table reports estimates of the multivariate hybrid model, described in Eqs. (21)–(23), when it is estimated with a single lag.

Parameters are those reported by Rudebusch (2002a, b): o1
pb ¼ 0:67, o2

pb ¼ �0:14, o3
pb ¼ 0:4, o4

pb ¼ 1� o1
pb � o2

pb �o3
pb ¼ 0:07,

by ¼ 0:13, o1
yb ¼ 1:15, o2

yb ¼ �0:27, br ¼ �0:09, r ¼ 0:73, dp ¼ 1:53, dy ¼ 0:93, sep ¼ 1:01, sey ¼ 0:83, and sei ¼ 0:36. As in Rudebusch,

we consider several values for op and oy. The Plims of ap, by, ay and br are computed with a sample of 100; 000 observations. Median and

MAD correspond to the finite-sample distribution of ap, by, ay and br. They are obtained using Monte-Carlo simulation of 5; 000 samples

of size T ¼ 150. Hausman and J-stat denote the power of the quasi-Hausman test and J test, respectively, i.e., the percentage of the 5; 000
replications in which the test statistic exceeds the relevant critical value of the w2 distribution for a nominal size of 5%. The GMM

estimation is performed using the West (1997) procedure for the weighting matrix (MA(1) error term). Eqs. (21)–(22) are jointly estimated.

The instrument set contains four lags of the inflation rate, the output gap and the short-term interest rate. The ML estimates result from

the joint estimation of Eqs. (21)–(23).
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a very small value of the true parameter oy ¼ 0:25. In this case, the bias may be as high as 0.2, depending on
the persistence in the Phillips curve.

Turning to the MLE, the forward-looking component of the Phillips curve is much less biased than the one
obtained with GMM, so that the same ranking of Plims estimators as in Section 3 appears. Significant MLE
biases are found for op ¼ 0:25 only. When op is equal to 0:5 or 0:75, the consequences of misspecification on
ap and ay are modest, while estimates of by and br are correctly signed. Also, the finite-sample distribution of
the ML estimator has a median very close to its Plim.

A noticeable feature of this experiment is that the discrepancies between GMM and ML estimators are close
to those obtained on historical data.21 For instance, the medians of the finite-sample distribution of the
Phillips curve parameters reported in the table for fop;oyg ¼ f0:5; 0:5g or f0:25; 0:25g are close to the estimates
reported by Jondeau and Le Bihan (2005) or Nason and Smith (2005). Indeed, the former obtain ap ¼ 0:61
and by ¼ �0:025 with GMM and ap ¼ 0:48 and by ¼ 0:017 with ML, while the latter report ap ¼ 0:68 and
by ¼ 0:008 with GMM and ap ¼ 0:51 and by ¼ �0:001 with ML.

Finally, the table provides some evidence on the power of the quasi-Hausman and J statistics in the case of
non-local misspecification. We observe that in all cases the two statistics perform rather well, since they are
able to detect the assumed misspecification in at least 60% of the cases. In general, the J statistic has somewhat
21We have checked that in a correctly specified model (with op ¼ oy ¼ 0:5), GMM and MLE are not likely to yield discrepancies

between estimates of the forward-looking parameters as large as the ones obtained in a misspecified set-up. Typically, the probability of

obtaining a gap of 0.12 (as reported in Table 3 for op ¼ oy ¼ 0:5) is only 0.4%.
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more power than the quasi-Hausman statistic. The table suggests that one reason for the lower power of the
quasi-Hausman test is that the finite-sample bias on ap systematically reduces, and sometimes offsets, the
asymptotic bias. We observe the opposite for ay, since the finite-sample bias exacerbates the asymptotic bias,
but this effect is less sizeable than that of ap. The quasi-Hausman test might have a better relative power under
more local misspecifications or when restricting to a subset of parameters.
5. Conclusion

In this paper, we analyze the asymptotic biases in the GMM and ML estimators in misspecified second-
order RE models. In the case of omitted dynamics, we show analytically that the GMM and ML biases
generally point to opposite directions. The same contrast between the two estimators emerges when
considering other plausible misspecifications or when a more elaborate multivariate model is considered.

Results in the present paper point to a critical source of discrepancy between estimators of a RE model,
i.e., when a relevant regressor is omitted from the estimated equation but included in the GMM instrument
set. Such an instance, rather likely when a large number of instruments is used, causes the lead
of the dependent variable to capture the effect of the omitted variable, and the degree of forward-lookingness
to be over-estimated. In the set-up analyzed here, misspecification of the equation of interest is typically
found to be more harmful to the GMM estimator than to the MLE. This finding to some extent balances the
well-known fact that in RE models, MLE may, unlike GMM, suffer from misspecification of the auxiliary
model.

We also show through Monte-Carlo simulation of a multivariate New Keynesian model that GMM is more
widely biased than MLE in a way that is likely to fill the gap between empirical estimates. Our results help to
rationalize the empirical discrepancy reported between the large degree of forward-lookingness typically found
when implementing GMM and the low degree of forward-lookingness obtained by MLE. Misspecification
(and, in particular, omitted dynamics) typically induces biases in GMM and MLE that are consistent with the
sign and the magnitude of parameter estimates reported in the empirical literature.
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Appendix A

A.1. Model with a single lag

This section reports moments and cross-moments implied by Model 1. These expressions are used to
compute the moment conditions involved in the definition of estimators.
A.1.1. Moments and cross-moments

Moments of Zt are known to be E½Z2
t � � s2Z ¼ s2u=ð1� r2Þ, and E½ZtZt�i� ¼ ris2Z. Cross-moments with Y t are

E½ZtY t� ¼
ys2Z

1� j1r
¼ G0; E½ZtY t�1� ¼ rG0 and E½Y tZt�1� ¼ j1G0 þ yrs2Z.
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Moments involving Y t only are

E½Y 2
t � ¼

~s2e
1� j2

1

þ
1þ j1r
1� j2

1

yG0 ¼ F0,

E½Y tY t�1� ¼ j1F0 þ yrG0,

E½Y tY t�2� ¼ j2
1F0 þ yrðj1 þ rÞG0.

A.1.2. Proof of Proposition 1

Since (2) can be equivalently written as

Y t � Y t�1 ¼ of ðEtY tþ1 � Y t�1Þ þ bZt þ et, (24)

the Plim of the OLS estimators of (2) is obtained by solving the following expressions:

E½ðY tþ1 � Y t�1Þ � ððY t � Y t�1Þ � of ðY tþ1 � Y t�1Þ � bZtÞ� ¼ 0,

E½Zt � ððY t � Y t�1Þ � of ðY tþ1 � Y t�1Þ � bZtÞ� ¼ 0

yielding (6) and (7) in the text.
Rewriting (2) as in (24), we observe that the endogenous regressor is ðY tþ1 � Y t�1Þ. Iterating (2) backward,

we obtain the expression of the endogenous regressor as a function of the optimal instrument set (first-stage
regression of the TSLS estimation)

Y tþ1 � Y t�1 ¼ ðj2
1 � 1ÞY t�1 þ y1ðj1 þ rÞZt þ ~etþ1 þ j1~et þ yut,

where the variance of the error term vt ¼ ~etþ1 þ j1~et þ yut is

s2v ¼ ð1þ j2
1Þ ~s

2
e þ y2s2u.

Since there is one endogenous and one exogenous regressor in the equation, the concentration ratio is a scalar.
Using the definition in Staiger and Stock (1997), it is then here given by

l2T
T
¼

Oð1� j2
1Þ

2

s2v
,

where O ¼ E½Y 2
t�1� � E½ZtY t�1�

2=E½Z2
t �. Using the expressions above, we obtain

l2T
T
¼

ð1� j2
1Þð ~s

2
e þ L2Þ

ð1þ j2
1Þ ~s

2
e þ ð1� j1rÞ

2L2
.

A.2. Model with omitted dynamics

This section reports moments and cross-moments implied by Model 2 and describes how the Plims of the
various estimators are computed.

A.2.1. Moments and cross-moments

Cross-moments between Zt and Y t are now given by

E½ZtY t� ¼
ys2Z

1� j1r� j2r2
¼ ~G0,

E½ZtY t�i� ¼ ri ~G0; for all i40,

E½Y tZt�1� ¼ ðj1 þ j2rÞ ~G0 þ yrs2Z.
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Moments involving Y t only are

E½Y 2
t � ¼
ð1� j2Þ ~s

2
e þ ½j1rð1þ j2Þ þ ð1� j2Þð1þ j2r

2Þ�y ~G0

ð1þ j2Þð1� j1 � j2Þð1þ j1 � j2Þ
¼ ~F0,

E½Y tY t�1� ¼
j1

1� j2

~F0 þ
yr

1� j2

~G0,

E½Y tY t�2� ¼ j2 þ
j2
1

1� j2

� �
~F0 þ

j1

1� j2

þ r
� �

yr ~G0.

A.2.2. Proof of Proposition 2

Plim of GMM1: Estimator GMM1 relies on the following moment conditions:

E½Y t�1 � ðY t � af Y tþ1 � ð1� af ÞY t�1 � bZtÞ� ¼ 0, ð25Þ

E½Zt � ðY t � af Y tþ1 � ð1� af ÞY t�1 � bZtÞ� ¼ 0. ð26Þ

Since the model is just identified, the Plims of the estimators of af and b reported in Proposition 2 are obtained
by solving the two moment conditions directly.

Plim of GMM2: Estimator GMM2 includes fY t�1;Y t�2;Ztg with the omitted variable in the instrument set,
leading to an over-identified parameter set. The estimator is built as a two-step estimator. First, Y tþ1 is
regressed on the instrument set to build the expectation of Y tþ1 conditional on the information set, yielding
Ŷ tþ1 ¼ ðj2

1 þ j2ÞY t�1 þ j1j2Y t�2 þ yðj1 þ rÞZt. Then, the Plims of estimators of af and b are obtained by
solving the two following moment conditions:

E½ðŶ tþ1 � Y t�1Þ � ðY t � af Ŷ tþ1 � ð1� af ÞY t�1 � bZtÞ� ¼ 0, ð27Þ

E½Zt � ðY t � af Ŷ tþ1 � ð1� af ÞY t�1 � bZtÞ� ¼ 0. ð28Þ

Plim of ML: TheML estimator is obtained by estimating the reduced form of the postulatedModel 20, that is (11).
Parameters f, m, and r are estimated by OLS, and their Plims are denoted fML, mML, and rML. Then, the Plims of
the ML estimators of af and b are given by the conditions aML ¼ 1=ð1þ fMLÞ and bML ¼ mMLaMLð1� rMLÞ.

A.3. Model with omitted variable

This section describes how the Plims of the various estimators are computed when the DGP is given by
(12)–(14), while the (misspecified) equation estimated by the econometrician is (15). The reduced form is

Y t ¼ j1Y t�1 þ y1Z1;t þ y2Z2;t þ ~et,

where j1 ¼ ð1� of Þ=of , y1 ¼ b1=ðof ð1� rÞÞ, y2 ¼ b2=ðof ð1� rÞÞ, and ~et ¼ et=of . We also define
~s2e ¼ E½~e2t � ¼ s2e=o

2
f .
A.3.1. Moments and cross-moments

Cross-moments between Zi;t and Y t are given by, for i ¼ 1; 2:

E½Zi;tY t� ¼
yis2Zi

1� j1ri

¼ �G0i,

E½Zi;tY t�1� ¼ ri

yis2Zi

1� j1ri

¼ ri
�G0i,

E½Y tZi;t�1� ¼ ri
�G0i þ yiris

2
Zi,
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where s2ui ¼ E½u2
i;t� and s2Zi ¼ s2ui=ð1� r2i Þ. Moments involving Y t only are

E½Y 2
t � ¼

~s2e
ð1� j2

1Þ
þ
ð1þ j1r1Þy

2
1s

2
Z1

ð1� j2
1Þð1� j1r1Þ

þ
ð1þ j1r2Þy

2
2s

2
Z2

ð1� j2
1Þð1� j1r2Þ

¼ �F0,

E½Y tY t�1� ¼ j1
�F0 þ y1r1 �G01 þ y2r2 �G02,

E½Y tY t�2� ¼ j2
1
�F0 þ ðj1 þ r1Þy1r1 �G01 þ ðj1 þ r2Þy2r2 �G02.

A.3.2. Plims of the estimators under omitted variable

We first give the Plims of the estimators assuming model stationarity. Then, we derive some inequalities in
the case of positive serial correlations and positive effect of the forcing variables.

Plim of GMM1: In the case of the just-identified GMM1 estimator with instrument set fY t�1;Z1;tg, Plims of
the estimators are obtained by solving the following moment conditions:

E½Z1;t � ðY t � aY tþ1 � ð1� aÞY t�1 � bZ1;tÞ� ¼ 0, ð29Þ

E½Y t�1 � ðY t � aY tþ1 � ð1� aÞY t�1 � bZ1;tÞ� ¼ 0, ð30Þ

so that

aGMM1 ¼
1

1þ j1

� � ~s2e þ ~L
2

1 þ
y22s

2
u2

1� j1r2

1

1þ r2

~s2e þ ~L
2

1 þ
y22s

2
u2

1� j1r2

1

1� r22

,

bGMM1 ¼ y1
1� r1

1� j1r1
ð1� aGMM1ð1þ r1Þj1Þ,

where ~L
2

1 ¼ y21s
2
u1=ð1� j1r1Þ

2
¼ ð1� r21ÞE½Z1;tY t�

2=V ½Z1;t�.
Plim of GMM2: In the case of the GMM2 estimator, based on the instrument set fY t�1;Z1;t;Z2;tg, we first

compute the fitted value from the first-stage regression: Ŷ tþ1 ¼ j2
1Y t�1 þ y1ðj1 þ r1ÞZ1;t þ y2ðj2 þ r2ÞZ2;t.

Then, the Plims of the second-stage regression are the solution of the following moments conditions:

E½Z1;t � ðY t � aŶ tþ1 � ð1� aÞY t�1 � bZ1;tÞ� ¼ 0, ð31Þ

E½ðŶ tþ1 � Y t�1Þ � ðY t � aŶ tþ1 � ð1� aÞY t�1 � bZ1;tÞ� ¼ 0, ð32Þ

so that

aGMM2 ¼
1

1þ j1

� � ~s2e þ ~L
2

1 þ
y22s

2
u2

1� j1r2

1

1� j1

~s2e þ ~L
2

1 þ
y22s

2
u2

1� j1r2

1

1� j2
1

,

bGMM2 ¼ y1
1� r1

1� j1r1
ð1� aGMM2ð1þ r1Þj1Þ.

Plim of ML: The reduced form of the misspecified equation (15) is given by

Y t ¼ f1Y t�1 þ m1Z1;t þ ~et.

Estimators of f1 and m1 are therefore obtained from the two following moments conditions:

E½Y t�1 � ðY t � f1Y t�1 þ m1Z1;tÞ� ¼ 0, ð33Þ

E½Z1;t � ðY t � f1Y t�1 þ m1Z1;tÞ� ¼ 0 ð34Þ
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yielding the Plims

fML ¼

j1ð ~s
2
e þ

~L
2

1Þ þ
ðj1 þ r2Þ
ð1� j1r2Þ

y22ð1� r22Þs
2
u2

~s2e þ ~L
2

1 þ
ð1þ j1r2Þ
ð1� j1r2Þ

y22ð1� r22Þs
2
u2

,

mML ¼ y1 þ ðj1 � fMLÞ
r1y1

ð1� j1r1Þ
.

The Plims of the ML estimators of af and b are given by the conditions aML ¼ 1=ð1þ fMLÞ and
bML ¼ mMLaMLð1� rMLÞ:

aML ¼
1

1þ j1

� � ~s2e þ ~L
2

1 þ
y22s

2
u2

1� j1r2

1þ j1r2
1� r22

~s2e þ ~L
2

1 þ
y22s

2
u2

1� j1r2

1

1� r2

,

bML ¼ y1
1� r1

1� j1r1
ðaMLð1þ r1Þ � r1Þ.

Ranking of the estimators: The ranking of the Plims of GMM and ML estimators is obtained in the typical
case where the serial correlation of the forcing variables (r1 and r2) is positive.

Corollary 2. When 0pr1;r2p1, the following inequalities hold:

aGMM1pof ,

aMLpof paGMM2.

In addition, when b240, the following inequalities hold:

bGMM2pb1,

bGMM1pb1pbML.

As before, these inequalities are obtained by comparing terms between brackets in the numerator and
denominator of each expression.
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