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• We estimate the aggregate process when only macro data is available.
• A parametric and a minimum distance estimator for the aggregate dynamics are proposed.
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• The estimators perform very well, even with finite samples.
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a b s t r a c t

The aggregation of individual random AR(1) models generally leads to an AR(∞) process. We provide
two consistent estimators of aggregate dynamics based on either a parametric regression or a minimum
distance approach for usewhenonlymacro data are available. Notably, both estimators allowus to recover
some moments of the cross-sectional distribution of the autoregressive parameter. Both estimators
perform very well in our Monte-Carlo experiment, even with finite samples.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Aggregation is a critical and widely acknowledged issue in the-
oretical and empirical economics research. As noted by Pesaran
and Chudik (2014), among the different aspects of the aggrega-
tion problem, the identification and estimation of certain distribu-
tional features of the micro-parameters from aggregate relations
are important issues, especially when only macro data are avail-
able (Robinson, 1978; Granger, 1980; Forni and Lippi, 1997). No-
tably, identifying such features requires the researchers to derive
the optimal aggregate function and to make explicit the back out
between ‘‘macro’’ and ‘‘micro’’ parameters. Yet, only a few papers
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have examined the reliability of macro information in circumvent-
ing the aggregation bias in the presence of unobserved micro het-
erogeneity (Lewbel, 1994; Pesaran, 2003; Carvalho andDam, 2010;
Mayoral, 2013). Our paper contributes to this stream of the liter-
ature by providing a solution to this problem for autoregressive
models when the time-series and cross-sectional dimensions are
both large.

We propose two consistent estimation techniques that rely on
a flexible parametric specification of the distribution of the micro-
parameters and on the estimation of the hyper-parameters of this
cross-sectional distribution. The first method is based on maxi-
mum likelihood estimation, while the second method is based on
minimumdistance estimation. Bothmethods explicitly account for
the set of non-linear restrictions that drive the aggregate parame-
ters and allowus to recover reliable information on the distribution
of the micro-parameters. Using Monte Carlo simulation, we show
that both methods perform very well, even with relatively small
samples.
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2. The model

Consider the random AR(1) model for i = 1, . . . ,N:

xi,t = ρi xi,t−1 + vi,t , (1)

where ρi denotes an individual-specific random parameter and
vi,t is an error term. For instance, such dynamics may represent
consumption expenditures across households (Lewbel, 1994), con-
sumer price inflation across subindices (Altissimo et al., 2009), real
exchange rates across sectors (Imbs et al., 2005), or real marginal
cost across industries (Imbs et al., 2011). Innovation vi,t is de-
composed into a common component (ϵt ) and an idiosyncratic
(individual-specific) component (ηi,t ):

vi,t = κi ϵt + ηi,t , (2)

where κi denotes a scaling parameter. The macro variable results
from the aggregation ofmicro-units, with the use of time-invariant
nonrandom weights WN = (w1, . . . , wN)′, with

N
i=1 wi = 1,

so that XN,t =
N

i=1 wixi,t . The cross-sectional moments of ρ are
ẼN (ρs) =

N
i=1 wiρ

s
i , for all s = 1, 2, . . . . Moreover, the following

assumptions hold:

Assumption 1. |ρ| ≤ c < 1 almost surely for some constant c .
Random parameters have finite variance and higher moments.

Assumption 2. ϵt and ηi,t are white noise processes with mean
zero and variance σ 2

ϵ and σ 2
η , respectively; ϵt and ηi,t are mutually

orthogonal at any lag and lead; {ϵ, ηi} and {ρi, κi} are mutually in-
dependent for all i; ρi and κi are mutually independent; E(κ) = 1.

Assumption 3. As N → ∞, ∥WN∥ = O

N−1/2


and wi/ ∥WN∥ =

O

N−1/2


for all i ∈ N.

Assumption 1 guarantees that there are no individual unit root
parameters that would dominate at the aggregate level (Zaffa-
roni, 2004). This assumption implies that the limit aggregate (as
N → ∞) has a short memory with an exponentially decaying
autocorrelation function.1 Eqs. (1) and (2) together with Assump-
tion 2 provide a parsimonious form of (statistical) cross-sectional
dependence, which is common in the aggregation literature (Forni
and Lippi, 1997; Zaffaroni, 2004). The aggregation mechanism de-
pends solely on the characteristics of the common component of
the error term, i.e., our specification and assumptions rule out the
presence of an idiosyncratic component at the aggregate level.2

Assumption 3 is a granularity condition, which insures that the
weights are not dominated by a few of the cross-sectional units
(Gabaix, 2011; Pesaran and Chudik, 2014).3

3. Aggregate dynamics

Using the moving average (MA) representation in Eqs. (1)–(2),
we can straightforwardly show that the aggregate process,XN,t , has

1 Assumption 1 can be relaxed to allow for long-memory effects. This point is
further discussed in Section 5.
2 The contribution of idiosyncratic shocks through network effects or nongranu-

larity has been discussed in recent papers (e.g., Gabaix, 2011 and Acemoglu et al.,
2012).
3 Our results extend to the case of (time-varying) stochastic weights. Such an

extension requires at least that the weights be distributed independently from the
stochastic process defining the random variable.
the following dynamics4:

XN,t =

∞
k=0


N
i=1

wiρ
k
i κi


ϵt−k +

∞
k=0


N
i=1

wiρ
k
i ηi,t−k


. (3)

When N becomes large, by virtue of the strong law of large mo-
ments, the limit aggregate dynamics is obtained.

Proposition 1. Suppose that Assumptions 1–3 hold. Given the disag-
gregate model defined in Eqs. (1)–(2), the limit aggregate process as
N → ∞ has the following dynamics:

Xt =

∞
s=0

γs ϵt−s (MA form), (4)

Xt =

∞
s=1

Cs Xt−s + ϵt (AR form), (5)

where XN,t
L2
→ Xt and ẼN (ρs)

a.s.
→ Ẽ (ρs) as N → ∞. Parameters γs

are defined as γs = Ẽ(ρs), with


∞

s=0 |γs| < ∞. Parameters Cs are
defined by C0 = 1, Cs = Ẽ(cs), ∀s ≥ 1 with c1 = ρ and cs+1 =

(cs − Cs) ρ , with


∞

s=0 |Cs| < ∞.

Proof. Gonçalves and Gouriéroux (1988) and Lewbel (1994). See
Appendix A.

The absence of an idiosyncratic component in Eqs. (4) and (5) is
a direct consequence of Assumptions 1–3. Eq. (4) shows that the
impulse-response coefficients γs are the noncentral moments of
the random parameter ρ.5 Eq. (5) shows that aggregation leads
to an infinite autoregressive model for Xt (see Robinson, 1978
and Lewbel, 1994). The autoregressive parameters Cs are nonlinear
transformations of the noncentralmoments ofρ and satisfy the fol-
lowing nonhomogeneous difference equations (for s ≥ 1), which
turn out to be useful in the estimation with only macro data:

Cs+1 = Ẽ(cs+1) = Ẽ

ρs+1

−

s
r=1

Cr Ẽ

ρs−r+1 , (6)

and


∞

s=1 Cs =


∞

s=1 Ẽ(ρs)/(1 +


∞

s=1 Ẽ(ρs)) < 1 almost surely.
In addition, the long-run multiplier is given by 1/(1−


∞

s=1 Cs) =
∞

s=0 Ẽ(ρs). With the exception of a degenerate distribution for ρ
(Dirac distribution), the aggregate dynamics is richer than the indi-
vidual dynamics because of the nonergodicity of the randomAR(1)
process. Conversely, when parameters Cs are known or estimated,
the cross-sectional moments can be easily deduced. For instance,
the cross-sectional mean and variance are Ẽ(ρ) = C1 and Ṽ (ρ) =

C2, respectively, and the standardized skewness and kurtosis are
S̃(ρ) = (C3 − C1C2) / (C2)

3/2 and K̃(ρ) = (C4 − 2C1C3 + C2
1C2 +

C2
2 )/ (C2)

2, respectively.

4. Estimation

The estimation approach that was originally proposed by
Lewbel (1994) consists in truncating the infinite sums in Propo-
sition 1 and estimating the resulting dynamics:

XN,t =

K
s=1

Cs XN,t−s + VN,t , (7)

4 Put differently, it is an ARMA(N,N − 1) in the absence of common roots in the
individual processes (Granger and Morris, 1976).
5 Noncentral moments γs = Ẽ(ρs) of any (nondegenerate) random variable ρ,

defined on [0, 1), satisfy: 1 > γ1 ≥ · · · ≥ γs ≥ 0, ∀s ≥ 1, and γs → 0 as s → ∞.
See Appendix B for additional properties of noncentral moments.
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where K is a truncation lag. In doing so, the first K moments of the
distribution function of ρ can be backed out from the estimates of
C1, . . . , CK .

Two issues are of particular concern in the unrestricted estima-
tion of the aggregatemodel in Eq. (7). First, the problemof the trun-
cation remaindermaybe critical in small samples, as any additional
lag requires the estimation of onemore parameter. Second, the im-
plications of the theoretical relations between aggregate parame-
ters Cs and cross-sectional moments γs (Eq. (6)) are not explicitly
taken into account. In fact, two sets of restrictions should be im-
posed on the estimation of the aggregate parameters in Eq. (7). On
the one hand, taking the functional dependence between Cs and
γs, one needs to impose autoregressive parameters to be consis-
tent with the moments γs defining a well-behaved cross-sectional
distribution. This restriction results in the positivity of the infinite
Hankel matrix associated with Choquet’s representation (Choquet,
1969; Gonçalves and Gouriéroux, 1988) and thus the nonnegativ-
ity of the principal minors associated to the Hankel matrix. On the
other hand, asmicro-parameters ρi are assumed to be defined over
[0, 1), themoments γs have a set of restrictions, described byHaus-
dorff’s moment conditions. In Appendix B, we provide details on
these restrictions. We also show that such restrictions and the so-
called ‘‘restricted estimator’’ help at improving the estimation of
cross-sectional moments, although the bias remains large espe-
cially for the cross-sectional skewness and kurtosis. To some ex-
tent, this result is consistent with the view that the identification
of the micro-parameters can often be obtained only by imposing
more structure on the micro-processes as for instance on the dis-
tribution of the parameter that drives heterogeneity (see Forni and
Lippi, 1997).

4.1. The parametric estimator

A natural way to circumvent the issues raised by the unre-
stricted approach is to adopt a parametric representation of the
cross-sectional distribution, so that the parameters defining the
distribution can be estimated from the aggregate equation. Sev-
eral densities have been proposed to describe the distribution of
an autoregressive parameter, such as a uniform distribution (Lin-
den, 1999), a Beta distribution (Granger, 1980; Gonçalves and
Gouriéroux, 1988), and a polynomial distribution (Chang, 2006).
We assume that the random parameter ρ is i.i.d. and drawn from
a parametric distribution, f (ρ; θ), parameterized by θ .

Definition 1. Suppose that Assumptions 1–3 hold and that ρ ∼

f (ρ; θ). The parametric estimator of the aggregate autoregressive
model in Eq. (5) is the ML estimator of the parameter set ξP =
θ, σ 2

ϵ

′ in the model:

XN,t =

K
s=1

Cs XN,t−s + ϵt , (8)

where Cs = Ẽ (ρs)−
s−1

r=1 Cr Ẽ

ρs−r


and Ẽ(ρs) =


ρr f (ρ; θ)dρ.

The asymptotic distribution of the estimator ξ̂P is
√
T (ξ̂P − ξ0)

→ N(0, J−1
0 I0J−1

0 ), where ξ0 is the true value of the parameter, I0 =

limT→∞ V
√

T ∂
∂ξ

log LT (ξ0)


, J0 = limT→∞


∂2

∂ξi∂ξj
log LT (ξ0)


,

and LT (ξ0) is the likelihood of the model evaluated at ξ0.
An obvious advantage of the parametric estimator is that

it greatly reduces the number of unknown parameters to be
estimated. Moreover, the Beta or polynomial distributions are suf-
ficiently flexible to capture most of the possible shapes of the dis-
tribution of the micro-parameters.

The limit aggregate model (Eq. (5)) involves an infinite number
of parameters. Berk (1974) has shown that standard

√
T -consistent

and asymptotically normally distributed estimates are obtained
when an infinite autoregressive process is approximated by a
finite autoregressive process, such as an AR(K), as long as the trun-
cation lag K does not increase too much or too slowly with re-
spect to the sample size.While standard selection criteria generally
produce severe finite-sample biases in this situation, a general-to-
specific approach can be implemented in order to provide a data-
dependent rule (Kuersteiner, 2005).

4.2. The minimum distance estimator

Using the infinite MA representation of the limit aggregate pro-
cess (Eq. (4)), we also define a minimum distance (MD) estimator.
To circumvent the dimensionality problem, we proceed as before
and rely on a parametric distribution for ρ. This approach allows
us to compute all of the terms involving Ẽ(ρs) in a straightforward
manner. TheMD estimator aims tominimize the distance between
the theoretical moments of XN,t and their empirical counterparts.

Definition 2. Suppose that Assumptions 1–3 hold and that ρ ∼

f (ρ; θ). The MD estimator of the moving average model in Eq. (4)
is the parameter set ξMD =


θ, σ 2

ϵ

′ that minimizes the distance
(Γ̂ −Γ (ξ))′Ω̂(Γ̂ −Γ (ξ)), whereΓ (ξ) and Γ̂ denote the set of the
first k auto-covariances of XN,t and their empirical counterparts,
respectively, and Ω̂ is a weighting matrix. Γ (ξ) = {Cov(XN,t ,

XN,t−h)}h=1,...,k, with Cov

XN,t , XN,t−h


= σ 2

ϵ


∞

s=0 γs γs+h and
γs = Ẽ(ρs).

Given the standard optimal weighting matrix Ω = Σ−1,
where Σ is the asymptotic covariance matrix of the sample auto-
covariances, the asymptotic distribution of ξ̂MD is

√
T (ξ̂MD−ξ0) →

N(0, (D′

0Σ
−1D0)

−1), where D0 = ∂Γ (ξ)/∂ξ is evaluated at ξ0.
For parametric and MD estimators, the flexible parametric rep-

resentation of the parameter distribution reduces the number of
unknown parameters and ensures that the autoregressive param-
eters in the aggregate dynamics are consistent with the theoreti-
cal constraints. Therefore, these estimators are less likely to suffer
from finite-sample biases and overfitting.

5. Simulation experiment

We perform a Monte Carlo simulation to evaluate the finite-
sample and large-sample properties of our proposed estimators.
The simulation is designed as follows. We simulate the data
generating process given by Eqs. (1) and (2). We consider different
values for the number of micro-units (N = 25 and 100) and for the
number of observations (T = 250 and 1000). We assume that ρ is
generated by a bell-shaped Beta distribution, with different sets of
parameters: (p, q) = (5, 5), (7.5, 2.5), and (8.5, 1.5).6 These sets
of parameters correspond to an average autoregressive parameter
of Ẽ(ρ) = 0.5, 0.75, and 0.85, respectively.7 All experiments are
based on 1000 samples. We then compute the average value of the
first four moments of ρ over the simulated samples.

Table 1 reports the results for the three different values of (p, q),
which correspond to medium, low, and high persistence. The first

6 The Beta distribution of a random variable Y is defined as f (y; θ) =
1

B(p,q)
(y−a)p−1(b−y)q−1

(b−a)p+q−1 , where a ≤ y ≤ b. The noncentral moments of the standardized

variable X = (Y − a)/(b − a) are given by ms(X) ≡ Ẽ (X s) = B (p + s, q) /B(p, q).
The Beta distribution generates long memory when q ≤ 1.
7 We also relax Assumption 1 and allow for long-memory effects (e.g., p = 9 and

q = 1). Results provide evidence that the cross-sectional skewness and kurtosis
might be biased in the presence of long-memory. This result can be explained by the
facts that (i) we cannot impose the relevant constraint for long-range dependence,
namely that the (infinite) sum of the autoregressive parameters equals 1 in the
presence of long-memory, and that (ii) observing long-range dependence in an
aggregate series consistentwithmicro evidence proves to be difficult (Beran, 1994).
Results are not reported here but are available upon request.
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Table 1
Estimation of the aggregate dynamics.

Moments True value ML Unrestricted
regression

Parametric
regression

MDE ML Unrestricted
regression

Parametric
regression

MDE

Case 1: N = 25, T = 250 Case 2: N = 25, T = 1000

(p, q) = (5, 5)
Mean 0.500 0.505 0.484 0.487 0.476 0.518 0.499 0.502 0.498
Variance 0.023 – 0.040 0.022 0.022 – 0.028 0.020 0.021
Skewness 0.000 – 9.290 0.040 0.056 – 11.489 0.006 0.012
Kurtosis 2.539 – −15.259 2.629 2.646 – −101.769 2.618 2.615

(p, q) = (7.5, 2.5)
Mean 0.750 0.771 0.734 0.739 0.735 0.785 0.750 0.754 0.752
Variance 0.017 – 0.038 0.018 0.016 – 0.027 0.015 0.016
Skewness −0.638 – 10.275 −0.436 −0.376 – 8.488 −0.562 −0.548
Kurtosis 3.103 – 24.882 2.968 2.961 – 103.144 3.095 3.066

(p, q) = (8.5, 1.5)
Mean 0.850 0.868 0.831 0.835 0.836 0.889 0.850 0.852 0.852
Variance 0.012 – 0.038 0.015 0.011 – 0.024 0.011 0.011
Skewness −1.084 – 6.632 −0.758 −0.606 – 4.909 −0.963 −0.937
Kurtosis 4.164 – 23.508 3.648 3.458 – 238.678 4.000 3.956

Case 3: N = 100, T = 250 Case 4: N = 100, T = 1000

(p, q) = (5, 5)
Mean 0.500 0.504 0.483 0.487 0.476 0.514 0.496 0.498 0.494
Variance 0.023 – 0.039 0.021 0.021 – 0.028 0.021 0.022
Skewness 0.000 – 14.237 0.043 0.054 – 12.898 0.013 0.018
Kurtosis 2.539 – −191.714 2.640 2.647 – −108.330 2.607 2.589

(p, q) = (7.5, 2.5)
Mean 0.750 0.766 0.729 0.735 0.735 0.781 0.746 0.750 0.748
Variance 0.017 – 0.039 0.018 0.014 – 0.025 0.016 0.017
Skewness −0.638 – 15.523 −0.425 −0.356 – 15.002 −0.562 −0.541
Kurtosis 3.103 – −87.568 2.945 2.951 – −29.148 3.063 3.033

(p, q) = (8.5, 1.5)
Mean 0.850 0.862 0.828 0.831 0.839 0.886 0.847 0.850 0.851
Variance 0.012 – 0.036 0.015 0.009 – 0.025 0.011 0.011
Skewness −1.084 – 1.836 −0.732 −0.580 – 5.015 −0.970 −0.930
Kurtosis 4.164 – 240.777 3.562 3.432 – 230.569 3.978 3.904

The table reports the results of the Monte Carlo simulation experiments for the estimation of the persistence parameters in the aggregate dynamics. For each case, the table
displays the estimates of the mean value of the ML estimator ρ̄ and the first four moments of ρ estimated using the heterogeneity-correcting techniques. The experiments
are based on 1000 samples of N = (25; 100) and T = (250; 1000). Truncation lag is K = 4 for the unrestricted estimator (as in Lewbel, 1994) and T/20 for the parametric
estimator. The MD estimator is based on the first T/10 auto-covariances of XN,t and the infinite sum in Definition 2 is truncated to 100 terms.
column corresponds to the theoretical value of the first four mo-
ments of the true distribution of ρ. For comparative purposes, in
the second column, we report the ML estimates of the aggregate
hybridmodelwhen heterogeneity is ignored, i.e.,XN,t = ρ̄ XN,t−1+

ϵt . This estimator is arguably inconsistent (see Pesaran and Smith,
1995; Imbs et al., 2011).8 However, it provides a benchmark from
which we can evaluate the ability of the proposed estimators to
overcome the aggregation bias. For the three levels of persistence,
the ML estimator exhibits limited finite-sample bias (T = 250,
Cases 1 and 3). Although the theoretical analysis shows that this es-
timator asymptotically overestimates the true value of the param-
eter, Ẽ(ρ), the well-known downward bias of the autoregressive
parameter in finite sample compensates for this effect, even in
a correctly specified model (Sawa, 1978). For large sample (T =

1000, Cases 2 and 4), as expected, the ML estimator clearly overes-
timates the true value of Ẽ(ρ).

The table also reports the results for the heterogeneity-
correcting approaches. To evaluate these approaches, we report
the first four moments of the cross-sectional distribution of
ρ (Ẽ(ρ), Ṽ (ρ), S̃(ρ), K̃(ρ)). In the unrestricted approach, the first
four moments are directly implied by the first four autoregressive
parameters Ĉ1, . . . , Ĉ4. As the table shows, this approach performs
reasonablywell for the first twomoments but provides excessively
large estimates (in absolute values) of the skewness and kurtosis.

8 It can be shown that when T and N tend jointly or sequentially to infinity, the
limit in probability of the ML estimator of ρ̄ is Ẽ(ρ/(1− ρ))/Ẽ(1/(1− ρ)) > Ẽ(ρ).
See Appendix C.
In contrast, the parametric and MD approaches yield almost
unbiased estimates for all of the distribution moments. These
unbiased estimates are obtained irrespective of the persistence. In
the case with high persistence (Ẽ(ρ) = 0.85), the heterogeneity-
correcting estimators slightly underestimate the skewness (in
absolute value) and the kurtosis of the cross-sectional distribution
even with large sample. Finally, we observe that the finite-sample
and large-sample properties of these estimators are not affected by
the use of a relatively small number of micro-units N .

6. Conclusion

This paper opens several avenues for future research. First, the
relation between micro and macro parameters can be exploited
in a different manner. When disaggregate data are available, the
dynamics of the aggregate process can be determined completely
(Jondeau and Pelgrin, 2014). Second, the proposed methods could
be used to assess whether a forecast of the aggregate variable
using heterogeneity-correcting estimates produces an improved
prediction mean squared error over a forecast of the aggregate
variable using ML or GMM estimation of structural or time-series
models.

Appendix A. Proof of Proposition 1

We consider the infinite MA representation of the random
AR(1) model, for i = 1, . . . ,N:

xi,t =

∞
s=0

ρs
i vi,t−s =

∞
s=0

ρs
i κiϵt−s +

∞
s=0

ρs
i ηi,t−s.
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Then the aggregate process, XN,t is defined as:

XN,t =

∞
s=0

N
i=1

wiρ
s
i vi,t−s =

∞
s=0


N
i=1

wiρ
s
i κi


ϵt−s

+

∞
s=0


N
i=1

wiρ
s
i ηi,t−s


.

As N → ∞, by virtue of the strong law of large numbers and
Assumptions 1–3,

N
i=1

wiρ
s
i κi


a.s
→ Ẽ


ρsκ


= Ẽ


ρs Ẽ (κ) = Ẽ


ρs ,

N
i=1

wiρ
s
i ηi,t−s


a.s
→ Ẽ


ρsη


= 0.

Therefore, we find Eq. (4) in Proposition 1:

Xt =

∞
s=0

γs ϵt−s,

with γs = Ẽ(ρs) and


∞

s=0 γ 2
s < ∞. Moreover, Assumption 1

insures that


∞

s=0 |γs| < ∞.

Remark 1. Following the representation of Choquet (1969), XN,t
results from the aggregation of random AR(1) processes if and
only if:

∀n, ∀α0, α1, . . . , αn ∈ R,

n
i=0

n
j=0

αiα0γi+j ≥ 0.

It turns out that this condition is equivalent to the positivity of
the infinite Hankel matrix (see Gonçalves and Gouriéroux, 1988).
Therefore, the principal minors of the infinite Hankel matrix must
be nonnegative for all s ≥ 0:

det (Hs) ≥ 0,

where

Hs =


γ0 γ1 · · · γs
γ1 γ2 γs+1
...

. . .
...

γs γs+1 · · · γ2s

 ,

with γ0 = 1.

FromBrockwell andDavis (1991), the infinite AR representation
(5) in Proposition 1 follows:

Xt =

∞
s=1

Cs Xt−s + ϵt ,

where C0 = 1, Cs = Ẽ(cs), ∀s ≥ 1with c1 = ρ, cs+1 = (cs − Cs) ρ,
and


∞

s=0 |Cs| < ∞.

Remark 2. Taking the first K autoregressive coefficients, we ob-
tain the first K moments of the cross-sectional distribution of ρ, by
writing relation (6) as follows:

1 0 0 · · · 0
−C1 1 0 · · · 0

−C2 −C1 1
. . .

...
...

. . .
. . .

. . .
...

−CK −CK−1 · · · −C1 1




γ1
γ2
γ3
...

γK

 =


C1
C2
C3
...
CK

 ,

or, equivalently, ΣΓ = δ. Therefore, we have Γ = Σ−1δ and the
conditions on the principal minors of the Hankel matrix can be im-
posed (see Remark 1).
Remark 3. The proof of the convergence in mean square of the
aggregate process is the same as in Pesaran and Chudik (2014).

Appendix B. Restricted estimator

In this appendix, we briefly describe our strategy to estimate
the ‘‘restricted estimator’’ briefly presented in Section 4. In the re-
gression

Xt =

K
s=1

Cs Xt−s + ϵt ,

the sequence {Cs}
K
s=1 should satisfy the condition that the implied

moments are consistent with a well-defined distribution. To do
this, we deduce the sequence of moments γs = Ẽ(ρs) from the
estimate of Cs for s = 1, . . . , K , by solving the relation:

Cs+1 = γs+1 −

s
r=1

Cr γs−r+1,

with C1 = γ1 = Ẽ(ρ). Then, we compute the moment condi-
tions defined as the nonnegativity of the determinant of the cor-
responding Hankel matrices, |Hs| ≥ 0, for all s = 1, . . . , ⌊K/2⌋
(see Gonçalves and Gouriéroux, 1988, and Appendix A). In other
words, for a given number of lags K , the parameters {Cs}

K
s=1 will be

consistent with a well-defined cross-section distribution for ρi if
the resulting Hankel matrices all have a nonnegative determinant
|Hs| ≥ 0, for s = 1, . . . , ⌊K/2⌋.

In addition, as parameters ρi are drawn from a distribution over
[0, 1), there are restrictions that moments γs must satisfy to be
consistent with such a distribution, a problem known as Haus-
dorff’s moment problem. These additional restrictions are given by
(−1)n∆nγs ≥ 0, for s, n = 0, 1, . . . , K , where ∆ is the first differ-
ence operator applied to the γs terms (i.e., 1γs = γs − γs−1) (see
Shohat and Tamarkin, 1943).9

Using these inequalities, the ‘‘restricted estimator’’ is defined
as:

γ̂ = argmin
γ∈Θ⋆

T
t=K+1

ϵ2
t (γ ),

where γ = (γ1, . . . , γK )′ and ϵt(γ ) = Xt −
K

s=1 Cs(γ )Xt−s. The
Cs(γ ) terms are defined from the mapping between the autore-
gressive and moving average coefficients. The constrained set Θ⋆

is given by:
Θ⋆

= {γ : |Hs| ≥ 0 for s = 1, . . . , ⌊K/2⌋
and (−1)n∆nγs ≥ 0 for s, n = 0, 1, . . . , K}.

Taking this definition, we proceed with Monte Carlo simula-
tions and estimate the so-called ‘‘restricted estimator’’. The results
reported in Table A.1 show that this estimator performsmuch bet-
ter than the unrestricted estimator. In particular, it clearly reduces
the range of the skewness estimators. It also produces kurtosis es-
timates that are restricted to be positive. However, the range of
values for the kurtosis is still extremely large and unrealistic com-
pared to the expected values. The estimator still compares unfa-
vorably with the parametric and MD estimators.

All in all, Monte Carlo simulations suggest that imposing re-
strictions on coefficients implied by the aggregation process is not
enough to significantly improve the efficiency and especially the fit
of the cross-sectional moments. To some extent, this result is con-
sistent with the view that the identification of micro-parameters
can often be obtained only by imposing more structure on the
micro-processes as for instance on the distribution of the parame-
ter that drives heterogeneity (see also Forni and Lippi, 1997).

9 For n = 0, we have γs ≥ 0, for all s = 1, 2, . . . . For n = 1, we have γs ≤ γs−1 ,
for all s = 2, 3, . . . . For n = 2, we have γs −γs−1 ≤ γs−1 −γs−2 , for all s = 3, 4, . . . .
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Table A.1
Estimation of the aggregate dynamics.

Moments True value Unrestricted regression Restricted regression Unrestricted regression Restricted
regression

Case 1: N = 25, T = 250 Case 2: N = 25, T = 1000

(p, q) = (5, 5)
Mean 0.500 0.484 0.482 0.499 0.499
Variance 0.023 0.040 0.033 0.028 0.029
Skewness 0.000 9.290 −3.513 11.489 −3.065
Kurtosis 2.539 −15.259 318.489 −101.769 211.098

(p, q) = (7.5, 2.5)
Mean 0.750 0.734 0.729 0.750 0.749
Variance 0.017 0.038 0.031 0.027 0.025
Skewness −0.638 10.275 −1.112 8.488 0.876
Kurtosis 3.103 24.882 155.583 103.144 125.184

(p, q) = (8.5, 1.5)
Mean 0.850 0.831 0.825 0.850 0.847
Std dev. 0.012 0.038 0.029 0.024 0.022
Variance −1.084 6.632 −2.622 4.909 0.059
Kurtosis 4.164 23.508 77.123 238.678 47.027

Case 3: N = 100, T = 250 Case 4: N = 100, T = 1000

(p, q) = (5, 5)
Mean 0.500 0.483 0.482 0.496 0.496
Variance 0.023 0.039 0.033 0.028 0.028
Skewness 0.000 14.237 −3.229 12.898 −2.444
Kurtosis 2.539 −191.714 297.319 −108.330 219.626

(p, q) = (7.5, 2.5)
Mean 0.750 0.729 0.725 0.746 0.745
Variance 0.017 0.039 0.032 0.025 0.024
Skewness −0.638 15.523 −0.938 15.002 2.287
Kurtosis 3.103 −87.568 153.801 −29.148 130.639

(p, q) = (8.5, 1.5)
Mean 0.850 0.828 0.822 0.847 0.844
Std dev. 0.012 0.036 0.027 0.025 0.024
Variance −1.084 1.836 −2.292 5.015 0.420
Kurtosis 4.164 240.777 86.224 230.569 39.298

The table reports the results of the Monte Carlo simulation experiments for the estimation of the persistence parameters in the aggregate dynamics. For each case, the table
displays the first four moments of ρ estimated using the unrestricted and restricted Lewbel approaches. The experiments are based on 1000 samples of N = (25; 100) with
T = 250. Truncation lag is K = 4 (as in Lewbel, 1994).
Appendix C. Maximum likelihood estimator

Suppose that the true model results from the aggregation of
random AR(1) model and thus the (limit) aggregate process is
(Proposition 1):

Xt =

∞
s=1

Cs Xt−s + ϵt ,

where C0 = 1, Cs = Ẽ(cs), ∀s ≥ 1 and c1 = ρ, cs+1 = (cs − Cs)ρ.
Ignoring heterogeneity leads to the following AR(1) model on ag-
gregate data:
Xt = ρ̄ Xt−1 + ϵt .

The (conditional) maximum likelihood estimator of ρ̄,

ρ̂ML =


T

t=2

X2
t−1

−1  T
t=2

XtXt−1


,

is no longer a consistent estimator of the expected value Ẽ (ρ)
(cross-sectional mean) as T → ∞ given the nonergodicity of the
random coefficient AR(1) model (Robinson, 1978). This result can
be shown by studying the joint or sequential limit of the condi-
tional maximum likelihood estimator of ρ̄. In doing so, we define:

ST ,N =


T

t=2

X2
N,t−1

−1  T
t=2

XN,tXN,t−1


,

where XN,t is the sum of the individual processes (without loss of
generality), XN,t =

N
i=1 xi,t with xi,t = ρi xi,t−1 + vi,t . Then, if N

is fixed and T → ∞, ρ̂ML is not a consistent estimator of Ẽ(ρ).
Proposition 1 (Limit when N is Fixed and T → ∞). Suppose that
Ẽ

(1 − |ρ|)−3


< ∞. Then, for any N:

SN,T
p

→
T→∞

SN =


N
i=1

1
1 − ρ2

i

−1  N
i=1

ρi

1 − ρ2
i


.

Proof. See Jondeau and Pelgrin (2014).

Moreover, using this proposition, the sequential limit of the
conditional likelihood estimator can be characterized.

Proposition 2 (Sequential Limit as N → ∞). Suppose that Ẽ

(1 −

|ρ|)−3


< ∞. Then:

SN
p

→
N→∞


Ẽ


1
1 − ρ2

−1

Ẽ


ρi

1 − ρ2


.

Proof. See Jondeau and Pelgrin (2014).

Remark 4. The convergence of SN,T when T is fixed and N → ∞

leads to:

SN,T
d

→
T→∞

S̃T ,

where S̃T =

T
t=2 X

2
t−1

−1T
t=2 XtXt−1


, X = (X1, . . . , XT )

′
∼

NT (0, Ω) with E(Xt) = 0 and E(XsXh) = Ẽ

ρ |s−h|(1 − ρ2)−1


for
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s, h = 1, . . . , T , and:

S̃T
p

→
T→∞


Ẽ


1
1 − ρ2

−1

Ẽ


ρi

1 − ρ2


.

The same results hold when N and T tend to infinity simultane-
ously.

Proposition 3 (Joint Limit). Suppose that Assumptions 1–2 hold
true, Ẽ


(1 − |ρ|)−3


< ∞, andmin (N, T ) → ∞. Then,

SN,T
p

→
(N,T )→∞


Ẽ


1
1 − ρ2

−1

Ẽ


ρi

1 − ρ2


.

Proof. See Jondeau and Pelgrin (2014).

Remark 5. Irrespective of the limit theory (joint or sequential), we
have:
Ẽ


1
1 − ρ2

−1

Ẽ


ρi

1 − ρ2


> Ẽ(ρ).

Proof. Since Pr [0 ≤ ρ < 1] = 1 and using Lehmann (1966), there
exists a set with positive measure such that ˜Cov


ρ, 1

1−ρ2


> 0. A

similar result holds when Pr [−1 < ρ ≤ 0] = 1 (See Jondeau and
Pelgrin, 2014).

Remark 6. To get the limit distribution, some rate conditionsmust
be imposed (see Phillips and Moon, 1999). For instance, the limit
distribution can be derived under the pertinent assumption that
N/T (N) → 0 (i.e., T is a function of the number of micro-units
and grows faster to infinity than the number of micro-units) (See
Jondeau and Pelgrin, 2014).

Remark 7. Following Robinson (1978), a consistent estimator of
Ẽ(ρ) can be defined as:

ρ̂ =
γX (1) − γX (3)
γX (0) − γX (2)

=

T
t=2

XN,tXN,t−1 −

T
t=4

XN,tXN,t−3

T
t=1

X2
N,t −

T
t=3

XN,tXN,t−2

,

and its asymptotic distribution can be characterized under mild
conditions.
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