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Abstract

We evaluate how departure from normality may affect the allocation of assets. A
Taylor series expansion of the expected utility allows to focus on certain
moments and to compute the optimal portfolio allocation numerically. A decisive
advantage of this approach is that it remains operational even for a large number
of assets. While the mean-variance criterion provides a good approximation of
the expected utility maximisation under moderate non-normality, it may be
ineffective under large departure from normality. In such cases, the three-
moment or four-moment optimisation strategies may provide a good approxima-
tion of the expected utility.
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1. Introduction

It has long been recognised that financial asset returns are non-normal. Strong
empirical evidence suggests that returns are driven by asymmetric and/or fat-tailed
distributions. On one hand, several authors argued that extreme returns occur too
often to be consistent with normality (Mandelbrot, 1963; Fama, 1963; Blattberg and
Gonedes, 1974; Kon, 1984; Longin, 1996). On the other hand, crashes are found to
occur more often than booms (Fama, 1965; Simkowitz and Beedles, 1978; Singleton
and Wingender, 1986; Peiro, 1999).

Subsequently, an abundant literature emerged, questioning the adequacy of the
mean-variance criterion proposed by Markowitz (1952) for allocating wealth. Several
authors considered how the expected utility function may be approximated by a
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function of higher moments (Arditti, 1967; Levy, 1969; Samuelson, 1970).1 However,
early evidence on the usefulness of additional moments in the allocation process is
rather mixed. A number of studies have compared the expected utility (obtained from
direct optimisation) with the approximated utility obtained from the mean-variance
criterion (Levy and Markowitz, 1979; Pulley, 1981; Kroll et al., 1984; Simaan, 1993b).
In most cases, the authors obtained very small differences between the two allocation
strategies. Simaan also suggested that the opportunity cost of the mean-variance
investment strategy is empirically irrelevant when the opportunity set includes a
riskless asset, and small for usual levels of risk aversion when the riskless asset is
denied. An explanation of the good performance of the mean-variance criterion in
these papers may be that, although returns are non-normal, they are driven by an
elliptical distribution. For such a distribution (which includes the normal, Student-t,
and Levy distributions), Chamberlain (1983) has shown that the mean-variance
approximation of the expected utility is exact for all utility functions.

More recently, techniques have been developed to solve the allocation problem
when concern for higher moments is included. Lai (1991), Chunhachinda et al. (1997),
and Prakash ef al. (2003) applied the polynomial goal programming (PGP) approach
to the portfolio selection with skewness. All these studies provided evidence that
incorporating skewness into the portfolio decision causes major changes in the opti-
mal portfolio. A shortcoming of this approach, however, is that the allocation
problem solved in the PGP approach cannot be precisely related to an approximation
of the expected utility. In particular, the choice of the parameters used to weigh
moment objectives is not related to the parameters of the utility function.
Consequently, no measure of the quality of the approximation can be inferred from
such an exercise. Another drawback is that there is no natural extension to an
optimisation problem including moments beyond the third one.

An alternative way of dealing with higher moments in the asset allocation is the use
of the Taylor series expansion to derive an approximation of the expected utility
function. While this approach has long been used in empirical applications to test the
CAPM with higher moments, very few studies have considered the asset allocation
problem using Taylor series expansions. Recent contributions are by Harvey et al.
(2002) and Guidolin and Timmermann (2003). The first study proposed using
Bayesian techniques to determine the optimal asset allocation when returns are driven
by a skew normal distribution. The second paper investigated how the approximation
of the expected utility by a Taylor series expansion can be implemented in the context
of returns driven by a Markov-switching model with conditionally normal
innovations.

There are several criticisms to the use of Taylor series expansions in the asset
allocation context, however. As put forward, for instance, by Lhabitant (1998), the
Taylor series expansion may converge to the expected utility under restrictive condi-
tions only. For some utility functions (such as the exponential one), the expansion
converges for all possible levels of wealth, while for others (e.g., the power function),

'Within a Capital Asset Pricing Model, interest in higher moments goes back to the theoretical
work of Rubinstein (1973) and its first empirical implementation by Kraus and Litzenberger
(1976). Further work in that area is by Friend and Westerfield (1980), Barone-Adesi (1985), and
more recently by Fang and Lai (1997), Harvey and Siddique (2000), Jurczenko and Maillet
(2001, 2003).
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convergence is obtained only over a given range of final wealth. In addition, the
truncation of the Taylor series raises several difficulties. In particular, there is no rule,
in general, for selecting the order of the truncation. Worse, the inclusion of an
additional moment does not necessarily improve the quality of the approximation
(see Brockett and Garven, 1998; Lhabitant, 1998; and Berényi, 2001).

In this paper, we investigate how non-normality of returns may affect the allocation
of wealth for utility-maximising investors. To address this issue, we first consider the
case of an investor with an exponential utility function. This utility function has been
widely used in the literature, because it captures investor’s risk aversion in a very
simple way. Then, we approximate the expected utility by a Taylor series expansion
with two or more moments. Thus, we compare the allocation obtained when the
expected utility is directly maximised with the allocation obtained using an expansion
up to a given order. We use several criteria for gauging the various optimisation
strategies. In addition to a distance measure between portfolio weights, we follow
Simaan (1993b), Kandel and Stambaugh (1996), as well as Ang and Bekaert (2002)
and estimate the opportunity cost of using a sub-optimal strategy, i.e., an optimisa-
tion based on moments, rather than on a direct numerical optimisation of the
expected utility function.

In the empirical part of the paper, we pay a particular attention to the statistical
properties of the returns investigated. First, we carefully test several hypotheses on
returns: the univariate as well as multivariate normality, and the serial correlation of
returns and squared returns. In addition, we consider three alternative data sets,
which are characterised by different data frequencies and higher-moment features.
These data sets contain (1) weekly returns for broad geographical areas; (2) weekly
returns from stocks of the S&P100 index; (3) monthly returns for emerging markets.
While all these data display departure from normality, they turn out to have very
different implications for the quality of the approximation of the expected utility by a
function of moments. On one hand, in case of slight non-normality of returns, the
different allocation strategies provide basically the same allocation, suggesting that
the mean-variance criterion correctly approximates the expected utility. On the other
hand, under more severe departure from normality, the difference between the max-
imisation of the expected utility and the mean-variance criterion may be very large.
We provide evidence that in such cases the extension to a three-moment or a four-
moment criterion results in a good approximation of the expected utility. The good-
ness of the approximation is highlighted by the opportunity cost which is found to be
very small in all instances for the four-moment criterion.

The remainder of the paper is organised as follows. In Section 2, we describe the
asset allocation problem, its approximation by a Taylor series expansion, and the
practical implementation of this approximation. In Section 3, we present the various
data sets investigated and discuss the statistical properties of returns. Section 4 relies
on the asset allocations obtained under direct maximisation of the expected utility and
under Taylor series expansion of different orders. The quality of the different approx-
imations is also investigated using several measures. In Section 5, we provide con-
cluding remarks.

2. The Optimal Portfolio Allocation

In this section, we begin with the investor’s asset allocation problem, that in general
cannot be solved analytically. We then describe how the Taylor series expansion can
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be used to approximate the allocation problem. Conditions for the expansion to be
convergent are detailed for the utility function under study. Last, we indicate how
portfolio moments are computed from asset return moments.

2.1. The investment decision in general

We consider an investor who allocates her portfolio in order to maximise the expected
utility U(W) over her end-of-period wealth 1. The initial wealth is arbitrarily set

equal to one. There are n risky assets with return vector R = (R, ... ,R,) and joint
cumulative distribution function F(R;, ...,R,). End-of-period wealth is given by
W = (1 + rp), with r, = o’ R, where the vector o = (ay, ... ,x,)" represents the frac-

tions of wealth allocated to the various risky assets. We assume that the investor does
not have access to a riskless asset, implying that the portfolio weights sum to one
(Z;’:] o= ).2 In addition, portfolio weights are constrained to be positive, so that
short-selling is not allowed.

Formally, the optimal asset allocation is obtained by solving the following problem:

max E[U(W)] = E[U(1 + o/ R)| = //U(l +3 oc,»Ri)dF(Rl, iRy

S't'Z?:lo‘i =1 ando; >0, fori=1,---n.
The n first-order conditions (FOCs) of the optimisation problem are

QE[U(W))]
du

where UY(W) denotes the jth derivative of U. We assume that the utility function
satisfies the usual properties so that a solution exists and is unique. On one hand,
when the empirical distribution of returns is used, the solution to this problem can be
easily obtained (see, e.g., Levy and Markowitz, 1979; Pulley, 1981; Kroll et al., 1984).
On the other hand, when a parametric joint distribution for returns is used, the FOCs
in equation (1) do not have a closed-form solution in general.® In such cases, Tauchen
and Hussey (1991) provided a numerical solution using quadrature rules. This
approach has been applied to normal iid returns by Campbell and Viceira (1999) or
to a regime-switching multivariate normal distribution by Ang and Bekaert (2002).
The difficulty for non-normal distributions and in particular for distributions that
involve asymmetry and fat tails, is that the required number of quadrature points is

:E[R-U“)(W)} ) (1)

2As in Simaan (1993b), we found in early experiments that, when the investor is allowed to
invest in a riskless asset, there is virtually no difference between maximising the expected utility
and using an optimisation based on moments. The proposed explanation is that, since the
weight affected to the riskless asset increases sharply with the degree of risk aversion, the
various optimisation strategies cannot display large differences in portfolio weights that
would be based on higher-moment properties of returns. For low degrees of risk aversion, the
investor puts the emphasis on the expected return of the portfolio, implying that second and
higher moments are not taken into account, regardless the optimisation strategy.

3The case of normal returns is a trivial exception. When returns are driven by a Markov-
switching model with conditionally normal innovations, an analytical solution also exists.
Simaan (1993b) also proposes an example with an exponential utility function and a Pearson
III distribution in which the expected utility is derived analytically.
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likely to increase exponentially with the number of assets. Therefore, solving the
optimisation problem using numerical integration becomes tricky for more than two
or three assets. For more general distributions of returns, Monte-Carlo simulations
may be necessary to approximate the expected utility function.

Since we are primarily interested in measuring the effect of higher moments on the
asset allocation, we now approximate the expected utility by a Taylor series expansion
around the expected wealth. For this purpose, the utility function is expressed in terms
of the wealth distribution, so that

E[U(W)] = /U<w>f<w>dw

where f{w) is the probability distribution function of end-of-period wealth, that
depends on the multivariate distribution of returns and on the vector of weights a.
Hence, the infinite-order Taylor series expansion of the utility function is

00 k) (117 77 k

k=0
where W = E[W] =1+ o/p denotes the expected end-of-period wealth with
u = E[R] the expected return vector. Under rather mild conditions (see Lhabitant,
1998, and below), the expected utility is given by
U@y w -w) &S U

swowy) = |y VW s

k=0

)E[(WfW)k}

Therefore, the expected utility depends on all central moments of the distribution of
the end-of-period wealth.

Necessary conditions for the infinite Taylor series expansion to converge to the
expected utility have been explored by Loistl (1976) and Lhabitant (1998). The region
of convergence of the series depends on the utility function considered. In particular,
the exponential or polynomial utility functions do not put any restriction on the
wealth range, while the power utility function converges for wealth levels in the
range [0,2W]. It is worth emphasising that such a range is likely to be large enough
for bonds and stocks when short-selling is not authorised. In contrast, it may be too
small for options, due to their leverage effect. These results hold for arbitrary return
distributions.

Now, since the infinite Taylor series expansion is not suitable for numerical imple-
mentation, a solution is to approximate the expected utility by truncating the infinite
expansion at a given value k. For instance, the standard mean-variance criterion
proposed by Markowitz (1952) corresponds to the case k = 2. More generally, an
expansion truncated at k provides an exact solution to the expected utility when utility
is described by a polynomial function of order k. This result holds because such a
utility function depends only on the first £ moments of the return distribution. This
avenue has been followed for instance by Levy (1969), Hanoch and Levy (1970), or
Jurczenko and Maillet (2001) for £ = 3 (cubic utility function) and by Benishay (1992)
and Jurczenko and Maillet (2003) for k = 4.

However, it is not clear a priori at what level the Taylor series expansion should be
truncated. For instance, Hlawitschka (1994) provides examples in which, even if the
infinite expansion converges, adding more terms may worsen the approximation at a
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given truncation level. In contrast, Lhabitant (1998) describes an example in which
omitted terms are of importance. Some arguments put forward by Ederington (1986)
as well as Berényi (2001) suggest that introducing the fourth moment will generally
improve the approximation of the expected utility.

It should be noticed, at this point, that the approximation of the expected utility by
a Taylor series expansion is related to the investor’s preference (or aversion) towards
all moments of the distribution, that are directly given by derivatives of the utility
function. Scott and Horvath (1980) show that, under the assumptions of positive
marginal utility, decreasing absolute risk aversion at all wealth levels together with
strict consistency for moment preference,* the following inequalities hold:

UK (W) >0 YW if kis odd and
UR (W) <0 YW if kis even.

Further discussion on the conditions that yield such moment preferences or aver-
sions may be found in Pratt and Zeckhauser (1987), Kimball (1993) and Dittmar
(2002). Brockett and Garven (1998) provide examples indicating that expected utility
preferences do not necessarily translate into moment preferences. Under rather mild
assumptions, a general condition for the smoothness of the convergence of the Taylor
series expansion, so that the inclusion of an additional moment will improve the
quality of the approximation, is that preference-weighted odd central moments are
not dominated by their consecutive preference-weighted even central moments, so
that

U(2n+l) (W)
2n+1

U(2n+2) (W)

E[W_W]ZnJrl < 2n+2

E[W _ W}2n+2,
with n integer. In this case, including skewness and kurtosis always leads to a better

approximation of the expected utility.
Focusing on terms up to the fourth one, we obtain

E[U(W)] = U(W) + VE[W — T+ v (WE|(W - TY|
+—U<3>(W)E[<W—W)}+% @ [W W)}+0(W4>,

where O(W*) is the Taylor remainder. We define the expected return, variance,
skewness, and kurtosis of the end-of-period return as’

4An investor exhibits strict consistency for moment preference if a given moment is always
associated with the same preference direction regardless of the wealth level.

SThese definitions of skewness and kurtosis, as central higher moments, differ from the statis-
tical definitions as standardised central higher moments E[((r, — u,,)/csp)j] forj =3, 4.
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Hence, the expected utility is simply approximated by the following preference func-
tion
— 1 — 1 — 1 —
E [U(W)] ~ U() + 53U (W)ay + 5 UO (W)sy + U0 (W) 2)

Under conditions established by Scott and Horvath (1980), the expected utility
depends positively on expected return and skewness and negatively on variance and
kurtosis.

2.2. The case of the CARA utility function

We consider now the CARA (for Constant Absolute Risk Aversion) utility function.
The CARA utility function is defined by:
U(W) = —exp(—AW¥) (3)

where A measures the investor’s constant absolute risk aversion. This specification has
been widely used in the literature because of the appealing interpretation of the
associated parameter.® The approximation for the expected utility is given by

Y A A
E[U(W)] = —exp(—/ip,) [l + 5% +§s; + 2| (4)

After some obvious simplifications, the FOCs can be defined respectively as:

2? 2oL J002  20s3 ot
|22 ) 2% A% A 9%
”( R T T KP) 20 T3 T A o )

Optimal portfolio weights can be obtained alternatively by maximising expression (4)
or by solving equalities (5). Inspection of relation (5) reveals that computing this
expression would be rather simple if the variance, skewness, and kurtosis of the
portfolio return and the derivatives thereof were known.

2.3. Solving the asset-allocation problem

Now we briefly describe how the moments of a portfolio return can be expressed in a
very convenient way and how their derivatives may be obtained. First, we define the
(n,n°) co-skewness matrix

M3 = E[(R— p)(R— 1) @(R— )] = {su}
and (n,n°) co-kurtosis matrix
My = E[(R—1)(R—p)'@(R—p)'@(R— p)] = {ru}

with elements

®As an alternative, we also considered the CRRA (for Constant Relative Risk Aversion) utility
function, that has also been widely studied in the literature. The Taylor series expansion
converges toward the expected utility for levels of wealth ranging between 0 and 2W, an interval
that may appear rather restrictive in some applications. Yet, it should be noticed that we found
basically the same results with both utility functions, even when we considered very non-normal
returns, so that we only report results obtained with the CARA utility function.
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Sijk = E[(Rl - Mz)(RJ _:uj)(Rk _:uk)] i5j7k = 17 s n
Kijkl = E[(Rl _:uz)(Rj _tuj)(Rk _:uk)(Rl _tu/)} ivjakvl = 17 - .

where ® stands for the Kronecker product. This notation extends the definition for
the covariance matrix, which is denoted M,. Such notation has been used by Harvey
et al. (2002), Prakash et al. (2003), and Athayde and Flores (2004). For instance, in
the case of n = 3 assets, the resulting (3,9) co-skewness matrix is

S S12 0 Su3 |S211 212 S213 |83 8312 8313
M3 = | 5121 S122 S123[S221 S22 $23 8321 S322 s33 | =[Sk Sk Syl
S131 8132 8133|231 S$232 233 [ §331 332 8333

where Sy is a short notation for the (n,n) matrix {Sljk}j,k:l,2,3' Similarly, the (3,27)
co-kurtosis matrix is

My = [Kllkl Kook Kisw|Koir Kook Koz Kz Ko K33/c1|}

where K, denotes the (n,n) matrix {4} k=123 It should be noticed that, because
of certain symmetries, not all the elements of these matrices need to be computed. The
dimension of the covariance matrix is (n,n), but only n(n 4+ 1)/2 elements have to be
computed. Similarly, the co-skewness and co-kurtosis matrices have dimensions (12,n%)
and (n,n%), but involve only n(n + 1)(n + 2)/6 elements and n(n + 1)(n + 2) (n + 3)/
24 different elements respectively.”:8

Now, using these notations, moments of the portfolio return can be computed in a
very tractable way. For a given portfolio weight vector o, expected return, variance,
skewness, and kurtosis of the portfolio return are, respectively:

1y =o'

012, =o' Mo

sy = o/ M3(00 ® )
4

K, = M2 ®@0a®a).

The moments of the portfolio return may also be expressed as follows:

"For n = 3, one has to compute 6 different elements for the covariance matrix, 10 elements for
the co-skewness matrix and 15 elements for the co-kurtosis matrix (whereas these matrices have
9, 27, and 81 elements, respectively).

81t should be noticed that there exist alternative ways of measuring co-moments. In particular, it
may be possible to improve the measure of co-moments by specifying the joint distribution of
asset returns. For instance, Simaan (1993a) resorts to a model of asset returns in which all
returns depend on a random factor with a non-spherical distribution. Co-skewness between
asset returns are then defined as a function of the factor third moment. See also Jurczenko and
Maillet (2001).
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n
513, =E Z%‘(Ri — 1) (rp — 1) ] =S,
i=1
- 3
K; =E Z“i(Ri = 1) (rp — 1) ] = o«'K,
i=1

where
Zp = E[(Ri — ;) (rp — 1,)] = Moot
2
Sp = E[(Ri — ;) (rp — 1,)"] = M3(2 © o)
3
Ky = E[(Ri — ) (rp — t,)"] = May(2 @ 2 @ )
are the (n,1) vectors of covariances, co-skewness, and co-kurtosis between the asset
returns and the portfolio return, respectively. These notations are obviously equiva-
lent to the previous ones and they offer the advantage of requiring only small-
dimensional vectors.’”

Notations above allow a straightforward computation of the derivatives with
respect to the weight vector, that is:

o,
da
bo*lz, Yy
dor e
LYY
S 30 ® o)
%5 au
i (@ a®a).

Equations (5) can thus be rewritten as

= 01 (o) [Mro] + 62(o)[M3(0r @ )] — 93(ot) [My(ot @ 00 @ ot)] = 0 (6)

where 01, d,, and 03 are non-linear functions of o, such that d(«) = 4;/(i'4),i =1, 2, 3,
with
2 3 24

A 2 pp} 4
A:1+?O—P+§SP+1KP

The n equations (6) can be easily solved numerically, using a standard optimisation
package. The difficulty to solve this problem is not of the same order as compared to

°The notations %,, S, and K, are directly related to the notions of systematic risk, that are
widely-used in the literature on higher-moment CAPM, see Kraus and Litzenberger (1976),
Hwang and Satchell (1999), Berényi (2001), Jurczenko and Maillet (2001, 2003).
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problems involving numerical integration of the utility function. This approach provides
an alternative way of solving the asset allocation problem to the PGP approach developed
by Lai (1991) and Chunhachinda et al. (1997). The main advantage of the approach
proposed here is that weights attributed to the various portfolio moments in equation (6)
are selected on the basis of the utility function, while they are arbitrarily chosen in the
PGP approach. Solving equation (6) also provides an alternative to the rather time-
consuming approach based on maximising the expected utility numerically. Here, a
very accurate solution is obtained in just a few seconds, even in the case of a large number
of assets. The price to pay is that the focus is put on a finite number of moments only.

3. Data

We explore three data sets with very different characteristics of returns. The first data
set contains weekly returns for dollar-denominated stock indices for the main geogra-
phical areas (North America, Europe, and Asia). It consists of total return indices from
Morgan Stanley Capital International (MSCI), from January 1976 through December
2001.'"° These data are very aggregated returns, at the geographical level, their statistical
behaviour may, therefore, be expected to be close to a normal distribution. The second
data set contains weekly returns for stocks included in the S&P100, from January 1973
through January 2003. The selected stocks were not chosen randomly as in some
previous studies, but among those with a moderate to large departure from normality.
As a matter of fact, several studies used randomly selected US stocks to illustrate that
the mean-variance criterion may be relevant in approximating the expected utility (Levy
and Markowitz, 1979, Kroll et al., 1984, Simaan, 1993b). Here, our aim is to show that,
in some instances, the widely-used mean-variance criterion may be inappropriate in
selecting the optimal portfolio weights. The last data set contains monthly returns for
three dollar-denominated emerging-market indices (Hong Kong, South Korea, and
Thailand), from February 1975 through June 2002. Emerging markets have been
shown to display very non-normal behaviour (Harvey, 1995; Bekaert and Harvey,
1997; Hwang and Satchell, 1999; Jondeau and Rockinger, 2003b).

The data sets are described in Table 1.!' Let R, r = 1, ... ,T, denote the log-return
of market or asset i at date . As a preliminary investigation of the data, Table 2
reports univariate and multivariate summary statistics on returns. For each data set,
we begin with an estimate of the first four moments and a test of the null hypothesis of
normality of the univariate distributions. Since the normality hypothesis is crucial to
our analysis, we paid a particular attention to this test. Although a large number of
tests have been proposed in the literature, we focus on three well-known procedures,
that have proved to be relevant in similar contexts: (1) the statistic (JB) proposed by
Jarque and Bera (1980) tests whether skewness and excess kurtosis are jointly zero,
using the asymptotic distribution of the estimators. This test is known to be suitable
for large samples only, because sample skewness and kurtosis approach normality
only very slowly. (2) The omnibus statistic (Omnibus) proposed by Doornik and

19 At the end of 1999, the North American, European, and Asian markets represented 47.2%,
30.3%, and 19.4% of total market capitalisation in the world MSCI index.

1 1t is worth emphasising that the frequency of data is often claimed to affect both departure
from normality and the serial correlation pattern of returns and volatilities. The latter effect is
not an issue in our context, since we focus on the unconditional sample distribution of returns.
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Table 1
Description of data sets under investigation.

Description Number of
Data of variables Period Frequency observations
DS1 Returns for dollar-denominated From 1/1976 Weekly 1354
MSCI stock-market indices for to 12/2001

the main geographical areas
(North America, Europe, and Asia)
DS2 Returns for stocks included in the From 1/1973 Weekly 1568
S&P100 (Delta Air Lines, Gillette, to 1/2003
and Southern)
DS3 Returns for emerging stock-market From 2/1975 Monthly 336
indices (Hang Seng index for to 6/2002
Hong Kong, KOSPI index for
South Korea, and S.E.T. index
for Thailand)

Note: This table describes the data sets used to investigate the effect of higher moments on the optimal asset
allocation.

Hansen (1994) is based on the approximated finite-sample distribution of skewness
and kurtosis. (3) The Kolmogorov-Smirnov statistic (KS) consists in the comparison
between the theoretical and the empirical cumulative distribution functions. Since
these statistics are likely to have different finite-sample properties (see, e.g., Doornik
and Hansen (1994) or Bekaert and Harvey (1997)), we performed Monte-Carlo
simulations to evaluate the critical values corresponding to the sample size of each
data.'? As Table 2 (Panel A) confirms, all test statistics consistently reject the normal-
ity hypothesis for all return series at the 1% significance level (using both theoretical
and size-adjusted critical values).

We also consider a test for serial correlation of returns. Given the high level of serial
correlation of squared returns, we use a version of the Ljung-Box statistic (QW),
corrected for heteroskedasticity (as suggested by Diebold (1987)), to test for the
nullity of the first four serial correlations of returns. This statistics is distributed as
a z°(4) under the null of no serial correlation. Inspection of the QW statistics does not
reveal significant linear dependencies of returns. Next, we test for heteroskedasticity
by regressing squared returns on once lagged squared returns. The standard test
statistics proposed by Engle (1982), (LM), is distributed as a y*(1) under the null
hypothesis of homoskedasticity and normality. We also consider a test for hetero-
skedasticity developed by Lee and King (1993), (LK), that does not require normality.
Under the null, the LK statistic is distributed as a one-sided N(0,1). The table provides
evidence of second-moment dependencies for all data sets, confirming that there is a
large amount of heteroskedasticity in the data."?

12 Monte-Carlo experiments were based on 10,000 replications of samples of size 150, 350, and
1500 of an iid N(0,1) variable. Rejection rates as well as size-adjusted critical values of the
various tests used in this paper are available from the authors.

13 We obtained the same conclusions using different lags (from 2 to 10) for the QW, LM, and
LK test statistics.
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Table 2a
Statistics on weekly MSCI returns (DS1).

T = 1355 North America Europe Asia
Panel A: Univariate statistics
Moments stat. s.e. stat. S.€. stat. s.e.
Mean 0.251 (0.055) 0.246 (0.058) 0.195 (0.083)
Std 2.094 (0.099) 2.031 (0.086) 2.595 (0.100)
SK —0.660 (0.342) —0.604 (0.3106) —0.038 (0.123)
XKu 3.873 (2.137) 2.984 (1.819) 1.488 (0.292)
Normality stat. p-val. stat. p-val. stat. p-val.
tests
JB 945.239 (0.000) 585.198 (0.000) 125.404 (0.000)
Omnibus 258.956 (0.000) 181.404 (0.000) 89.080 (0.000)
KS 1.529 “ 1.759 “ 1.710 “
Serial
correlation
QW(4) 1.854 (0.763) 2.320 (0.677) 10.412 (0.034)
LM(1) 104.460 (0.000) 135.093 (0.000) 20.620 (0.000)
LK(1) 10.215 (0.000) 11.627 (0.000) 4.542 (0.000)
Panel B: Multivariate statistics
Correlation
matrix stat. s.e. stat. s.e. stat. s.e. stat. s.€.

X1 X2 X3
X1 1 0.526  (0.036) 0.327  (0.035)
X5 0.526  (0.036) 1 0.478  (0.025)
X3 0.327  (0.035) 0.478  (0.025) 1
Co-skewness
matrix

X% X% )C% X1X2
X —0.660 (0.342) —0.523  (0.329) —0.264 (0.128)
Xo —0.585  (0.338) —0.604 (0.316) —0.231 (0.117)
X3 —0.231  (0.207) —0.348 (0.168) —0.038 (0.123) —0.265 (0.189)
Co-kurtosis matrix

o 3 o3
X 6.873 (2.137) 4.376  (2.008) 1.716  (0.482)
Xo 4712  (2.164) 5.984 (1.819) 2217  (0.393)
X3 2.956  (1.320) 3.027  (0.957) 4.488 (0.292)

xlmg x1x§ xﬂ% 2my

X 4449 (2.075) 2.645 (0.717)
X> 1.960  (0.668) 2.516  (0.561)
X3 2.404 (1.101) 2.540  (1.199)
Multivariate Normality test stat. s.e.
Omnibus 309.812  (0.000)
Small 287.877  (0.000)
Mardia 1229.963  (0.000)
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Table 2b
Statistics on weekly S&P100 stock returns (DS2).

T = 1568 Delta Air Lines Gillette Southern
Panel A: Univariate statistics
Moments stat. S.€. stat. S.e. stat. S.e.
Mean —0.021 (0.123) 0.175 (0.098) 0.097 (0.061)
Std 5.032 0.272) 4.188 (0.263) 2.776 (0.116)
SK —0.888 (0.506) —1.347 (0.925) 0.197 (0.227)
XKu 8.240 (4.234) 16.875 (10.519) 4.264 (0.904)
Normality stat. p-val. stat. p-val. stat. p-val.
tests
JB 4641.44 (0.000) 19077.67 (0.000) 1198.07 (0.000)
Omnibus 801.032 (0.000) 1674.067 (0.000) 503.176 (0.000)
KS 2.019 ¢ 2.386 “ 2.622 “
Serial
correlation
QW(4) 4.554 (0.336) 5.574 (0.233) 4.425 (0.352)
LM(1) 13.340 (0.000) 0.152 (0.697) 21.910 (0.000)
LK(1) 3.645 (0.000) 0.391 (0.348) 4.685 (0.000)
Panel B: Multivariate statistics
Correlation
matrix stat. stat. s.e. stat. s.e. stat. s.e.

X1 X2 X3
X1 1 0.147 (0.033) 0.283  (0.035)
X5 0.282 (0.034) 1 0.234  (0.036)
X3 0.147 (0.033) 0.234 (0.036) 1
Co-skewness
matrix

x? X3 x2 X1X2
X1 —0.888  (0.506) —-0.472 (0.407) —0.130 (0.109)
Xo —0.237  (0.167) —1.347 (0.925) —-0.179 (0.200)
X3 0.002 (0.100) —0.457 (0.446) 0.197 (0.227) —0.217 (0.185)
Co-kurtosis
matrix

2 3 e
X1 11.240 (4.234) 6.687 (4.788) 0.984 (0.587)
X> 1.980 (0.809) 19.875 (10.519) 1.947  (0.946)
X3 0.256 (0.644) 6.459 (5.054) 7.264  (0.904)

xlx% xlxg XQX% X%)Q

X1 3.320 (1.970) 1.696 (0.397)
X> 1.361 (0.928) 3.673 (2.122)
X3 2.721 (2.119) 1.231  (0.899)
Multivariate Normality test stat. s.e.
Omnibus 2900.84 (0.000)
Small 2876.56 (0.000)
Mardia 14997.99 (0.000)
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Table 2¢
Statistics on monthly emerging stock-market returns (DS3).

T = 336 Hong Kong South Korea Thailand
Panel A: Univariate statistics
Moments stat. s.e. stat. s.e. stat. s.e.
Mean 1.078 (0.438) 0.737 (0.497) 0.898 (0.602)
Std 8.698 (0.657) 7.861 (0.756) 9.834 (0.872)
SK —0.684 (0.304) 0.052 (0.380) 0.339 (0.194)
XKu 2.856 (1.066) 2.522 (1.159) 1.473 (0.391)
Normality tests stat. p-val. stat. p-val. stat. p-val.
JB 140.425 (0.000) 89.217 (0.000) 36.805 (0.000)
Omnibus 44.593 (0.000) 58.333 (0.000) 22.465 (0.000)
KS 1.300 “ 1.126 ¢ 1.214 ¢
Serial correlation
QW(4) 4.732 (0.316) 0.525 (0.971) 3.341 (0.503)
LM(1) 3.449 (0.063) 32.935 (0.000) 36.903 (0.000)
LK(1) 1.868 (0.031) 5.748 (0.000) 5.956 (0.000)
Panel B: Multivariate statistics
Correlation
matrix stat. s.e. stat. s.e. stat. s.e. stat. S.e.
X1 X2 X3
X 1 0.254  (0.064) 0.271  (0.067)
Xo 0.254  (0.064) 1 0.228  (0.060)
X3 0.271  (0.067) 0.228  (0.060) 1
Co-skewness
matrix
x? 3 z? X1X2
X —0.684 (0.304) 0.088 (0.157) —0.097 (0.095)
X> 0.056  (0.166) 0.052  (0.380) 0.014  (0.079)
X3 —0.184 (0.152) 0.017  (0.091) 0.339  (0.194) —0.008 (0.085)
Co-kurtosis
matrix
o 3 o
X1 5.856  (1.066) 0.776  (0.781) 0.855 (0.303)
Xo 1.469 (0.427) 5.522  (1.159) 0.495 (0.249)
X3 1.826  (0.524) 0.298  (0.532) 4.473  (0.391)
1'1{1}% .’L'].’L'% IQiE?.) £U121'2
X 1.967 (0.360) 1.355  (0.247)
X5 0.446 (0.170) 1.227 (0.161)
X3 0.867 (0.243) 0.690  (0.196)
Multivariate stat. s.e.
Normality test
Omnibus 151.654  (0.000)
Small 151.643  (0.000)
Mardia 307.998  (0.000)

© 2006 The Authors

Journal compilation © Blackwell Publishing Ltd.

2006



Optimal Portfolio Allocation under Higher Moments 43

Note: Panel A of this table reports univariate summary statistics on returns. Mean, Std, Sk, and XKu
denote the mean, the standard deviation, the skewness, and the excess kurtosis of returns, respectively.
Standard errors are computed with the GMM-based procedure proposed by Bekaert and Harvey (1997).
JB, Omnibus, and KS stand for the Jarque-Bera statistic (Jarque and Bera, 1980), the omnibus statistic
(Doornik and Hansen, 1994), and the Kolmogorov-Smirnov statistic for the test of the null hypothesis of a
normal distribution. QW(4) is the Box-Ljung statistic for serial correlation, corrected for heteroskedasticity,
computed with 4 lags. Under the null of no serial correlation, it is distributed as a y*(4). LM(1) and LK(1)
are the Engle (1982) and Lee and King (1993) statistics for heteroskedasticity. Under the null of no serial
correlation of squared returns, the statistics are distributed as a *(1) and a N(0,1) respectively. Panel B of
the table reports multivariate summary statistics on returns. We present the non-redundant elements of
correlation, co-skewness, and co-kurtosis matrices. Standard errors are computed with a GMM-based
procedure of Bekaert and Harvey (1997). Omnibus, Small, and Mardia stand for the multivariate omnibus
statistic (Doornik and Hansen, 1994), and the statistics proposed by Small (1980) and Mardia (1970)
respectively. Under the null of multivariate normality, the statistics are distributed as ¥* with 2n, 21, and
n(n + ) + 2)/6 + 1 degrees of freedom, respectively. “means that the statistic is significant at the 1%
level.

Then, we turn to the multivariate analysis. In Table 2 (Panel B), we report all non-
redundant elements of the correlation, co-skewness, and co-kurtosis matrices, esti-
mated simultaneously using the relations:

ER/=p i=1,...n

El[(Ry — )Ry — )] =0y i=1,..,nj=i+1,..,n

E[(Ri — p;) (Rt — M/)(Rkt )l =spe i k=1,...n

E[(Rir — 1) (Rje — 1) (Rere — ) (Ru — )] = weywr isj ke, 1= 1,...,n.

We also report finite-sample standard errors computed with the GMM-based
procedure of Bekaert and Harvey (1997).'* Finally, we perform several multivariate
normality tests. As compared with the univariate tests discussed above, these multi-
variate tests incorporate hypotheses on the co-skewness and co-kurtosis matrices. We
focus on three tests for multivariate normality: (1) the omnibus statistics described by
Doornik and Hansen (1994) extents the univariate test discussed above. This test
computes higher moments on variates which have been preliminary transformed to
approximately independent normals. (2) The statistics proposed by Small (1980)
weighs the marginal skewness and kurtosis coefficients of the raw variables by their
approximate correlations. (3) The statistics described by Mardia (1970) is based on
multivariate measures of skewness and kurtosis. These statistics are described in
Doornik and Hansen (1994). The distribution of the first two statistics is known to
be approximately a chi-square, while the last statistic is distributed only asymptoti-
cally as a chi-square. Monte-Carlo experiments confirmed that these tests are cor-
rectly sized even in small sample.

% A number of studies suggest to improve the asset allocation by using more robust definitions
of empirical moments. These techniques (such as the shrinkage method of Ledoit and Wolf
2004, or the range-based estimator of Brandt and Diebold, 2003) have proved to be very
efficient in computing conditional covariance matrices. Their use in a context with higher
moments remains an open issue that we leave for further investigation.
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In Table 2 (Panel B), we observe very contrasted patterns of skewness in the data
sets under study. In data set DS1, all co-skewness between MSCI global indices are
found to be negative, most of them being statistically significant. In data set DS2,
most co-skewness between S&P stocks are negative, although not significantly.
Finally, in data set DS3, no clear pattern emerges between emerging markets, with
most co-skewness being insignificant.

The broad picture for co-kurtosis is much clearer, since a number of co-kurtosis are
significantly larger than their expected value under multivariate normality.'®> Largest
values are found for MSCI global indices (DS1) and S&P stocks (DS2). The three
multivariate normality tests reject the null hypothesis for all data sets at any usual
significance level.

4. Portfolio Allocation under Non-normality

In this section, we address two related issues how asset allocation is modified when
returns are driven by a non-normal distribution. The first issue is how the allocation is
altered when the investor is concerned by more than just the first two moments of
returns. The second issue is how far the allocation based on a truncated expansion of
utility is from the allocation based on a direct maximisation of the expected utility.
For this purpose, we follow the approach of Simaan (1993b) and compute, for a given
parameter set, the optimal asset allocation for the expected utility function (using
direct maximisation) and for the Taylor series expansions with k = 2, 3, 4 (based on
moment computation), corresponding to the cases where we incorporate information
on volatility, skewness, and kurtosis respectively.

Table 3 reports results for optimally selected portfolios for several values of the
risk aversion parameter A ranging between 1 and 20. This range covers most
values investigated in the literature. Results include the optimal portfolio weights
and the absolute distance between portfolio weights obtained with the strategies
based on moments (%) and the strategy based on the expected utility («;), that is
norm = X", |&; — o;|. We also report the first four moments of the optimal
portfolio returns and the opportunity cost (or optimisation premium) of investment
strategies based on moments rather than on expected utility. If we denote r;
the optimal portfolio return obtained by direct optimisation of the expected
utility, and #, the optimal portfolio return from a given approximation, then the
opportunity cost 0 is defined as the return that needs to be added to the portfolio
return of the approximation, so that the investor becomes indifferent with the direct
optimisation

E[U(1 +f,+ 0)] = E[U(1 +1,)]. (7)

The reported premium 6 is obtained by solving equation (7) numerically.

15 In the normal case, all co-skewness are equal to zero, while co-kurtosis are given by r;; = 3,
Kijjj = 1125, Kiiij = 075, Kijjk = 0375, and Kijki = 0, for i # _] # k # l, see Kotz et al. (2000)
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4.1. MSCI returns on geographical areas (DSI)

Results for MSCI returns are reported in Table 3a. Very small differences are found in
the portfolio weights when the optimisation is based on the first two, three, or four
moments. As reported in the table, for a given risk aversion, A, optimal weights barely
change when the concern for an additional moment is introduced. This result, also
illustrated in Figure 1, may be explained by the fact that returns for these large
geographic areas depart only slightly from normality. Yet, it appears clearly that
changes in portfolio weights follow from the values of skewness and kurtosis reported
for returns. For instance, we observe that the weight of Asia is slightly higher when
concern for skewness is introduced in the optimisation criterion. This is related to the
fact that returns in North America and Europe have a relatively large negative
skewness while skewness in Asia is close to 0.

Table 3a
Optimal allocation for weekly MSCI returns (DS1).

Portfolio weights Moments of portfolio return Opportunity

) oy oy o3 Norm p c,° 5p° rpt cost

Panel A: Direct optimization

1 0.607 0.393 0.000 - 0.249 1.822 —0.858 8.166 —

2 0.537 0463 0.000 - 0.249 1.806 —0.863 8.184 -

5 0489 0498 0.013 - 0.248 1.794 —0.858 8.158 -
10 0.443 0.440 0.117 - 0.242 1.751 —0.824 8.076 -
15 0421 0418 0.161 - 0.240 1.744 —0.800 7.944 -
20 0401 0.406 0.194 — 0.238 1.742 —0.778 7.802 -
Panel B: Taylor expansion up to order 2

1 0.608 0.392  0.000 0.002 0.249 1.822 —0.858 8.165 0.000
2 0.538 0.462 0.000 0.003 0.249 1.806 —0.863 8.185 0.000
5 0495 0.502 0.003 0.020 0.248 1.800 —0.860 8.153 0.002
10 0.455 0.448 0.098 0.039 0.243 1.757 —0.833 8.120 0.002
15 0441 0.430 0.129 0.064 0.242 1.749 —0.819 8.054 0.002
20 0435 0421 0.144  0.099 0.241 1.746 —0.810 8.011 0.002
Panel C: Taylor expansion up to order 3

1 0.607 0.393 0.000 0.000 0.249 1.822 —0.858 8.166 0.000
2 0.537 0.463 0.000 0.000 0.249 1.806 —0.863 8.184 0.000
5 0491 0498 0.011 0.004 0.248 1.795 —0.859 8.158 0.001
10 0.448 0.441 0.111 0.012 0.243 1.753 —0.827 8.093 0.001
15 0433 0420 0.148 0.027 0.241 1.745 —0.808 8.000 0.001
20 0.424 0.408 0.168 0.051 0.240 1.743 —0.796 7.932 0.001
Panel D: Taylor expansion up to order 4

1 0.607 0.393  0.000 0.000 0.249 1.822 —0.858 8.166 0.000
2 0.537 0.463 0.000 0.000 0.249 1.806 —0.863 8.184 0.000
5 0490 0.498 0.013 0.000 0.248 1.794 —0.858 8.158 0.000
10 0.445 0.440 0.116 0.003 0.242 1.752 —0.825 8.081 0.000
15 0426 0419 0.156 0.011 0.240 1.744 —0.803 7.968 0.000
20 0.413 0.407 0.180 0.028 0.239 1.742 —0.788 7.874 0.000
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Table 3b
Optimal allocation for monthly S&P100 stock returns (DS2).

Portfolio weights Moments of portfolio return Opportunity
yl oy oy o3  Norm Hp o, Sp Kt cost

Panel A: Direct optimization

1 0.000 0.635 0.365 - 0.146 3.059 —1.271 19.121 -

2 0.000 0434 0.567 - 0.131 2.666 —0.887 14.614 -

5 0016 0291 0.694 - 0.118 2.528 —0.488 10.814 -
10 0.081 0.187 0.733 - 0.102 2.466 —0.294 9.034 -
15 0.107 0.120 0.773 - 0.094 2.479 —0.155 7.971 -
20 0.126 0.067 0.808 - 0.087 2.513 —0.058 7.331 -
Panel B: Taylor expansion up to order 2

1 0.000 0.647 0.354 0.023 0.147 3.088 —1.283 19.274 0.233
2 0.000 0.449 0.551 0.032 0.132 2.688 —0.929 15.070 0.129
5 0.013 0325 0.661 0.069 0.121 2.548 —0.593 11.718 0.117
10 0.074 0.259 0.667 0.146 0.108 2.473 —0.509 10.716 0.140
15 0.093 0.238 0.669 0.235 0.104 2.459 —0.478 10.307 0.154
20 0.103 0.228 0.670 0.323 0.103 2.454 —0.463 10.103 0.149
Panel C.: Taylor expansion up to order 3

1 0.000 0.636 0.364 0.003 0.147 3.063 —-1.272 19.141 0.029
2 0.000 0.436 0.564 0.006 0.131 2.670 —0.894 14.695 0.022
5 0.013 0302 0.685 0.022 0.119 2.536 —0.516 11.059 0.033
10 0.072 0.221 0.708 0.068 0.106 2.468 —0.381 9.719 0.052
15 0.089 0.185 0.726 0.130 0.101 2.461 —0.305 9.047 0.056
20 0.095 0.162 0.743 0.191 0.098 2.464 —0.249 8.622 0.043
Panel D: Taylor expansion up to order 4

1 0.000 0.635 0.365 0.000 0.146 3.059 —1.271 19.122 0.002
2 0.000 0.434 0.566 0.001 0.131 2.666 —0.888 14.625 0.003
5 0.016 0.294 0.691 0.007 0.118 2.530 —0.497 10.894 0.010
10 0.079 0.203 0.718 0.034 0.103 2.464 —0.341 9.376 0.024
15 0.102 0.160 0.738 0.079 0.097 2.461 —0.255 8.600 0.029
20 0.117 0.131 0.752  0.130 0.093 2.467 —0.200 8.136 0.021

Table 3¢

Optimal allocation for monthly emerging stock-market returns (DS3).

Portfolio weights Moments of portfolio return Opportunity

A o o o Norm 0,° 5y K, cost
1 2 3 D P 14 14

Panel A: Direct optimization

1 1.000  0.000  0.000 - 0.416 8.106 —0.652  5.526 -
2 0.757 0.000 0.243 — 0.264 6.792 —0.441  4.802 -
5 0.532 0.024 0.445 - 0.112 6.114 —0.133  3.724 -
10 0.393 0.129 0.479 - —0.022 5.846 —0.070  3.139 -
15 0.334 0.170 0.497 — —0.077 5.815 —0.034 2959 -
20 0.300 0.194 0.506 - —0.108 5.818 —0.015 2.883 -
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Panel B: Taylor expansion up to order 2

1 1.000 0.000 0.000 0.000 0.416 8.106 —0.652 5.526 0.000
2 0.787 0.000 0.213 0.060 0.282 6.924 —0.478 4.933 0.516
5 0.580 0.026 0.394 0.101 0.141 6.196 -0.217 3.950 0.385
10 0.476 0.114 0.410 0.168 0.037 5.914 —0.179 3.460 0.328
15 0.448 0.138 0.414 0.229 0.009 5.864 —0.164 3.332 0.298
20 0.439 0.146 0.415 0.277 0.000 5.850 —0.158 3.291 0.276
Panel C: Taylor expansion up to order 3

1 1.000 0.000 0.000 0.000 0.416 8.106 —0.652 5.526 0.000
2 0.763 0.000 0.237 0.013 0.268 6.819 —0.449 4.831 0.107
5 0.554 0.006 0.440 0.044 0.134 6.182 —0.139 3.822 0.150
10 0.434 0.089 0.477 0.083 0.022 5912 —0.081 3.305 0.122
15 0.393 0.101 0.505 0.136 —0.009 5.888 —0.038 3.171 0.099
20 0.376 0.087 0.537 0.213 —0.014 5.922 0.003 3.151 0.091
Panel D: Taylor expansion up to order 4

1 1.000 0.000 0.000 0.000 0.416 8.106 —0.652 5.526 0.000
2 0.758 0.000 0.242 0.001 0.264 6.794 —0.442 4.804 0.009
5 0.534 0.024 0.442 0.006 0.114 6.118 —0.138 3.736 0.019
10 0.402 0.128 0.470 0.019 —0.015 5.847 —0.083 3.168 0.025
15 0.353 0.167 0.480 0.038 —0.064 5.808 —0.056 3.001 0.022
20 0.329 0.187 0.484 0.057 —0.088 5.801 —0.043 2.934 0.012

Note: This table reports statistics for optimal portfolios for several values of the risk-aversion parameter 4
ranging from 1 to 20. We report the optimal weights («;, i = 1, 2, 3); the absolute distance between portfolio
weights obtained with moment-based strategies (&;) and with expected-utility maximization (oc,*), defined as
norm = X7, |6cl- — o |; the first four moments of portfolio returns; and the opportunity cost 0, defined by
E[U1+7,+0)] = E[U(l + r;)} where r; denotes the optimal portfolio return obtained by direct opti-
mization of the expected utility, and #, the optimal portfolio return from a moment-based strategy.

In addition, we notice that the difference between optimal weights found for the
mean-variance criterion and for the expected utility is small for all risk aversion levels.
Even for a very large degree of risk aversion, the difference between optimal weights
does not exceed 3.5 percentage points. Hence, the norm between portfolio weights is
lower than 0.1 for the mean-variance criterion and even lower than 0.03 for the four-
moment criterion. Such a closeness between portfolios translates in an approximately
zero opportunity cost. It is lower than 0.2 cent per dollar invested, even for the mean-
variance criterion and a large risk aversion.

Data set DSI illustrates that even when returns are found, on statistical grounds, to be
non-normal (with a very strong rejection of the null hypothesis of normality), the mean-
variance criterion may be relevant for approximating the expected utility criterion. In fact,
this finding is consistent with empirical evidence provided by Levy and Markowitz (1979),
Kroll ef al. (1984) and Simaan (1993b) or with the theoretical result of Chamberlain
(1983), who shows that the mean-variance criterion provides an exact approximation of
the expected utility for the whole elliptical-distribution family. Therefore, even returns
driven by a Student-t or Levy distribution would yield such a result.

4.2. S&P100 stock returns (DS2)

As reported in Table 2b, the departure from normality of the selected stocks is much more
pronounced than for MSCI indices, resulting from both asymmetry and fat tails.
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Fig. 1. This figure displays the optimal weights obtained with the different optimisation strat-
egies as a function of the risk-aversion parameter 4. Here the data consists in three MSCI indices.

Consequently, as Table 3b and Figure 2 show, the mean-variance criterion provides a
poor approximation of the optimal portfolio weights found by the direct maximisation
of the expected utility. For very low levels of risk aversion, the difference of weights is
rather moderate, because both optimisation strategies exclude the first stock (Delta
Air Lines). Yet, for moderate to large risk aversion levels, the mean-variance criterion
puts an excessive weight on the second stock (Gillette) on the basis of its large return and
low variance, failing to account for its very negative skewness and large kurtosis.
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Fig. 2. This figure displays the optimal weights obtained with the different optimisation strat-
egies as a function of the risk-aversion parameter 4. Here the data consists in three components

of the S&P100.

Hence, the distance between the portfolio weights obtained with the two optimisation
strategies is larger than 0.2 for A > 15. When concern for skewness and kurtosis is
introduced in the optimisation, the gap with the expected utility maximisation significantly
reduces. With the four-moment strategy, the distance with expected utility decreases to

about 0.15.
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We also observe that portfolio moments obtained with an expansion of the utility
function are rather distant from those obtained with maximisation of the expected
utility. This result can be directly related to the large differences in skewness and
kurtosis between the selected stocks. In particular, when only mean and variance are
considered, the portfolio skewness is excessively negative while portfolio kurtosis is
excessively large. Introducing a concern for higher moments partly fills the gap
between portfolio moments obtained with the moment strategy and expected utility
maximisation.

Finally, opportunity costs are rather large for the mean-variance strategy, above 10
cents per dollar invested. The optimisation premium lies around 5 cents for the three-
moment strategy and only 2 cents for the four-moment strategy. The opportunity cost
we obtain for the mean-variance criterion is much larger than the cost reported by
Simaan (1993b) for such an optimisation strategy. For similar levels of risk aversion,
he found optimisation premia that did not exceed 1 cent. It should be noticed,
however, that his data is expected to be much closer to normality than ours.'®

4.3. Emerging-market returns (DS3)

We turn to the case of emerging markets, that are characterised by very large
departures from normality. As indicated in Table 3c, in this context, the mean-
variance criterion may yield inconsistent portfolio weights, as compared to the
expected utility maximisation. Even for moderate risk aversion levels, the difference
between optimal weights may exceed 5 percentage points (see also Figure 3). Worse,
for 4 > 15, the weight allocated to the Hong Kong index (o) is larger than 0.43 with
the mean-variance criterion, but does not exceed 0.34 with direct maximisation of the
expected utility. Even for moderate risk aversion, the norm between the two optimisa-
tion strategies is large (more than 0.1 for A > 5).

Interestingly, introducing skewness in the moment criterion barely improves the
allocation, suggesting that asymmetry is not the main source of departure from
normality (This result is confirmed in Table 2c, that reports insignificant co-skewness
parameters). In contrast, the four-moment criterion provides a very good approxima-
tion of the expected utility. Even for large risk aversion, the two optimisation
strategies yield close optimal weights, with the norm below 0.06 for all values of 4.

The deficiency of the mean-variance criterion also transpires in the moments of the
portfolio return. This strategy is able to yield a slightly larger expected return than the
expected utility maximisation, for all risk aversion levels, but at the price of a larger
variance, lower skewness, and larger kurtosis. As expected, the three-moment strategy
does not succeed in reducing the fat tails of the portfolio return significantly.

Finally, these results translate into a large opportunity cost of adopting sub-optimal
investment strategies. The inability of the mean-variance criterion to cope with higher
moments is found to cost more than 25 cents per dollar invested for all risk aversion
levels and as much as 52 cents for A = 2. The opportunity cost of the three-moment
strategy is significantly lower, to about 10 cents, while the cost of the four-moment
strategy does not exceed 2.5 cents per dollar invested.

16 His study uses monthly returns of a random selection of ten stocks chosen among the CRSP
Database.
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Fig. 3. This figure displays the optimal weights obtained with the different optimisation stra-
tegies as a function of the risk-aversion parameter A. Here the data consists in three emerging
markets indices.

5. Conclusion

In this paper, we address two related issues. First, we describe how the impact of non-
normality of returns on the allocation of assets may be easily measured in an expected
utility framework. In general, maximising the expected utility results in rather
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cumbersome computations under non-normality. We use a Taylor series expansion to
approximate the expected utility as a function of higher moments. Then, we compute
the optimal portfolio allocation in a very efficient way. A decisive advantage of this
approach is that it can be very easily applied even when the number of assets is large.
This results from the numerical stability of the asset-allocation problem regardless of
the number of assets.

Second, we consider the extent to which departure from normality is likely to affect
the optimal asset allocation when the CARA utility function is used. A number of
studies have measured the quality of the approximation of the expected utility by the
mean-variance criterion (Levy and Markowitz, 1979; Pulley, 1981; Kroll ef al., 1984;
Simaan, 1993b). Other studies have described how higher moments may be incorpo-
rated in the investor’s asset allocation problem using the PGP approach (Lai, 1991;
Chunhachinda et al., 1999; Prakash et al., 2003). But no previous study had measured
the gain of using a three-moment or a four-moment optimisation strategy for approx-
imating the expected utility. For this purpose, we consider three different data sets,
containing returns with both moderate and large departures from normality. We
confirm previous empirical evidence (e.g., Kroll ez al., 1984) as well as theoretical
arguments (Chamberlain, 1983) that, under moderate non-normality, the mean-
variance criterion provides a good approximation of the expected utility maximisation.
Nevertheless, under large departure from normality (as found in some stocks in
mature markets or in some stock indices in emerging markets), the mean-variance
criterion may fail to approximate the expected utility correctly. In such cases, the
three-moment or four-moment optimisation strategies may provide a good approx-
imation of the expected utility.

An obvious extension of this work is a conditional asset allocation. For a recent
contribution arguing for a dynamic portfolio selection see Graflund and Nilsson
(2003). One may also consider Malkiel (2003) who argues against. In a dynamic
setting, a model for returns with a distribution allowing asymmetry and fat tails
should be estimated. This may be done, for instance, in a GARCH framework, with
a skewed Student-t distribution for innovations, such as the model proposed by
Hansen (1994) and extended by Jondeau and Rockinger (2003a) for time-varying
higher moments. In addition, co-moments may be modelled using the multivariate
extension developed by Sahu ef al. (2003) and Bauwens and Laurent (2005). An
alternative approach to cope with asymmetry and fat tails would rely on the regime-
switching modelling, that provides a very convenient way to incorporate these fea-
tures (Guidolin and Timmermann, 2003). A definite advantage of these approaches is
that moments of the portfolio return can be computed analytically from the multi-
variate distribution of asset returns.
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