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1. Introduction

Several recent studies in empirical "nance have used Gram}Charlier-type
expansions as a semi-nonparametric device to overcome the restriction imposed
by the usual normality assumption. For instance Knight and Satchell (1997)
develop an option pricing model using a Gram}Charlier expansion for the
underlying asset. In a similar framework, Abken et al. (1996) end up with
a Gram}Charlier expansion to approximate risk neutral densities (RND). Gal-
lant and Tauchen (1989) use Gram}Charlier expansions to describe deviations
from normality of innovations in a GARCH framework.
Gram}Charlier expansions allow for additional #exibility over a normal

density because they naturally introduce the skewness and kurtosis of the
distribution as parameters. However, being polynomial approximations, they
have the drawback of yielding negative values for certain parameters. Moreover,
there does not seem to be an easy and analytic characterization of those
parameters for which the density will take positive values. In a noticeable study
by Barton and Dennis (1952) conditions on the parameters guaranteeing posit-
ive de"niteness of the underlying densities are obtained through a numerical
method. In this paper we build on their work and indicate how it is numerically
possible to restrict parameters. Once positivity for the expansion gets imposed
we may talk of Gram}Charlier densities (GCd).
In this paper we "rst specialize the method advocated by Barton and Dennis

(1992) to characterize the boundary delimiting the domain in the skew-
ness}kurtosis space over which the expansion is positive. We then present
a mapping which transforms the constrained estimation problem into an uncon-
strained one. Since the positivity boundary is only de"ned as an implicit
function, we show how the mapping can be numerically imposed.
In the empirical part of this paper we "rst show the relevance of our method

to estimate risk neutral densities, by extending the work of Abken et al. (1996).
Next, we examine the maximum-likelihood properties when GCds are directly
"tted to data. We consider the situation where GCds are "tted to GCd distrib-
uted data as well as to a mixture of normals. The "rst simulation allows us to
validate our code and to examine estimation properties in situations known to
be delicate. Similarly to the estimation of mixtures of normals, for small
deviations from normality, we "nd that it is di$cult in that situation to correctly
capture the parameters. The second simulation shows possible biases of the
estimation when the model is misspeci"ed. Lastly, we indicate how our method
improves GARCH estimations when innovations are assumed to be distributed
as a Gram}Charlier density rather than a normal one.
This paper is structured in the following manner: In the next section, we

provide some properties of Gram}Charlier expansions. In Section 3, we describe
our algorithm to implement positivity of the density. In Sections 4 and 5, we
show with two examples how it works. We estimate risk neutral densities and
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�For Hermite polynomials we follow the notation of Gradshteyn and Ryzhnik (1994, p. xxxvii).

�Straightforward computations yield the following expressions for the "rst six Hermite poly-
nomials: He

�
(z)"1,He

�
(z)"z, He

�
(z)"z�!1, He

�
(z)"z�!3z, He

�
(z)"z�!6z�#3, He

�
(z)"

z�!10z�#15z, and He
�
(z)"z�!15z�#45z�!15.

a GARCHmodel allowing for a conditional density with skewness and kurtosis
di!erent from those of a normal distribution.

2. Properties of Gram}Charlier expansions

When the true probability distribution function (pdf) of a random variable z is
unknown, yet believed to be similar to a normal one, it is quite natural to
approximate it with a pdf of the form

g(z)"p
�
(z)�(z), (1)

where �(z) is the standard zero mean and unit variance normal density and
where p

�
(z) is chosen so that g(z) has the same "rst moments as the pdf of z. Since

Hermite polynomials form an orthogonal basis with respect to the scalar
product generated by the expectation taken with the normal density � the true
density is often approximated using

p
�
(z)"

�
�
�	�

c
�
He

�
(z), (2)

where He
�
(z) are the Hermite polynomials.� The Hermite polynomial of order

i is de"ned by He
�
(z)"(!1)�(���/�z�)1/�(z).� When z is standardized, with zero

mean and unit variance, two representations are typically adopted in the
literature

p
�
(z)"1#

�
�
6

He
�
(z)#

�
�
24

He
�
(z) (3)

and

p
�
(z)"1#

�
�
6

He
�
(z)#

�
�
24

He
�
(z)#

��
�
72

He
�
(z). (4)

These cases correspond, respectively, to the Gram}Charlier type-A and the
Edgeworth expansions. The Edgeworth expansion (4) involves one more Her-
mite polynomial while keeping the number of parameters constant. As shown by
Barton and Dennis (1952), the range for �

�
and �

�
over which positivity of the

approximation is guaranteed is then smaller than for the Gram}Charlier one.
For this reason, in this paper we will focus on the "rst approximation.
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�See also Johnson et al. (1994).

�Such an approach was followed in an earlier version of this paper.

Property 1. �
�
and �

�
correspond, respectively, to the skewness and the excess

kurtosis of g(z).

Proof. Because z is standardized, straightforward but tedious computations
show that:�

�
�


�


zg(z) dz"0, �
�


�


z�g(z) dz"1,

�
�


�


z�g(z) dz"�
�
, �

�


�


z�g(z) dz"3#�
�
.

In the following pages, we will, therefore, adopt the notations s"�
�
and

k"�
�
to denote the skewness and the excess kurtosis, respectively. Property

1 partly explains the success of Gram}Charlier expansions in the empirical
literature, since the two additional parameters �

�
, �

�
are directly related to the

third and fourthmoments. However, Gram}Charlier expansions also have some
drawbacks. First, for some (s, k) distant from the normal values (0,3), g(z) can be
negative for some z. For other pairs the pdf g(z) may be multimodal.
In this work we focus on implementing numerical conditions so that

Gram}Charlier approximations are positive de"nite. To ensure positivity, Gal-
lant and Tauchen (1989) suggest to square the polynomial part, p

�
(z), of Eq. (1).

However, by doing so one loses, the interpretation of the various parameters as
moments of the density.
Some properties are useful to identify the regionD in the (s, k)-plane for which

g(z) is positive de"nite. For g(z) to be positive de"nite, we require the polynomial
p
�
(z) to be positive for every z, that is

1#

s

6
He

�
(z)#

k

24
He

�
(z)50, ∀z.

In order to characterizeD two approaches can be followed. The "rst direct one
consists in establishing general properties of the frontier of D and then to take
z over a large grid and to check if for possible pairs of (s, k) the polynomial p

�
(z)

is positive.� The second one involves notions of analytical geometry. Consider
a given value of z. For each such value the equation

1#

s

6
He

�
(z)#

k

24
He

�
(z)"0 (5)

de"nes a straight line in the (s, k)-plane. A small deviation for z, while holding
(s, k) "xed, will then yield a p

�
(z) of either positive or negative sign. Thus, it is
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�This approach has been highlighted by Barton and Dennis (1952) in a slightly di!erent context.

interesting to determine the set of (s, k), as a function of z, such that p
�
(z) remains

zero for small variations of z since this set will de"ne the requested boundary.
This set is determined by the derivative of (5) with respect to z

s

2
He

�
(z)#

k

6
He

�
(z)"0. (6)

The set of (s, k) solving simultaneously (5) and (6), called the envelope of p
�
(z),

yields a parametric representation of the boundary where for a given z the term
p
�
(z) is zero. Once this boundary is determined it remains to "nd that subregion

delimited by p
�
(z)"0 for all z.�

Solving the system given by (5) and (6) yields the expression for the skewness
and the excess kurtosis as functions of z:

s(z)"!24
He

�
(z)

d(z)
,

k(z)"72
He

�
(z)

d(z)
,

with d(z)"4He�
�
(z)!3He

�
(z)He

�
(z).

Straightforward computations allow us to rewrite the denominator of both
expressions as d(z)"z�!3z�#9z�#9. Since its minimum is attained for
z"0 where d(0)"9 we obtain that d(z) is always positive.
The sign of k(z) changes with He

�
(z)"z�!1. It is positive for z between

!R and !1 and between 1 and #R. It is negative for !14z41.
Similarly, the sign of s(k) changes with He

�
(z)"z�!3z. It is positive for

z between !R and !�3 and between 0 and �3. In Fig. 1 we present, the

straight lines de"ned by (5) for various values of z (satisfying �z�5�3). The thick
line delimiting the oval domain is the envelope. Within the envelope p

�
(z) will be

positive. Similarly, in Fig. 2 we present (5) and its envelope for values of

z between !�3 and �3.

In Fig. 3 we present a summarizing graph: for z between !R and !�3

one obtains the curve AM
�
B; the values !�34z40 lead to the curve

BM
�
C; the values 04z4�3 lead to the curve CM

�
B; lastly when z varies

from �3 to #R one obtains the curve BM
�
A. This envelope is clearly

symmetric with respect to the horizontal axis. Thus, the region where g(z) is
positive for every z is formed by the intersection of the domains delimited in
Figs. 1 and 2; that is the curve AM

�
BM

�
A.

If we concentrate on the envelope where g(z) is positive for all z, we note that
the excess kurtosis k is inside the interval [0,4]. Indeed, we "nd that
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Fig. 1. Represents equations (5) of the text for various values of z with �z�5�3. We also present the
envelope given as a solution to (5) and (6).

Fig. 2. Represents the same as Fig. 1 but with �z�(�3. The scale di!ers in both "gures.
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Fig. 3. Presents the plot of the envelope as z varies from !R to #R. For skewness and kurtosis
located in the interior of the domain D, delimited by AM

�
BM

�
A, the Gram}Charlier expansion is

actually a density.

k($R)"0 and k($�3)"4. The points where the skewness is at a max-
imum or a minimum are obtained when s�(z)"z�!6z�#6z�!18z#9"0.
The solutions can be found numerically to be M

�
"

(�6,�6/�3#�6)"(2.4508;1.0493) and M
�
"(�6,!�6/�3#�6)"

(2.4508;!1.0493).
We notice that the frontier is a steady, continuous, and concave curve. A last

remark is that since k is bounded below by 0 the kurtosis of g( ) ) will always be
larger than for a normal density.

3. An algorithm to implement positivity

At this stage we have characterized the domain D over which the
Gram}Charlier approximation is positive. We now wish to indicate how posi-
tivity may be numerically implemented in applications where we will have to
solve programs such as

max
����
�D

F(s, k),

where F is an objective function involving s and k through the Gram}Charlier
expansion. F may depend on some other parameters which are unrelated to
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�To keep notations simple we do not emphasize this possibility.

� In this latter case the maximization becomes a minimization.

�For more details see Press et al. (1988, p. 259). The simultaneous computation of all s can be
easily vectorized yielding a very e$cient code.

� In numerical applicationsN
�
"250 appears to provide a reasonable compromise between speed

and accuracy.

s and k.� In numerical applications F could be a log-likelihood function or
a NLLS problem.� F is assumed to be di!erentiable with respect to all its
parameters and we assume that there is a unique optimum.
Since F is not de"ned for (s, k) outside D it is necessary to restrict parameters

to that region using an ad hoc method. The idea is to transform the constrained
optimization into an unconstrained one. This turns out to yield a fast and
numerically accurate method.
In the previous section, we derived the parametric equation of the frontier of

D. Taking z over a very "ne grid, a discretization of the frontier is possible.
Alternatively, and this is how we compute the boundary for our empirical work,
it is possible to take k over a "ne grid. For each value on the grid we know from
the previous section that the associated s is bracketed in the interval
[!1.0493, 1.0493]. Numerically, one can then compute s with a bisection
algorithm.� Furthermore, for numerical applications it is necessary to have
a continuous representation of the boundary, therefore, we substitute the con-
tinuous frontier with a piecewise linear one. For each k the corresponding s can
then be found with a linear interpolation.
Formally, we proceed in the following manner also illustrated in Fig. 4: we

start with a "ne grid for kurtosis say k
�
, i"1,2,N

�
.� For each k

�
the corre-

sponding s
�
is known. We compute and store

a
�
"

s
�
k
���

!k
�
s
���

k
���

!k
�

,

b
�
"

s
���

!s
�

k
���

!k
�

for i"1,2,N
�
!1. For a given k the maximal, (s

�
(k)), and minimal, (s

�
(k)),

allowed skewness in D will be approximated with a linear interpolation by "rst
obtaining the i such that k

�
(k4k

���
, and then computing s

�
"a

�
#b

�
k as

well as s
�
"!s

�
.

Now it is possible to introduce an ad hoc mapping transforming the con-
strained optimization into an unconstrained one. We introduce the logistic map
de"ned by

f (x; a, b)"a#(b!a)
1

1#exp(!x)
.
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Fig. 4. Indicates how we replace the discrete envelope AM
�
BM

�
A with segments (not to scale)

allowing for a continuous representation of the boundary. The parameters of points 1}6 correspond
to rows 1}6 of Tables 2 and 3. Points 7}12, out of the domain, correspond to rows 7}12 of Table 3.
For given kurtosis the points correspond to 75, 95, 125 and 150% of the segment [0, s

�
].

Let (s� , kI )3R� be unconstrained values for the skewness and kurtosis. It is easy
to see that the map

k"f (kI ; 0, 4),f
�
(kI ), (7)

s"f (s� ; s
�
(kI ), s

�
(kI )),f

�
(s� , kI ) (8)

transforms R� into D. Given that this mapping involves the logistic function,
which is strictly increasing and di!erentiable, we notice that the "rst-order
conditions of

max
��� � �I 
�R�

G(s� ,kI ),F( f
�
(s� , kI ), f

�
(kI ))

that is

�G

�s�
"

�F

�s

�f
�

�s�
"0,

�G

�kI
"

�F

�s

�f
�

�kI
#

�F

�k

�f
�

�kI
"0
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imply

�F

�s
"0 and

�F

�k
"0.

Thus, the unconstrained optimum, say (s� H, kI H), is uniquely related to the con-
strained optimum

sH"f
�
(s� H, kI H), kH"f

�
(kI H).

Given unicity of the optimum and convexity of our map our restriction is
therefore a valid one.
We will henceforth denote by GC(�,�, s, k) the Gram}Charlier density with

mean � and standard deviation � obtained by imposing positivity constraints on
the expansion.

4. The estimation of risk neutral densities

In this section we wish to illustrate the usefulness of our method on a "rst
example dealing with option pricing.

4.1. Theoretical considerations

Let S
�
be the price of an asset at time t. We suppose that this asset underlies

a European call option with expiration date ¹ and strike price K. Then, at
maturity the payo! is max(S

�
!K, 0). In an arbitrage-free economy (see Har-

rison and Pliska, 1981), it is known that there exists a risk-neutral density
(RND), g( ) ), such that the price of a call option can be written as

C
�
(K)"e�	����
�

�





(S
�

!K)g(S
�
) dS

�
, (9)

where C
�
(K) is the price at time t of a call option, and r is the continuously

compounded interest rate to maturity. The function C
�
( ) ) depends on the

parameters r,¹, t as well as others characterizing the process followed by S
�
. As

noted by Breeden and Litzenberger (1978), Leibnitz' rule for di!erentiating
integrals gives:

d�C
�

dK�
(S

�
)"e�	����
g(S

�
) (10)

which reveals the discounted RND. For the econometrician wishing to estimate
g(S

�
), formula (10) suggests the use of numerical second derivatives. Numerical

computation of second derivatives is, however, a very unstable method. For this
reason it is sometimes advantageous to assume some additional structure on
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g( ) ) and to proceed with (9). This is the way suggested by Abken et al. (1996)
(AMR for short) who assume that g( ) ) can be approximated with Hermite
polynomials. Inspired by the usual lognormality assumption of the underlying
asset they assume "rst that

S
�

"S
�
exp((�!�

�
��)(¹!t)#�(¹!t)z), (11)

where z is a normal variate with zero mean and unit variance. The parameters
� and � represent the instantaneous drift and volatility, respectively, of S

�
. Last,

in the spirit of Section 2 of this paper, they consider that g(z) is given by
g(z)"�(z)�(z) where �(z) is a perturbation of the normalN(0,1) density �( ) ). By
assuming that �(z) can be approximated by a Hermite expansion they obtain
that option prices can be written as

C
�
(K)"e�	����


�
�
�	�

a
�
b
�
, (12)

where the b
�
are parameters to be estimated and where the a

�
take the following

expressions, denoting �� "��¹!t:

a
�
"F

�
�(d

�
)!K�(d

�
),

a
�
"F

�
(�� �(d

�
)#�(d

�
))!K�(d

�
),

a
�
"�

�
[F

�
(�� ��(d

�
)#2�� n

�
!h

���
)#Kh

���
],

a
�
"�

�
[F

�
(�� ��(d

�
)#3�� �n

�
!3�� h

���
#h

���
)!Kh

���
],

a
�
" �

��
[F

�
(�� ��(d

�
)#4�� �n

�
!6�� �h

���
#4�� h

���
!h

���
)#Kh

���
],

d
�
"

ln(S
�
/K)#(�#��/2)(¹!t)

��
,

d
�
"d

�
!�� ,

F
�
"S

�
exp(r(¹!t)),

n
�
"1/�2�exp(!d�

�
/2),

n
�
"1/�2�exp(!d�

�
/2),

h
���

"He
�
(d

�
)n

�
.

In the expression a
�

we recognize up to a discount factor the
Black}Scholes}Merton benchmark pricing formula. For the AMR model one
can see that option prices are obtained as a perturbation of the benchmark case.
F
�
is the forward price.
To obtain identi"ability and a density for g further assumptions are imposed:

b
�
"1 (forcing g(z) to have unit probability mass), b

�
"0 forcing a zero

expectation, b
�
"0 imposing a unit variance on z. b

�
and b

�
will control

skewness and excess kurtosis.
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��See also Jondeau and Rockinger (1998) for further details concerning this period.

The risk neutral density eventually becomes

g(z)"�1#

b
�

�6
(z�!3z)#

b
�

�24
(z�!6z�#3)��(z). (13)

The inversion of (11) allows one to express the RND with respect to S
�
.

To sum up: Given call option prices and their characteristics (such as time to
maturity, strike price, value of the underlying asset, interest rates), Eq. (12) can
be used to numerically estimate the b

�
and b

�
parameters. Since Eq. (12) also

involves in a non-linear manner the volatility �, it will be necessary to estimate
all parameters using a non-linear procedure. The parameter � can be either
estimated (non-linearly) or obtained by imposing the non-arbitrage condition

S
�
"e�	����
�

�


�

S
�

g(S
�
) dS

�
.

Once the non-linear estimation procedure has produced parameter estimates,
Eq. (13) can be used to obtain the RND. It should be noted that Eq. (13) is
basically the same one as Eq. (1), with n"4, and with p

�
(z) de"ned by Eq. (3).

Between the AMR parametrization and the theory presented earlier we obtain

the following relations b
�
"s/�6 and b

�
"k/�24. Furthermore, all earlier

developments still bear. Whereas AMR show how parameters can be estimated
they do not address the issue that the corresponding (s, k) parameters may not
belong to D. As we will show in the next section, by using the algorithm
proposed in Sections 2 and 3 this di$culty can be overcome.

4.2. Empirical results

We implement this method with European OTC French Franc to Deutsche
Mark options which have been provided to us by a large French bank. For
foreign exchange options the Garman and Kohlhagen (1983) model imposes the
non-arbitrage condition �"r!rH, where r and rH are the French and German
euro-rates, respectively. For illustrative purposes we use data for April 25th,
1997 that is a few days after President Chirac announced the dissolution of the
National Assembly leading to snap elections. At this stage the markets were
roiling.�� We obtained option prices for several maturities and strikes as well as
the value of the underlying exchange rate. Using formula (12) relating skewness,
kurtosis, and non-linearly volatility of the underlying asset with actual option
prices we estimate, using the conventional NLLS method, the various para-
meters without imposing positivity restrictions. The parameters are displayed in
Table 1. As shown by those parameters, they lie out of the authorized domain
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Table 1
Estimates of the Gram}Charlier expansion without positivity constraints

Without positivity constraints

1 Month 3 Month 6 Month 12 Month

� 0.0280 0.0275 0.0291 0.0296
s 1.5875 1.7769 1.5724 1.5121
k 0.8836 1.1790 4.7630 4.8310

Fig. 5. Represents risk-neutral densities estimated without positivity constraints. The data is
FRF/DEM options on April 25th 1997.

represented in Fig. 4 implying that the RND must be negative. Fig. 5 where we
represent the RND given by expression (13) shows that this is indeed the case.
The estimation of the model with restricted parameters yields the estimates

displayed in Table 2. We notice a signi"cant di!erence for skewness and
kurtosis. It can be checked that the parameters now belong to the authorized
domain D. As shown in Fig. 6 the densities are positive.
The observation that the unconstrained estimation yields parameters for

which the polynomial approximation is negative suggests that there is a mis-
speci"cation in the model. Theoretically one could overcome this di$culty by
introducing further terms in the expansion. In practice there are several reasons
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Table 2
Estimates of the Gram}Charlier expansion with positivity constraints

After imposing positivity constraints

1 Month 3 Month 6 Month 12 Month

� 0.0295 0.0291 0.0276 0.0281
s 0.3781 0.9563 0.9808 0.9772
k 2.9920 3.1428 3.0583 3.0720

Fig. 6. Represents risk-neutral densities estimated with positivity constraints. The data is
FRF/DEM options on April 25th 1997.

why this extension is not fruitful. First, the introduction of additional para-
meters renders more di$cult the research for the domain where the approxima-
tion is positive. Second, we have to estimate three parameters but we have only
very few option prices (13) for a given maturity. The introduction of further
terms in the expansion would yield a numerically unstable problem. Third, as
already noticed by Corrado and Su (1996, p. 624) who deal with Jarrow and
Rudd's (1982) approximation, if one increases the number of terms in the
expansion, one has to deal with multicollinear parameters. The intuition for this
comes from the observation that the parameter b

�
is related to the jth moment

and as a consequence the parameters b
�
and b

�
would turn out to be highly
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��We have used our notation b
�
,b

�
for the higher moments.

��To simulate this density we numerically construct its cumulative distribution function. The
inverse of uniformly generated numbers is then distributed as the GCd. For more details see Ripley
(1987, p. 59).

correlated with b
�
and b

�
, respectively. Similarly all parameters where the

indices are of same parity are collinear. As Corrado and Su mention: 2 adding
the terms, b

�
and/or b

�
,�� to skewness and kurtosis estimation procedures leads to

highly unstable parameter estimates.
As a consequence, adding more terms to the expansion, beyond the di$culty

to characterize the domain where the approximation is positive, raises problems
of stability due to a too small sample size and multicollinearity. For those
reasons we only focus on moments up to the fourth one.

5. Estimation of Gram}Charlier densities

In this section we wish to investigate the properties of maximum-likelihood
estimates when Gram}Charlier densities (GCd) are used in an attempt to
directly obtain higher moments that di!er from the ones of the normal distribu-
tion. For this purpose we investigate how well GCds can be "tted to simulated
data. We consider the "t of GCds to data generated with a Gram}Charlier
distribution and to data generated with a mixture of normals. Furthermore, in
the latter type of simulation we distinguish the situation where parameters for
the simulated data are in or out of the restricted domain D. Once the statistical
properties are well understood we turn to the estimation of GARCH processes
with Gram}Charlier distributed innovations.

5.1. Assessment of statistical properties

5.1.1. Sampling from a Gram}Charlier density
In our "rst simulation experiment we consider as true data generating process

(DGP) random variables distributed according to the Gram}Charlier density.
To that data we "t a GCd with maximum-likelihood. We simulate N"100
series of length ¹"2000 of data GC(0, 1, s, k).�� We will retain this type of size
for all simulations reported in this work. For excess kurtosis, k, we have
arbitrarily chosen the values 1, 2, and 3.8. The "rst value corresponds to
a situation where the tails behave very much like for a normal density, and the
third value is close to the upper boundary of excess kurtosis 4. For each value of
kurtosis we have chosen values of skewness that correspond to the 75th, and
95th percentile of the [0, s

�
(k)] segment. In columns 2}5 of Table 3 we present
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��We veri"ed that the moments of the simulated data came on average close to the theoretical
ones.

the various selected parameters (�, �, s, k) and in Fig. 4 we represent with dots the
associated (s, k) pairs corresponding to the rows 1}6.��
As the columns � and � for the maximum-likelihood (ML) estimation show,

the average of the estimates for the "rst and second moments are very good. The
average of the mean takes values between !0.0042 and 0.0017 which compares
with the true value of 0. Turning to skewness and kurtosis we still "nd that on
average the estimates come very close to the theoretical ones. However, we
notice that the estimates for kurtosis tend to di!er by a larger percentage from
the theoretical values than the other moments. In particular, for a given level of
theoretical kurtosis, the smaller the skewness, the worse the average of the
estimated kurtosis. This suggests that for the situation where the tail-thickness
of the density behave like the ones of a normal one, it will be di$cult to also
allow for a non-zero skewness. In such cases estimation of a GCd is di$cult.
A similar situation appears in the context of "tting a mixture of densities.
Bowman and Shenton (1973) mention that ...there is the paradox that, the nearer
to normality the theoretical distribution is, the less likely it is that a normal mixture
xt can be found. Our research suggests that this sentence can be transformed
into ..., the nearer kurtosis is to the one of the normal distribution, the less likely it is
that a parametric approximation can be found.
When turning to the dispersion of the parameter estimates, measured with

their standard deviation, our earlier observations are corroborated. The esti-
mates of � and � vary little. For skewness and kurtosis the dispersion increases.
We explain this as resulting from the multicollinearity of the parameters. We
also notice that as kurtosis increases the dispersion of the parameters improves.
On the other hand, for a given kurtosis, the larger the skewness the better the
estimates. This result indicates that the GCd estimation is better the more the
tails di!er from the normal one.

5.1.2. Sampling from a mixture of normals density
To further assess the ability of the ML estimation of the GCd to correctly

capture the moments of the data, we simulate data distributed as a mixture of
normals. Formally we assume that the true DGP is given by

p n
�
(r;�

�
,�

�
)#(1!p) n

�
(r;�

�
, �

�
),

where n
�
and n

�
are normal densities of given mean and standard deviation. The

parameter p3[0,1] indicates the probability of sampling from one or the other
distribution. For given moments (up to the "fth moment and belonging to
a domain of complex nature), Karl Pearson (1894) showed that the parameters
p,�

�
, �

�
, �

�
,�

�
can be obtained as a solution to a fundamental nonic, that is
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��See also Cohen (1967) or Holgersson and Jorner (1979) for a more modern derivation of the
formulas. Bowman and Shenton (1973) discuss the space of moments for which moment estimators
exist.

��Since Pearson's method involves a "fth moment, we "rst tried to seek a solution for a wide
range of this "fth moment. Eventually we chose that 5th moment where p turned out to be closest to
0.25. This ensures that we simulate su$ciently often from both distributions. As Table 4 shows, we
often have a boundary solution.

��Results not reported here.

a polynomial of the ninth degree.�� For "ve given moments (located in a com-
plicated domain) it is, therefore, possible to infer parameters for the mixture of
normals (p,�

�
,�

�
, �

�
,�

�
) yielding precisely those moments.

In Table 4 we present the results for this simulation. Columns 2}6 present the
parameters necessary for the mixture to yield the theoretical moments displayed
in columns 7}9. In the table d1 and d2 correspond to �

�
and �

�
, s12 and s22

correspond to ��
�
and ��

�
. In addition to the skewness}kurtosis pairs considered

previously (1}6 in Fig. 4), we consider several additional observations, 7}12,
laying outside of D corresponding to a 25 and 50% excess of the segment
[0, s

�
(k)].�� In Fig. 7 we represent the graph of the mixture for point 1, that is

a mixture of two normals yielding a skewness of 0.562 and an excess kurtosis of
4. The retained "fth moment is then 4.1. We notice the strong deviation from the
normal density.
Turning to simulations, we noticed that "rst and second moments of the

simulated data were on average, up to the third decimal, identical with the
theoretical ones.�� Back to Table 4, we notice that the average skewness and
excess kurtosis displayed in columns 10 and 11 come very close to the theoret-
ical moments. Our simulation procedure appears to work very well.
On average our ML estimates for the "rst and second moment come close to

the theoretical ones. For the case where our simulated point lies outside D we
notice that the "rst and second moments are not well estimated. The bias tends,
however, to diminish the greater the kurtosis. To summarize our simulation
results, for deviations from the true Gram}Charlier DGP, as long as the
parameters are within the authorized domain, we have some di$culties to
correctly capture skewness and kurtosis. For parameters outside the authorized
domain, even the "rst and second moments are badly estimated. Because of the
restrictive shape of the density our parameter estimates will have di$culties to
capture the moments. This observation highlights the importance to test if the
GC speci"cation is a correct one for the data at hand. Such a test can for
instance be performed with a Kolmogorov}Smirnov test. Deviations from the
non-conditional moments and the ones obtained with a Gram}Charlier density
are suggestive of a model misspeci"cation.
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Fig. 7. Displays the density of a mixture of normals corresponding to the parameters of point 1 that
is �"0, �"1, s"0.56, k"1.

5.2. GARCH models with Gram}Charlier distributed innovations

Let us now turn to a second empirical illustration where our positivity
restriction comes handy namely in situations where a Gram}Charlier distribu-
tion is used to model innovations in a GARCH model while maintaining the
interpretation of the parameters s and k as the skewness and excess kurtosis of
the density.
Models based on GARCH-type technology have recognized the possibility of

time-changing volatility. First, Engle (1982) proposed his ARCH model. Boller-
slev (1986) extended it to GARCH. Time-varying volatility has lead to a signi"-
cant amount of literature summarized in Bollerslev et al. (1992), as well as in
Bera and Higgins (1993). One di$culty with those models is that residuals often
remain heavy tailed. Solutions have been proposed to account for this heavy-
tailedness such as in Engle and Gonzales-Rivera's (1989) semi-parametric
model, or using t-distributions (as in Bollerslev, 1986), or GED distributions (as
in Nelson, 1991). In none of those models it is possible to access directly to the
skewness and kurtosis parameters.
In the following model we keep the usual GARCH-type parameterization of

volatility and for the innovations allow a skewness and kurtosis di!erent from
the ones of the normal density. Formally, we assume that S

�
is the value of some

asset at time t. We assume that the continuously compounded return, de"ned by
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r
�
"100 ) ln(S

�
/S

���
) may be described by

r
�
"�

�
#y

�
, (14)

y
�
"�

�
z
�
, (15)

��
�
"w#ay�

���
#b��

���
. (16)

The term �
�
in (14) corresponds to the conditional mean and y

�
to the unex-

pected part of returns. The variable �
�
is the conditional volatility. In Eq. (16) we

allow a GARCH(1,1) representation for the conditional volatility. More com-
plicated processes could be trivially accommodated. In standard GARCH
models, it is assumed that the innovation z

�
follows a given distribution such as

a N(0,1) or a student t-distribution with 	 degrees of freedom. Here, we assume
that innovations are distributed as a Gram}Charlier density with skewness and
excess kurtosis parameters s and k, respectively. Formally, this allows us to
complete model (14)}(16) with

z
�
&GC(0, 1, s, k), (17)

(s, k)"f (s� , kI ), (18)

where f is the mapping from R� into D described in Section 3. The positiveness
of g(z) is not only a theoretical problem. Indeed, from a practical point of view, if
expression (2) were negative, the log-likelihood is no longer de"ned and para-
meters could not be estimated. Therefore, when (s, k) is not in the domainD, the
log-likelihood can be actually unde"ned for some values of z.

5.2.1. The data used
In this study we focus on six foreign exchange rate series with respect to the

US dollar: the British Pound (GBP), the Japanese Yen (JPY), the Deutsche
Mark (DEM), the French Franc (FRF), and eventually the Canadian dollar
(CAD). Our data covers the period from 03/01/1977 to 03/05/1999. We consider
weekly data computed with the Friday closing price. The data got extracted
from the Datastream service.
In Table 5 we present various descriptive statistics of the data at a daily

frequency. For all series we dispose of 5826 observations. We compute, in the
spirit of Richardson and Smith (1994), all four moments and associated standard
errors with GMM, thus, allowing for possible heteroscedasticity in the data.
This also yields a Wald-type test for normality,=, distributed as a 
�

�
. In the

table we also present the more traditional Jarque}Bera, JB, test for normality.
We notice that the mean return is small in absolute value. The standard
deviation of returns is lowest for CAD. The JPY exchange rate had the highest
volatility. The DEM and FRF exchange rates have very similar patterns for
moments as could be expected. Turning to the skewness and kurtosis we notice
for all series that there is a strong non-normality as one can check by looking at
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Table 5
Descriptive statistics for the weekly foreign exchange data�

GBP YEN DEM FRF CAD

mean 0.0047 !0.0773 !0.0212 0.0187 0.0324
STD(mean) 0.0427 0.0445 0.0436 0.0425 0. 0184
std 1.4573 1.5189 1.4886 1.4492 0. 6273
STD(std) 0. 0498 0.0477 0.0429 0.0447 0.0189
sk 0.2254 !0.5962 !0.1285 0.0063 !0.0723
STD(sk) 0.2557 0.2115 0.1884 0.2145 0.2173
xku 3.4524 2.6008 1.8638 2.4241 2.2484
STD(xku) 0.8669 1.0382 0.6340 0.6825 0.7970

= 15.86 8.13 8.79 12.85 8.46
p-value 0.0004 0.0172 0.0123 0.0016 0.0146

JB 588.43 397.35 171.84 285.25 246.40
KS 2.12 2.18 1.43 1.40 1.34

Engle 5 88.25 44.13 47.53 40.81 64.59

AR(1) 0.030 0.066 0.040 0.040 !0.015
AR(2) 0.005 0.112 0.045 0.047 0.025
Q(5) 1.30 4.83 1.33 1.50 1.29

�The "rst four moments and their associated standard deviation get estimated with GMMallowing
for possible heteroscedasticity. sk and xku correspond to skewness and excess kurtosis.= is a test
for normality presented with its p-value. JB and KS are the Jarque}Bera test, respectively, a Kol-
mogorov}Smirnov test for normality. Engle 5 is the Lagrange multiplier test for heteroscedasticity.
AR and Q are the coe$cients of autocorrelation and of the Box}Ljiung test for autocorrelation,
respectively.

the high values for the Jarque}Bera statistics. Excess kurtosis is in all cases
signi"cantly larger than 3 implying that the unconditional density of all series
has fatter tails than the normal distribution. The Engle statistic computed with
5 lags indicates strong heteroscedasticity in all the series. The Box}Ljung
Q-statistics indicates that weekly returns generally appear to be uncorrelated.

5.2.2. Estimation results
Tables 6 and 7 present estimates of GARCH models with a normal density

and a Gram}Charlier density, respectively, for the innovations.
The conditional mean has been estimated separately and is not reported here.

Starting with Table 6, the parameter a indicates that subsequent to a large
return volatility of the next period remains high. The parameter b indicates that
a high volatility is followed by high volatility: As expected volatility is persistent.
Furthermore, we estimate the skewness and excess kurtosis for the innovations.
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Table 6
GARCH estimates under normality assumption�

GBP YEN DEM FRF CAD

w 0.0526 0.2824 0.1637 0.0934 0.0358
STE(w) 0.0274 0.1315 0.0849 0.0533 0.0137
a 0.0990 0.0982 0.1186 0.1308 0.1079
STE(a) 0.0258 0.0326 0.0371 0.0408 0.0252
b 0.8814 0.7832 0.8125 0.8354 0.8048
STE(b) 0.0241 0.0729 0.0634 0.0463 0.0424

sk 0.32 !0.66 !0.02 0.12 0.13
sk* 4.50 !9.18 !0.29 1.60 1.85
xku 2.38 2.58 1.21 1.53 1.88
xku* 16.56 17.98 8.41 10.67 13.12

KS 1.53 2.02 1.20 1.22 1.08
Log-Lik !2007.50 !2116.32 !2079.19 !2042.77 !1079.54

�SkH and xkuH represent the t-ratios for sk and xku. KS represents the Kolmogorov}Smirnov test
for normality. Log-lik is the sum of all log-likelihoods.

We notice for all situations that the kurtosis is signi"cantly di!erent from 0 and
incompatible with a normal distribution. Our Kolmogorov}Smirnov statistic,
KS, indicates a rejection of the assumption of normality for all series. Those
results are well established and indicate that GARCH models should be
modeled with distributions for the innovations allowing for unconditional
fat-tailedness.
We now turn to the results reported in Table 7 where we have performed

the estimations with the Gram}Charlier density. The parameters for w, a,
and b are similar to the ones of Table 6. We also report the estimates of
skewness and kurtosis. We notice that all the estimated skewness and kurtosis
lay in the authorized domain D. Nonetheless, when trying to estimate
the likelihood function without the restrictions on skewness and kurtosis,
in many situations the algorithm crashed because the likelihood became
negative. Residuals are still found to be non-normal. When turning to
the Kolmogorov}Smirnov statistics which tests if the residuals have a
behavior compatible with the Gram}Charlier density we cannot reject this
hypothesis.
For the Deutsche Mark exchange rate series we present in Fig. 8 a plot with

a normal density whose moments are matched to the ones of the innovations,
a Kernel estimation of the density of the innovations, and the "tted
Gram}Charlier density. This "gure corroborates our statistical "nding that the
Gram}Charlier density is an improvement over the normal one.
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Table 7
GARCH estimates with Gram}Charlier density�

GBP YEN DEM FRF CAD

w 0.0529 0.2034 0.1305 0.0620 0.0326
STE(w) 0.0298 0.1083 0.0775 0.0353 0.0118
a 0.1098 0.0832 0.1170 0.1284 0.1143
STE(a) 0.0351 0.0295 0.0385 0.0437 0.0256
b 0.8756 0.8354 0.8321 0.8579 0.8113
STE(b) 0.0303 0.0612 0.0611 0.0406 0.0363
s 0.1885 !0.3724 !0.1483 !0.0410 !0.0142
STE(s) 0.0880 0.1003 0.0968 0.0994 0.0621
k 0.9811 1.1231 0.7015 0.9639 0.8152
STE(k) 0.2258 0.2201 0.2034 0.2320 0.2183

sk 0.32 !0.67 !0.02 0.11 0.14
sk* 4.41 !9.33 !0.31 1.58 1.92
xku 2.38 2.60 1.21 1.55 1.89
xku* 16.56 18.09 8.44 10.76 13.15

KS(Norm) 1.52 2.02 1.23 1.21 1.08
KS(GC) 0.70 1.05 0.63 0.54 0.61
Log-Lik !1986.77 !2081.40 !2066.73 !2023.46 !1064.50
LRT 41.45 69.84 24.92 38.63 30.08

�In addition to the parameters already appearing in Table 6, KS(normal), KS(GC), and Log-Lik
represent the Kolmogorov}Smirnov tests for normality, for data to be generated
as a Gram}Charlier density, and the log-likelihood value. LRT represents the likelihood-ratio
test statistics that the conditional density of residuals is a Gram}Charlier density versus a
normal one.

In all situations we reject with a likelihood-ratio test the restriction of
a normal density. As a "rst conclusion we, therefore, notice that the use of the
Gram}Charlier density is a success from a statistical point of view. As can be
expected, we obtain in general a decrease of the parameters' standard errors.
Our estimation is therefore slightly more e$cient. On the negative side we notice
that the estimates of the skewness and kurtosis parameters for the residuals
di!er from the ML ones of the GCd. This result, in light of our earlier
simulations, suggests that even though the KS statistics does not reject the GCd,
our model remains misspeci"ed. In particular it is possible that there remains
heteroscedasticity of higher order in the data. It is therefore possible that also
skewness and kurtosis need to be made time varying. Within our framework this
can be done in a natural way by following Hansen (1994), but is left for further
research.
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Fig. 8. Displays for the Deutsche Mark to $US series a GARCH regression with a Gram}Charlier
density for the innovations. We also present a Kernel estimation of the density of the estimated
innovations as well as a normal density with parameters equal to the ones of the innovations.

6. Conclusion

Gram}Charlier expansions are useful to model densities which are deviations
from the normal one. In addition to the mean and standard deviation that
characterize the normal density, for Gram}Charlier expansions, the third and
fourth moments (skewness and kurtosis) are also characterizing elements. In this
paper we determine the domain of skewness and kurtosis over which the
expansion is positive. Imposing this positivity constraint allows us to talk of
Gram}Charlier densities (GCd). We indicated how this constraint can be im-
posed numerically with a simple mapping and that the unconstrained optimum
will be uniquely related to the constrained one.
We apply our method to the estimation of Risk}Neutral densities that arise in

an option pricing context and to the estimation of GCds within a GARCH
model. In both estimations an unconstrained optimization would have been
problematic. Risk}Neutral densities might have been negative and Gram}Char-
lier densities impossible to "t to GARCH innovations because of the impossibil-
ity to compute log-likelihoods. Both types of estimations are very fast and
numerically stable once the positivity constraint got imposed.
In the section dealing with the maximum-likelihood estimation of GCds we

validate our procedure and notice the following two observations: First, a "t of
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a GCd to Gram}Charlier distributed data yields unbiased estimates as long as
kurtosis is not too small. Thus, as in other statistical estimations, the "t of
a generalization of the normal density becomes more di$cult for small devi-
ations from a normal density. Second, when "tting a GCd to data generated
with a mixture of moments we notice di$culties in capturing the correct
moments. This highlights the importance of testing if the data is compatible with
a GCd.
Our GARCH estimation reveals a large improvement in terms of likelihood-

ratio tests. Further improvements left for future research could involve a time-
varying speci"cation of skewness and kurtosis where those moments would be
linked in a GARCH-type speci"cation to the third and fourth moment of
innovations.

References

Abken, P., Madan, D.B., Ramamurtie, S., 1996. Estimation of risk-neutral and statistical densities by
Hermite polynomial approximation: with an application to eurodollar futures options. Mimeo,
Federal Reserve Bank of Atlanta.

Barton, D.E., Dennis, K.E.R., 1952. The conditions under which Gram}Charlier and Edgeworth
curves are positive de"nite and unimodal. Biometrika 39, 425}427.

Bera, A.K., Higgins, M.L., 1993. ARCH models: properties, estimation and testing. Journal of
Economic Surveys 7 (4), 305}366.

Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econo-
metrics 31, 307}328.

Bollerslev, T., Chou, R.Y., Kroner, K.F., 1992. ARCH Modeling in Finance. Journal of Econo-
metrics 52, 5}59.

Bowman, K.O., Shenton, L.R., 1973. Space of solutions for a normal mixture. Biometrika 60,
629}636.

Breeden, D., Litzenberger, R., 1978. Prices of state-contingent claims implicit in option prices.
Journal of Business 51, 621}651.

Cohen, A.C., 1967. Estimation in mixtures of two normal distributions. Technometrics 9, 15}28.
Corrado, C.J., Su, T., 1996. S&P 500 index option tests of Jarrow and Rudd's approximate option

valuation formula. Journal of Futures Markets 6, 611}629.
Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of

United Kingdom In#ation. Econometrica 50, 987}1007.
Gallant, A.R., Tauchen, G., 1989. Semi-nonparametric estimation of conditionally constrained

heterogeneous processes: asset pricing applications. Econometrica 57, 1091}1120.
Garman, M., Kohlhagen, S., 1983. Foreign currency option values. Journal of International Money

and Finance 2, 231}238.
Gradshteyn, I.S., Ryzhnik, I.M., 1994. Table of Integrals, Series, and Products, 5th Edition.

Academic Press, New York.
Hansen, B., 1994. Autoregressive conditional density estimation. International Economic Review 35,

705}730.
Harrison, J.M., Pliska, S., 1981. Martingales and stochastic integrals in the theory of continuous

trading. Stochastic Processes and their Applications 11, 215}260.
Jarrow, R., Rudd, A., 1982. Approximate valuation for arbitrary stochastic processes. Journal of

Financial Economics 347}369.

1482 E. Jondeau, M. Rockinger / Journal of Economic Dynamics &Control 25 (2001) 1457}1483



Johnson, N.L., Kotz, S., Balakrishnan, N., 1994. Continuous univariate distribution, 2nd Edition,
Vol. 1. Wiley, New York.

Jondeau, E., Rockinger, M., 1998. Reading the smile: the message conveyed by methods which infer
risk neutral density. CEPR Discussion Paper no. 2009.

Knight, J., Satchell, S., 1997. Pricing derivatives written on assets with arbitrary skewness and
kurtosis. Mimeo, Trinity College.

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica
59 (2), 347}370.

Pearson, K., 1894. Contribution to the mathematical theory of evolution. Proc. Trans. Royal Soc. A
185, 71}110.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1988. Numerical Recipes in C.
Cambridge University Press, Cambridge.

Richardson, M., Smith, T., 1994. A direct test of the mixture of distributions hypothesis: measuring
the daily #ow of information. Journal of Financial and Quantitative Analysis 29, 101}116.

Ripley, B., 1987. Stochastic Simulation. Wiley, New York.

E. Jondeau, M. Rockinger / Journal of Economic Dynamics &Control 25 (2001) 1457}1483 1483


