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Abstract

The entropy principle yields, for a given set of moments, a density that involves
the smallest amount of prior information. We ,rst show how entropy densities may
be constructed in a numerically e-cient way as the minimization of a potential. Next,
for the case where the ,rst four moments are given, we characterize the skewness–
kurtosis domain for which densities are de,ned. This domain is found to be much
larger than for Hermite or Edgeworth expansions. Last, we show how this technique
can be used to estimate a GARCH model where skewness and kurtosis are time
varying. We ,nd that there is little predictability of skewness and kurtosis for weekly
data. ? 2002 Elsevier Science S.A. All rights reserved.

JEL classi-cation: C40; C61; G10

Keywords: Semi-nonparametric estimation; Time-varying skewness and kurtosis;
GARCH

1. Introduction

Methods based on the entropy principle of Shannon (1948), and popu-
larized by Jaynes (1957, 1982), have made their way into econometrics,
e.g. Golan et al. (1996). At a practical level, entropy-based applications still
appear to be scarce but for a few exceptions such as Zellner and High,eld
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(1988), Hawkins et al. (1996), Stutzer (1996), Buchen and Kelly (1996),
Zellner et al. (1997), or Ormoneit and White (1999). One possible rea-
son is that di-culties with the numerical implementation of this technique
may have hindered its widespread use. The aim of this work is to de-
velop a very fast method to obtain entropy densities and to show that en-
tropy densities may also be used in rather complex empirical likelihood
estimations.
In a numerical application, we reconsider Bollerslev’s (1986) GARCH

model which extends Engle (1982). 1 In typical applications of this model, the
unconditional distribution is assumed to allow for some form of fat-tailedness,
modeled for instance as a Student-t (Bollerslev, 1987), a generalized error
distribution (Nelson, 1991), or as a fully nonparametric density (e.g. Engle
and Gonzales-Rivera, 1991). Recent applications to ,nance, dealing with the
issue of conditional fat-tailedness, involve models with a noncentral gamma
distribution (Harvey and Siddique, 1999) or a generalized Student-t (Hansen,
1994), where the degree of freedom and the asymmetry parameter are time
varying. There, the time variability is achieved by expressing the degree of
freedom or an asymmetry parameter as a function of actual data. As an alter-
native to these densities we propose the use of an entropy density (ED). The
advantage of the ED is that skewness and kurtosis appear directly as param-
eters. As a consequence, to obtain the value of skewness and kurtosis, it is
not necessary to compute additional functions of more primitive parameters.
ED can also be conveniently used in nonparametric econometrics or in

,nancial applications such as in modeling the pricing kernel arising in Euler
equations. 2

A better description of the conditional behavior of asset returns with a
particular emphasis on the time-variability of skewness and kurtosis is of
great relevance for risk management as well as for asset allocation prob-
lems. An econometric description involving higher moments may also have
important implications for the testing of asset pricing models (e.g. Kraus
and Litzenberger, 1976). Improvements to the existing econometric litera-
ture on the time-variability of higher moments are, therefore, relevant. A
possible reason why little progress has been made in ,nancial applications is
that there exist only very few densities where skewness and kurtosis appear
directly as parameters. An exception are the Gram–Charlier and Edgeworth
expansions. The skewness and kurtosis domain of these densities has been
investigated by Jondeau and Rockinger (2001) and has been found to be too
small to correctly describe ,nancial returns. In this work we demonstrate that

1 See also Bera and Higgins (1992) or Bollerslev et al. (1994) for surveys of the large
literature dealing with this type of model.

2 See for instance Gallant and Tauchen (1989) for an application involving a nonparametric
estimation of a density within an Euler equation.
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entropy-based methods allow for a very large range of possible values for
the parameters. This implies that greater numerical stability will be achieved
during the estimation, since the latter may be performed for less restricted
parameters.
This method’s gain in Gexibility does not come for free since the construc-

tion of an ED from its moments involves a numerical optimization. In general,
numerical optimization is a very time consuming process. However, given the
special nature of the entropy problem, it is possible to construct EDs with only
a few numerical iterations (e.g. Alhassid et al., 1978; Agmon et al., 1979a, b
as well as Mead and Papanicolaou, 1984) by mapping the problem into a
minimization of a very well behaved potential function.
The structure of this paper is as follows. In the next section, we pro-

vide theoretical considerations concerning EDs. In Section 3, we introduce
a model, in the spirit of Hansen (1994) where we allow for time-varying
parameters. In Section 4, we present the empirical results. The last section
contains a conclusion.

2. Theoretical background

2.1. The de-nition of entropy densities

We assume that the econometrician is seeking a probability p(x) de,ned
over some real convex domain, D, while disposing only of information on
the m ,rst moments of the probability, written as bi where i=1; : : : ; m. The
construction of a probability density de,ned on in,nitely many points with
the knowledge of only a few moments is hopeless without an additional
criterion. A ,rst possibility to obtain a density, matching the given moments,
is to use ad-hoc step functions. Such an approach is implemented by Wheeler
and Gordon (1969). Another criterion is given by the maximization of an
entropy under the moment and density restrictions. Under this criterion one
solves

p∈ argmax −
∫
x∈D

p(x) ln(p(x)) dx; (1)

s:t:
∫
x∈D

p(x) dx=1; (2)∫
x∈D

xip(x) dx= bi; i=1; : : : ; m: (3)

We will refer to a density satisfying these conditions as an Entropy Density. 3

Jaynes (1957) notices that the entropy is a criterion where the statistician

3 Given that a log-function is involved in (1), p(x)¿ 0; ∀x∈D.
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imposes a minimum amount of information. The conventional way of solving
this program is to de,ne the Hamiltonian

H =−
∫
D

p(x) ln(p(x)) dx − 
′′0

∫
D

p(x) dx

−
m∑
i=1


i

[ ∫
D

xip(x) dx − bi

]
:

The 
′′0 is a Lagrange parameter 4 as are the 
i; i=1; : : : ; m.
To obtain a solution of this problem one seeks a zero for the FrKechet

derivative. De,ning 
′0 = 
′′0 + 1 we get

�H =0 ⇒ p(x)= exp

(
−
′0 −

m∑
i=1


ixi
)

: (4)

Derivation with respect to the m + 1 Lagrange multipliers yields the m + 1
conditions (2)–(3).
Eq. (4) shows that the density will belong to the Pearsonian family. 5 For

small values of m, it is possible to obtain explicit solutions. If m=0, meaning
that no information is given, beyond the fact that one seeks a density, then
one obtains the uniform distribution over D. As one adds the ,rst and sec-
ond moments, Golan (1996) recall that one obtains the exponential, and the
normal density. The knowledge of the third or higher moment does not yield
a density in closed form. Only numerical solutions may provide densities. In
this work, we show how densities may be obtained in a numerically e-cient
manner if third and higher moments are given. This work extends, there-
fore, Zellner and High,eld (1988) as well as Ormoneit and White (1999) by
providing a more e-cient estimation technique.
Substitution of (4) into (2) de,nes a function that turns out to be a potential

function, as shown later. The expression of this function is

P(
1; : : : ; 
m) ≡ exp(−
′0)=
∫
D

exp

(
m∑
i=1


ixi
)
dx (5)

so that

p(x)= exp

(
m∑
i=1


ixi
)/

P(
1; : : : ; 
m): (6)

For a given set of 
=(
1; : : : ; 
m)′, one could evaluate (6) and, thus, the
moment restrictions (3). This suggests as a ,rst estimation technique nonlinear
least squares (NLLS) applied to (3). As we rediscovered painfully, such

4 The double prime has been introduced for notational convenience only.
5 See, for instance, Johnson et al. (1994).
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an estimation yields multiple solutions and is rather slow. 6 As discovered
by Agmon et al. (1979a, b), a faster and numerically stable procedure is
available. This procedure uses the physical properties of the entropy de,nition.
In order to use this procedure, it is convenient to introduce further results.
Since

∫
D
p(x) dx=1, multiplication of the right-hand side of (3) by this

integral and the grouping under one single integral yields∫
D

(xi − bi)p(x) dx=0; i=1; : : : ; m:

Furthermore, writing p(x)= exp(
0+
∑m

i=1
i(xi−bi)), where 
0 = 
′0+
∑m

i=1
ibi

indicates that the number of computations required to evaluate (6) subject to
(3) may be reduced. Also, the passage from 
′0 to 
0 is a trivial linear trans-
formation. Again, p(x) must satisfy (3) and this yields a de,nition for 
0:

Q(
1; : : : ; 
m) ≡ exp(−
0)=
∫
D

exp

(
m∑
i=1


i(xi − bi)

)
dx: (7)

So that the probability can be rewritten as

p(x)= exp

(
m∑
i=1


i(xi − bi)

)/
Q(
1; : : : ; 
m): (8)

At this point we have obtained two equivalent de,nitions for the density,
namely Eqs. (6) and (8). Depending on the situation, one de,nition or the
other is useful.
With the de,nition of (7), we obtain that

gi ≡ @Q
@
i

=0 ⇒
∫
D

(xi − bi)p(x) dx=0

and, therefore, the zeros of the gradient of Q yield the ,rst-order conditions.
This computation validates the claim that Q de,nes a potential. 7 Next, we
obtain that

Gij ≡ @2Q
@
i@
j

=
∫
D

(xi − bi) (xj − bj)p(x) dx;

showing that the Hessian matrix is a variance–covariance matrix. 8 As a con-
sequence the Hessian matrix is symmetric and positive de,nite. An inverse

6 The technique developed by Ormoneit and White (1999) follows, however, this approach.
They show how such an NLLS algorithm may be implemented more e-ciently as in Zellner
and High,eld (1988), yet, they report estimations lasting several seconds whereas ours takes a
fraction of a second.

7 If U is an open subset of Rn a map f from U into Rn is called a vector -eld. For
instance, if F is a scalar function from U into R, then f=grad F de,nes a vector ,eld. If
for a given vector ,eld f there exists a scalar function F such that f=grad F then F is a
potential function and the vector ,eld f is said to derive from a potential.

8 See also Alhassid et al. (1978).
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of the Hessian will exist if the matrix is of full rank. This last condition im-
plies that, as long as p(x) is a density, the minimization of Q has a unique
solution. We write the gradient of Q as g and his Hessian matrix as G.
At this stage, we have obtained the ,rst key result, namely that the min-

imization of the potential function Q will yield a density satisfying moment
the conditions. We insist on the fact that the key step to obtain a solution
resides in a minimization rather than in a search for a zero of a map. It
turns out, that, numerically, the minimization is well de,ned, whereas the
search for a zero may even yield multiple solutions. The problem will be
numerically stable if Q is of full rank and if the solution is ,nite.
As Agmon et al. (1979a) point out, it is not guaranteed that the minimiza-

tion of the potential function will occur at ,nite distance. It is possible to
guarantee ,niteness of the solution, but to do so it is ,rst necessary to de,ne
how to compute the integrals involved. We turn to this issue now.

2.2. Gauss–Legendre approximation of the integrals

The construction of Q always involves the computation of an integral. For
numerical purposes, it is convenient to assume ,niteness of D. Under the
assumption that D is a ,nite interval [l; u], the a-ne function

z=[2x − (u+ l)]=(u− l)

will map x∈ [l; u] into z ∈ [ − 1; 1]. The Jacobian is (u − l)=2. In this case,
using a generic notation, all our integrals change from∫ u

l
h(x) dx to

∫ 1

−1

u− l
2

h
(
1
2
[z(u− l) + (u+ l)]

)
dz=

∫ 1

−1
h̃(z) dz:

This last integral may now be approximated using a Gauss–Legendre quadra-
ture (e.g. Davis and Polonsky, 1970), that is∫ 1

−1
h̃(z) dz ∼

n∑
j=1

h̃(zj)wj;

wj are the Gauss–Legendre weights and zj are the abscissa, in [−1; 1], where
the integrand should be evaluated. Those values are tabulated, for instance,
in Abramowitz and Stegun (1970).
We may now return to the computation of the entropy density. For given

zj ∈ [− 1; 1]; j=1; : : : ; n and boundaries l; u of the domain D, we may use

xj =[(u− l)zj + (u+ l)]=2 (9)

to obtain the equivalent of zj in the domain D.
With this approximation, we face the problem of minimizing the potential

Q(
)=
m∑

j=1

exp

(
m∑
i=1


i(xij − bi)

)
wj:
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To guarantee that the Hessian is of full rank, given the way the (xj; wj) are
obtained, it is necessary to have 2n¿m. Under this condition, even if the
problem is symmetrical (for instance because the mean and skewness is 0),
the Hessian will be well de,ned.
Introducing a matrix A with elements aij ≡ xij −bi, i=1; : : : ; m; j=1; : : : ; n,

n¿m, we obtain Q(
)=w′ exp(A
) where w′=(w1; : : : ; wn) is a row vector
with the n weights. 9 This expression shows that, in numerical applications,
the evaluation of Q can be vectorized and rendered very fast.
The minimization will yield a solution, since, under the stated assump-

tions, the matrix A′A is of full rank. This follows from the fact that the
transformation from zj into xj is not degenerate.
To obtain ,niteness of the solution, Agmon et al. (1979a, b) point out

that, for any direction taken, Q(
) should increase to in,nity as 
 gets large.
However, this condition is di-cult to implement and an alternative consists
in verifying the existence of a solution to conditions (2)–(3), i.e. obtaining
pi¿ 0, i=1; : : : ; n.

2.3. Numerical implementation

At this stage, we wish to show how the existence of a ,nite solution can
be guaranteed. The discretization of (2) and (3) yields

n∑
j=1

wjpj =1; (10)

n∑
j=1

wjxijpj = bi; i=1; : : : ; m; (11)

pj¿ 0; j=1; : : : ; n: (12)

This set of equations can be viewed as a linear programming problem where
one seeks a solution to m+1 equations under positivity constraints. We solve
this problem with the phase I step of the simplex algorithm (see for instance
Press et al., 1999). If a solution exists, the algorithm will ,nd it within m+1
and 2(m+ 1) steps.
If a solution exists, then it is known that Q will be minimized for some

,nite solution. The problem, then, is one of numerically minimizing Q(
).
As pointed out by Fletcher (1994), many algorithms are available. However,
if the problem is known to have a single minimum, as it will be the case
in this framework, Newton’s method works well. It is this method that we
implement to minimize the potential.

9 We interpret the vector 
 as a column vector.
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Algorithm 1.
1. We ,rst need to de,ne the domain D over which the density will be

de,ned. We restrict ourselves to the range [l; u]. Below we discuss how l
and u may be obtained. We use a n=40 point gaussian quadrature. This
quadrature associates to the points zj ∈ [ − 1; 1] the weights wj, j=1; : : : ; n,
where n=40. 10

2. Using (9) we map the zj into xj. We also de,ne the matrix A whose
jth line contains (yj; y2

j − b1; : : : ; ym
j − bm). We recall that Q(
)=w′ exp(A
)

where w′=(w1; : : : ; wn).
3. Set k=0. Use as a starting value 
(0) = (0; : : : ; 0) the vector with m

zeros.
4. At step k, set g(k)i = @Q(
(k−1))=@
i and G(k)

ij = @2Q(
(k−1))=@
i@
j. The
element g(k)i will be the ith element of a column vector g(k) with m compo-
nents. Similarly, G(k)

ij is the jth element of the ith line of the matrix G(k).
5. Let �(k) be the solution to G(k)�(k) =− g(k).
6. Update the vector of Lagrange multipliers 
(k) = 
(k−1) + �(k).
7. Set k= k + 1 and return to 4 unless a required accuracy has been ob-

tained.

In step 1 of the algorithm, it is necessary to choose the bounds l and u.
This choice is relatively easy if the entropy density is used in an empirical
likelihood context. It su-ces to choose boundaries somewhat larger than the
range of studentized data. If one is interested in the general construction of
an ED, a possible criterion is based on the accuracy of the approximation.
This accuracy may be computed with a numerical integration of the various
moments using the estimated ED. This computation is also a veri,cation that
the number of abscissa zj used in the gaussian quadrature is su-cient.

The Newton algorithm is based on the observation that if G(k)�(k) =− g(k)

then the approximation in a second-order Taylor expansion of Q, that is
Q(
(k−1) +�(k))=Q(
k−1)+�(k)g(k) + 1

2�
(k)′G(k)�(k), leads to a >at spot of Q,

that is an extremum. In step 6 of the algorithm, a typical criterion to stop
iterating is given by the Euclidean norm of the vector g(k). For most cases
considered in this work the algorithm converged within 10 iterations with a
precision of the gradient g(k) smaller than 10−6. This speed is remarkable
and makes it possible to use the entropy densities in situations that were not
possible before. Once the parameters 
 have been obtained the value of the
ED at some point x may be obtained using Eq. (8).
Agmon et al. (1979b) also suggest the use of an orthogonalized A matrix.

We followed their suggestion and included in our algorithm a Gram–Schmidt

10 The (zj; xj) for j=1; : : : ; n are tabulated for values of n up to 96 in Abramowitz and Stegun
(1970). We found that for our problems n=40 is su-cient.
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orthogonalization. For the problem at hand, such an orthogonalization did not
lead to an improvement of the speed of convergence towards an optimum.

2.4. Entropy densities for a given skewness and kurtosis

In statistical applications, it is easy to standardize a given sample rt ,
t=1; : : : ; T , by subtracting its mean and dividing by its standard deviation.
For this reason, we focus now, without loss of generality, on the study of
those densities that satisfy b1 = 0, b2 = 1, b3 = s, and b4 = k. In this case, the
parameters s and k represent skewness and kurtosis, respectively. Since a so-
lution to our problem, de,ned by Eqs. (10)–(12), exists only if the simplex
phase I problem is well behaved, we start with a rough grid-search over a
large skewness–kurtosis domain where a solution to the simplex algorithm
might exist. Given the obvious symmetry of the problem, we only consider
the case of positive skewness. We performed this grid-search by using values
of kurtosis ranging from 0 to 15 and with step-length of 0.5. For skewness,
we took a grid ranging from 0 to 6 with a step-length of 0.25. For each
skewness and kurtosis pair on the bi-dimensional grid, we ran the phase I
part of the simplex algorithm. 11 We found that the authorized domain will
be convex; i.e. there are no disconnected regions from the one determined
with high accuracy below.
Once we got an idea of the general shape of the authorized domain, we per-

formed a search of the exact boundary for a given kurtosis using a bisection
algorithm determining the boundary up to a precision of 10−6. Fig. 1 displays
the graph of the boundary in the kurtosis–skewness space. The actual domain
over which EDs exist is symmetric with respect to the horizontal axis. For
convenience we only present the upper half of the existence domain. Points
located under the curve are compatible with some ED. We call this domain
E. Comparison of the possible domain with the one obtained for instance
in polynomial approximations involving Hermite expansions (e.g. Barton and
Dennis, 1952 or Jondeau and Rockinger, 2001) indicates that EDs are de,ned
over a much larger set of possible values of skewness and kurtosis. 12

In later numerical computations, it will be necessary to restrict skewness
and kurtosis to the domain E to guarantee the existence of a density. For this
reason we consider a functional description of the authorized domain. 13 An

11 All computations in this research were done under GAUSS on a WINDOWS 98 platform.
12 In those contributions it is shown that skewness and kurtosis must be in the interior of a

domain similar to an elipse. Kurtosis may vary from 0 to 4 and the maximal allowed skewness
is

√
6=
√

3 +
√
6 ∼= 1:04 for a kurtosis of

√
6 ∼= 2:45.

13 In Jondeau and Rockinger (2001), the boundary constraint was imposed-using a linear inter-
polation. This method of imposing the boundary conditions may be the only one available for
domains that are di-cult to characterize. For the problem at hand, a simpler characterization
is possible.
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Fig. 1. Here we represent the frontier delimiting the skewness and kurtosis domain where
entropy densities exist. This graph represents only the upper half of the authorized domain.
The various letters A–F correspond to points for which we represent the entropy density in
later ,gures.

OLS ,t of k= as2 + bs + c indicates that for k ¿ 1 the skewness range is
[− s∗(k); s∗(k)] where 14

s∗(k)= [− b+
√

b2 − 4a(c − k)]=(2a); k ¿ 1: (13)

Next, we consider how the ED behaves as skewness, s, and kurtosis, k,
vary. In Fig. 1, we trace various pairs of skewness and kurtosis, represented
by stars, the density of which is represented in Figs. 2 and 3. An inspection
of these ,gures reveals a rich pattern of possible densities. For densities with
small kurtosis, the probability mass is squeezed towards the center. Introduc-
tion of skewness then leads to multi-modal densities. For densities with large
kurtosis and skewness, given the assumed ,niteness of the boundary, a small
hump in the tail of the distribution will accommodate the skewness. 15 We

14 The ,t between s and k turned out to be rather good. We found the values a=0:9325,
b=0:0802, c=0:9946.
15 For all possible skewness and kurtosis pairs chosen, our algorithm ,nds a density typically

in a small fraction of a second. This contrasts with other methods that involve at least a few
seconds for each ED evaluation. We veri,ed that one obtains the normal density for s=0 and
k =3.
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Fig. 2. Entropy densities for points A, B and C.

obtain that EDs may be of use in situations where the tails of the distribu-
tions are much thinner than the tails of the normal density. Inversely, k may
become very large allowing for rather thick tails.

3. A model with autoregressive heteroskedasticity, skewness, and kurtosis

3.1. The model

In this part of the paper, we wish to illustrate the usefulness of EDs by
showing how Bollerslev’s (1986) GARCH model can be extended to allow
for time variation in skewness and kurtosis. Hansen (1994) considers a similar
model where innovations are modeled as generalized Student-t. The gener-
alized Student-t does not allow for humps, hence, intuitively, the skewness–
kurtosis range is smaller than for EDs. Moreover, a direct description of the
parameters as skewness and kurtosis is not possible. Hansen’s contribution
also allows for an asymmetry of the density.
The general model we consider is given by

rt =%+ yt; (14)
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Fig. 3. Entropy densities for points D, E and F.

yt =&t't ; (15)

't ∼ ED(0; 1; st ; kt); (16)

&2
t = a0 + b0y2

t−1 + c0&2
t−1; (17)

st = a1 + b1yt−1; (18)

kt = a2 + b2|yt−1|; (19)

(st ; kt)∈E: (20)

In Eq. (14), rt represents 100 ln(St=St−1), where St is the closing price of
some asset at time t. Here, we assume a constant mean return, %. The inno-
vations, yt , are written as a product between the conditional volatility &t and
an innovation 't . In Eq. (16), we assume that 't follows an ED with zero
mean, unit variance, skewness st and kurtosis kt . Eq. (17) speci,es volatil-
ity as a simple GARCH(1; 1). Eqs. (18) and (19) assume that skewness and
kurtosis depend conditionally on past realizations of the residual yt .
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As usual, we impose that a0, b0, and c0 be positive as well as that b0 +
c0 ¡ 1. 16 In Eq. (18), a1 and b1 are estimated freely. To guarantee positivity
of kurtosis, one may assume a2 and b2 ¿ 0. This constraint may, however,
be overly restrictive. If the parameter a2 is found to be large, then b2 could
be negative as long as yt−1 remains small. For a given sample, this may
be the case. Intuitively, a negative b2 corresponds to a situation where, after
the realization of a relatively large return in absolute value, kurtosis becomes
smaller than average.
In this paper, we also estimate speci,cations of skewness and kurtosis

where

st = a1 + b1
yt−1

&t−1
; (21)

kt = a2 + b2

∣∣∣∣yt−1

&t−1

∣∣∣∣ ; (22)

thus, involving standardized residuals.
Our speci,cation encompasses Bollerslev’s GARCH(1; 1) model with Gaus-

sian errors. This is obtained by setting b1 = b2 = 0, a1 = 0, and a2 = 3 for all
t. We do not encompass the case of errors following the Student-t or the
generalized error distribution (GED).
We also impose that (st ; kt)∈E in the following way: If kt is out of the

authorized domain, we impose a large penalty for the log-likelihood at time
t. If kt is in E, then, we compute using (13) the upper skewness boundary
s∗. If |st |¿s∗, we impose again a large penalty for the log-likelihood.

To ease the estimation, we standardize returns by computing the mean %
separately. In a preliminary step, we also divide rt by its standard deviation. 17

3.2. Estimation

The estimation of the parameters follows various steps. In a ,rst step,
we estimate the unconditional mean % using as estimate %̂=1=T

∑T
t=1 rt .

This yields the innovations, de,ned as yt = rt − %̂. It is with these innova-
tions that we estimate the GARCH model with time-varying skewness and
kurtosis.
The estimation of the remaining parameters is performed by maximizing the

empirical likelihood. To perform a maximization, it is necessary to have an
optimization routine and an objective function. We now discuss the algorithm

16 Least stringent constraints could also be used.
17 In other words, we estimate the model for a series of returns with mean 0 and unit standard

deviation. It may not su-ce to standardize returns with standard deviation because of extreme
values. For series where extremely large returns are present, it may be necessary to choose
a particularly large domain D and a standardization by a number larger than the standard
deviation.
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yielding the objective function, then we discuss the maximization algorithm
used. The di-culty that we have is that we should ideally be able to impose
restrictions on the parameters so that all the st and kt are always in E. That
would mean imposing several thousand inequality constraints. Not having
access to such code, we truncate skewness and kurtosis to the domain while
imposing penalties.
The objective function will involve a parameter vector, say +=(a0; b0; c0; a1;

b1; a2; b2), and the innovations yt; t=1; : : : ; T . At each call to the proce-
dure that computes the objective function, the parameter vector and the in-
novations have to be supplied. Within the procedure we use the following
algorithm:

Algorithm 2.
1. This is an initialization step. We de,ne ,=10000, some large number

that will be used as a penalty. We de,ne a lower and an upper boundary
for kurtosis, that is kl =1 and ku =16, respectively. We also set the limits of
the domain D su-ciently large to guarantee that it contains yt=&t for all t.
We initialize the dynamics of volatility using &2

0 = 1=T
∑T

t=1 y
2
t . To de,ne the

domain over which the EDs exist we set a=0:9325; b=0:0802; c=0:9946,
and e=0:001.
2. We set t=2 and initialize a vector l with T − 1 zeros that will contain

the log-likelihoods.
3. Here we compute &2

t = a0 + b0y2
t−1 + c0&2

t−1; st = a1 + b1yt−1; kt = a2 +
b2|yt−1|; 't =yt=&t .

4. If kt ¿ku we compute .k =(kt−ku), and truncate the kurtosis by setting
kt = ku. Similarly, if kt ¡kl we compute .k =(kl − kt), and set kt = kl.
5. Now, we compute the limit of skewness beyond which EDs no longer

exist. That is s∗(kt)= [− b+
√

b2 − 4a(c − kt)]=(2a)− e. We introduce the e
to be certain that we are in the interior of the authorized domain.
6. Now we truncate skewness in case of exceedance. If st ¿ s∗ then we

set .s =(st − s∗), and st = s∗. If st ¡− s∗ then we set .s =(−s∗ − st), and
st =− s∗.
7. Given st and kt we construct the ED using algorithm 1.
8. Now we evaluate the ED, say dt , at the point 't and compute the

log-likelihood for period t, lt = ln(dt)−ln(&t). The term ln(&t) comes from the
Jacobian of the transform from 't into yt=&t . When a boundary on skewness
or kurtosis is binding then .s or .k get added to the likelihood, lt .
9. Set t= t + 1. Continue with step 3 until t ¿T .

After each run through the sample, the procedure exports the vector
of log-likelihoods lt that will be used by the optimization routine. Many
optimization routines exist. We used the Broyden, Fletcher, Goldfarb, and
Shannon (BFGS) algorithm (see Nocedal and Wright, 1999).



M. Rockinger, E. Jondeau / Journal of Econometrics 106 (2002) 119–142 133

3.3. Properties of the estimates

We will estimate Eq. (14)–(20), or alternatively the same model but with
(18) and (19) replaced by (21) and (22). Given that we assume for the er-
rors a certain semi-nonparametric representation it follows that our estimation
becomes one of empirical maximum likelihood. This raises the issue of the
type of standard errors to use. 18

We note as LE
Q(+;y) the quasi likelihood obtained by using the entropy

density for the residuals. We let y=(y1; : : : ; yT )′ the vector of innovations
and + the vector of all parameters. The quasi-maximum likelihood (QML)
estimate +̂ is obtained as solution to

+̂∈ argmax
+∈1

[ln LE
Q(+;y)]:

The limit distribution is given by
√
T (+̂− +0) ⇒ N(0; h(+0)−12h(+0)−1); (23)

where +0 is the true value of +, and where ⇒ indicates convergence in
distribution. The matrices h(+0), respectively, 2 may be estimated using

ĥ(+0)=T−1 @2LE
Q(+̂;y)
@+@+′

∣∣∣∣∣
+̂

;

2̂=T−1
T∑

t=1

[
@LE

Q(+̂;y)
@+

∣∣∣∣∣
+̂

@LE
Q(+̂;y)
@+′

∣∣∣∣∣
+̂

]
:

If for given parameters the entropy density correctly speci,es the true density
of the 't then, White (1994) has shown that 2=− h(+0) and the maximum
likelihood has the familiar asymptotic normality

√
T (+̂− +0) ⇒ N


0; plim

T→∞


− 1

T

[
@2 ln LE

Q(+;y)
@+@+′

∣∣∣∣∣
+0

]−1



 :

Even though we believe that the modeling of innovations with a more general
density allowing for time varying moments is a step towards the correct
description of innovations, given the complexity of ,nancial data, it is wise
to assume that there is still mis-speci,cation in our model. For this reason,
we recommended the use of the robust formulas in (23). In the empirical
work we will only have these types of standard errors.

18 The following discussion is inspired by Mittelhammer et al. (2000, p. 248–249).
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Table 1
Descriptive statistics. This table represents moments computed with GMM and a correction for
heteroskedasticity.1

SP 500 FT 100 NIKKEI

Mean 0.1774 0.1844 0.1267
(s.e.) 0.056a 0.069a 0.060a

Var 2.1479 2.678 2.3169
(s.e) 0.063a 0.113a 0.072a

Skew −0:3243 −0:3874 −0:3557
(s.e.) 0.238 0.591 0.217
Kurt 3.2179 8.7147 3.7658
(s.e.) 0.965a 3.987a 0.647a

Normality 12.08 5.64 36.50
p-value 0.00 0.06 0.00
Engle 79.05 48.81 52.95
p-value 0.00 0.00 0.00

1The numbers in parenthesis, i.e. s.e., are the standard errors of the statistics. Normality
corresponds to the Jarque–Bera test of normality. This statistics is obtained as the sum of
the squared standardized skewness and the squared standardized excess-kurtosis. Engle is the
Lagrange-multiplier statistic TR2 of joint signi,cance of the regressors in an OLS regression of
squared centered returns on their lags. There are 1500 weekly observations in the sample.
Note: In this and the following tables the superscripts a and b indicate statistical signi,cance
at the 5% respectively the 10% level.

4. Empirical results

4.1. The data used

Out of Datastream, we extracted daily closing prices for the S&P 500 Com-
posite Index, the FT 100 Share Index, and the Nikkei 225 Stock Index. Using
closing prices, sampled for each Tuesday (or the day closest to it), we con-
structed weekly returns. The sample covers the period from August 27, 1971
through May 31, 2000. Our database, therefore, consists of 1500 observa-
tions. Table 1 provides sample statistics where all moments are computed in
the GMM setting of Richardson and Smith (1993), thus, controlling for het-
eroskedasticity. All the series under consideration are negatively skewed and
fat-tailed. Furthermore, the Engle statistics reveals the presence of conditional
heteroskedasticity in the data.

4.2. Preliminary estimation

In order to get an idea of the unconditional behavior of the model, we start
with the estimation of traditional models assuming for the residuals normality,
a Student-t and a generalized error distribution (GED). This means that we
consider Eqs. (14)–(17), where we replace the entropy density either with a
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normal density, (2.)−1=2 exp(−0:5x2), a Student-t with 4 degrees of freedom,
5((4+ 1)=2)=5(4=2) (4.)−1=2(1 + x2=4)(4+1)=2, or the GED with parameter 6.
The density of the GED is given by (6 exp[ − 0:5|x=
|6])=(
2((6+1)=6)5(1=6))
where 
= {2−2=65(1=6)=5(3=6)}1=2.

The estimates are reported in Table 2. We obtain for the parameters typical
values. The parameter b0 oscillates around 0.1 and c0 around 0.88 suggesting
that there is a fair amount of persistence in volatility. When we inspect the
parameters for given data of various models we notice that the estimates
remain very similar. Next, we may inspect the standard errors. We ,nd that
the robust standard errors are similar across the various models.
It is further possible to compare the gaussian model with the Student-t

and GED since the Student-t encompasses the normal case for 4=∞ and the
GED does the same for 6=2. To perform the test, we may either directly
use the Wald t-test associated with the parameters 4 and 6 or the likelihood
ratio test of the Gaussian restriction. For both types of tests, we notice that
we always soundly reject the gaussian restriction. When we consider the SP
500 we ,nd that the parameter 4 is relatively large taking the value 11.57
and the 6 the value 1.66. This suggests that this series has innovations that
are close to the gaussian case.
Now, we turn to a model where errors follow an unconditional ED

obtained by setting b1 = b2 = 0, i.e. skewness and kurtosis are constant. For
this estimation, we use as starting values for skewness and kurtosis the es-
timates reported in Table 1 and as starting values of the volatility equation,
(17), the ones of the GARCH(1,1) model. Convergence was achieved after a
few seconds. The results are presented in Table 3. We notice values for the
estimates of the volatility equation (17) that are close to the values reported
in Table 2.
Turning to skewness and kurtosis, for the SP 500 we obtained in Table 1

the values −0:32 and 3.22. Now we obtain −0:28 and 3.87, thus, the pa-
rameters are relatively close. However, for the FT 100, this is not the case.
Skewness took the value −0:38 in Table 1 but now takes the value −0:78.
Since it is known that conditional volatility creates fat-tails, this suggests that
the ,ltering by the conditional volatility ampli,es the tail behavior, question-
ing the speci,cation of GARCH models for certain series.
Even though the ED does not encompass the Student-t nor the GED, one

may ask which model we should select. Several selection criteria may be used
such as the Akaike or Schwarz criterion. Since the number of parameters is
equal in all these models, the selection among the Student-t, the GED or the
ED boils down to the choice of the model with the largest likelihood. Both
for the SP 500 and the FT 100 we ,nd that the entropy performs best. For the
Nikkei we ,nd that the Student-t has a higher likelihood than the ED which
in turn performs better than the GED. This observation suggests that there
are extreme realizations in the Nikkei that the ED has di-culties to capture.
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Table 2
GARCH estimates with traditional densities. This table displays the results of the estimation of traditional models.1

Gaussian model Student-t GED

SP 500 FT 100 NIKKEI SP 500 FT 100 NIKKEI SP 500 FT 100 NIKKEI

a0 0.0292 0.0264 0.0143 0.0223 0.0224 0.0124 0.0283 0.0282 0.0159
0.0147a 0.0100a 0.0091 0.0115b 0.0072a 0.0060a 0.0143a 0.0094a 0.0082b

b0 0.1078 0.0937 0.1148 0.0826 0.0651 0.0921 0.1045 0.0883 0.1272
0.0242a 0.0191a 0.0345a 0.0196a 0.0136a 0.0216a 0.0239a 0.0177a 0.0306a

c0 0.8667 0.8836 0.8807 0.8757 0.8814 0.8553 0.8704 0.8835 0.8670
0.0323a 0.0203a 0.0387a 0.0324a 0.0210a 0.0335a 0.0324a 0.0208a 0.0330a

4 — — — 11.5751 8.2593 6.0466 — — —
2.8544a 2.0155a 0.9527a

6 — — — — — — 1.6635 1.4506 1.3292
0.0925a 0.1420a 0.0826a

Lik −2014:76 −1990:22 −1958:18 −2002:75 −1939:58 −1904:62 −2007:62 −1957:01 −1914:56
LRT — — — 24.03 101.27 107.13 14.29 66.41 87.25

1We describe the innovations yt = rt − 1=T
∑T

t=1 rt by assuming that yt = &t't where &t = a0 + b0y2
t−1 + c0&2

t−1 and 't is either modeled with
the standard normal, the Student-t, or the generalized error distribution (GED).



M. Rockinger, E. Jondeau / Journal of Econometrics 106 (2002) 119–142 137

Table 3
GARCH estimates with entropy density and constant skewness and kurtosis. This table repre-
sents the parameters of the GARCH regressions where innovations are assumed to be distributed
as an entropy density.1

SP 500 FT 100 NIKKEI

a0 0.0233 0.0329 0.0221
0.0117a 0.0109a 0.0099a

b0 0.0967 0.0965 0.1384
0.0216a 0.0219a 0.0324a

c0 0.8823 0.8710 0.8435
0.0283a 0.0252a 0.0365a

s −0:2839 −0:7907 −0:4453
0.1041a 0.5405 0.1516a

k 3.8767 9.1575 5.2828
0.2469a 5.2757 0.7179a

Lik −2001:31 −1932:80 −1910:01
LRT 26.91 114.84 96.34

1Here skewness s and kurtosis k are supposed to be constants.

In Fig. 4 we display the shape of the various distributions of 't for the
FT 100. The choice between a normal and Student-t is not an obvious one
since their shape is very close. The GED, on the other hand, diVers from
the normal and the Student-t. Its peak is much more pronounced. One of the
disadvantages of these distributions is that they are symmetric and, therefore,
they do not allow for an asymmetry. An inspection of the ED reveals that
there is a strong asymmetry in the data. This skewness is due to large negative
realizations.

4.3. Estimation of the general model

A ,rst remark is that in optimization problems of this kind, the choice of
initial values is quite important. Even though the code has been written
in such a manner that the parameters end up in the authorized domain, the
estimation is sensibly faster if one starts with an interior parameter, i.e. all
the constraints are satis,ed. We will use in our estimations the parameter
estimates obtained from the unconditional entropy density estimation.
The left part of Table 4 corresponds to speci,cation I, that is skewness

and kurtosis are described by Eqs. (18) and (19). The right part of the table
corresponds to the speci,cation involving Eqs. (21) and (22).
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Fig. 4. Various unconditional densities obtained in a GARCH estimation. This graph is for the
FT100.

A ,rst comparison between the volatility parameters of Table 4 with those
of Table 3 reveals that these parameters are essentially unaVected by intro-
ducing time-varying skewness and kurtosis. For instance, the parameter b0
of the FT 100 took the value 0.0219 when skewness and kurtosis were held
constant, whereas now it becomes 0.0167.
An inspection of the constant in the skewness equation with s of Table 3

indicates that for certain speci,cations this parameter is rather unstable. For
the FT 100, the constant markedly decreases in absolute value from −0:79 to
−0:31. Interestingly, the parameter a1 is now very close to the unconditional
skewness estimated in Table 1.
Using the likelihoods of the various models it is possible to test the

restriction b1 = b2. We notice that, for the Nikkei, speci,cation I appears
as an improvement over the model with constant skewness and kurtosis, and
similarly speci,cation II for the SP 500. At ,rst glance, for the other esti-
mations, the model with time varying skewness and kurtosis does not bring
much improvement from a statistical point of view. A more careful inspec-
tion of the t-statistics of the parameters shows that the lagged parameter b1
in the skewness dynamic of the FT 100 is statistically diVerent from 0. Also
from an economic point of view, an inspection of the magnitude of the point
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Table 4
GARCH estimates with entropy density and time-varying skewness and kurtosis.1

Speci,cation I Speci,cation II

SP 500 FT 100 NIKKEI SP 500 FT 100 NIKKEI

a0 0.0203 0.0308 0.0253 0.0203 0.0314 0.0230
0.0120b 0.0093a 0.0102a 0.0120b 0.0096a 0.0099a

b0 0.0987 0.0823 0.1597 0.0959 0.0834 0.1396
0.0234a 0.0167a 0.0577a 0.0217a 0.0175a 0.0322a

c0 0.8837 0.8777 0.8045 0.8862 0.8838 0.8467
0.0296a 0.0209a 0.0824a 0.0287a 0.0226a 0.0321a

a1 −0:2832 −0:3175 −0:3298 −0:3131 −0:3386 −0:6859
0.0895a 0.2148 0.1304a 0.0923a 0.2669 0.3037a

b1 0.1202 0.2337 −0:0892 0.1119 0.2495 −0:1967
0.0907 0.0817a 0.1084 0.0812 0.0867a 0.1907

a2 4.0575 4.3433 4.8576 4.2132 4.1606 5.2450
0.3168a 1.7948 0.5115a 0.3476a 4.3792 1.4504

b2 −0:0310 0.6884 0.0125 −0:1664 1.4494 1.4055
0.2124 0.5354 0.1534 0.2188 3.6701 1.8705

Lik −1995:16 −1931:74 −1901:27 −1994:68 −1932:05 −1909:67
LRT 12.30 2.11 17.50 13.26 1.50 0.69

1In this table, we estimate a GARCH model on the full sample allowing for time-varying
skewness and kurtosis. In speci,cation I, skewness and kurtosis are modeled as st = a1+b1yt−1
and kt = a2 + b2|yt−1|. In speci,cation II, the model is st = a1 + b1yt−1=&t−1 and kt = a2 +
b2|yt−1=&t−1|. The label LRT corresponds to a likelihood ratio test statistics of the restricted
model where b1 = b2.

estimates of b1 and b2 shows that these coe-cients are relatively large. One
possible interpretation of these results is that skewness and kurtosis measure
extreme realizations that occur only seldomly. Due to this rare occurrence,
statistical tests will have little power.
To sum up, our model of conditional skewness and kurtosis reveals some

conditional behavior at a weekly frequency, however, this dynamics is rather
di-cult to interpret.

5. Conclusion

In this paper, we have ,rst shown how entropy densities can be estimated
in an e-cient manner. We characterize the skewness and kurtosis domain
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over which entropy densities will be well de,ned while retaining the mean
equal to zero and the variance equal to one. In a numerical application,
involving series of weekly stock returns, we show that the entropy density is
of value in traditional GARCH models, i.e. where skewness and kurtosis is
not time variant. Turning to the model allowing for time varying parameters
we show that the estimation of a model involving a time-varying skewness
and kurtosis is possible.
A further contribution is that we show how skewness and kurtosis may be

rendered time varying using entropy densities. We ,nd that from a statistical
point of view there is little evidence that skewness and kurtosis are dependent
on past returns. One possible reason for this ,nding is that these moments
are driven by extreme realizations that occur only infrequently. Due to this
rare occurrence statistical test may lack power.
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