
Journal of International Money and Finance
19 (2000) 885–915

www.elsevier.nl/locate/econbase

Reading the smile: the message conveyed by
methods which infer risk neutral densities

Eric Jondeaua, Michael Rockingerb,*

a Banque de France, Centre de recherche, 31 rue Croix des Petits Champs, 75049 Paris, France
b HEC-School of Management, Department of Finance, 78351 Jouy-en-Josas, France

Abstract

In this study we compare the quality and information content of risk neutral densities
obtained by various methods. We consider a non-parametric method based on a mixture of
log–normal densities, the semi-parametric ones based on an Hermite approximation or based
on an Edgeworth expansion, the parametric approach of Malz which assumes a jump-diffusion
for the underlying process, and Heston’s approach assuming a stochastic volatility model. We
apply those models on FF/DM exchange rate options for two dates. Models differ when
important news hits the market (here anticipated elections). The non-parametric model provides
a good fit to options prices but is unable to provide as much information about market parti-
cipants expectations than the jump-diffusion model. 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Much of the literature following the seminal work on option pricing by Black and
Scholes (1973) and Merton (1973) assumed that the asset underlying an option fol-
lows a log–normal diffusion process. Empirical studies of option volatility, such as
Rubinstein’s (1994) presidential address, have shown that exchange rate options, out
of or in the money, are associated with a different level of volatility than at the
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money options, a feature called the options smile. This finding is in contradiction
with the assumption of a log–normal distribution for the underlying asset and shows
that to correctly price options more general models are required.

Various methods have been suggested to extract out of options’ prices the underly-
ing risk neutral density (RND). This density is related to market participants’ expec-
tations of the future price process in a risk–neutral environment. As shown by Bahra
(1996) and Campa et al. (1997), once such a density is obtained it is possible to
compute moments as well as confidence intervals. As such, the RND plays an
important role as a tool to evaluate the credibility of the central bank. RNDs are also
important for an investor, for instance in risk management, who needs to quantify in
terms of probability how a market may evolve in the future. RNDs can also be used
to price exotic options.

The contribution of this study is the comparison of the advantages and drawbacks
of various methods which extract risk neutral densities applied to FF/DM European
type exchange rate options. We were able to obtain a time series of observations of
OTC options covering 20 dates ranging between May 1996 and June 1997. For each
day we dispose of a set of maturities up to one year. First, we discuss the implemen-
tation of the various methods in a cross sectional framework by focusing on just
two dates: 17 May 1996, a day when the exchange rate markets were known to be
calm, and on 25 April 1997, a few days after the French President Chirac announced
dissolution of the National Assembly, which implied nation-wide elections. Second,
we run all methods in a time series context which allows us to further retain a
satisfying model for the exchange rate data at hand. The discussion of the message
contained in a time series of confidence intervals obtained from RNDs illustrates the
usefulness of this type of research. During the period under investigation we have
another noticeable event in the summer of 1996 where we find a significant
depreciation of the FF/DM due to the uncertainty about the ability of the French
government to satisfy the Maastricht criteria (especially the deficit criteria).

We first provide a description of a large number of methods that allow construction
of a RND. A first method based on approximating the RND with a mixture of den-
sities, which could be callednon-structural, is advocated by Bahra (1996) and Campa
et al. (1997). Melick and Thomas (1997) indicate in addition how to price American
options. In a study by So¨derlind and Svensson (1997) it is shown how this mixture
of densities method can be applied to various financial assets asking what can be
learnt from the point of view of a policy-maker.

We also consider an approach based on the work of Jarrow and Rudd (1982) who
developed a method for option pricing under the assumption that the underlying asset
is not log–normally distributed. They show how the RND can be obtained as an
Edgeworth expansion around a log–normal density. We consider this approach to
be ofsemi-nonparametricnature. Their approach has been implemented by Corrado
and Su (1996, 1997) who show that with this method options can be better priced.

In a similar spirit Madan and Milne (1994) describe the underlying RND with an
Hermite polynomial approximation. Abken et al. (1996) provide an application and
show how higher moments of the underlying asset are perceived to vary through time.

Bates (1996a,b) and Malz (1996a,b) go one step further and consider astructural
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model by assuming that the underlying process follows a jump-diffusion, and in
particular a Bernoulli version. Thus, they assume a full specification for the underly-
ing price process. The RND obtained in their model depends on some parameters
which can be estimated from options prices. Their work aims at extracting infor-
mation concerning market participants expectations out of options prices.

Further structural models in which the price process of the underlying asset is
fully specified are models of stochastic volatility. Hull and White (1987), Chesney
and Scott (1989), Melino and Turnbull (1990), and Ball and Roma (1994), Chesney
and Scott (1989), Melino and Turnbull (1990) and Ball and Roma (1994), assume
that volatility follows a diffusion process. To make their models tractable they have
to make simplifying assumptions concerning the correlation between volatility and
the underlying asset’s return. Heston (1993) by assuming a different process for
volatility and by using a different numerical approach provides an almost closed
form solution for option prices for a more general stochastic volatility environment.

The aim of most of those studies is to provide a pricing tool. Breeden and Litzen-
berger (1978) observe that the second derivatives of an options’ price with respect
to the strike price yields the RND. This observation makes it possible to derive from
any option pricing model the underlying RND. In a similar vein, Gesser and Poncet
(1997) derive an interesting term structure of volatility and compare the actual term
structure with the ones generated by Hull and White and by Heston.

Several other approaches to obtain a RND have been proposed. Aı¨t-Sahalia and
Lo (1998) provide a non-parametric method based on time-series analysis and kernel
estimates. Stutzer (1996) suggests a multistep procedure where the initial step also
involves historical prices of the underlying asset. Rubinstein (1994) and Jackwerth
and Rubinstein (1995) develop a method based on binomial trees. We restrict our-
selves to models which do not involve trees and in which no history of the underlying
asset is required.

Unlike some of the literature which has addressed the question how to price
options under non-constant volatility (e.g. Derman and Kani, 1994; Dumas et al.,
1998; Dupire, 1994; Shimko, 1993 as well as Stein and Stein, 1991) we address the
question of the information content in options of various maturities.

In Section 2 we review various non-structural, semi-nonparametric, and structural
methods. In Section 3 we introduce the data. Section 4 contains a cross-sectional
comparison of the methods with a discussion of the parameters obtained for our
structural models and a comparison of higher moments and confidence intervals. In
Section 5 we turn to the time-series comparison. Section 6 concludes. Estimation
issues are relegated to Appendix A.

2. Recovering RNDs

The following section outlines notation and the general paradigm within which
we evaluate RNDs. Several of the methods described below could be adapted to
instances in which the underlying asset is not an exchange rate. Such instances
include Black’s (1976) model for options on futures.
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Let St be the price att of a unit of foreign currency in local money.1 A European
call option written onSt gives its owner the right to buy the underlying asset for
the exercise (also called strike) priceK at the expiration (or maturity) datet. Since
a rational investor will only exercise his right if he realizes a profit, the payoff for
a call is max(St2K,0).

A European put option written onSt gives the owner the right to sell the underlying
asset for the exercise priceK at the expiration datet. Exercise beforet is not poss-
ible. The payoff for a put is max(K2St,0).

Under the assumption that the market is arbitrage free, Harrison and Kreps (1979)
show that there exists a probability density for the underlying price process such
that the call and put option price can be written as

Ct5e−rT E
1`

St5K

(St2K)a(St,t;St,t|q)dSt, (1)

and

Pt5e−rT E
St5K

0

(K2St)a(St,t;St,t|q)dSt, (2)

whereq is a vector of parameters describing the RNDa(·), and where we defined
the time to expiration asT=t2t.2

2.1. The benchmark case of log–normality: Garman–Kohlhagen

2.1.1. The model
Much of the early research on options has assumed a given price process forSt,

for instance that St follows a log–normal diffusion such as:

dSt5mStdt1sStdWt, (3)

where m, and s represent respectively the instantaneous mean and volatility and
whereWt is a Brownian motion with respect to some probability measureP.

Under such assumptions for the underlying asset, it can be shown that in a risk–
neutral world the processSt can be written as:

dSt5(r2r∗)Stdt1sStdW∗
t , (4)

whereWt
* is again a Brownian motion with respect toQ, an equivalent martingale

measure and wherer and r* represent the domestic and foreign continuously com-
pounded risk free interest rates. Under log–normality the RND associated with the

1 For instance for the DM/FF options,St will represent the number of FF necessary to acquire one
unit of DM

2 A textbook level derivation can be found in Duffie (1988, p. 115).
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future exchange rate can be obtained by the fact that ln(St) follows a normal with
mean ln(St)+(r2r*2s2/2)T and variances2T. This result follows from Ito’s lemma.3

Thus, the RND is

a(St)5
1

Î2p

1
sSt

exp52
1
21ln(St)−ln(St)−(r−r∗−s2/2)T

sÎT 2
2

6.

For this situation call and put options can be evaluated as truncated expectations.
Garman and Kohlhagen (1983), following the methodology outlined by Black and
Scholes (1973) and Merton (1973) obtain:

C(St,T,K,s,r,r∗)5e−r∗TStF(d1)2e−rTKF(d2), (5)

P(St,T,K,s,r,r∗)52e−r∗TSt[12F(d1)]2e−rTK[12F(d2)], (6)

d15

ln(St/K)+(r−r∗+
1
2
s2)T

sÎT
, (7)

d25

ln(St/K)+(r−r∗−
1
2
s2)T

sÎT
. (8)

As a consequence of non-arbitrage, under the risk–neutral probability the dis-
counted expectation of the future price must be equal to the current price. This
translates into the followingmartingale restriction:

St5e−(r−r∗)TE
1`

0

Sta(St)dSt.

3 From (Eq. (4)) we obtain d ln(St)=(r2r*2[1/2]s2)dt+sdWt
* and hence ln(St)=ln(St)+(r2r*

2[1/2]s2)T+s(Wt*2Wt
*). SinceWt*2Wt

* is distributed as a normal random variable with mean 0 and
varianceT we can conclude. We recall that if ln(S)|N(m,s2) then the density ofS is f((ln(S)2m)/s)/(sS)
and its distribution function isF((ln(S)2m)/s). In this work f and F represent always the density and
the cumulative density of the normal distribution.
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2.1.2. The link between deltas and strike prices
OTC options’ quotation is not done in terms of prices for a set of exercise prices

but in terms of volatilities for options of various deltas. Given volatility, the spot
exchange rate, the various interest rates, and time to maturity, there exists as we
indicate below, a one-to-one relation between deltas and the strike price.

The delta of an option is defined as the derivative of the price with respect to the
underlying value. Hence, for a call, and respectively for a put, we have

dC5
∂C
∂St

(St,T,K,s,r,r∗)5e−r∗TF(d1),

dP5
∂P
∂St

(St,T,K,s,r,r∗)5e−r∗TF(2d1),

whered1 is defined in Eq. (7). Sinced is a strictly decreasing function ofK, for
eachd there corresponds a unique strike price which can be extracted numerically.

Since European calls and puts are related through the put-call parity, if we have
theK for a call then 12d corresponds to a put with the same volatility and the same
K. In other words, rather than working with calls and puts we focus only on calls.
In practice only in the money call and put options are quoted. The non-existence of
call and put options with a same strike implies that we cannot back out further
information such as an implied spot exchange rate.

Once the strike priceK is obtained it is possible to invert the pricing Eqs. (5)–
(8) for each option and to obtain for each one a price in FF.4

2.2. A non-structural approach

Focusing on Eq. (1), we obtain by applying Leibniz’ rule, as in Breeden and
Litzenberger (1978), that

∂2Ct

∂K25e−rTa(K,t;St,t|q). (9)

Thus, a simple computation of second derivatives gives us the actualized RND.
This suggests a first method to extract a RND where the only (yet key) assumption
to be made is that there exist enough strike prices to approximate numerically the
density and where we need the assumption of arbitrage-free markets.5

However, numerical derivatives are known to be numerically unstable, and a more
fruitful strategy is to assume that the RND,a(·), takes certain particular expressions.

4 If prices were quoted in numeraire, then, as the underlying asset changes, it would be necessary to
continuously update the options price. Further, if options were quoted for a given set of exercise prices,
as the spot rate moves it would be necessary to introduce new strike prices.

5 It should be mentioned thata(·) is the undiscounted RND on which we focus in this study whereas
e2rTa(·) represents an Arrow–Debreu state price. In the literature this state price gets sometimes referred
to as the RND.
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Sherrick et al. (1996) assume fora the Burr III distribution and Abadir and Rockinger
(1998) fit densities derived from Kummer functions. In this work we do not pursue
this road but follow Bahra (1996), Melick and Thomas (1997) and So¨derlind and
Svensson (1997) who describea as a mixture of log–normal distributions.

Let l(St;mi,si) (L(St;mi,si)) denote the log–normal density (and its associated cdf)
with parametersmi andsi then

Ct5e−rTOM
i51

ai E
1`

St5K

(St2K)l(St;mi,si)dSt

will describe the option price as a mixture ofM log–normal distributions. Theai

are positive and sum up to 1. This formula can be evaluated easily since the formula
for truncated expectations of log–normals,6

E
1`

St

(St2K)l(St,q)dSt5(E[St|St.K]2K)Pr[St|St.K],

gives us a formula, equivalent, from the point of view numerical complexity, to the
Garman–Kohlhagen formula,

Ct5e−rTOM
i51

ai exp(mi1
1
2
s2

i T)1312F1ln(K)−mi−s2
i T

siÎT 242K312F1ln(K)−mi

siÎT 242.

In addition, the martingale constraint can be imposed with

Stexp((r2r∗)T)5OM
i51

ai exp(mi1
1
2
s2

i T).

2.3. A semi-nonparametric approach involving Edgeworth expansions

In the following section we outline the method developed by Jarrow and Rudd
(1982) for which a numerical application can be found in Corrado and Su (1996).7

6 Johnson et al. (1994), p. 241. indicate that ifS|N(m,s2) then E[S|S.

K]=exp(m+
1
2
s2)

1−F(U0−s)
1−F(U0)

, where U0=
ln(K)−m
s

.

7 Below we adapt their work to the pricing of European foreign exchange options.
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The idea of Jarrow and Rudd (1982) is to capture deviations from log–normality by
an Edgeworth expansion of the RNDa(St,t;St,t|q) in Eq. (9) around the log–normal
density.8 The use of an Edgeworth expansion in this context is conceptually similar
to Taylor expansions but applies to functions. In a conventional Taylor expansion,
some function is approximated at a given point by a simpler polynomial. Here, the
RND is approximated by an expansion around a lognormal density. A further differ-
ence is that expansions are usually made to obtain simplifications whereas here the
approximation, by involving parameters which can be varied, allows us to generate
more complicated functions.

In the next section we will present an alternative approach given by Madan and
Milne (1994). There it is assumed that the RND can be obtained as a multiplicative
perturbation of some given density. This multiplicative error allows for a certain
control of higher moments. As shown further on, both methods can yield numerically
similar results, conceptually, however, they are different.

First we will sketch how Edgeworth expansions can be obtained. LetA be the
cumulative distribution function of a random variableX and a its density. Define the

characteristic function ofX asx(A,t);Eeixta(x)dx. If moments ofX exist up to order

n then there exist cumulantskj(A) implicitly defined by the expansion

ln(x(A,t))5On21

j51

kj (A)
(it)j

j!
1o(tn21).

If a characteristic function is known, by taking an expansion of its logarithm
aroundt=0, it is possible to obtain the cumulants. Between cumulants and moments
up to the fourth order we havek1(A)=E[X], k2(A)=Var[X], k3(A)=E[(X2E[X])3],
k4(A)=E[(X2E[X])4]23Var[X]. Jarrow and Rudd show that an Edgeworth expansion
of the fourth order for the true probability distributionA around the log–normal
distributionL can be written, after imposing the condition that the first moment of
the approximating density and the true probability are equal, (k1(L)=k1(A)):

a(s)5l(s)1
k2(A)−k2(L)

2!
d2l(s)
ds2 2

(k3(A)−k3(L))
3!

d3l(s)
ds3

1
(k4(A)−k4(L))+3(k2(A)−k2(L))2

4!
d4l(s)
ds4 1e(s),

wheree(s) captures terms neglected in the expansion. The various terms in the expan-
sion correspond to adjustments of the variance, skewness, and kurtosis. This
expression is similar to a Taylor expansion, yet it is not the same since the coef-
ficients of the terms in djl/dsj are parameters and not raised to a power.

8 Edgeworth expansions are frequently used in statistical theory to obtain distributions which deviate
from the normal one.
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Jarrow and Rudd show further that the price of an European call option struck at
K can be written as

C(A)5C(L)1e−rT
k2(A)−k2(L)

2!
l(K)2e−rT

k3(A)−k3(L)
3!

dl(K)
dSt

(10)

1e−rT
(k4(A)−k4(L))+3(k2(A)−k2(L))2

4!
d2(K)
ds2
t

1e(K).

SinceL stands for the log–normal distribution, it follows thatC(L) corresponds
to the Garman–Kohlhagen formula and higher order cumulants can be obtained as
functions of elementary components:

k1(L)5Stexp((r2r∗)T), k2(L)5[k1(L)q]2, k3(L)5[k1(L)q]3(3q1q3),

k4(L)5[k1(L)q]4(16q2115q416q61q8),

whereq=(es
2T21)1/2 and where the first relation follows from risk neutral valuation.

Jarrow and Rudd suggest identification of the second moment by imposing
k2(L)=k2(A). This argument is also justified on numerical grounds by Corrado and
Su (1996) who notice that without this condition there will exist a problem of multi-
colinearity between the second and the fourth moment. Corrado and Su (1996) rather
than estimating the remaining cumulants, (k3(A) andk4(A)), estimate skewness and
kurtosis (written respectivelyg1(A) and g2(A)) through

g1(A)5
k3(A)

[k2(A)]3/2, g2(A)5
k4(A)

[k2(A)]2.

Clearly, similar expressions hold for the distributionL. Given the assumption of
equality of the second cumulants in the approximating and the true distribution it
follows that

C(A)5C(L)2e−rT(g1(A)2g1(L))
k3/2

2 (L)
3!

dl(K)
dSt

1 (11)

e−rT(g2(A)2g2(L))
k2

2(L)
4!

d2l(K)
dS2
t

.

Using this expression it is easy to estimate with NLLS the implied volatility, (s2),
skewness, (g1(A)), and kurtosis, (g2(A)).

The expression of the RND can be obtained after twice differentiating Eq. (11)
with respect toK and then evaluating atSt:

a(St)5l(St)2(g1(A)2g1(L))
k3/2

2 (L)
6

∂3l(St)
∂S3
t

1(g2(A)2g2(L))
k2

2(L)
24

∂4l(St)
∂S4
t

,

where the partial derivatives can be computed iteratively using
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∂l
∂St

52S11
ln(St)−m
s2T Dl(St)

St
,

∂2l
∂S2
t
52S21

ln(St)−m
s2T D1

St

∂l(St)
∂St

2
1

S2
ts2l(St),

∂3l
∂S3
t
52S31

ln(St)−m
s2T D1

St

∂2l(St)
∂2St

2
2

S2
ts2

∂l(St
∂St

1
1

S3
ts3l(St),

∂4l
∂S4
t
52S41

ln(St)−m
s2T D1

St

∂3l(St)
∂3St

2
3

S2
ts2

∂2l(St)
∂S2
t

1
3

S3
ts3

∂l(St)
∂St

2
1

S4
ts4l(St),

and wherem=ln(St)+(r2r*2s2/2)T. These computations indicate that the RND in
the Edgeworth case will be a polynomial whose coefficients directly command the
skewness and kurtosis of the RND. We also notice that the RND involves rather
complicated terms involving derivatives of the log–normal density.

2.4. A semi-parametric approach involving hermite polynomials

The theoretical foundations of this method are elaborated in Madan and Milne
(1994) and applied in Abken et al. (1996). Other recent research using Hermite
approximations within an option pricing context is Knight and Satchell (1997).

Their model operates as follows. First, they assume that the underlying asset fol-
lows a lognormal diffusion

dSt5mStdt1sStdWt, (12)

whereWt is a Brownian motion with respect to some abstract reference densityf(•)
assumed to be Normal with mean zero and variance 1. This implies, when we move
to a discretization, that

St5St exp((m2
1
2
s2)T1sÎTz) (13)

wherez|N(0,1).
The key idea of this approach is that the RND can be obtained through a multipli-

cative perturbation, (l), to the normal density so thata(z)=l(z)f(z). This can be
alternatively viewed as a change in probability. Rather than assuming specific
expressions forl to go from one probability to another as one does under the mar-
tingale approach for option valuation, they assume a parametric structure forl. The
main thrust of their work aims at estimatingl(z).

The key observation of their approach is that the reference measure being a normal
one, the various components involved in the option pricing can be expressed as linear
combinations of Hermite polynomials. Let {hk} `

k=1 be those polynomials. Such poly-
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nomials are known to form an orthogonal basis with respect to the scalar product

kf,gl=Ef(z)g(z)f(z)dz.9

Since under the reference measure,f(z), the dynamics of the underlying asset are
perfectly defined, Madan and Milne show how it is possible to write any payoff,
such as for instance the payoff of a call option as:

(z2K)+5O`
k50

akhk(z).

The ak are well defined and their expression depends onm,s,T,t.
On the other hand, it is also possible to writel(z) with respect to the basis as

l(z)=O`
j=0

bjhj (z). Following Eq. (1) and given the orthogonality property of Hermite

polynomials, the price of a call option can then be written as

C5O`
k50

akpk,

where thepk=e2rTbk are interpreted as the implicit price of polynomial riskhk. Since
the Hermite polynomial of orderk will depend on akth moment we will also refer
to p3 andp4 as the price of skewness and kurtosis.

For practical purposes, the infinite sum can be truncated up to the fourth order.
One can then either estimatepk, k=1,…,4 or follow Abken et al. (1996) and impose
p0=erT, p1=p2=0 and estimatem, s, andp3,p4. In this case the RND simplifies to

ã(z)5f(z)311
b3

Î6
(z323z)1

b4

Î24
(z426z213)4, (14)

where thebi are parameters to be estimated. The parametersb3 and b4 correspond
to the skewness and kurtosis ifz follows a normal distribution. It is important to
emphasize that unlike the Edgeworth case, since a further change of variable from
z to St has to be made,b3 and b4 will not correspond in general to the skewness

9

The Hermite polynomial of orderk is defined byHk(x)=(21)k
∂kf
∂k

x

1
f(x)

wheref is the mean zero and

unit variance normal density. After standardization of the polynomialsHk to unit norm, one obtains that
the first four standardized Hermite polynomials areh0(x)=1, h1(x)=x, h2(x)=(x221)/√2, h3(x)=(x323x)/
√6, h4(x)=(x426x2+3)/√24.
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and kurtosis of the future exchange rateSt. It is also worth mentioning that the
expression given by Eq. (14) is sometimes called a Gram–Charlier expansions which
is the basis for other recent research (as in Knight and Satchell, 1997).

In the empirical part of this work we further pin downm by imposing the mar-
tingale restriction and estimate onlys and the future value of the third and fourth
price of risk. The actual risk neutral densitya(St) can then be inferred using the
change of variablez=[ln(St)2ln(St)2(r2r*2s2/2)T]/s√T. Careful comparison of this
RND with the one obtained in the previous section shows that, even though both
involve a polynomial of the fourth degree, those polynomials are not equal even
though they may yield similar shapes in numerical applications.

2.5. Risk neutral density for a process with jumps

In this section we assume thatSt is a log–normal jump-diffusion and hence the
sum of a geometric Brownian motion and a Poisson jump process. The importance
of jumps is emphasized by Jorion (1989) and Taylor (1994). Pricing formula for the
jump-diffusion can be found in Merton (1976), Cox and Ross (1976) and Bates
(1991, 1996a,b). Within this framework Malz (1996a,b) shows how information can
be recovered from options when only very little information is available.

Under the assumption that the price process is the sum of a geometric Brownian
motion and a jump component we can write that

dSt5mStdt1sStdWt1kStdqt

whereq is a Poisson counter with average rate of jump occurrencel and jump size
k. In a very general set-upk could be assumed to be a random variable.

The price process under the risk neutral probability can be shown to be

dSt5(r2r∗2lE[k])Stdt1sStdW∗
t 1kStdqt.

Ball and Torous (1983, 1985) and Malz (1996a,b) assume for simplicity that over
the horizon of the option there will be at most one jump of constant size. In this
case, referred to as the Bernoulli version of the jump diffusion, the call and put
prices become respectively:

(12lT)C(St,T,K,s,r,r∗1lk)1(lT)C(St(11k),T,K,s,r,r∗1lk),

(12lT)P(St,T,K,s,r,r∗1lk)1(lT)P(St(11k),T,K,s,r,r∗1lK).

In these formulae, 12lT represents the probability of no jump before maturity.
Bates and Malz point to the difficulty of disentanglingl andk numerically. For this
reason we will only interpret the expected jump sizelk.

We also would like to mention, at this stage, that we will estimate this structural
model for various dates and maturities. This will yield for each date and maturity a
set of estimates. This may appear to contradict the assumption of constant parameters
in the underlying process, on the other hand this issue is the same as with quoting
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options in terms of volatilities. We will follow the literature and interpret the esti-
mates as being those perceived to be valid at some point of time by market parti-
cipants until the expiration of the option. It should be further noticed that the time
series of parameters so obtained may correspond to a process of the underlying asset
which has little to do with historically observed processes.

2.6. Risk neutral density for a model with stochastic volatility

An alternative to assuming jumps is to assume, as in Heston’s (1993) model, that
volatility is stochastic. In the following, we recall the formulas used in Heston’s
model.

The price dynamics are assumed to be given by

dSt5mStdt1ÎvtStdW1,t, dvt5k(q2vt)dt1gÎvtdW2,t.

The parameters of Heston’s model are:q the long-run volatility,k the mean-
reversion speed, andg the volatility of the volatility diffusion.vt is the instantaneous
volatility. A priori vt is not a parameter to estimate but the realization of a random
variable. However, since it is unobservable, it is fairly natural to estimate it with
the true parameters. Lastly,r denotes the correlation between the two Brownian
motionsW1,t, andW2,t.

Heston shows that the call option price is

C5e−r∗TStP12e−rTKP2, Pj 5
1
2

1
1
p E

1`

0

ReSexp[−ix ln(K)]fj (x)
ix Ddx ∀j 51,2,

where the integrand can be constructed with10

u151/2, u2521/2, a5kq, b15k1l2rg, b25k1l,

dj 5[(rgix2bj )22g2(2uj ix2x2)]1/2,

gj 5
bj −rgix+dj

bj −rgix−dj

,

Dj 5
bj −rgix+dj

g2
1−exp(djT)

1−gj exp(djT)
,

Cj 5(r2r∗)ixT1
a
g2F(bj 2rgix1dj )T22 ln S1−gj exp(djT)

1−gj
DG,

fj 5exp(Cj 1Djvt1ix ln(St)),

wherel stands for the price of the volatility risk. The parameters to be estimated

10 i is the complex number, solution toi2=21.
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are a,b1,b2,r,g,vt. Becausel is not identifiable we introducek*=kq/(k+l) and q*

=k+l. Thus, only 5 parameters have to be estimated. Given Eq. (9), the RND can
be easily inferred. Since the option pricing formula involves integrals, clearly, the
computation of the RND will also involve integrals. For numerical purposes this
evaluation will take a significant amount of time.

3. The data

The OTC data used were provided by a large French bank. Options are issued on
a regular basis and reach maturity between a few days and one year. Anecdotal
evidence suggests that market participants consider this market liquid. We were able
to obtain data for 20 irregularly spaced dates.11 The first one was 17 May 1996 while
the last one was 27 June 1997.

As discussed in Section 2.1.2, this type of option is quoted in terms ofd. For all
dates, we have at least information for options withd taking the values 10, 15, 20,
30, 40, 50 (corresponding to the at the money option), 60, 70, 80, 85, 90. Between
the first date and June 1996 we also have information for the 5 and 95 delta options.
Since options in the extremes were rather illiquid, their quotation was given up at
that time. In this study we used data for all possibled.

For all dates, we were given bid and ask prices for in the money put and call
options. Following the literature, we decided to work with the average between the
bid and ask prices. Even though we obtained all results for options with 1, 2, 3, 6,
9, and 12 month to maturity, we decided to report the results for fewer maturities.12

The interest ratesr and r* are the domestic (French) and foreign (German) euro-
currency interest rates chosen to match the expiration of the options. We transformed
these rates into their continuously compound equivalents. The spot exchange rate is
easily available.

By using a numerical procedure and the methodology outlined in Section 2.1.2
we extracted for each option of a given maturity the corresponding strike price. The
difference between the actual data and the delta obtained for the optimalK was in
all cases smaller than 0.07% of the initial delta!

4. Cross-sectional comparison

In this section we are going to present and interpret estimation results for two dates
only. In the next section we will compare the methods within a time series context.

To get a feel for the data at hand, we trace the volatility of an option as a function

11 Even strenuous efforts did not allow us to obtain more dates.
12 The full set of estimates for the two dates can be found in a working paper version of this study.
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Fig. 1. Volatility similes 17 May 1996.

of the delta and maturity in Figs. 1 and 2. If log–normality held, then we should
observe one straight line independent of maturity. For a given maturity, the deviation
from the straight line is called the volatility smile. The shift across maturities is the
term structure of volatilities. Here options with lowd (high strike prices) are highly

Fig. 2. Volatility similes 25 April 1997.
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valued, meaning that the market expects an increase in the exchange rate (a FF
depreciation).

The smiles indicate that more complicated models than the Garman–Kohlhagen
model should be considered for the data at hand. For future comparisons we nonethe-
less estimated this model, using the NLLS procedure outlined in Appendix A. This
yielded for each data point and maturity a single volatility estimate. These volatilites
are then used to construct a set of benchmark RNDs which will be presented later
on for comparison purposes.

We also estimated the parameters for the other non-structural models. For the
mixture of log–normals the values of the parameter estimates have no obvious expla-
nation but they could be used to infer the various moments of the mixture density.
For the Edgeworth expansion the parameters correspond to the volatility, skewness,
and kurtosis of the underlying density. We decided, however, to compare the
moments of all models simultaneously at a later stage. Before discussing moments
we wish to present the parameter estimates for the structural models of Malz and
Heston which do have an economic meaning.

4.1. Parameter estimates for structural models

4.1.1. The jump-diffusion case
We first turn to the parameter estimates for the jump-diffusion model of Malz

presented in Table 1. Turning to the first date we notice thats increases from 0.0172
to 0.0205. This means that investors expect a greater uncertainty about price move-
ments in the longer run. The probability that a jump occurs before maturity, (lT),
varies from 0.0399 to 0.0699 suggesting that for the calm date investors do not
believe in a great likelihood of a jump occurrence.

Turning to the expected jump size, (lk), we notice that this measure decreases

Table 1
Estimates of the Bernoulli version of the jump-diffusion modela

1 month 3 months 6 months 12 months

17.05.96
s 0.0172 0.0178 0.0193 0.0205
lT 0.0399 0.0621 0.0655 0.0699
lk 0.0104 0.0095 0.0075 0.0058
25.04.97
s 0.0186 0.0176 0.0160 0.0165
lT 0.0717 0.0608 0.0600 0.0574
lk 0.0230 0.0128 0.0089 0.0063

a This presents the parameter estimates for the Bernoulli version of a jump-diffusion.s is the diffusion
volatility. The jump will occur with probabilityl within one year. Its size isk. lT represents the prob-
ability of a jump to occur before the maturity of the option.lk is the annualized impact of a possible
jump. Parameters are always estimated using non-linear least squares as further explained in the appendix.
All options are European. For 17.05.96 (25.04.97) we have options for 13 (11) deltas. The first date
corresponds to a calm market whareas the second one to an agitated market.
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from 0.0104 to 0.0058. This means that what is considered to be a jump in the short
run becomes normal in the long run. To sum up, investors expect that a jump will
occur with a higher probability in the long run but then only large variations will
be considered jumps.13

Turning to the second date, when the market was more agitated, we notice that
s decreases across maturities. Further, for the one month to maturity,s is higher
for the new date than for the first date (0.0186 against 0.0172). In the long run,
insteads is smaller for the new date. Those results suggest that there was higher
non-directional uncertainty for the short run after Chirac’s announcement of a snap
election: markets were expected by investors to either move up or down. In the long
run, however, since then fundamental uncertainty given bys is now smaller than
for the first date, investors appear to anticipate the creation of a single currency area.
Clearly, for a single currency area one expectss to vanish completely.

The jump probabilitylT decreases from 0.0717 to 0.0574 showing that investors
attach also a higher probability to a depreciation of the Franc in the short run. When
turning to the impact of a jump on prices, given bylk, we notice its sharp increase
relative to the first date and this for all maturities. The sign, which is always positive
for this component, suggests that, if anything, the FF was expected to depreciate
against the mark. To sum up, Chirac’s announcement led to important market turbu-
lences. On 25 April 1997 in an environment of agitated foreign exchange markets,
investors expected that a jump of rather large magnitude would occur in the short run.

4.1.2. Stochastic volatility
After estimating this model for each maturity, given the great instability of the

parameters across maturities, we decided to also report in Table 2, the estimates for
the stochastic volatility model where for a given date we used all maturities simul-
taneously.

We notice for the first date that the long-run volatility (√q*) increases from 0.0264
to 0.0349 whereas for the second date it decreases from 0.0720 to 0.0038. This
variable captures a similar message than the diffusion volatility namely that on a
normal, calm day there should be an upward sloping term structure of volatilities,
and a decreasing one (or at least a less steep one) on a day with agitated markets.

The parameterr captures the skewness of the distribution, i.e. the probability of
an asymmetric event. Its impact on the RND has to be read in combination withg,
the volatility of volatility. We notice for both dates thatg decreases whereasr
increases with maturities. Those findings appear similar to the ones forlk of the
jump diffusion model, namely, that in the long run an event has to be very large in
order to be considered as a shock (i.e. to be generating skewness throughr). In
other words, in the long run most of the events are considered normal.14

Some of the parameter estimates display rather large variability. For this reason
we also estimate the model with all maturities simultaneously. We first notice that

13 We are grateful here to Allan Malz for helping us getting the interpretations straight.
14 The situation of normality would correspond to a situation withg=0.
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Table 2
Parameter estimates of the stochastic volatility modela

1 month 3 months 6 months 12 months Combined

17.05.96
k* 3.2556 3.3781 3.4815 2.2940 4.0300
√q* 0.0264 0.0362 0.0386 0.0349 0.0316
g 0.1562 0.1423 0.1596 0.1064 0.1500
r 0.4497 0.5727 0.5434 0.5968 0.5430
√nt 0.0221 0.0190 0.0020 0.0167 0.0224
25.04.97
k* 3.2514 3.3687 3.4267 3.8023 3.2820
√q* 0.0720 0.0432 0.0184 0.0038 0.0283
g 0.3068 0.1837 0.1332 0.1430 0.1570
r 0.5176 0.6269 0.6226 0.6537 0.6170
√nt 0.0185 0.0208 0.0367 0.0587 0.0300

a This table presents the results for Heston’s stochastic volatility model described by
dSt=mStdt+√ntdW1,t, dnt=k(q2nt)dt+g√ntdW2,t whereW1,t, W2,t are two Brownian motions with possible
correlationr. g is the volatility of volatility.√nt is a measure of instantaneous volatility.k and√q represent
the intensity of mean reversion and long run volatility. Ifl is the risk premium thenk*;kq/(k+l) and
q*;k+l. We estimated parameters in two stages, first runningk* on a grid between 2 and 5 and then
running an estimation withk* free using as starting value the optimal one from the first stage. The last
column combines all maturities for a given date.

for the first date the measure of current volatility,√vt, (0.0224), is smaller than for
the second date, (0.030). This shows that the joint estimation is able to capture the
increased market uncertainty due to political risk on the second maturity. The para-
meterr which captures the slope of the smile has also increased. The parameter√q*

corresponds to the long-run volatility. This parameter takes the value 0.0316 for the
first date and 0.0283 for the second one. This decrease in value confirms what we
obtained with the jump-diffusion namely that investors are more confident on the
second date that in the long run market volatility will be small because of a possible
unique European currency. The parameterk*, capturing the speed by which volatility
is mean-reverting, decreases from 4.03 down to 3.282.15 This means that for the
more agitated date investors expect that it will take longer before the market reverts
to normal. This observation is further corroborated byg, the volatility of volatility.
This parameter increases slightly from the first to the second maturity.

4.2. Moments for the various models

To further compare the different models we check the statistical properties of the
various RNDs, displayed in Table 3. First, we verify that the first moment of the
RNDs is equal to the forward rate. Second, we check how the constraints imposed

15 We notice here the large difference in the parameter estimates between the model with all maturities
combined and the others. This illustrates our difficulties to pin down the mean-reversion parameter.
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Table 3
Moments of the risk neutral densitya

Forward Volatility Skewness Kurtosis

17.05.96
1-month
Log-normal 3.3898 0.0202 0.0179 0.0006
Log-normal mixture 3.3898 0.0225 0.9096 4.3917
Hermite approximation 3.3898 0.0224 0.7127 3.2319
Edgeworth expansion 3.3898 0.0224 0.6898 3.2137
Jump-diffusion 3.3898 0.0219 1.2932 3.5955
Stochastic-volatility 3.3899 0.0215 1.1647 3.4252
3-months
Log-normal 3.3933 0.0227 0.0348 0.0022
Log-normal mixture 3.3933 0.0253 1.3548 4.1869
Hermite approximation 3.3935 0.0248 1.1410 2.7441
Edgeworth expansion 3.3933 0.0251 1.0211 2.9609
Jump-diffusion 3.3933 0.0249 1.3715 3.0700
Stochastic-volatility 3.3932 0.0244 1.3375 3.6976
12-months
Log-normal 3.4131 0.0267 0.0813 0.0118
Log-normal mixture 3.4130 0.0292 1.3369 3.6170
Hermite approximation 3.4132 0.0289 1.1495 2.5381
Edgeworth expansion 3.4131 0.0291 1.0215 2.7068
Jump-diffusion 3.4131 0.0289 1.2982 2.6747
Stochastic-volatility 3.4132 0.0284 1.4897 4.3789
25.04.97
1-month
Log-normal 3.3740 0.0257 0.0228 0.0009
Log-normal mixture 3.3740 0.0300 1.8572 6.1805
Hermite approximation 3.3741 0.0291 1.4135 3.4687
Edgeworth expansion 3.3740 0.0294 1.3080 3.6579
Jump-diffusion 3.3740 0.0291 1.6362 3.5315
Stochastic-volatility 3.3738 0.0284 1.4149 4.7203
3-months
Log-normal 3.3758 0.0248 0.0382 0.0026
Log-normal mixture 3.3758 0.0307 2.3917 9.4481
Hermite approximation 3.3749 0.0307 1.3105 4.6650
Edgeworth expansion 3.3758 0.0299 1.3830 4.8034
Jump-diffusion 3.3758 0.0296 2.0354 5.2717
Stochastic-volatility 3.3757 0.0274 1.7039 4.9168
12-months
Log-normal 3.3820 0.0241 0.0741 0.0098
Log-normal mixture 3.3801 0.0290 2.5141 9.2247
Hermite approximation 3.3787 0.0315 1.3475 5.2982
Edgeworth expansion 3.3820 0.0303 1.3888 5.6886
Jump-diffusion 3.3820 0.0297 2.2992 6.4565
Stochastic-volatility 3.3810 0.0271 1.8602 5.6927

a Table 3 displays a comparison of various moments for the RNDs. For 17.05.96 (25.04.97) the actual
forward prices for the 1, 3, and 12 month options are 3.3989, 3.3933, and 3.4131 (3.3740, 3.3758, and
3.3820).
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by log–normality on the third and fourth moments can bias the variance estimates.
Last, it is tempting to compare the estimates of the skewness and the kurtosis
obtained under the different RNDs.

Some models (log–normality, Edgeworth expansion and jump diffusion) impose
the constraint that the first non-central moment equals the forward rate. For other
models, the better the adjustment, the closer the first moment is to the forward rate.
We notice that for the first date, all the models give a first moment equal to the
forward rate. For the second date however, the Hermite approach gives a small gap
for the 3-months maturity (3.3749 instead of 3.3758) and similar for the 12
months maturity.

As far as volatilities are concerned, we see the bias implied by the log–normality
assumption: the volatility induced by the log–normal model appears systematically
smaller than what one obtains with the other approaches. Otherwise, we observe
substantial homogeneity in the volatilities given by the other models.

The estimates of skewness and kurtosis are much more divergent, since at this
level the specifics of the different models matter. The log–normal model is less
interesting from this point of view, since on theoretical grounds it does not allow
for asymmetry or fat tails. First, we observe that skewness as well as kurtosis are
generally far from what is obtained under log–normality: for the first date for
instance, skewness is between 0.68 and 1.48 and excess kurtosis is between 2.74
and 4.39. The skewness obtained from semi-nonparametric models is systematically
lower than the skewness obtained with other models, although this difference is
small. We do, however, notice pronounced differences, between models, of kurtosis;
the log–normal mixture model and the stochastic volatility model generally give very
large excess kurtosis (especially for the second date).

The graphs of the RND corroborate our earlier findings. All RNDs differ signifi-
cantly from the benchmark. Further, we notice that the RNDs for the Hermite and
Edgeworth expansion are very close. These two approaches have the unfortunate
drawback of yielding negative densities. The reason for this is that only a limited
range of skewness–kurtosis pairs are compatible with positive approximations.16

Going back to Table 3, we see that for those approximations skewness and kurtosis
are always smallest: the reason is that those methods have difficulties accommodating
higher moments beyond a certain range. Those models seem unable to capture the
high skewness of exchange rate data.

When we inspect Figs. 3–6 we realize that the model with stochastic volatility
distinguishes itself by a curvature which is less pronounced than the other models.
This means that this type of model has difficulties in capturing the strong skewness
which appears in the data. When going back to Table 3 we notice that the model
with stochastic volatility always has smaller values of skewness but at times the
largest kurtosis. This suggests that the stochastic volatility model is unable to capture
the asymmetry in the data and suggests as a substitute for skewness a higher kurtosis.

16 See also Barton and Dennis (1952).
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Fig. 3. RND for options with 1 month to maturity 17 May 1996.

Fig. 4. RND for options with 12 months to maturity 17 May 1996.
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Fig. 5. RND for options with 1 month to maturity 25 April 1997.

Fig. 6. RND for options with 12 months to maturity April 1997.
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In a situation in which fears are directional (such as for a devaluation) this feature
seems to be somewhat beside the point.

To summarize, we notice a great deal of homogeneity for the different models as
far as the first and the second moments are concerned. What really differentiates the
models is their ability to capture the third and fourth moments.

4.3. The use of RNDs

An important point to check in the comparison of the various methods is whether
they give similar confidence intervals. This point is of particular interest for policy-
makers, since the bandwidth of confidence intervals can be seen as an indicator of
credibility of monetary policy. As is well known, it is not possible to extract directly
forecasts from option prices, since the underlying distributions are based on the
assumption of risk neutrality of market participants. It might be argued that this type
of analysis is misleading since one assumes risk neutrality. However, Rubinstein
(1994, p. 804) using a numerical example states: “…despite warnings to the contrary
we can justifiably suppose a rough similarity between the risk–neutral probabilities
implied in option prices and subjective beliefs.” For this reason we follow Campa
et al. (1997) and construct RNDs which are based on the forward rate. In this case,
confidence intervals are not interpreted in levels, because it is misleading to read a
floor and a ceiling of an interval in FF/DM. One can analyze the relative intervals
and the relative bandwidths expressed as a percentage of the forward rate. Thus, we
estimate, for each maturity and each method, two confidence intervals: the bands of
minimum width such that market participants put a 90% (and a 95%) probability on
the fact that the FF/DM will be inside the band at the end of the period. As the
RNDs are centered on the forward rate, we define the bandwidth as half the differ-
ence between the floor and ceiling expressed as a percentage of the forward rate.

Table 4 reports the estimates of the floor, the ceiling, and the bandwidth. Several
points are worth noting: first, we clearly observe the asymmetry of the RNDs for
all methods and all maturities since the forward to floor ratio is always smaller than
the ceiling to forward ratio. For instance for the bandwidth containing 90% of the
distribution on 17 May 1996 for the 1-month maturity, the former is about 0.85%
whereas the latter is about 1.4%. For more distant maturities, the gap is even larger.

In the same way, we notice that the asymmetry increases for the second date,
since the ceiling to forward ratio is at least twice the forward to floor ratio. This
result clearly shows that the uncertainty on April 1997 was unfavorable to the FF.

Second, the excess kurtosis can be measured to a certain extent from the band-
width. As clearly appears to be the case, for a given probability, the bandwidth of
the log–normal model is always narrower than the ones of the other approaches.
This means that, for a given bandwidth, the more sophisticated methods (which
allow for fat tails) will give a higher probability outside the bandwidth than the log–
normal model.

The comparison of the various methods is also interesting. The log–normal model
shows no asymmetry since the forward to floor ratio and the ceiling to forward ratio
are almost the same. Other approaches are much more homogeneous, except perhaps
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Table 4
95 and 90 percent confidence intervalsa

95% boundaries 90% boundaries

fwd/floor ceil/fwd bandwith fwd/floor ceil/fwd bandwith

17.05.96
1 month
Log-normal 1.1950 1.1850 1.1830 0.9719 1.0030 0.9828
Log-normal mixture 1.1950 1.7310 1.4559 0.8606 1.2214 1.0374
Hermite approximation 1.0833 1.8402 1.4559 0.8236 1.4398 1.1284
Edgeworth expansion 1.0461 1.8038 1.4195 0.8236 1.4034 1.1102
Jump-diffusion 1.0461 1.8766 1.4559 0.8977 1.0394 0.9646
Stochastic-volatility 1.0833 1.6218 1.3467 0.8606 1.2214 1.0374
3 months
Log-normal 2.3179 2.2798 2.2726 1.9386 1.9161 1.9089
Log-normal mixture 1.9764 3.5524 2.7452 1.6372 2.5706 2.0907
Hermite approximation 1.8631 3.5524 2.6907 1.5997 2.8979 2.2362
Edgeworth expansion 1.8631 3.5524 2.6907 1.5997 2.8979 2.2362
Jump-diffusion 1.9764 3.7706 2.8543 1.6748 2.7888 2.2180
Stochastic-volatility 1.9764 3.2615 2.5998 1.5997 2.3888 1.9817
12 months
Log-normal 5.5041 5.4113 5.3141 4.5866 4.5075 4.4465
Log-normal mixture 4.6658 8.0502 6.2540 3.8797 5.9174 4.8261
Hermite approximation 4.5076 8.1225 6.2179 3.8407 6.5319 5.1153
Edgeworth expansion 4.3106 8.0502 6.0913 3.7239 6.4596 5.0249
Jump-diffusion 4.6658 8.4117 6.4348 3.9578 6.4235 5.1153
Stochastic-volatility 4.5076 7.5803 5.9467 3.7239 5.4836 4.5369
25.04.97
1 month
Log-normal 1.5095 1.4887 1.4879 1.2716 1.2573 1.2564
Log-normal mixture 1.2377 2.6129 1.9177 1.0347 1.8194 1.4218
Hermite approximation 1.1361 2.5137 1.8185 1.0010 2.1169 1.5540
Edgeworth expansion 1.1361 2.5468 1.8351 1.0010 2.1169 1.5540
Jump-diffusion 1.2377 2.6460 1.9342 1.0685 2.1500 1.6036
Stochastic-volatility 1.4074 2.2823 1.8351 1.1023 1.6210 1.3556
3 months
Log-normal 2.5296 2.5227 2.4949 2.1144 2.0931 2.0819
Log-normal mixture 2.0111 4.8690 3.4202 1.7026 3.0845 2.3793
Hermite approximation 1.9768 4.7037 3.3211 1.7368 3.9767 2.8419
Edgeworth expansion 1.8052 4.6046 3.1889 1.6001 3.9106 2.7428
Jump-diffusion 2.0111 5.0672 3.5194 1.7368 4.0098 2.8584
Stochastic-volatility 2.1144 4.1750 3.1228 1.7026 2.8862 2.2801
12 months
Log-normal 4.9931 4.9421 4.8489 4.1634 4.1175 4.0572
Log-normal mixture 3.8779 10.087 6.9105 3.3115 5.9646 4.5850
Hermite approximation 3.9491 9.7910 6.7950 3.4525 8.2736 5.8054
Edgeworth expansion 3.3115 9.4611 6.3332 3.0306 8.0427 5.4921
Jump-diffusion 3.9135 10.6156 7.1908 3.3819 8.2736 5.7725
Stochastic-volatility 3.9847 8.1417 5.9869 3.3115 5.5358 4.3706

a This table displays 90 and 95 percent confidence intervals for the 1, 3, and 12 month options. Actual
forward prices are as in Table 3.
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for Heston’s model. Indeed this model seems less asymmetrical than the other ones.
More precisely, in many cases, the ceiling is nearer the forward rate. This result can
be explained by the already mentioned fact that the stochastic volatility model is
unable to generate a hump (as the Malz approach is) and, thus, it has to compensate
the lack of flexibility with a less rapidly decreasing density (see also Figs. 5 and 6).
Accordingly we note for instance for the 1-month maturity on 25 April 1997 an
important gap between confidence intervals evaluated by Heston’s model and by the
other approaches: the bandwidth containing 95% of the distribution is 1.40–2.28 for
Heston’s model and about 1.03–2.61 for the other models.

5. Time series comparison

In this section we compare the performance of the various models and show how
they can be used to read information contained in the data.

5.1. Relative performance

As a preliminary remark, we have to mention that we decided, in the time-series
context, to drop the model with stochastic volatility. The reason for this is the obvious
difficulty of that model in capturing the large skewness which appears to reside in
the data at hand.17

Tables 5 and 6 show the absolute relative errors for the various dates and models.
We notice in Table 5 that for the short maturity, for most of the cases, the mixture
of lognormals is the best model. For the short maturity we notice further that the
jump diffusion model also does quite well. Table 6 shows that for the longer maturity
option Malz’s model is the best except for one date. For practical purposes, this
suggests that one should use for short-run options the mixture of log–normals model
and for long-run options the jump-diffusion model.

5.2. The message contained in confidence intervals

As an illustration we display in Fig. 7 the evolution of the 90% confidence interval
over the 20 dates for which we have information. We have chosen as a model the
mixture of lognormals since it appears to be a good method for the short run.

In the summer of 1996 we observe a strong widening of the interval. Anecdotal
evidence suggests that this is related to the political uncertainty in France. First, at
the beginning of the summer there was a cabinet reshuffling and more importantly
the financial markets had doubts about the ability of France to satisfy the public
deficit criterion of the Maastricht treaty. The depreciation of the FF, therefore, was
accompanied by the widening and an upward shift of the confidence interval. After
a reassuring budget announcement, we see both an appreciation for the FF and a

17 We did not experiment with this model on other data for which it might well be optimal.
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Table 5
AREs for 1 month to maturity optionsa

Date Bench Mix HE ED JD

17.05.96 157.168 16.834 11.925* 13.922 36.260
31.05.96 169.834 17.695* 21.909 23.334 37.281
14.06.96 164.191 17.284* 17.376 18.656 36.895
28.06.96 186.198 38.823* 72.850 71.874 40.947
5.07.96 177.835 26.298* 75.016 73.909 37.268
26.07.96 176.727 17.410 14.344 13.098* 39.891
23.08.96 203.223 10.548 28.258 28.692 9.283*

6.09.96 198.543 10.189 25.635 26.200 9.540*

4.10.96 161.028 13.723* 18.941 20.000 31.611
31.10.96 170.431 16.270* 28.076 20.476 22.907
8.11.96 170.431 16.277* 28.076 29.202 22.923
4.12.96 197.480 24.942 30.579 30.486 16.212*

27.12.96 168.213 15.368 12.680 13.113 8.278
30.01.97 168.217 15.372 12.679 13.114 8.276*

28.2.97 228.196 29.606 35.285 35.237 26.843*

3.04.97 251.562 22.192* 56.416 55.709 33.403
25.04.97 229.733 7.734* 18.155 17.831 8.955
2.06.97 237.059 16.900* 27.901 27.432 21.176
28.06.97 283.858 15.231* 53.130 51.707 22.162

a This table presents the absolute relative errors (ARE) for the various models for the 1 month to
maturity options. The * marks the model with the smallest error for a given day. The mnemonics Bench,
Mix, HE, ED, JD stand respectively for the benchmark, mixture of lognormals, Hermite approximation,
Edgeworth expansion, and jump-diffusion model.

narrowing of the interval. At the end of 1996 we see a new widening of the interval,
but without a depreciation of the FF. This can be explained by heterogeneity of
beliefs. If a small number of investors believe that markets may increase strongly
and a large number of others believe that markets will move downwards each week
then we expect that the confidence interval to widen but the forward rate to
remain unchanged.

Later on, the interval regularly narrowed up to April 1997. At this time President
Chirac announced a sudden election. Once again, the widening of the interval is
associated with an upward shift: the forward exchange rate is about 3.38, and the
market participants attach a 10% probability to the event of an exchange rate higher
than 3.34. After the election and the victory of the left-wing coalition, the interval
tends to decline significantly, but the upward shift clearly remains. This is associated
with the new government’s reassuring statement about EMU and its general econ-
omic policy.

6. Conclusion

In this paper we implement several methods that extract risk-neutral densities. The
methods range from the non-structural (given by a mixture of lognormals) to the
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Table 6
AREs for the 12 month to maturity optionsa

Date Bench Mix HE ED JD

17.05.96 176.747 32.930 40.432 39.437 23.238*

31.05.96 186.032 41.181 52.648 51.178 32.722*

14.06.96 191.256 33.007* 64.557 64.634 34.589
28.06.96 185.231 24.795 47.709 46.682 18.800*

5.07.96 200.735 56.325 81.774 81.302 47.909*

26.07.96 204.238 63.751 42.407 42.400 19.539*

23.08.96 215.753 24.484 28.366 28.349 15.502*

6.09.96 215.862 32.244 36.051 36.254 24.515*

4.10.96 168.531 37.457 30.615 32.494 19.109*

31.10.96 185.067 41.579 38.035 39.915 21.904*

8.11.96 177.486 41.652 36.035 37.010 17.371*

4.12.96 222.621 34.087 28.767 28.179 11.270*

27.12.96 232.423 38.671 42.990 41.428 14.013*

30.01.97 232.434 38.743 42.982 41.437 14.016*

28.2.97 251.202 35.277 58.668 56.635 23.769*

3.04.97 255.440 47.828 63.055 60.506 15.203*

25.04.97 248.672 41.034 38.826 37.143 16.694*

2.06.97 256.277 35.634 45.607 43.402 19.789*

28.06.97 291.310 63.565 81.166 77.084 34.425*

a This is similar to Table 5 but for the 12 month to maturity options.

Fig. 7. 90% confidence intervals around forward rate for a mixture of log–normals; 1 month to maturity.
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fully structural (a jump-diffusion and a stochastic volatility model). We also
implement methods based on Hermite and Edgeworth expansions.

First, we compare these various methods for two dates. The first date is a rather
calm one while the second date corresponds to an agitated market. We find that
all models yield RNDs which differ significantly from the lognormal benchmark.
Concerning stability and speed of estimation, we find that the mixture of lognormals
and the stochastic volatility model require fixing some parameters on a grid and then
estimating the remaining ones. This obviously results in a rather slow procedure.
The other methods in contrast converge quickly and yield rather stable results.

We find further that models differ in their ability to capture the large skewness
existing in the foreign exchange data at hand. In particular, the polynomial approxi-
mations and the stochastic volatility model have difficulties at this level.

Second, we compare the various methods on time-series data using as criterion
the absolute relative error. We see that the mixture of lognormals model performs
well on short-maturity options and that the jump diffusion model outperforms all
models for longer maturities. The construction of confidence intervals reveals inter-
esting patterns and shows their usefulness for policy makers and for investors who
need to know what other market participants anticipate about a market’s future.
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Appendix A

Here we describe how we implemented the non-linear least squares (NLLS) esti-
mation. We first introduce some notation, then we discuss the traditional NLLS esti-
mation. We then go on to explain how we estimated parameters in more difficult situ-
ations.

For a given date, we considerN options characterized by subscripti. Theith option
has strike priceKi and maturityT. The market price, writtenCM

iT, is given. Last, let
CX

iT(q) be the theoretical price for theith strike price and maturityT whereq is a
parameter vector describing the RND associated with modelX.

NLLS consists in finding the solution to the program.18

18 This type of program can be easily implemented within Gauss using the optmum module.
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min
qPQ

O
i51,…,N

(CM
iT2CX

iT(q))2

whereQ is the domain to whichq can belong.
For some of the models, the parameter estimation turned out to be difficult. In

particular, if parameters need to be obtained in a systematic way such as in the time-
series framework, it becomes necessary to make sure that the algorithm does not
diverge. In most cases, what did the trick was, first, to restrict parameters in certain
intervals (such a restriction can be obtained by using a logistic transform) and,
second, to force certain parameters to take values on a grid whereas the other para-
meters were obtained without restrictions. When a parameter was on a grid we
eventually ran an unconstrained estimation using as starting values the estimates
obtained over the grid that had a minimum error.

We encountered difficulties in the following cases: For the mixture of lognormals
case we noticed that we often obtained parameter estimates in which all the weight
was put on one density and yielding a degenerate density (with zero variance) for
the density with no weight. Further experiments with this method revealed the exist-
ence of multiple minima. To mitigate this problem we decided to take the weight
over a grid starting close to 0 and ending close to 1 and to estimate for each of the
weights optimal parameters. We also decided to constrain, by using a logistic trans-
form, the means of the various densities in a range deemed to be reasonable.

We encountered similar difficulties in estimating the stochastic volatility model.
For this case, we forced thel parameter on a grid to take values between two
bounds chosen sufficiently wide apart to cover a reasonable range of values. All
other methods tended to be fast and stable.
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