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Abstract

Modeling the dependency between stock market returns is a difficult task when returns follow a com-
plicated dynamics. When returns are non-normal, it is often simply impossible to specify the multivariate
distribution relating two or more return series. In this context, we propose a new methodology based on
copula functions, which consists in estimating first the univariate distributions and then the joining distri-
bution. In such a context, the dependency parameter can easily be rendered conditional and time varying.
We apply this methodology to the daily returns of four major stock markets. Our results suggest that con-
ditional dependency depends on past realizations for European market pairs only. For these markets, de-
pendency is found to be more widely affected when returns move in the same direction than when they
move in opposite directions. Modeling the dynamics of the dependency parameter also suggests that de-
pendency is higher and more persistent between European stock markets.
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1. Introduction

An abundant literature has investigated how the correlation between stock market returns
varies when markets become agitated. In a multivariate GARCH framework, for instance,
Hamao et al. (1990), Susmel and Engle (1994), and Bekaert and Harvey (1995) have measured
the interdependence of returns and volatilities across stock markets. More specifically, Longin
and Solnik (1995) have tested the hypothesis of a constant conditional correlation between
a large number of stock markets. They found that correlation generally increases in periods
of high-volatility of the U.S. market. In addition, in a similar context, tests of a constant cor-
relation have been proposed by Bera and Kim (2002) and Tse (2000). Recent contributions by
Kroner and Ng (1998), Engle and Sheppard (2001), Engle (2002), and Tse and Tsui (2002)
have developed GARCH models with time-varying covariances or correlations. As an alterna-
tive approach, Ramchand and Susmel (1998) and Ang and Bekaert (2002) have estimated a mul-
tivariate Markov-switching model and tested the hypothesis of a constant international
conditional correlation between stock markets. They obtained that correlation is generally
higher in the high-volatility regime than in the low-volatility regime.

In this context, an important issue is how dependency between stock markets can be mea-
sured when returns are non-normal. In the GARCH framework, some recent papers have
focused on multivariate distributions which allow for asymmetry as well as fat tails. For
instance, multivariate skewed distributions, and in particular the skewed Student-t distribution,
have been studied by Sahu et al. (2001) and Bauwens and Laurent (2002). In addition, in the
Markov-switching context, Chesnay and Jondeau (2001) have tested for a constant correlation
between stock returns, while allowing for Student-t innovations.1 For most types of univariate
distributions, however, it is simply impossible to specify a multivariate extension that would
allow the dependency structure to be captured. In this paper, we present a new methodology
to measure conditional dependency in a GARCH context. Our methodology builds on so-called
‘‘copula’’ functions. These functions provide an interesting tool to model a multivariate distri-
bution when only marginal distributions are known. Such an approach is, thus, particularly use-
ful in situations where multivariate normality does not hold. An additional interesting feature of
copulas is the ease with which the associated dependency parameter can be conditioned and
rendered time varying, even when complicated marginal dynamics are estimated.

We use this methodology to investigate the impact of certain joint stock return realizations
on the subsequent dependency of international markets. Many univariate models have been pro-
posed to specify the dynamics of returns. However, given the focus of this work, we draw on
recent advances in the modeling of conditional returns that allow second, third, and fourth
moments to vary over time. Our univariate model builds on Hansen’s (1994) seminal paper.
In that paper, a so-called skewed Student-t distribution is derived. This distribution allows
for a control of asymmetry and fat-tailedness. By rendering these characteristics conditional,
it is possible to obtain time-varying higher moments.2 This model, therefore, extends Engle’s
(1982) ARCH and Bollerslev’s (1986) GARCH models. In an extension to Hansen (1994),

1 Some papers also considered how correlation varies when stock market indices are simultaneously affected by very

large (positive or negative) fluctuations. Longin and Solnik (2001), using extreme value theory, found that dependency

increases more during downside movements than during upside movements. Poon et al. (2004) adopted an alternative

statistical framework to test conditional dependency between extreme returns and showed that such a tail dependency

may have been overstated once the time-variability of volatility is accounted for.
2 Higher moments refer to the standardized third and fourth central moments.
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Jondeau and Rockinger (2003a,b) determine the expression of skewness and kurtosis of the
skewed Student-t distribution and show how the cumulative distribution function (cdf) and
its inverse can be computed. They show how to simulate data distributed as a skewed Stu-
dent-t distribution and discuss how to parametrize time-varying higher moments.

We then consider two alternative copula functions which have different characteristics in
terms of tail dependency: the Gaussian copula that does not allow any dependency in the tails
of the distribution, and the Student-t copula that is able to capture such a tail dependency. Fi-
nally, we propose several ways to condition the dependency parameter with past realizations. It
is thus possible to test several hypotheses of the way in which dependency varies during turbu-
lent periods.

In the empirical part of the paper, we investigate the dependency structure between daily
returns of major stock market indices over 20 years. As a preliminary step, we provide evidence
that the skewed Student-t distribution with time-varying higher moments fits very well the uni-
variate behavior of the data. Then, we check that the Student-t copula is able to capture the de-
pendency structure between market returns. Further scrutiny of the data reveals that the
dependency between European markets increases, subsequent to movements in the same direc-
tion, either positively or negatively. Furthermore, the strong persistence in the dynamics of the
dependency structure is found to reflect a shift, over the sample period, in the dependency pa-
rameter. This parameter has increased from about 0.3 over the 1980s to about 0.6 over the next
decade. Such a pattern is not found to hold for the dependency structure between the U.S. mar-
ket and the European markets.

The remainder of the paper is organized as follows. In Section 2, we first introduce our uni-
variate model which allows for volatility, skewness, and kurtosis, to vary over time. In Section
3, we introduce copula functions and describe the copulas used in the empirical application. We
also describe how the dependency parameter may vary over time. In Section 4, we present the
data and discuss our empirical results. Section 5 summarizes our results and concludes.

2. A model for the marginal distributions

It is well known that the residuals obtained from a GARCH model are generally non-normal.
This observation has led to the introduction of fat-tailed distributions for innovations. For in-
stance, Nelson (1991) considered the generalized error distribution, while Bollerslev and Wool-
dridge (1992) focused on Student-t innovations. Engle and Gonzalez-Rivera (1991) modeled
residuals non-parametrically. Even though these contributions recognize the fact that errors
have fat tails, they generally do not render higher moments time varying, i.e., parameters of
the error distribution are assumed to be constant over time. Our margin model builds on Hansen
(1994).

2.1. Hansen’s skewed Student-t distribution

Hansen (1994) was the first to propose a GARCH model, in which the first four mo-
ments are conditional and time varying. For the conditional mean and volatility, he built
on the usual GARCH model. To control higher moments, he constructed a new density
with which he modeled the GARCH residuals. The new density is a generalization of
the Student-t distribution while maintaining the assumption of a zero mean and unit vari-
ance. The conditioning is obtained by defining parameters as functions of past realizations.
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Some extensions to this seminal contribution may be found in Theodossiou (1998) and
Jondeau and Rockinger (2003a).3

Hansen’s skewed Student-t distribution is defined by
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and h and l denote the degree-of-freedom parameter and the asymmetry parameter, respec-
tively. If a random variable Z has the density d(z;h,l), we will write Z w ST(h,l).

Additional useful results are provided in the Appendix A. In particular, we characterize the
domain of definition for the distribution parameters h and l, give formulas relating higher
moments to h and l, and we describe how the cdf of Hansen’s skewed Student-t distribution
can be computed. This computation is necessary for the evaluation of the likelihood of the
copula function.

2.2. A GARCH model with conditional skewness and kurtosis

Let the returns of a given asset be given by {rt}, t¼ 1,.,T. Hansen’s margin model with
time-varying volatility, skewness, and kurtosis, is defined by

rt ¼ mt þ 3t; ð2Þ

3t ¼ stzt; ð3Þ

s2
t ¼ a0þ bþ0

�
3þt�1

�2 þ b�0
�
3�t�1

�2 þ c0s2
t�1; ð4Þ

ztwSTðht;ltÞ: ð5Þ

Eq. (2) decomposes the return of time t into a conditional mean, mt, and an innovation, 3t.
The conditional mean is modeled with 10 lags of rt and day-of-the-week dummies. Eq. (3)
then defines this innovation as the product between conditional volatility, st, and a residual,
zt. Eq. (4) determines the dynamics of volatility. We use the notation 3þt ¼ maxð3t; 0Þ and
3�t ¼ maxð � 3t; 0Þ. For positivity and stationarity of the volatility process to be guaranteed,
parameters are assumed to satisfy the following constraints: a0> 0, bþ0 ; b�0 ; c0 � 0, and

3 Harvey and Siddique (1999) have proposed an alternative specification, based on a non-central Student-t distribu-

tion, in which higher moments also vary over time. This distribution is designed so that skewness depends on the non-

centrality parameter and the degree-of-freedom parameter. Note also that the specification of the skewed Student-t

distribution adopted by Lambert and Laurent (2002) corresponds to the distribution proposed by Hansen, but with

asymmetry parametrized in a different way.
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c0 þ
�
bþ0 þ b�0

��
2 < 1. Such a specification has been suggested by Glosten et al. (1993). Eq.

(5) specifies that residuals follow a skewed Student-t distribution with time-varying parameters
ht and lt.

Many specifications could be used to describe the dynamics of ht and lt. To ensure that they
remain within their authorized range, we consider an unrestricted dynamic that we constrain via
a logistic map.4 The type of functional specification that should be retained is discussed in Jon-
deau and Rockinger (2003a). The general unrestricted model that we estimate is given by

~ht ¼ a1þ bþ1 3þt�1þ b�1 3�t�1 þ c1~ht�1 ð6Þ

~lt ¼ a2þ bþ2 3þt�1 þ b�2 3�t�1þ c2
~lt�1: ð7Þ

We map this dynamic into the authorized domain with ht ¼ g�Lh;Uh½ð~htÞ and lt ¼ g�Ll;Ul½ð~ltÞ.
Several encompassing restrictions of this general specification are tested in the empirical

section of the paper. In particular, we test, within the class of GARCH models of volatility,
the following restrictions: a Gaussian conditional distribution, a standard Student-t distribution,
and a skewed Student-t distribution with constant skewness and kurtosis. We will see that the
most general model cannot be rejected for all the stock indices considered.

3. Copula distribution functions

3.1. The copula function

Consider two random variables X1 and X2 with marginal cdfs Fi(xi)¼ Pr[Xi� xi], i¼ 1,2.
The joint cdf is denoted H(x1,x2)¼ Pr[X1� x1,X2� x2]. All cdfs Fi($) and H($,$) range in
the interval [0,1]. In some cases, a multivariate distribution exists, so that the function H($,$)
has an explicit expression. One such case is the multivariate normal distribution. In many cases,
however, the margins Fi($) are relatively easy to describe, while an explicit expression of the
joint distribution H($,$) may be difficult to obtain.5

In such a context, copulas can be used to link margins into a multivariate distribution func-
tion. The copula function extends the concept of multivariate distribution for random variables
which are defined over [0,1]. This property allows to define a multivariate distribution in
terms of margins Fi(xi) instead of realizations xi. Then, as highlighted in Sklar’s theorem
(see the Appendix A), one has the equality between the cdf H defined over realizations of
the random variables xi and the copula function C defined over margins Fi(xi), so that
H(x1,x2)¼ C(F1(x1),F2(x2)).

We now describe the two copula functions used in our empirical application. For notational
convenience, set uihFi(xi). The Gaussian copula is defined by the cdf

Cðu1;u2; rÞ ¼ Fr

�
F�1ðu1Þ;F�1ðu2Þ

�
;

and the density by

4 The logistic map, g�L;U½ðxÞ ¼ Lþ ðU � LÞð1þ e�xÞ�1
maps R into the interval ]L,U[. In practice, we use the

bounds Lh¼ 2, Uh¼ 30 for h and Ll¼�1, Ul¼ 1 for l.
5 It may be argued that multivariate extensions of the skewed Student-t distribution exist (see, in particular, Bauwens

and Laurent, 2002). In fact, the difficulty comes in this case from the joint estimation of two or more distributions, each

involving a large number of unknown parameters.
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dency measure between X1 and X2. Fr is the bivariate standardized Gaussian cdf with correla-
tion r, �1< r< 1. The letter F represents the univariate standardized Gaussian cdf.

Similarly, the Student-t copula is defined by
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. Tn,r is the bivariate Student-t cdf with degree-of-freedom param-
eter n and correlation r ˛ [�1,1], while tn is the univariate Student-t cdf with degree-of-
freedom parameter n.

These two copula functions have different characteristics in terms of tail dependence. The
Gaussian copula does not have tail dependence, while the Student-t copula has got it (see,
for instance, Embrechts et al., 2003). Such a difference is likely to have important conse-
quences on the modeling of the dependency parameter. Indeed, Longin and Solnik (2001)
have shown, using an alternative methodology, that the correlation between market returns is
higher in case of extreme events.6 Finally, the two copula functions under study are symmetric.
Therefore, when the dependency parameter is assumed to be constant, large joint positive re-
alizations have the same probability of occurrence as large joint negative realizations. In Sec-
tion 3.2, we relax this assumption by allowing the dependency parameter to be conditional on
past realizations.

Both Gaussian and Student-t copulas belong to the elliptical-copula family. Thus, when mar-
gins are elliptical distributions with finite variances, r is just the usual linear correlation coef-
ficient and can be estimated using a linear correlation estimator (see Embrechts et al., 1999). In
the following, however, we provide evidence that margins can be well approximated by the
skewed Student-t distribution, which does not belong to the elliptical-distribution family. It fol-
lows that r is not the linear Pearson’s correlation and needs to be estimated via maximum-
likelihood.

3.2. Alternative specifications for conditional dependency

Let us consider a sample {z1t,z2t}, t¼ 1,.,T. It is assumed that zit gets generated by a con-
tinuous cdf Fi($;qi), where qi represents the vector of unknown parameters pertaining to the
marginal distribution of Zit, i¼ 1,2. In our context, zit is the residual of the univariate GARCH
model presented in Section 2.2.

6 Poon et al. (2004) have obtained that much of this increase in dependency may be explained by changes in volatility.
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The key observation is that the copula depends on parameters that can be easily conditioned.
We define rt as the value taken by the dependency parameter at time t.

For the Student-t copula, the degree-of-freedom parameter n may be conditioned as well.
Several different specifications of the dependency parameter are possible in our context. As
a first approach, we follow Gouriéroux and Monfort (1992) and adopt a semi-parametric spec-
ification in which rt depends on the position of past joint realizations in the unit square. This
means that we decompose the unit square of joint past realizations into a grid, with parameter rt

held constant for each element of the grid. More precisely, we consider an unrestricted
specification:

rt ¼
X16

j¼1

djI
	
ðz1t�1; z2t�1Þ˛Aj



; ð8Þ

where Aj is the jth element of the unit square grid and dj ˛ [�1,1]. To each parameter dj,
an area Aj is associated. For instance, A1 ¼ ½0; p1½ � ½0; q1½ and A2 ¼ ½p1; p2½ � ½0; q1½.7 The
choice of 16 subintervals is somewhat arbitrary. It should be noticed, however, that it has
the advantage of providing an easy testing of several conjectures concerning the impact of
past joint returns on subsequent dependency while still allowing for a large number of ob-
servations per area. In the empirical section, we test several hypotheses of interest on the
parameters dj.

It should be recognized that such a specification is not able to capture persistence in rt.
Therefore, we first consider a time-varying correlation (TVC) approach, as proposed by Tse
and Tsui (2002) in their modeling of the Pearson’s correlation in a GARCH context. The de-
pendency parameter rt is assumed to be driven by the following model:

rt ¼ ð1� a� bÞrþ axt�1þ brt�1; ð9Þ

where

xt ¼
Pm�1

i¼0 z1t�iz2t�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm�1
i¼0 z2

1t�i

Pm�1
i¼0 z2

2t�i

q

represents the correlation between the residuals over the recent period, with m� 2. For statio-
narity to be guaranteed, the following constraints are imposed: 0� a, b� 1, aþ b� 1, and
�1� r� 1.

Our empirical analysis, however, reveals a very large persistence in rt, with aþ b very close
to 1 in most cases. This result suggests that the TVC model may be inappropriate and that the
long-memory feature may be in fact the consequence of a model with large but infrequent
breaks (see Lamoureux and Lastrapes, 1990; Diebold and Inoue, 1999; or Gouriéroux and Ja-
siak, 2001).8 This approach has been followed, among others, by Ramchand and Susmel

7 Fig. 2 illustrates the position of the areas djs. In the figure, we have set equally spaced threshold levels, i.e., p1, p2,

and p3 take the values 0.25, 0.5, and 0.75, respectively. The same for q1, q2, and q3, respectively. In the empirical part of

the paper, we use as thresholds the values 0.15, 0.5, and 0.85. The reason for this choice is that we want to focus on

rather large values. If we had used 0.25, 0.5, and 0.75, the results would have been similar, however.
8 We are grateful to a referee for suggesting this interpretation.
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(1998), Chesnay and Jondeau (2001), and Ang and Bekaert (2002). These authors have ob-
tained, for several market pairs, evidence of the presence of a high-volatility/high-correlation
regime and a low-volatility/low-correlation regime. Thus, we also consider, as an alternative
approach, a model in which parameters of the Student-t copula are driven by the following
model

rt ¼ r0St þ r1ð1� StÞ; ð10Þ

nt ¼ n0St þ n1ð1� StÞ; ð11Þ

where St denotes the unobserved regime of the system at time t. St is assumed to follow a two-
state Markov process, with transition probability matrix given by�

p 1� p
1� q q

�

with

p¼ Pr½St ¼ 0jSt�1 ¼ 0�;

q¼ Pr½St ¼ 1jSt�1 ¼ 1�:

Note that, in this model, we do not assume that univariate characteristics of returns should
also shift. Rather, only parameters pertaining to the dependence structure are driven by the
Markov-switching model.

Quasi maximum-likelihood estimation of this model can be easily obtained using the ap-
proach developed by Hamilton (1989) and Gray (1995). For the degree-of-freedom parameter,
we investigated several hypotheses. In particular, we tested whether it is regime independent
(n0¼ n1) or infinite, so that the Gaussian copula would prevail for a given regime. We also in-
vestigated time-variation in transition probabilities, along the lines of Schaller and van Norden
(1997). We tested specifications in which transition probabilities are allowed to depend on past
volatilities (s1t�1 and s2t�1) as well as on correlation between the residuals over the recent pe-
riod (xt�1). We were unable, however, to obtain a significant time-variation in the probabilities
using such variables.

3.3. Estimation

We now assume that the copula function depends on a set of unknown parameters through
the function Q(z1t�1,z2t�1;qc). We have qc¼ (d1,.,d16,n)0 for the semi-parametric specification,
qc¼ (r,a,b,n)0 for the TVC specification, and qc¼ (r0,r1,n0,n1,p,q)0 for the Markov-switching
model. We also denote fi as the marginal density of zit. In the context of a skewed Student-t
marginal distribution, as presented in Section 2, this density is simply defined by fi(zit;qi)¼
d(zit;qi), i¼ 1,2. We set q ¼

�
q01; q

0
2; q
0
c

�0
the vector of all parameters to be estimated. Conse-

quently, the log-likelihood of a sample is given by

[ðqÞ ¼
XT

t¼1

[tðqÞ; ð12Þ
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where

[tðqÞ ¼ ln cðF1ðz1t; q1Þ;F2ðz2t; q2Þ; Qðz1t�1; z2t�1; qcÞÞ þ
X2

i¼1

ln fiðzit; qiÞ:

Maximum-likelihood estimation involves maximizing the log-likelihood function (12) si-
multaneously over all parameters, yielding parameter estimates denoted bqML ¼ ðbq01;bq02;bq0cÞ0,
such that

bqML ¼ arg max [ðqÞ:

In some applications, however, the ML estimation method may be difficult to implement,
because of a large number of unknown parameters or of the complexity of the model.9 In
such a case, it may be necessary to adopt a two-step ML procedure, also called inference func-
tions for margins. This approach, which has been introduced by Shih and Louis (1995) and Joe
and Xu (1996), can be viewed as the ML estimation of the dependence structure given the es-
timated margins. First, parameters pertaining to the marginal distributions are estimated
separately:

~qi ˛ arg max
XT

t¼1

ln fiðzit; qiÞ i¼ 1;2: ð13Þ

Second, parameters pertaining to the copula function are estimated by solving the following
equation:

~qc ˛ arg max
XT

t¼1

ln cðF1ðz1t; ~q1Þ; F2ðz2t; ~q2Þ; Qðz1t�1; z2t�1; qcÞÞ:

Patton (2006) has shown that this two-step estimation yields asymptotically efficient and
normal parameter estimates. If q0 denotes the true value of the parameter vector, the asymptotic
distribution of ~qTS ¼ ð~q01; ~q

0
2;

~q0cÞ
0

is given by

ffiffiffi
T
p
ð~qTS � q0Þ/Nð0;UÞ;

where the asymptotic covariance matrix U may be estimated by the robust estimatorbU ¼ bM�1bV bM�1, with

bM ¼�XT

t¼1

v2[tð~qÞ
vq vq0

;

bV ¼XT

t¼1

v[tð~qÞ
vq

XT

t¼1

v[tð~qÞ
0

vq
:

9 The dependency parameter of the copula function may be a convoluted expression of the parameters. In such a case,

an analytical expression of the gradient of the likelihood might not exist. Therefore, only numerical gradients may be

computable, implying a dramatic slowing down of the numerical procedure.
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4. Empirical results

4.1. The data

We investigate the interactions between four major stock indices. The labels are SP for the
S&P 500, FTSE for the Financial Times 100 stock index, DAX for the Deutsche Aktien Index,
and CAC for the French Cotation Automatique Continue index. Our sample covers the period
from January 1, 1980 to December 29, 2000.

All the data are from Datastream, sampled at a daily frequency. To eliminate spurious
correlation generated by holidays, we eliminated those observations when a holiday oc-
curred at least for one country from the database. This reduced the sample from 5479
observations to 4578. Note that such an observation would not affect the dependency be-
tween stock markets during extreme events. Yet, it would affect the estimation of the re-
turn marginal distribution and, subsequently, the estimation of the distribution of the
copula. In particular, the estimation of the copula would be distorted to account for the
excessive occurrence of null returns in the distribution. To take into account the fact
that international markets have different trading hours, we use once lagged U.S. returns,
although this does not significantly affect the correlation with European markets (because
trading times are partially overlapping). Preliminary estimations also revealed that the
crash of October 1987 was of such importance that the standard errors of our model
would be very much influenced by this event. For the S&P, on that date, the index drop-
ped by �22%, while the second largest drop was �9% only. For this reason, we elimi-
nated the data between October 17 and 24. This further reduces the sample to a total of
4572 observations.

Table 1 provides summary statistics on stock market returns. Returns (rt) are defined as
100� ln (Pt/Pt�1), where Pt is the value of the index at time t. Statistics are computed after
holidays have been removed from the time series. Therefore, the number of observations is
the same one for all markets, and the series do not contain days when a market was closed.
We begin with the serial dependency of returns. The LM(K ) statistic tests whether the squared
return is serially correlated up to lag K. This statistic clearly indicates that ARCH effects are
likely to be found in all market returns. Also, when considering the LjungeBox statistics,
QW(K ), after correction for heteroskedasticity, we obtain that returns are serially correlated
for all the retained indices.

We also consider the unconditional moments of the various series, with standard errors
computed using a GMM-based procedure. We notice that for all series skewness, Sk, is neg-
ative. Moreover, excess kurtosis, XKu, is significant for all return series. This indicates that
the empirical distributions of returns display fatter tails than the Gaussian distribution. The
Wald statistic of the joint test of significance of skewness and excess kurtosis corroborates
this finding.10

Finally, the unconditional correlation matrix indicates that a rather large dependency
between market returns is expected. The correlation is the smallest between the SP and the
CAC, and the largest between the DAX and the CAC.

10 When the 1987 crash is not removed, the SP distribution is characterized by a very strong asymmetry (with a skew-

ness equal to �2.55) and fat tails (with an excess kurtosis as high as 57). Yet, due to uncertainty around higher-moment

point estimates, the Wald test would not reject normality.
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4.2. Estimation of the marginal model

In a preliminary step, we consider several restrictions of the general marginal model as pos-
sible candidates for adjusting the empirical return distribution. Table 2 reports the goodness-of-
fit tests for these distributions. For this purpose, we follow Diebold et al. (1998), henceforth
DGT, who suggested that, if a marginal distribution is correctly specified, the margin uit should
be iid Uniform(0,1). The test is performed in two steps. First, we evaluate whether uit is serially
correlated. Hence, we examine the serial correlation of ðuit � �uiÞk, for k¼ 1,.,4 by regressing
ðuit � �uiÞk on 20 own lags.11 The LM test statistic is defined as (T� 20)R2, where R2 is the
coefficient of determination of the regression, and is distributed as a c2(20) under the null.
In Table 2, these tests, labeled DGT-AR(k), generally do not reject the null hypothesis. In par-
ticular, even when residuals are assumed to be normal, the first four moments are found to be

Table 1

Summary statistics on daily returns

SP FTSE DAX CAC

Mean 0.049a 0.044a 0.044b 0.041b

s.e. (0.014) (0.014) (0.018) (0.019)

Std 0.963a 0.923a 1.211a 1.190a

s.e. (0.026) (0.020) (0.042) (0.042)

Sk �0.399b �0.164 �0.720b �0.683b

s.e. (0.186) (0.103) (0.299) (0.362)

XKu 5.147a 2.082a 8.604a 8.369b

s.e. (1.389) (0.525) (3.132) (3.550)

Wald stat. 17.454a 15.837a 7.581b 6.022b

p-Values (0.000) (0.000) (0.023) (0.049)

LM(1) 82.745a 103.585a 222.750a 113.279a

p-Values (0.000) (0.000) (0.000) (0.000)

LM(5) 188.927a 315.646a 318.219a 345.317a

p-Values (0.000) (0.000) (0.000) (0.000)

QW(5) 13.187b 17.264a 10.161c 10.404c

p-Values (0.022) (0.004) (0.071) (0.065)

QW(10) 22.526b 25.574a 18.515b 21.470b

p-Values (0.013) (0.004) (0.047) (0.018)

Correlation matrix
SP 1 0.272 0.317 0.269

FTSE 0.272 1 0.475 0.524

DAX 0.317 0.475 1 0.554

CAC 0.269 0.524 0.554 1

This table reports summary statistics on daily stock market returns. Mean, Std, Sk, and XKu denote the mean, the standard

deviation, the skewness, and the excess kurtosis of returns, respectively. Standard errors are computed using a GMM-

based procedure. Wald stat. is the Wald statistics which tests the null hypothesis that skewness and excess kurtosis are

jointly equal to zero. It is distributed, under the null, as a c2(2). The LM(K ) statistics for heteroskedasticity is obtained

by regressing squared returns on K lags. QW(K ) is the LjungeBox statistics for serial correlation, corrected for hetero-

skedasticity, computed with K lags. Since international markets have different trading hours, the correlation matrix is

computed using once lagged U.S. returns. In this table as well as all the following ones, significance is denoted by super-

scripts at the 1% (a), 5% (b), and 10% (c) levels.

11 Zero correlation is equivalent to independence, only under normality. The correlogram is, therefore, only suggestive

of possible independence.
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Table 2

Goodness-of-fit test statistics

SP FTSE DAX CAC

Panel A: Normal distribution

DGT-AR(1) 27.233 17.756 31.781b 21.162

DGT-AR(2) 30.816c 17.882 27.983 33.140b

DGT-AR(3) 23.947 23.661 28.945c 17.501

DGT-AR(4) 27.856 13.532 16.536 25.317

DGT-H(20) 109.057a 36.615a 67.215a 63.708a

[ L �5932.938 �5834.696 �6817.531 �6817.807

AIC 2.603 2.560 2.991 2.991

SIC 2.608 2.565 2.996 2.996

Panel B: Student-t distribution

DGT-AR(1) 28.057 17.900 31.441b 21.154

DGT-AR(2) 29.269c 17.464 19.211 21.498

DGT-AR(3) 25.116 22.810 29.855c 17.409

DGT-AR(4) 27.549 13.176 9.764 14.645

DGT-H(20) 26.014 38.579a 45.900a 14.125

[ L �5791.183 �5802.548 �6623.191 �6645.547

LRT(1) 283.511 64.297 388.680 344.519

p-Values (0.000) (0.000) (0.000) (0.000)

AIC 2.541 2.546 2.906 2.916

SIC 2.548 2.553 2.913 2.923

Panel C: Skewed Student-t distribution

DGT-AR(1) 27.978 18.099 31.029c 21.209

DGT-AR(2) 29.351c 17.076 21.219 21.741

DGT-AR(3) 24.726 22.538 27.923 17.147

DGT-AR(4) 27.675 12.696 11.983 14.788

DGT-H(20) 26.426 24.918 28.566c 13.818

[ L �5790.403 �5796.170 �6612.153 �6641.937

LRT(1) 1.559 12.756 22.076 7.220

p-Values (0.212) (0.000) (0.000) (0.007)

AIC 2.541 2.544 2.901 2.915

SIC 2.550 2.552 2.910 2.923

Panel D: Skewed Student-t distribution with time-varying parameters

DGT-AR(1) 30.934c 19.201 32.978b 24.599

DGT-AR(2) 22.487 15.327 14.356 19.027

DGT-AR(3) 24.877 20.815 28.561c 17.422

DGT-AR(4) 20.840 10.752 7.188 13.688

DGT-H(20) 18.886 24.208 30.004c 12.152

[ L �5770.644 �5776.923 �6601.303 �6634.668

LRT(6) 39.518 38.495 21.700 14.539

p-Values (0.000) (0.000) (0.001) (0.024)

AIC 2.535 2.538 2.899 2.914

SIC 2.552 2.555 2.916 2.931

This table reports goodness-of-fit statistics for several distributional restrictions of the general univariate model. The

first-part of each panel contains the LM test statistics for the null of no serial correlation of the kth centered moments

of the uit, labeled DGT-AR(k). Under the null of no autocorrelation of the residuals, the statistics is distributed as

a c2(20). The table also reports the test statistics for the null hypothesis that the cdf of residuals is Uniform(0,1), labeled

DGT-H(20). Under the null, the statistics is distributed as a c2(20). Finally, the table presents the log-likelihood ([ L)

and the AIC and SIC information criteria. The models A, B, C, and D are encompassing each other. The statistics

LRT( p) tests the null hypothesis that the restricted version of a model is not rejected as one moves from one panel

to the other. The parameter p is the number of constraints under the null. In this table as well as all the following

ones, significance is denoted by superscripts at the 1% (a), 5% (b), and 10% (c) levels.
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non-serially correlated for the SP and the FTSE, while the DAX return and the CAC volatility
are found to be serially correlated.

Second, we test the null hypothesis that uit is Uniform(0,1). For this purpose, we cut the em-
pirical and theoretical distributions into N bins and test whether the two distributions signifi-
cantly differ on each bin. An advantage of the approach suggested by DGT is that it permits
a graphical representation which can be used to identify areas where the theoretical distribution
fails to fit the data. Table 2 reports the test statistics, labeled DGT-H(N ), for various distribu-
tions with p-values computed with N� 1 degrees of freedom.12 We consider the case where
N¼ 20 bins. Similarly, Fig. 1 displays, for the SP and the CAC indices, the estimates of the
density of uit for each bin for the normal distribution and for the skewed Student-t distribution
with time-varying skewness and kurtosis. While the table indicates that the normal distribution
is strongly rejected for all markets, at any significance level, the figure reveals that the rejection
of the normal distribution is attributable to its inability to fit the fat tails of the empirical dis-
tribution. The standard Student-t distribution is not rejected for the SP and the CAC, suggesting
that asymmetry is not a major feature for these indices. The skewed Student-t distribution is
found to fit the data quite well, except for a few number of bins for the DAX. Finally, when
skewness and kurtosis are allowed to vary over time, we do not reject the null hypothesis
that the theoretical distribution provides a good fit of the empirical distribution for any return
series, at the 5% level.

Table 3 presents estimates of the general model in which volatility, skewness, and kurtosis
are time varying.13 We can summarize our empirical evidence for margins as follows. First,
a negative return has a stronger effect on subsequent volatility than a positive return of the
same magnitude. This result is consistent with the well-known leverage effect, documented
by Campbell and Hentschel (1992), and Glosten et al. (1993).

Second, the impact of large returns on the subsequent distribution is measured via lt and ht.
The unrestricted dynamics of ~lt and ~ht gets mapped into lt and ht with the logistic map. The
dynamics of the degree-of-freedom parameter ht is found to be rather persistent, except for the
FTSE. The significantly negative sign of bþ1 suggests that, subsequent to large positive realiza-
tions, tails thin down. In contrast, we do not obtain significant estimates of b�1 . This result sug-
gests that a crash is more likely to be followed by a subsequent large return (of either sign) than
by a boom.

The asymmetric impact of large returns on the subsequent distribution is measured by the
dynamics of lt. We find that, in general, past positive returns enlarge the right tail, while
past negative returns enlarge the left tail. The effect of positive returns is slightly larger than
the effect of negative returns, although not always significantly. Last, the asymmetry parameter
is found to be persistent, in particular in European markets.

4.3. Estimation of the multivariate model

4.3.1. Model with constant dependency parameter
Table 4 reports parameter estimates for the Gaussian and Student-t copulas, when the depen-

dency parameter is assumed to be constant over time. For all market pairs, the estimate of the

12 As shown by Vlaar and Palm (1993), under the null, the correct distribution of the test statistic is bounded between

a c2(N� 1) and a c2(N� K� 1) where K is the number of estimated parameters.
13 See Jondeau and Rockinger (2003b) for more details on the estimation method.
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dependency parameter is found to be positive and strongly significant. As expected, it is statis-
tically and economically much larger between European pairs than between pairs involving the
SP. This result reflects the fact that European stock markets are more widely integrated. We also
performed a goodness-of-fit test to investigate whether a given copula function is able to fit the
dependence structure observed in the data, along the lines of DGT.14 For all market pairs, we
obtain that the Student-t copula fits the data very well, since the null hypothesis is never re-
jected. In contrast, the Gaussian copula is unable to adjust the dependence structure between
European markets.

To provide further insight on the ability of the chosen copulas to fit the data, we also report
the log-likelihood and the AIC and SIC information criteria. A LR statistic tests for the null
hypothesis that the degree-of-freedom parameter of the Student-t copula is infinite, so that
the Student-t copula would reduce to the Gaussian copula. On the basis of the information cri-
teria as well as the LR test, we strongly reject the Gaussian copula specification. As will be
shown later on, this result is consistent with the finding that the dependency is stronger in
the tails of the distribution than in the middle of the distribution.
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SP: ST dist. with time-varying param. CAC: ST dist. with time-varying param.

Fig. 1. The estimates of the density of uit, for the normal distribution and the skewed Student-t distribution with time-

varying skewness and kurtosis, for the SP and the CAC indices. Horizontal lines correspond to the 95% confidence

band.

14 The reported DGT-H test statistics are computed by splitting the joint distribution as a (5,5) square and by evaluating

for each bin whether the empirical and theoretical distributions significantly differ.
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Since the Student-t copula is preferred over the Gaussian one, we focus in the following on
the Student-t copula only.15

4.3.2. Semi-parametric model for dependency
We first turn to the discussion of the estimation of the model in which the dependency pa-

rameter r is rendered conditional on past realizations, using the bivariate semi-parametric
model (8), as suggested by Gouriéroux and Monfort (1992). Due to the large number of param-
eters, we do not report the estimates for all market pairs. Instead, we display in Fig. 2 the unit
square with parameter estimates of the various djs and their standard errors, for the SPeFTSE
as well as the FTSEeCAC. These two pairs can be viewed as two polar cases. The first pair has

Table 3

Parameter estimates of the model with skewed Student-t distribution and time-varying moments

SP FTSE DAX CAC

Volatility equation

a0 0.006a (0.002) 0.021a (0.005) 0.022a (0.006) 0.022a (0.006)

bþ0 0.043a (0.010) 0.045a (0.010) 0.081a (0.016) 0.067a (0.013)

b�0 0.071a (0.012) 0.085a (0.012) 0.125a (0.018) 0.107a (0.014)

c0 0.941a (0.009) 0.910a (0.013) 0.887a (0.014) 0.900a (0.012)

Degree-of-freedom parameter equation

a1 �0.510a (0.198) 0.390 (0.466) �0.496b (0.242) �0.429 (0.230)

bþ1 �0.616a (0.149) �0.994a (0.291) �0.664a (0.136) �0.436a (0.126)

b�1 0.060 (0.174) �0.414 (0.358) 0.001 (0.098) 0.326 (0.369)

c1 0.628a (0.130) 0.049 (0.453) 0.422a (0.154) 0.626a (0.142)

Asymmetry parameter equation

a2 �0.084c (0.049) �0.117a (0.033) �0.046 (0.051) �0.057c (0.034)

bþ2 0.239a (0.071) 0.271a (0.056) �0.033 (0.091) 0.083c (0.047)

b�2 �0.088c (0.051) �0.058 (0.042) �0.100b (0.050) �0.033 (0.031)

c2 0.253 (0.178) 0.745a (0.075) 0.508c (0.304) 0.669a (0.159)

Summary statistics

LM(1) 0.017 0.028 0.052 0.003

p-Values (0.897) (0.868) (0.820) (0.956)

LM(5) 0.868 1.181 0.717 0.614

p-Values (0.973) (0.947) (0.982) (0.987)

QW(5) 2.027 2.867 13.543 6.511

p-Values (0.845) (0.721) (0.019) (0.260)

QW(10) 7.387 4.776 15.371 10.012

p-Values (0.689) (0.906) (0.119) (0.439)

[ L �5770.644 �5776.923 �6601.303 �6634.668

This table reports parameter estimates and residual summary statistics for the model with a skewed Student-t distribution

and time-varying higher moments. Parameters are defined in Eqs. (4), (6), and (7). Summary statistics include LM(K ) sta-

tistics for heteroskedasticity, obtained by regressing squared returns on K lags, and the QW(K ) statistic for serial correla-

tion, corrected for heteroskedasticity, computed with K lags. [ L is the sample log-likelihood of the model. In this table as

well as all the following ones, significance is denoted by superscripts at the 1% (a), 5% (b), and 10% (c) levels.

15 We performed the same estimations with the Gaussian copula and found that the reported results were not altered by

the change of copula. Results are available upon request from the authors.
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a very low dependency parameter (r¼ 0.24), while the second one has the largest r (r¼ 0.49).
Inspection of the figures indicates that the extreme diagonal elements for the FTSEeCAC take
the values 0.64 and 0.59 that compare with 0.17 and 0.28 for the SPeFTSE. Inspection of the
figures, and comparison with the off-diagonal elements show that, subsequent to dissimilar
events, i.e., one market goes up, and the other goes down, the likelihood to find a similar event
is small. This observation holds also for most market pairs under investigation. We wish now to
test the feature of the dependency parameter more formally.

In Table 5, we report the results of the tests for conditional dependency. Since we essentially
focus on the parameters along the diagonal, we first present those parameters which correspond
to the level of dependency whenever lagged realizations of both markets belong to the same
quartile. Then, the table displays Wald test statistics associated with the different hypotheses
presented in Section 3.2.

In a first test, we investigate whether the piecewise constant grid of the u1� u2 unit square
yields significantly different values for the djs. This test corresponds to the null hypothesis H1:
d1¼ d2¼/¼ d16, versus inequality for at least one pair of elements. The test statistic is distrib-
uted under the null as a c2(15). For market pairs involving the SP, we do not reject the null hypoth-
esis at the 5% significance level. In contrast, the dependency of r on past realizations is not rejected
for European market pairs. Our evidence is broadly consistent with previous empirical results

Table 4

Parameter estimates of the copula with constant dependency parameter

SPeFTSE SPeDAX SPeCAC FTSEeDAX FTSEeCAC DAXeCAC

Panel A: Gaussian copula

r 0.240 0.305 0.275 0.406 0.488 0.459

s.e. (0.014) (0.013) (0.013) (0.012) (0.010) (0.011)

DGT-H(25) 14.780 23.944 16.069 41.312b 42.424b 54.217a

[ L 135.13 220.39 178.40 408.67 620.63 536.47

AIC �0.059 �0.096 �0.078 �0.178 �0.271 �0.234

SIC �0.057 �0.095 �0.076 �0.177 �0.270 �0.233

Panel B: Student-t copula

r 0.239 0.304 0.275 0.406 0.494 0.465

s.e. (0.014) (0.014) (0.014) (0.013) (0.012) (0.012)

n 23.773 18.425 12.939 9.320 6.975 6.666

s.e. (9.056) (5.380) (2.794) (1.522) (0.851) (0.779)

DGT-H(25) 16.985 24.228 12.346 22.513 21.147 27.427

[ L 139.052 227.500 191.420 433.927 667.453 592.095

LRT 7.847 14.215 26.035 50.507 93.655 111.256

p-Values (0.005) (0.000) (0.000) (0.000) (0.000) (0.000)

AIC �0.060 �0.099 �0.083 �0.189 �0.291 �0.258

SIC �0.057 �0.096 �0.080 �0.186 �0.288 �0.255

Empirical r 0.222 0.285 0.261 0.383 0.470 0.440

This table reports parameter estimates for the copula functions when the dependency parameter is assumed to be con-

stant over time. Parameters are r for the Gaussian copula, and r and n for the Student-t copula. Following Diebold et al.

(1998), the table also reports the test statistic for the null hypothesis that the cdf of residuals is Uniform(0,1). Under the

null, the statistic is distributed as a c2(25). We also report the log-likelihood ([ L) as well as the AIC and SIC informa-

tion criteria. For the Student-t copula, LRT is the LR test statistic for the null hypothesis that 1/n¼ 0. Finally, empirical

r is the sample correlation between the margins. In this table as well as all the following ones, significance is denoted by

superscripts at the 1% (a), 5% (b) levels.
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Fig. 2. The unit square with estimates of parameters djs and their standard errors, for the SPeFTSE and the FTSEeCAC

pairs, respectively.
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obtained, among others, by Bera and Kim (2002) and Tse (2000), who provided formal tests for
a constant conditional correlation between stock markets. On one hand, Bera and Kim (2002)
found that for most market pairs, the hypothesis of a constant conditional correlation should be
strongly rejected. On the other hand, Tse (2000) provided more mixed evidence, suggesting
that the test developed by Bera and Kim may have low power under non-normality. Our test pro-
cedure does not require any distributional assumption, since marginal models are estimated in
a preliminary step. In addition, due to its semi-parametric design, this test does not assume any
particular form under the alternative. Note finally that the results of this test are consistent with
the evidence provided in the rest of this section, based on a particular parameterization under
the alternative.

Next, we consider a test of asymmetry in the persistence of extreme events. Whereas Longin
and Solnik (2001), Hartmann et al. (2001), and Poon et al. (2004) focus on the contemporane-
ous correlations in the tails, finding that correlation is stronger in downside markets than in up-
side markets, we question whether the dependency between markets is stronger subsequent to
downside markets than subsequent to upside markets. Therefore, we compare the magnitude of
parameters d1 and d16. The value d1 measures the dependency subsequent to downside markets,
while d16 measures the dependency subsequent to upside markets. We construct a formal test of
the hypothesis that H2: d1¼ d16 versus d1> d16. We notice first that, for most pairs, the esti-
mates of (d1� d16) take a positive value, meaning that joint downside movements create stron-
ger dependence than corresponding upside movements. Yet, the difference is significant for
neither of the market pairs. Therefore, unlike the evidence obtained by Longin and Solnik
(2001) using the extreme value theory, we find that a crash and a boom of the same magnitude

Table 5

Parameter estimates of the Student-t copula with dependency parameter driven by the semi-parametric model (8)

SPeFTSE SPeDAX SPeCAC FTSEeDAX FTSEeCAC DAXeCAC

Parameters on the diagonal

d1 0.173 0.282 0.280 0.496 0.645 0.553

s.e. (0.066) (0.059) (0.061) (0.045) (0.033) (0.042)

d6 0.324 0.363 0.353 0.489 0.521 0.530

s.e. (0.036) (0.037) (0.035) (0.029) (0.028) (0.028)

d11 0.259 0.345 0.260 0.431 0.511 0.489

s.e. (0.042) (0.036) (0.039) (0.033) (0.029) (0.031)

d16 0.275 0.206 0.286 0.455 0.589 0.555

s.e. (0.079) (0.078) (0.071) (0.057) (0.040) (0.045)

Composite tests

H1: di¼ d, i¼ 1,.,16 20.914 12.778 16.734 30.329 72.603 39.508

p-Values (0.140) (0.619) (0.335) (0.011) (0.000) (0.001)

H2: d1> d16 �0.991 0.616 �0.004 0.316 1.181 �0.001

p-Values (0.320) (0.433) (0.948) (0.574) (0.277) (0.971)

H3: d1¼ d16> d11¼ d6 �1.418 �1.855 �0.557 0.406 3.303 1.156

p-Values (0.146) (0.071) (0.342) (0.367) (0.002) (0.204)

H4: d1¼ d6¼ d11¼ d16> d3¼
d4¼ d8¼ d9¼ d13¼ d14

1.534 1.469 1.265 2.026 5.298 4.790

p-Values (0.123) (0.136) (0.179) (0.051) (0.000) (0.000)

This table reports (some) parameter estimates and test statistics for the Student-t copula when the dependency parameter

r depends on the position of past joint realizations in the unit square. Parameters d1, d6, d11, and d16 correspond to r

when u1t and u2t belong to the same quartile along the diagonal. Composite tests are described in Section 4.3. For the

null hypothesis H1, the statistics is distributed as a c2(15). For the other hypotheses, the test statistic is distributed as an

N(0,1).
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have generally a similar effect on subsequent correlation, so that it is the increase in volatility
which primarily affects correlation. Such an interpretation has been recently put forward by
Poon et al. (2004).

To confirm this result, we presently investigate whether large joint returns, be they of pos-
itive or negative sign, yield higher dependency than small joint returns. We formulate this
hypothesis as a test of H3: d1¼ d6¼ d11¼ d16 versus d1¼ d16> d6¼ d11. Inspection of the
test statistics shows that, for most cases, the null cannot be rejected. Longin and Solnik
(1995) performed a similar test of asymmetry in correlation between stock markets (see their
Table 8). They investigated whether the U.S. market shocks affect correlation in a different
extent depending on both the sign and the magnitude of the shocks. They obtained that in
most cases large shocks in the U.S. market, either positive or negative, have a similar effect
on subsequent correlation than small shocks. Interestingly, we find very similar patterns for
pairs involving the SP, since parameters d1 and d16 are smaller than parameters d6 and d11.
In contrast, for European market pairs, we obtain that large shocks have a stronger effect on
volatility than small shocks, although the difference is significant for the FTSEeCAC pair
only. This suggests that correlation between European markets tends to increase during agitated
periods, while this is not likely to be the case between the U.S. market and the European
markets.

The last test investigates whether joint variations, be they large or small, have a stronger ef-
fect on conditional dependency than opposite variations. Therefore, we test the null hypothesis
H4: d1¼ d6¼ d11¼ d16¼ d13¼ d9¼ d14¼ d3¼ d4¼ d8 versus d1¼ d6¼ d11¼ d16> d13¼
d9¼ d14¼ d3¼ d4¼ d8. We find that the null hypothesis is not rejected for pairs involving
the SP. In contrast, the three European market pairs display large values of the test statistics
(2, 5.3, and 4.8), all having small p-values. This test indicates that joint variations (whatever
the sign and magnitude) increase subsequent dependency of returns, suggesting a persistence
in dependency.

4.3.3. Modeling persistence in dependency
The last issue we address in this paper is the persistence in the dependency parameter.

Estimations presented above have shown that, in many circumstances, past joint realizations
affect the international dependency. We now measure the extent to which the persistence in
dependency is likely to attenuate this link. We thus estimate two specifications which are
designed to capture such a persistence, the TVC model (Eq. (9)) and the Markov-switching
model (Eqs. (10) and (11)).

QML estimates of the TVC model are reported in Table 6, with m¼ 5 lags in the com-
putation of xt, so that short-term correlation is computed over one week of data. (The re-
sults are not altered when we select m¼ 10 or 20.) This table reveals that persistence in the
dynamics of dependency is very strong with a parameter, b, ranging between 0.942 and
0.995. The effect of the past short-term correlation between residuals, measured by a, is
strongly significantly positive for European market pairs, but barely significant for pairs in-
volving the SP. These results suggest that the TVC model may be inappropriate for mod-
eling the dynamics of the dependency parameter for pairs involving the SP. Furthermore,
dependency appears to be very large and persistent between European markets, a feature
which may be the sign of large but infrequent breaks in the dynamics of dependency.
We thus turn to the estimation of a Markov-switching model for capturing the persistence
in the dependency structure.
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Table 7 reports QML parameter estimates of the Markov-switching model in which both
correlation and degree-of-freedom parameters are regime dependent. State 0 is associated
with a low dependency between stock markets, while State 1 corresponds to the high-
dependency regime. First, for all market pairs, the difference between the correlations esti-
mated for the two regimes are strongly significant. In regime 0, correlations are about 0.23
for pairs involving the SP and about 0.3 for European market pairs. In regime 1,

Table 6

Parameter estimates of the Student-t copula with dependency parameter driven by the TVC model (9)

SPeFTSE SPeDAX SPeCAC FTSEeDAX FTSEeCAC DAXeCAC

r 0.242 0.320 0.311 0.504 0.608 0.601

s.e. (0.017) (0.025) (0.048) (0.053) (0.052) (0.072)

b 0.942 0.963 0.995 0.984 0.980 0.983

s.e. (0.068) (0.016) (0.003) (0.004) (0.004) (0.004)

a 0.008 0.017 0.004 0.013 0.017 0.015

s.e. (0.008) (0.006) (0.002) (0.003) (0.003) (0.003)

n 23.579 18.143 12.800 10.769 9.398 8.868

s.e. (9.460) (5.224) (2.625) (1.954) (1.515) (1.370)

[ L 140.101 239.233 201.314 499.231 826.917 724.092

AIC �0.060 �0.103 �0.086 �0.217 �0.360 �0.315

SIC �0.054 �0.097 �0.081 �0.211 �0.354 �0.309

This table reports parameter estimates for the Student-t copula when the dynamics of the dependency parameter r is

given by a TVC model. Parameters are defined in Eq. (9). We also report the log-likelihood and the AIC and SIC in-

formation criteria.

Table 7

Parameter estimates of the Student-t copula with parameters driven by the Markov-switching model (10) and (11)

SPeFTSE SPeDAX SPeCAC FTSEeDAX FTSEeCAC DAXeCAC

r0 0.222 0.248 0.234 0.262 0.280 0.332

s.e. (0.028) (0.018) (0.018) (0.022) (0.020) (0.018)

r1 0.514 0.583 0.456 0.559 0.698 0.735

s.e. (0.229) (0.042) (0.035) (0.016) (0.011) (0.016)

n0 29.052 N 16.188 14.226 22.143 13.031

s.e. (18.297) e (4.659) (4.928) (10.977) (3.518)

n1 10.836 7.142 9.733 11.396 9.133 7.263

s.e. (25.801) (2.684) (4.060) (3.074) (2.089) (1.986)

p 0.996 0.995 0.999 0.998 0.998 0.995

s.e. (0.009) (0.002) (0.001) (0.001) (0.001) (0.002)

q 0.942 0.979 0.998 0.998 0.998 0.988

s.e. (0.075) (0.010) (0.002) (0.001) (0.001) (0.004)

[ L 140.291 249.223 204.163 488.740 829.692 699.747

AIC �0.060 �0.107 �0.087 �0.212 �0.361 �0.304

SIC �0.054 �0.102 �0.080 �0.206 �0.356 �0.297

Expected duration (in days)

State 0 278 213 1667 625 455 189

State 1 17 47 417 556 400 83

This table reports parameter estimates for the Student-t copula when the dynamics of the dependency parameter r and

the degree-of-freedom parameter n are given by a Markov-switching model. Parameters are defined in Eqs. (10) and

(11). We also report the log-likelihood and the AIC and SIC information criteria.
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correlations are about 0.5 and 0.65, respectively. Another interesting result is that, in some
cases, the difference between the degree-of-freedom parameters is rather large, but barely
significant. For the SPeDAX, the Student-t copula in regime 0 reduces to the Gaussian cop-
ula. For other market pairs, the dependency parameters are significantly different between the
two regimes, while the degree-of-freedom parameters may be insignificantly different one from
the other.

Another noticeable result provided by these estimates concerns the expected duration in
a given regime. Expected duration (in days) is computed as (1� p)�1 for regime 0 and
(1� q)�1 for regime 1. Results reported in Table 7 indicate that, for pairs involving the
SP, the expected duration in the low-correlation regime is very long as compared with
the expected duration in the high-correlation regime. For instance, for the SPeFTSE, the
corresponding expected durations are 278 days and 17 days, respectively. This result sug-
gests that the second regime may be economically irrelevant. In contrast, for European markets,
the durations expected for the two regimes are very close. Therefore, the two regimes are more
balanced and are likely to be relevant in order to capture the dynamics in the dependence
structure.16

To provide further insight on the dynamics of the dependency structure between Euro-
pean markets, we consider now the evolution through time of the dependency parameter.
Fig. 3 displays the evolution of parameter rt for the FTSEeDAX and FTSEeCAC, esti-
mated by the TVC model as well as by the Markov-switching model. For the latter model,
we plot the aggregated-over-regimes (or implied) conditional dependency at time t. It is de-
fined as (r0p0tþ r1(1� p0t)), where p0t denotes the ex ante probabilities Pr[St¼ 0 | It�1]. In-
terestingly, we notice that the evolutions of dependency estimated with the TVC model and
the Markov-switching model look rather similar. This corroborates the rather close values of
the information criteria obtained for the two models for these market pairs. The figure re-
veals that the dependency between the FTSE and the DAX is characterized essentially by
two long subperiods. The first one, from 1980 to 1989, corresponds to a high probability of
being in the low dependency regime 0 (with r0¼ 0.26). During this period, two short-
lasting increases in the dependency between the FTSE and the DAX occurred in September
1981 and October 1987, when the two markets experienced simultaneous crashes. The sec-
ond period, from 1990 on, is mainly associated with the high-dependency regime 1 (with
r1¼ 0.56). The initial increase in dependency corresponds to the Kuwait crisis, from Iraq’s
invasion on August 2, l990 through the conclusion of the Gulf war on March 3, 1991. Then
the dependency between the FTSE and the DAX experienced a short-lasting decrease
around September 1992. It can be explained by the EMS crisis, which was accompanied
by a sharp increase in the FTSE. In contrast, the dependency briefly decreased in September
and October 1995, when the DAX suffered from a marked decrease. We may observe that
such events affected the dependency negatively, because only one market was under pres-
sure. Finally, at the end of the period under study, from 1997 on, the two markets are
strongly dependent. The increase in 1997 may be linked to the South-east Asian crisis,
which started around June 1997. The period from 1998 to 1999 may also be related to

16 Since traditional asymptotics do not apply in this setting, we performed experiments, to assess the statistical signif-

icance of each regime using a Monte-Carlo simulation, along the lines of Hansen (1992) and Ang and Bekaert (2002).

These experiments turned out to be very cumbersome and indicated the second regime is strongly significant for

European market pairs, while it is barely (or not) significant for pairs involving the SP.
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the Russian crisis, which started with the collapse of the bond market at the beginning of
August 1998.

The second pair, between the FTSE and the CAC returns, displays a similar pattern. One
noticeable exception is the period 1981 and 1982. While the dependency between the FTSE
and the DAX strongly increased over this period, the FTSE and the CAC did not experience
such a pattern. This may be explained by the fact that the French market was, at this time,
strongly affected by domestic political changes.

5. Conclusion

The methodology developed in this paper resorts to copula functions for modeling depen-
dency between time series, when univariate distributions are complicated and cannot be easily
extended to a multivariate setup. We use this methodology to investigate the dependency struc-
ture between daily stock market returns over the period 1980e1999.

We first provide empirical evidence that the distribution of daily returns may be well de-
scribed by the skewed Student-t distribution, with volatility, skewness, and kurtosis varying
over time. In such a context, modeling several returns simultaneously, using the multivariate
extension of this distribution, would be extremely cumbersome. Subsequently, we use cop-
ula functions to join these complicated univariate distributions. This approach leads to
a multivariate distribution which fits the data well, without involving time-consuming

1980 1985 1990 1995 2000

0

0.5

1
FTSE-DAX: TVC model

1980 1985 1990 1995 2000

0

0.5

1
FTSE-DAX: MS model

1980 1985 1990 1995 2000

0

0.5

1
FTSE-CAC: TVC model

1980 1985 1990 1995 2000

0

0.5

1
FTSE-CAC: MS model

Fig. 3. The evolution of the parameter rt obtained with the TVC model (9) and with the Markov-switching model (10)

and (11), for the FTSEeDAX and the FTSEeCAC pairs, respectively.
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estimations. Finally, we describe how the dependency parameter can be rendered conditional
and we propose alternative specifications to model the dynamics of the dependency param-
eter. On one hand, the dependency parameter is allowed to depend on the position of past
realizations of margins in the unit square. This model provides a semi-parametric descrip-
tion of the dependency parameter. The dependency between European markets is found to
increase significantly subsequently to movements in the same direction, either a crash or
a boom. On the other hand, the dynamics of the dependency structure is captured through
a time-varying correlation model and a Markov-switching model. Empirical evidence re-
veals that the dependency between European market pairs is time varying and has signifi-
cantly increased between 1980 and 1999, contrary to the dependency between the U.S. and
European markets.

This methodology may also be used in several contexts, such as conditional asset allocation
or Value-at-Risk computation in a non-normal framework. To implement asset allocation in
such a context, it is necessary to compute expressions involving multiple integrals of the joint
distribution, while VaR applications require computing the probability that a portfolio exceeds
a given threshold. Once the marginal models are known, such computations can be performed
rather easily using numerical integration.
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Appendix A. Additional results on the copula and the skewed Student-t distribution

A1. Copula functions

In this Appendix, we define copulas and provide a theorem which justifies their use.17

Definition 1. A two-dimensional copula is a function C: [0,1]2 / [0,1] with the three following
properties:

1. Cðu1; u2Þ is increasing in u1 and u2.
2. Cð0; u2Þ ¼ Cðu1; 0Þ ¼ 0, C(1,u2)¼ u2, C(u1,1)¼ u1.

17 See Joe (1997) and Nelsen (1999) at textbook level. The following definition and theorem may be found in Nelsen

(1999).
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3. cu1, u01, u2, u02 in [0,1] such that u1 < u01 and u2 < u02, we have C
�
u01; u

0
2

�
�

C
�
u01; u2

�
� C

�
u1; u

0
2

�
þ Cðu1; u2Þ � 0.

This definition provides a multivariate extension of the definition of the cdf. An important
property of the copula function is that it is defined over variables uniformly distributed over
[0,1]. Now, if we set ui ¼ FiðxiÞ, then the copula function CðF1ðx1Þ;F2ðx2ÞÞ describes the joint
distribution of X1 and X2. We can now propose the following theorem, which first appeared in
Sklar (1959).

Theorem 2. (Sklar’s theorem for continuous distributions). Let H be a joint distribution function
with margins F1 and F2. Then, there exists a copula C such that, for all real numbers x1 and x2,
one has the equality

Hðx1; x2Þ ¼ CðF1ðx1Þ;F2ðx2ÞÞ: ð14Þ

Furthermore, if F1 and F2 are continuous, then C is unique. Conversely, if F1 and F2 are
distributions, then the function H defined by Eq. (14) is a joint distribution function with margins
F1 and F2.

In this work, we resort to the ‘‘converse’’ part of this theorem and construct a multivariate
density from marginal ones.

A2. Skewed Student-t distribution

We now provide additional results on the skewed Student-t distribution, which are useful in
the empirical application. First of all, Hansen (1994) shows that if Z w ST(h,l), then Z has zero
mean and unit variance. For this result to hold, it must be that h> 2. Jondeau and Rockinger
(2003a,b) set m2¼ 1þ 3l2, m3 ¼ 16cl

�
1þ l2

�
ðh� 2Þ2=½ðh� 1Þðh� 3Þ�, defined if h> 3, and

m4 ¼ 3ðh� 2Þ
�
1þ 10l2 þ 5l4

��
ðh� 4Þ, defined if h> 4. With these notations, they show

that if Z w ST(h,l) then the third and fourth moments of Z are given by:

E
	
Z3


¼
	
m3� 3am2 þ 2a3


�
b3; ð15Þ

E
	
Z4


¼
	
m4� 4am3 þ 6a2m2� 3a4


�
b4: ð16Þ

Since Z has zero mean and unit variance, skewness (Sk) and kurtosis (Ku) are directly
related to the third and fourth moments: Sk[Z]¼ E[Z3] and Ku[Z]¼ E[Z4]. The density and
the various moments do not necessarily exist for all parameter values. Given the way asymme-
try is introduced, we have �1< l< 1. As already mentioned, the distribution is meaningful
only if h> 2. Furthermore, careful scrutiny of the algebra yielding Eq. (15) shows that skew-
ness exists if h> 3. Last, kurtosis in Eq. (16) is well defined if h> 4.18

Hansen’s skewed Student-t encompasses a large set of conventional densities. For instance,
if l¼ 0, Hansen’s distribution reduces to the traditional Student-t distribution, which is not
skewed. If, in addition, h / N, it reduces to the normal density.

The copula involves marginal cdfs rather than densities. For this reason, we now derive the
cdf of Hansen’s skewed Student-t distribution. To do so, we recall that the conventional

18 In the empirical application, we only impose that h> 2 and let the data decide for itself if, for a given time period,

a specific moment exists or not.



851E. Jondeau, M. Rockinger / Journal of International Money and Finance 25 (2006) 827e853
Student-t distribution is defined by

tðx; hÞ ¼
G

�
hþ 1

2

�
G
�h

2

� 1ffiffiffiffiffiffi
ph
p

�
1þ x2

h

��½ðhþ1Þ=2�

;

where h is the degree-of-freedom parameter. Numerical evaluation of the cdf of the conven-
tional Student-t is well known and procedures are provided in most software packages. We
write the cdf of a Student-t distribution with h degrees of freedom as

Aðy; hÞ ¼
Z y

�N

tðxÞdx:

The following proposition presents the cdf of the skewed Student-t distribution.

Proposition 3. Let D(z;h,l)¼ Pr[Z< z], where Z has the skewed Student-t distribution given by
Eq. (1). Then D(z;h,l) is defined as

Dðz; h;lÞ ¼

8>><
>>:
ð1� lÞA

�
bzþ a

1� l

ffiffiffiffiffiffiffiffiffiffiffi
h

h� 2

r
; h

�
if z <�a=b

ð1þ lÞA
�

bzþ a

1� l

ffiffiffiffiffiffiffiffiffiffiffi
h

hþ 2

r
; h

�
� l if z��a=b:

Proof. Let w=
ffiffiffi
h
p ¼ ðbzþ aÞ=

	
ð1� lÞ

ffiffiffiffiffiffiffiffiffiffiffi
h� 2
p 


. The result follows then from the change of
variable in Eq. (1) of z into w. ,
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