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abstract

In this paper, we extend the concept of the news impact curve of volatility
developed by Engle and Ng (1993) to the higher moments and co-moments
of the multivariate generalized autoregressive conditional heteroskedasticity
(GARCH) model with non-normal innovations. For this purpose, we present
a new methodology to describe the joint distribution of GARCH processes
in a non-normal setting. Then, we provide expressions for the response of
the moments of the subsequent distribution to a shock. This tool enhances
the understanding of the temporal evolution of the joint distribution. We use
our methodology to provide stylized facts for the four largest international
stock markets. In particular, we document the persistence of large (positive or
negative) daily returns. In a multivariate setting , we find that foreign holdings
provide a good hedge against changes in domestic volatility after good shocks
but a bad hedge after crashes. Finally, using generalized impulse responses,
we show that the effect of shocks on the higher moments of the distribution
is short-lasting. ( JEL: C22, C51, G12)
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Analyzing the distributional and dynamic properties of asset returns is a very active
area of research in theoretical as well as empirical finance. Early empirical evidence
has shown that extreme returns occur too often to be consistent with normality
and that large, negative shocks (crashes) occur more often than large, positive
shocks (booms). This evidence suggests that returns are driven by asymmetric and
leptokurtic distributions. Asset returns have also been found to be time-dependent.
Although the predictability of returns is still a matter of debate, the predictability of
volatility is acknowledged as a major feature of return dynamics, often described by
the so-called generalized autoregressive conditional heteroskedasticity (GARCH)
models (Bollerslev 1986; Bollerslev, Chou, and Kroner 1992). In this context, Engle
(1982) has shown that return non-normality and volatility time-variability are two
related phenomena because the latter contributes to the former. At a low frequency
(say monthly), GARCH models may allow the recovery of normally distributed
innovations. However, at a high frequency (say daily), the distribution of the
innovation process generally remains highly non-normal. In the quest for the best
suited conditional distribution, several candidates have been proposed: the Student
t distribution (Bollerslev 1987), the entropy distribution (Jondeau and Rockinger
2002), or various forms of asymmetric t distributions (Hansen 1994; Harvey and
Siddique 1999). In addition, several recent papers have provided evidence that the
characteristics of this conditional distribution vary over time.1 This finding implies
that the probability distribution of the innovation depends on recent events.

Regarding the modeling of the joint behavior of asset returns, most of the
recent contributions have focused on the dynamics of either the conditional
covariance matrix (as in the first-generation multivariate GARCH models; see
Bollerslev, Engle, and Wooldridge 1988 and Engle and Kroner 1995) or the con-
ditional correlation matrix (as in the more recent dynamic conditional correlation
(DCC) models; see Engle 2002 and Cappiello, Engle, and Sheppard 2006). In this
multivariate setting, some authors have explicitly introduced non-normal distri-
butions, such as the mixture of normal densities (Vlaar and Palm 1993), the Student
t distribution (Bollerslev and Wooldridge 1992; Harvey, Ruiz, and Sentana 1992)
or, more recently, various forms of skewed Student t distribution (Sahu, Dey, and
Branco 2003; Fiorentini, Sentana, and Calzolari 2003; Bauwens and Laurent 2005;
Mencia and Sentana 2005). Some desirable features of a multivariate model are
the time-variability of variances and correlations as well as the asymmetry and
leptokurticity of the joint distribution. The ability to reproduce these properties of
the empirical multivariate distribution is important because they are related to the
well-documented contagion effect.2 Another issue that has not been addressed so
far is the time-variability of the conditional distribution, particularly how the joint
distribution is affected by past shocks.

1The sequence of contributions by Hansen (1994), Harvey and Siddique (1999), Jondeau and Rockinger
(2002, 2003), and Brooks et al. (2005) provides univariate models describing time variation in volatility,
skewness, and kurtosis.

2This effect has also been analyzed, by means of the extreme value theory, by Longin and Solnik (2001)
and Poon, Rockinger, and Tawn (2004).
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As a first contribution, we present a new methodology to investigate, both in
univariate and multivariate settings, the effect of shocks on the conditional distri-
bution of asset returns. We consider two asymmetric multivariate specifications for
the covariance matrix (the asymmetric BEKK model of Kroner and Ng (1998) and
the asymmetric DCC model of Cappiello, Engle, and Sheppard (2006)), in which
innovations are drawn from an asymmetric and leptokurtic distribution. Realizing
the difficulty of understanding the complex dynamics generated by a negative
shock, we follow Engle and Ng (1993) and develop a graphical tool to summarize
the impact of past shocks on the subsequent characteristics of the returns’ distri-
bution. In the univariate setting, this leads us to introduce the concept of news
impact curve (NIC) of skewness and kurtosis, which extends the well-known NIC
of volatility developed by Engle and Ng (1993). In the multivariate setting, we
obtain an analogous tool for the joint distribution, namely the news impact surface
(NIS) for given higher moments and co-moments.3 We describe how the dynamics
of the response to shocks can be analyzed through impulse response functions.

In terms of empirical contribution, we investigate the actual patterns of re-
sponses to shocks in the context of daily index returns for the four largest in-
ternational markets. We show that, after a large negative (or positive) shock, the
subsequent conditional distribution tends to have fatter tails and be negatively
(or positively) skewed. This result suggests that large shocks of a given sign are
positively correlated. In the multivariate framework, we observe a similar phe-
nomenon: after joint negative (or positive) shocks, the probability of subsequent
joint negative (or positive) shocks increases.

The outline of the paper is as follows. In Section 1, we present the multivariate
statistical model describing the evolution of returns. In Section 2, we provide
the main theoretical results concerning NIC and NIS. In Section 3, we present
the data and comment on the estimation of the model. In Section 4, we discuss
some stylized facts on the evolution of returns that we infer from the NIC and NIS.
In Section 5, we go one step further and describe how to construct generalized
impulse responses in this context. Section 6 concludes.

1 A MULTIVARIATE TIME-VARYING CONDITIONAL DISTRIBUTION

Our multivariate conditional setting incorporates most statistical features required
for modeling stock market returns. First, it accounts for the well-known time-
dependence properties, namely volatility clustering (Engle 1982) and persistence
in correlations (Engle 2002). Second, it is well suited to capture both the asymmetry
and the leptokurticity often found in the distribution of market returns. After
presenting the general setup, we will then briefly describe these two components.

Let rt = (r1,t , . . . , rn,t)′, for t = 1, . . . , T , be a time series of n asset returns. It is
convenient to split the data generating process of rt into three components:

rt = μt (θ |It−1) + εt , (1)

3Depending on the context, NIC and NIS may be singular or plural.
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εt = �t (θ |It−1)1/2 zt , and (2)

zt ∼ g (zt|ηt) . (3)

Equation (1) decomposes the return at time t as the sum of the n × 1 vector of
conditional means, μt ≡ μt(θ |It−1) = Et−1[rt], and the n × 1 vector of unexpected
returns, εt , where Et−1 denotes the expectation conditional on the information
available at date t − 1, denoted It−1.

Equation (2) indicates that unexpected returns εt are a combination of n
independent innovations zt . The conditional covariance matrix is denoted by
�t ≡ �t(θ |It−1) = Et−1[(rt − μt)(rt − μt)′]. We denote by �

1/2
t a matrix such that

�t = �
1/2
t �

1/2′
t . Given the way that nonsynchronicity is dealt with in our empirical

application, we primarily focus on the Cholesky decomposition. An alternative
way to construct the “square root” of the covariance matrix is to use a spectral
decomposition, such that �t = Vt�tV′

t , where Vt is the n × n matrix of eigenvec-
tors, and �t is the diagonal matrix of eigenvalues. In this case, one simply has
�

1/2
t = Vt�

1/2
t V′

t .4 The vector θ contains all the parameters associated with the
conditional mean vector and the conditional covariance matrix.

The vector of innovations, zt = �
−1/2
t (rt − μt), has zero mean and identity

covariance matrix and is a martingale difference. Equation (3) specifies that inno-
vations are drawn from a conditional distribution g with, possibly time-varying,
shape parameters ηt .

1.1 Dynamics of First and Second Moments

To capture possible serial autocorrelation in returns, we assume an AR(p) structure
for returns, implying the following conditional mean:

μt = μ + ϕ1rt−1 + · · · + ϕprt−p, (4)

where μ is an n × 1 vector, and ϕk are n × n diagonal matrices, k = 1, . . . , p.
We consider two alternative specifications for the covariance matrix �t . The

first model is the asymmetric version of the BEKK model proposed by Kroner and
Ng (1998). This approach allows a very general specification for the covariance
matrix, yet it requires the estimation of a large number of parameters. The second
model is the asymmetric version of the DCC model proposed by Cappiello, Engle,
and Sheppard (2006). This model is more restrictive, though it captures persistence
and asymmetry in conditional correlations.

The asymmetric BEKK (ABEKK) specification is given by

�t = �̄ + B ′�t−1 B + A′εt−1ε
′
t−1 A+ G ′ζt−1ζ

′
t−1G, (5)

4In the Technical Appendix, we investigate the consequences of changing the ordering of the variables
in the Cholesky decomposition and obtain essentially the same results as those reported in Section 3.
We also report and comment on results obtained with the spectral decomposition. Mencia and Sentana
(2005) use a location scale mixture of normals to obtain a parameterization that is independent of the
decomposition of the covariance matrix. Such a parameterization does not hold for the multivariate
distribution we consider in this paper.
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where �̄ is an n × n positive definite and symmetric matrix, A, B, and G are
n × n matrices, and ζt−1 = εt−1 1{εt−1≤0} captures the possible asymmetric effect
of past shocks on the variances and covariances. Because the last three terms
on the right-hand side of Equation (5) are expressed in quadratic form, the
conditional covariance matrix is positive definite provided �̄ is positive def-
inite. This specification involves [n(n + 1)/2] + 3n2 unknown parameters. The
constant term matrix �̄ can be estimated from sample moments as vec(�̄) =
(In2 − (A⊗ A)′ − (B ⊗ B)′)vec(�̄) − (G ⊗ G)′vec(M̄), where �̄ and M̄ denote the
unconditional covariance matrices of εt and ζt , respectively.

In the asymmetric DCC (ADCC) model that we consider, each conditional
variance, σ 2

i,t , is given by

σ 2
i,t = ωi + βiσ

2
i,t−1 + αiε

2
i,t−1 + ψiζ

2
i,t−1, i = 1, . . . , n, (6)

and the conditional correlation matrix, �t = {ρi j,t}i, j=1,...,n, is

�t = (diag(Qt))−1/2 · Qt · (diag(Qt))−1/2, and (7)

Qt = �̃ + δ1 Qt−1 + δ2(ut−1u′
t−1) + δ3(nt−1n′

t−1), (8)

where ut = D−1
t εt = {εi,t/σi,t}i=1,...,n is the vector of normalized unexpected returns,

and nt−1 = ut−1 1{ut−1≤0}. The term diag(Qt) denotes a matrix with zeros, except for
the diagonal that contains the diagonal of Qt , and Dt = {σi,t}i=1,...,n is the n × n
diagonal matrix with the standard deviations on its diagonal and 0 elsewhere.
Parameters δ1, δ2, and δ3 are restricted to ensure that the conditional correlation
matrix is positive definite. Finally, the covariance matrix �t is simply defined as
�t = Dt�t Dt . This specification involves [n(n + 1)/2] + 4n + 3 unknown parame-
ters.5 The matrix �̃ can be estimated as �̃ = [(1 − δ1 − δ2)Q̄ − δ3 N̄], where Q̄ and
N̄ are the unconditional covariance matrices of ut and nt , respectively.

1.2 Conditional Distribution

Although joint normality of innovations is often assumed in the multivariate mod-
eling of asset returns (see, for instance, Kroner and Ng 1998; Ang and Chen 2002;
or Cappiello, Engle, and Sheppard 2006), we adopt a non-normal conditional dis-
tribution in this paper. Each component zi,t is drawn from an independent skewed
t (Sk-t) distribution (Hansen 1994; Fernández and Steel 1998). The joint distribution

5When the parameters of the constant terms �̄ and �̃ are estimated from sample moments, with �̄ =
1
T

∑T
t=1 εtε

′
t , M̄ = 1

T

∑T
t=1 ζtζ

′
t , Q̄ = 1

T

∑T
t=1 utu′

t , and N̄ = 1
T

∑T
t=1 ntn′

t , the number of parameters that
must be estimated numerically is a quadratic function of the number of assets for the ABEKK model, but
it is only a linear function for the ADCC model. For a bivariate system, the difference is small (12 for the
ABEKK and 11 for the ADCC). For a four-dimensional system, the difference is much more sizeable (48
for the ABEKK and 19 for the ADCC).
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of the n × 1 vector of innovations zt is therefore defined as6

g(zt|η) =
n∏

i=1

2bi

ξi + 1
ξi

�
(

νi +1
2

)
√

π (νi − 2) �
(

νi
2

)
(

1 + κ2
i,t

νi − 2

)− νi +1
2

, (9)

where

κi,t =
{

(bi zi,t + ai )ξi , if zi,t ≤ −ai/bi ,
(bi zi,t + ai )/ξi , if zi,t > −ai/bi ,

and ai = Mi,1 as defined in Equation (10) below and b2
i = ξ 2

i + 1/ξ 2
i − 1 − a2

i . The
vector η = (ν1, . . . , νn, ξ1, . . . , ξn)′ collects the shape parameters.

In this setup, the dependence between unexpected returns is captured by the
covariance matrix through εt = �

1/2
t zt , while the innovations zi,t are distributed

independently from each other. This approach allows us to explicitly separate the
modeling of the multivariate conditional distribution (through the parameters of
the conditional distribution) from the modeling of the multivariate dependence
(through the parameters of the covariance matrix).

The marginal distribution of zi,t is a univariate Sk-t distribution g(zi,t|νi , ξi ),
where νi and ξi correspond to the degree of freedom and the asymmetry parameter,
respectively. Each marginal distribution is defined for 2 < νi < ∞ and ξi > 0. Mo-
ments up to the fourth exist if νi > 4. The constants ai and bi , which are introduced
in the definition of κi,t , ensure that zi,t has zero mean and unit variance. This, in
turn, ensures that μt and �t can be interpreted as the conditional mean vector and
the conditional covariance matrix of rt , respectively. The moment of order r of zi,t

is given by

Mi,r = mi,r

ξ r+1
i + (−1)r

ξ r+1
i

ξi + 1
ξi

with mi,r = �
(

νi −r
2

)
�

( r+1
2

)
(νi − 2)

r+1
2√

π(νi − 2) �
(

νi
2

) . (10)

Provided that they exist, the skewness and kurtosis of zi,t are then given by

sk Z
i = E

[
Z3

i

] = Mi,3 − 3Mi,1 Mi,2 + 2M3
i,1, and (11)

kuZ
i = E

[
Z4

i

] = Mi,4 − 4Mi,1 Mi,3 + 6Mi,2 M2
i,1 − 3M4

i,1. (12)

As the previous equations clearly show, these terms are directly related in a non-
linear way to the degree of freedom νi and the asymmetry parameters ξi . Note that
sk Z

i = 0 when ξi = 1.
The objective of the paper is to investigate how shocks on asset returns will af-

fect the shape of the subsequent distribution. For this purpose, we use the bijection

6Alternative strategies could extend the Student t distribution to multivariate random variables. One may
assume that the χ2, which appears in the definition of the t distribution, is the same for each component.
Such an extension has been analyzed by Sahu, Dey, and Branco (2003) and Bauwens and Laurent (2005).
In such cases, however, innovations are not independent.
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between the parameters of the distribution and its first four moments. We now de-
scribe how the moments of unexpected returns, εt , are related to the characteristics
of the shocks, zt . Given �

1/2
t = (ωi j,t)i, j=1,···,n, we have εi,t = ∑n

r=1 ωir,tzr,t . Clearly,
Et−1[εt] = 0 and Vt−1[εt] = �t . Then, we define the conditional co-skewness and
co-kurtosis between unexpected returns as

skε
i jk,t = Sε

i jk,t

σi,tσ j,tσk,t
and kuε

i jkl,t = Kε
i jkl,t

σi,tσ j,tσk,tσl,t
, (13)

where Sε
i jk,t = Et−1[εi,tε j,tεk,t] and K ε

i jkl,t = Et−1[εi,tε j,tεk,tεl,t] are the conditional
third and fourth central moments, respectively. Given the properties of zt , we have

Sε
i jk,t = Et−1

[
n∑

r=1

ωir,tω jr,tωkr,t z3
r,t

]
=

n∑
r=1

ωir,tω jr,tωkr,t sk Z
r (14)

and

Kε
i jkl,t = Et−1

[
n∑

r=1

ωir,tω jr,tωkr,tωlr,t z4
r,t

]
+ Et−1

[
n∑

r=1

∑
s 	=r

ψrs,t z2
r,tz

2
s,t

]

=
n∑

r=1

ωir,tω jr,tωkr,tωlr,t kuZ
r +

n∑
r=1

∑
s 	=r

ψrs,t , (15)

where ψrs,t = ωir,tω jr,tωks,tωls,t + ωir,tω js,tωkr,tωls,t + ωis,tω jr,tωkr,tωls,t . These ex-
pressions are true for all possible values of i , j, k, and l, such that they also
apply to the individual conditional third and fourth central moments. The time-
variability of co-skewness and co-kurtosis between unexpected returns clearly has
two possible sources. On the one hand, the covariance matrix �t is time vary-
ing, such that the ωi j,t terms are also time varying. On the other hand, individual
skewness and kurtosis of innovations may also be time varying, as we will de-
scribe in the next section. In absence of asymmetry in the univariate distributions
(sk Z

r = 0, ∀r ), no asymmetry will be found in the multivariate distribution of re-
turns (see Equation (14)). In addition, because the zr,t terms are independent from
each other, the co-skewness are equal to zero when the covariance matrix is diag-
onal. The co-kurtosis is constituted of two blocks. The first one corresponds to the
individual kurtosis kuZ

r . The second one involves products of the form Et−1[z2
r,tz

2
s,t],

which are equal to 1 for r 	= s. We shall provide more interpretations regarding the
higher co-moments in Section 4.3, when we comment on the response of these
higher co-moments to shocks.

In Figure 1, we represent bivariate contour plots of the Sk-t distribution. Fig-
ures on the left represent the distribution of the (uncorrelated) innovations, while
figures on the right represent the distribution of the unexpected returns, assuming
a correlation of 0.5. Top figures are obtained for symmetric marginal distributions.
In the middle figures, both marginal densities have negative skewness, whereas
the densities in the bottom figures have opposite skewness. The figures show that,
once innovations’ distributions and correlations are combined, very different pat-
terns can be obtained for the distribution of unexpected returns. Middle figures
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Figure 1 This figure displays contour plots of the Sk-t distribution in the bivariate case. The
left figures represent cases where the marginal distributions are uncorrelated. The right figures
correspond to a correlation of 0.5. The upper figures are obtained for symmetric marginal dis-
tributions (ξ1 = ξ2 = 1). In the middle figures, both marginal densities have negative skewness
(ξ1 = ξ2 = 0.5), whereas the bottom figures have opposing skewness with the marginal density,
which is distributed along the horizontal axis and negatively skewed (ξ1 = 0.5, ξ2 = 1.5). In all
cases, the degrees of freedom are ν1 = ν2 = 10.

illustrate the situation most frequently encountered in the empirical part of this
paper, namely when both marginal distributions are negatively skewed.

1.3 Dynamics of the Higher Moments

We will now describe how we model the temporal evolution of the conditional
distribution’s shape parameters, ηt . In the case of the Sk-t distribution, ηt includes
the degree of freedom and the asymmetry parameter (νi,t , ξi,t)i=1,...,n. A natural
approach is to render the shape parameters dependent on past shocks, as in ηt =
η (zt−1, zt−2, . . .). These dynamics should be constrained to ensure that the function
g is a well-defined distribution.7 Once the dynamics of the shape parameters are
estimated, higher moments are deduced from Equations (11) and (12).

7A similar approach was adopted by Hansen (1994) and Harvey and Siddique (1999). Hansen (1994) was
the first one to model the dynamics of conditional higher moments, yielding the concept of autoregressive
conditional density (ARCD). Jondeau and Rockinger (2003) discuss several possible specifications for
the dynamics of the shape parameters.
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We adopt the following asymmetric GARCH-like specifications:

(1 − ci,2 L) log(νi,t − ν) = ci,0 + c−
i,1|zi,t−1|Ni,t−1 + c+

i,1|zi,t−1|(1 − Ni,t−1), (16)

(1 − di,2 L) log(ξi,t) = di,0 + d−
i,1zi,t−1 Ni,t−1 + d+

i,1zi,t−1(1 − Ni,t−1), (17)

where L is the lag operator, and Ni,t = 1{zi,t≤0}. The parameter ν is the lower bound
for the degree of freedom. To ensure that moments up to the fourth exist, we set
ν = 4.

Three main features of these specifications are worth emphasizing. First, the
degree of freedom νi,t is related to the absolute value of lagged innovations, be-
cause a large shock zi,t−1 is expected to affect the heaviness of the distribution’s
tails regardless of its sign. In contrast, the dynamics of the asymmetry parameter
naturally depends on signed innovations, because ξi,t is likely to reflect the sign
and size of recent shocks. Second, instead of assuming that the impacts of posi-
tive and negative shocks are of the same magnitude on the distribution’s shape,
we allow the shape parameters to react asymmetrically to recent shocks. Finally,
Equations (16) and (17) include a lag of the dependent variable to capture possible
persistence in the dynamics of the higher moments.

Our specification makes it possible to explore the strengths of the various
sources of asymmetry in the model: (i) shocks are allowed to affect variances and
correlations asymmetrically; (ii) the conditional distribution is itself asymmetric,
such that large shocks of a given sign may be more likely to occur than large
shocks of the other sign; and (iii) the extent of the asymmetry and the thickness of
the conditional distribution can be altered in an asymmetric way by past shocks,
depending on their sign.

1.4 Estimation

Under normality, the DCC model can be estimated in two steps (Engle 2002).
In the case of the Sk-t distribution, the parameters pertaining to the first and
second moments have to be estimated jointly with the parameters pertaining to
the conditional distribution.

The sample log-likelihood function of the multivariate DCC model with Sk-t
distribution is therefore

log L (r1, . . . , rT |θ , η) =
T∑

t=1

[
log

(
g
(
�t(θ )−1/2(rt − μt(θ ))|η)) − 1

2
log |�t(θ )|

]
, (18)

where

θ = (θ1, . . . , θn, δ1, δ2, δ3)′ with θi = (μi , ϕi,1, . . . , ϕi, p, ωi , αi , βi , ψi )′,

η = (η1, . . . , ηn)′ with ηi = (ci,0, c−
i,1, c+

i,1, ci,2, di,0, d−
i,1, d+

i,1, di,2)′.

Maximizing expression (18) with respect to parameter vectors θ and η yields
the maximum-likelihood (ML) estimates. The log-likelihood of the model is very
nonlinear in the parameter set, in particular the parameters driving the conditional
correlation and the degree-of-freedom and asymmetry parameter dynamics. For
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this reason, it is not possible to compute the covariance matrix of the parameter
estimates using the analytical gradient and Hessian.

2 NEWS IMPACT CURVES AND SURFACES

The NIC was introduced by Engle and Ng (1993) to represent the response of
volatility to a shock on asset returns. More precisely, it measures the effect of a
shock at date t on the volatility at date t + 1, while the information dated t − 1
and earlier is held constant. The NIC has been extended to the response of the
conditional correlation to shocks on two asset returns by Kroner and Ng (1998)
as well as Cappiello, Engle, and Sheppard (2006). We extend this concept to the
response of the conditional distribution to shocks. This is done in two steps. We
begin with the NIC of the individual higher moments of innovations, zi,t . Then,
we construct the NIS of the higher moments of unexpected returns, εi,t , which also
involves the response of the covariance matrix to shocks.

2.1 News Impact Curves for the Marginal Distribution

At date t, a shock z occurs, while all the characteristics of the unexpected returns
(mean, variance, and shape parameters) are equal to their unconditional levels.
The shock z affects the level of the shape parameters at date t + 1, which in turn
affect the higher moments of the marginal distribution.

The following proposition provides the various moments at date t + 1 condi-
tioned on a shock of value z at date t.

Proposition 1. (1) The NIC of the conditional distribution’s shape parameters are given
by

νZ
i (z) =

{
ν + exp(Aν,i + c−

i,1|z|), if z ≤ 0,
ν + exp(Aν,i + c+

i,1|z|), if z > 0,
(19)

ξ Z
i (z) =

{
exp(Aξ ,i + d−

i,1z), if z ≤ 0,
exp(Aξ ,i + d+

i,1z), if z > 0,
(20)

where Aν,i = ci,0 + ci,2 log (ν̄i − ν) and Aξ ,i = di,0 + di,2 log (ξ̄i ), and where ν̄i and ξ̄i

denote the unconditional levels of the shape parameters.
(2) The NIC of the conditional skewness and kurtosis of innovations are given by

sk Z
i (z) = ξ Z

i (z)
1 + ξ Z

i (z)2

[
Ci,4

(
mi,3 − 3mi,1mi,2 + 2m3

i,1

) + Ci,2
(
3mi,1mi,2 − 4m3

i,1

)]
, (21)

kuZ
i (z) = ξ Z

i (z)
1 + ξ Z

i (z)2

[
Ci,5

(
mi,4 − 4mi,1mi,3 + 6m2

i,1mi,2 − 3m4
i,1

)
(22)

+Ci,3
(
4mi,1mi,3 − 12m2

i,1mi,2 + 9m4
i,1

)
+Ci,1

(
6m2

i,1mi,2 + 12m4
i,1

)]
,
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where mi,r is defined in Equation (10), and Ci,r = ξ Z
i (z)r − ξ Z

i (z)−r . The NIC of skewness
and kurtosis of unexpected returns are skε

i (z) = sk Z
i (z) and kuε

i (z) = kuZ
i (z), respectively.

(3) The NIC of the conditional third and fourth moments of unexpected returns are given
by

Sε
i (z) = sk Z

i (z)σi (z)3 and Kε
i (z) = kuZ

i (z)σi (z)4,

where the expression for the variance σi (z)2 depends on the specification adopted for the
conditional covariance matrix.

Proof. All proofs are available in the Technical Appendix. The expressions of σi (z)2 =
(�(z))i i for the ABEKK and ADCC models are provided in Proposition 2. �

In Proposition 1, the unconditional levels of the shape parameters (ν̄i and ξ̄i )
correspond to the values of these parameters that would prevail in the absence of
shocks. For specifications (16) and (17), these values can be obtained from

(1 − ci,2) log(ν̄i − ν) = ci,0 + (c−
i,1 N̄i ξ̄i + c+

i,1(1 − N̄i )/ξ̄i )E[|ti |],
(1 − di,2) log(ξ̄i ) = di,0 + (−d−

i,1 N̄i ξ̄i + d+
i,1(1 − N̄i )/ξ̄i )E[|ti |],

where N̄i = Pr[Zi > 0 | ν̄i , ξ̄i ] = ξ̄ 2
i /(1 + ξ̄ 2

i ) and E[|ti | | ν̄i ] = mi,1 is the expected
value of the absolute value of a standard t variable with ν̄i degrees of freedom.
Solving these two expressions numerically provides the estimates of ν̄i and ξ̄i .

The NIC of conditional skewness and kurtosis of unexpected returns εi,t are
defined per unit of standard deviation. We deduce that the higher moments of
the unexpected return distribution are independent of the volatility dynamics
in a univariate model. In contrast, the NIC of the third and fourth moments of
unexpected returns incorporate the additional effect of the volatility dynamics.

2.2 News Impact Surfaces for the Bivariate Distribution

We now consider a set of shocks z = (z1, z2)′ at date t and evaluate their effect on the
covariance, co-skewness, and co-kurtosis matrices of returns at date t + 1. We then
obtain NIS because each component of these matrices is affected by a combination
of shocks. We notice that a set of shocks z at date t translates instantaneously to
unexpected returns at date t through ε(z) = �̄1/2z, where �̄ is the unconditional
covariance matrix, i.e., the covariance matrix that would prevail in absence of
shocks at date t − 1 or earlier.8 Similarly, the normalized unexpected returns are
defined as u(z) = D̄−1ε(z), where D̄ is the matrix with unconditional standard
deviations on its diagonal. Proposition 2 gives the expressions for the NIS of the
covariance matrix in the ABEKK and ADCC models.

8As already mentioned, the “square root” of the unconditional covariance matrix �̄ is not unique. Con-
sequently, the effect of z on ε(z) is not unique and depends on the decomposition used to define �̄1/2.
Remember that the elements of �1/2(z) are denoted (ωi j (z))i, j=1,···,n.
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Proposition 2. (1) For the asymmetric BEKK model, the NIS of the covariance matrix
of unexpected returns is given by �(z) = {σi j (z)}, where

�(z) = A� + A′ε(z)ε(z)′ A+ G ′ζ (z)ζ (z)′G, (23)

where A� = �̄ + B ′�̄B and ζ (z) = ε(z)1{ε(z)≤0}.
(2) For the asymmetric DCC model, the NIS of the covariance matrix of unexpected returns
is given by �(z) = {σi j (z)}, with σi (z)2 = σi i (z) and

σi (z)2 =
{

Aσ,i + (αi + ψi ) εi (z)2, if zi ≤ 0,
Aσ,i + αiεi (z)2, if zi > 0,

(24)

σi j (z) = σi (z)σ j (z)ρi j (z), (25)

where Aσ,i = ωi + βi σ̄
2
i . The NIS of the conditional correlation ρi j (z) is provided by

Cappiello, Engle, and Sheppard (2006) in their Appendix A.2.

From Equations (14) and (15), we deduce the following Proposition 3, which
gives the NIS of co-skewness and co-kurtosis matrices:

Proposition 3. (1) The NIS of third and fourth central moments of unexpected returns
are given by

Sε
i jk(z) =

n∑
r=1

ωir (z)ω jr (z)ωkr (z)sk Z
r (z),

Kε
i jkl (z) =

n∑
r=1

ωir (z)ω jr (z)ωkr (z)ωlr (z)kuZ
r (z) +

n∑
r=1

∑
s 	=r

ψrs(z),

where sk Z
r (z) and kuZ

r (z) are defined in Equations (21) and (22), respectively, and

ψrs(z) = ωir (z)ω jr (z) ωks(z)ωls(z) + ωir (z)ω js(z)ωkr (z)ωls(z)

+ωis(z)ω jr (z)ωkr (z)ωls(z).

(2) The NIS of co-skewness and co-kurtosis of unexpected returns are given by

skε
i jk(z) = Sε

i jk(z)

σi (z)σ j (z)σk(z)
,

kuε
i jkl (z) = Kε

i jkl (z)

σi (z)σ j (z)σk(z)σl (z)
.

In the empirical section, we focus on the response of unexpected returns’
moments to shocks. This analysis combines the effect of shocks on the covariance
matrix and the conditional distribution. The response of the covariance matrix
combines the effect of the shocks on the variances and the correlations. Accordingly,
the response of the third and fourth moments combines the effect of the shocks on
the covariance matrix and the individual skewness and kurtosis.
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3 DATA AND ESTIMATION RESULTS

3.1 Data

In the following, we consider the four largest international stock markets, namely
the United States, Japan, the United Kingdom, and Germany. For all four countries,
we use the reference market index over the period from January 1973 to December
2004, for a total of 8352 daily observations. Indices are the S&P500, the Nikkei
225, the FTSE-100, and the DAX 30, respectively. For the FTSE-100, we spliced the
series with the “FTSE—all Shares” before the reference index was established. The
return series, rt , are defined as continuously compounded returns in US dollars.
To account for the nonsynchronicity between the US and the other markets, the US
market has been lagged one day.9

Table 1 displays several sample statistics on market returns. Concerning the
higher moments, we notice a rather large dispersion in the magnitude of skewness
and kurtosis across markets. All markets except Japan have a significantly negative
skewness, meaning that crashes occur more often than booms. In addition, the
high level of kurtosis (between 6 and 9) found for all markets is not consistent
with the normality assumption. We then test the serial correlation in both returns
and squared returns, using the Ljung–Box test and the Lee and King (1993) test,
respectively. The latter allows for testing correlation in squared returns even in the
presence of serial correlation in returns. Daily returns clearly display both serial
correlation and heteroskedasticity.

3.2 Bivariate Model with Time-Varying Higher Moments

In this section, we focus on the estimation of the ADCC model with Sk-t distribution
and time-varying shape parameters. The model is defined by Equations (1)–(4), (6)–
(8), and (16)–(17). We consider all the pairs involving the US market in combination
with one of the other markets. All the parameters of a given bivariate model are
estimated simultaneously using the ML technique described in Section 1.4.10

Table 2 reports the estimates of the four bivariate models when an AR(1) term
is used for the conditional means. As expected, the conditional mean equation
displays little serial correlation. Only the first lagged return gives a small, though
for some markets significant, autoregressive parameter ϕ1.

We tested the validity of the model using the robust conditional moment test
procedure, which aims at detecting whether the model fails to capture particular
features observed in the data (Wooldridge 1990, 1991). Because our model is de-
signed to capture the dynamics of the first four moments, the moment conditions

9Because the October 1987 crash may have a dramatic effect on the shape of the distribution and on the
dynamics of the higher moments, we also investigated the consequences of eliminating this observation.
The results of this estimation are reported in the Technical Appendix.

10The estimation of the model including the four markets is reported and discussed in the Technical
Appendix. The main difference with the bivariate models is that the parameters of the conditional
correlation are assumed to be the same across the pairs of markets. The results are reported in the
Technical Appendix.
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Table 1 Summary statistics on market returns

United States Japan UK Germany

Moments
Mean 0.030 0.024 0.030 0.036
Std dev. 0.993 1.369 1.167 1.308
Minimum −8.642 −8.241 −8.417 −13.058
Maximum 5.573 12.571 9.048 9.332

Skewness −0.190a 0.190a −0.071a −0.270a

Kurtosis 6.991a 7.759a 6.578a 8.103a

JB test 5399.5a 7795.4a 4356.0a 9024.2a

Serial correlation
LB(5) 45.746a 7.330 156.492a 14.341b

LK(5) 25.246a 22.153a 33.159a 24.427a

Correlation matrix
United States 1 0.224 0.234 0.273
Japan 0.224 1 0.102 0.131
UK 0.234 0.229 1 0.452
Germany 0.273 0.131 0.452 1

This table reports summary statistics on stock-market returns, sampled at daily frequency from January
1973 until December 2004, for a total of 8352 observations. Tests for the null hypotheses that the skewness
and excess kurtosis are equal to zero are based on the asymptotic distribution under normality. The
Jarque–Bera statistics is denoted by JB. The Ljung–Box statistics for serial correlation, corrected for
heteroskedasticity, computed with 5 lags is denoted LB(5). Under the null of no serial correlation, it is
distributed as a χ2 (5). The Lee and King (1993) statistics for heteroskedasticity is denoted by LK(5).
Under the null of no serial correlation of squared returns, the test statistics are distributed as a χ2(5).
Superscripts a and b indicate that a statistic is significant at the 1% and 5% level, respectively.

rely on these four moments. As this test is rather well known, we relegate the
description of how we implemented it and the discussion of the main results to
the Technical Appendix. Overall, only eight moment conditions are rejected out of
164, suggesting that our specification provides a good description of the data. Four
rejections are in fact due to the model’s difficulty in capturing the asymmetry of
the conditional volatility.

A1

3.2.1 Dynamics of the covariance matrix. As Table 2 shows, the correlation
dynamics are strongly persistent (δ1 is close to 0.98), and the parameters δ2 are all
significantly positive. Although it is not clear from Equations (7) and (8), because δ2

plays a role in the correlation dynamics through the numerator and the denomina-
tor, a positive value of δ2 indicates that the correlation increases when the markets
are simultaneously affected by shocks of the same sign and decreases when they
are affected by shocks of opposite sign. This result is confirmed by the subsequent
NIS of the conditional correlation matrix (displayed in Figure 4) and is consistent
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with a number of papers that document that the correlation increases after shocks
of the same sign (Ang and Chen 2002; Cappiello, Engle, and Sheppard 2006).

We also find that the asymmetry parameter δ3 in the DCC model is insignificant
in our estimations. At first glance, this finding appears at odds with the evidence
reported in Cappiello, Engle, and Sheppard (2006). Their significant estimate of
δ3 suggests that correlation increases more after a co-crash than after a co-boom.
In fact, our estimates also indicate that subsequent co-crashes are more likely to
occur after a co-crash. Yet, in our model, they are not due to the increase in the
conditional correlation, but rather to the persistence in higher moments: a given
co-crash induces a more negative skewness, so the probability of occurrence of
other co-crashes increases. We conclude that the asymmetry present in returns is
rather due to the individual distribution than to the dynamics of the covariance
matrix.

3.2.2 Dynamics of the higher moments. Most parameters pertaining to the
dynamics of shape parameters are statistically significant. Beginning with the de-
gree of freedom νi,t , we notice that almost all parameters c−

i,1 and c+
i,1 are negative.

Therefore, independently of its sign, a large shock generates a subsequent distri-
bution with fatter tails. We also notice that |c−

i,1| < |c+
i,1| in the US, suggesting that

a positive shock increases the distribution’s tails more so than a negative shock
does. Turning to the skewness parameter ξi,t , we observe that parameters d−

i,1 and
d+

i,1 are positive for all markets. As a consequence, a large negative shock decreases
the subsequent skewness and, therefore, increases the probability of another large
negative shock in the subsequent period. Similarly, a large positive shock also tends
to increase the subsequent skewness and, therefore, to increase the probability of
another large positive shock in the next period.

The big picture that emerges from the parameter estimates is that a shock of a
given sign is often followed by another shock with the same sign. The estimated
model incorporates two different features of asymmetry that reinforce each other:
First, the lagged unexpected return εt−1 has a different effect on the subsequent
volatility depending on its own sign. Second, the lagged innovation zt−1 affects the
asymmetry of the subsequent conditional distribution. These two features are com-
plementary. The asymmetry in volatility indicates that the distribution of returns
will be more dispersed after a negative shock. It does not predict the actual shape of
the distribution. This shape is determined by changes in the degree of freedom and
the asymmetry parameter, which are themselves functions of past shocks. After a
negative shock, the conditional distribution is more negatively skewed. This effect
is independent of the level of volatility.

Deducing the behavior of higher moments by contemplating parameter esti-
mates is a difficult task because skewness and kurtosis are jointly related to shape
parameters in a highly nonlinear way. In Figure 2, we display the dynamics of
the asymmetry parameter, the degree of freedom, and the conditional skewness
and kurtosis for the US market return. The dynamics of the shape parameters and
the higher moments are smoothed over 4 weeks using a simple moving average.
We observe a similar evolution for the other markets. As it appears in the figure,
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Figure 2 This figure displays the evolution of the asymmetry parameter, the degree of freedom,
and the conditional skewness and kurtosis for the US return, resulting from the parameter esti-
mates reported in Table 2. The series are smoothed over 4 weeks using a simple moving average.

the asymmetry parameter and the conditional skewness display similar patterns,
while the degree of freedom and the conditional kurtosis display patterns inverse
of each other. Conditional skewness and kurtosis take rather reasonable values and
vary substantially through time. Over the last 10 years of the sample, changes in
skewness and kurtosis tend to be less erratic than over the beginning of the sample.
Trends also appear more pronounced. In particular, the skewness of the US return
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increased between 1994 and 1998 (from −0.2 to 0.3) and then dropped to −0.2 in
2002. This trend may reflect the dynamics of the markets during the development
and burst of the Internet bubble.

4 BEHAVIOR OF THE JOINT DISTRIBUTION

As argued before, the behavior of the joint distribution of unexpected returns
is determined by the properties of the covariance matrix and of the conditional
distribution of innovations. We begin with a discussion of the properties of these
two components and then turn to the properties of the higher co-moments between
unexpected returns.

4.1 Response of Individual Higher Moments to Shocks

Figure 3 displays the NIC of the asymmetry parameter, the degree of freedom,
and the conditional skewness and kurtosis for the US and Japanese daily inno-
vations. We first notice that a shock of a given sign is followed by a subsequent
skewness of the same sign. This pattern reveals that the probability of another,
subsequent shock with the same sign increases and, therefore, that large shocks
of a given sign tend to cluster. As already mentioned for the US market, the
response of the skewness is asymmetric, because skewness increases more af-
ter a large positive shock than after a large negative shock. This suggests that
large positive shocks are more likely to be serially correlated than large negative
shocks.

Regarding the NIC of conditional kurtosis, we observe a U-shape pattern
for the Japanese market, indicating that kurtosis increases after large shocks
of either sign. This means that after a first large shock, the probability of oc-
currence of another large (negative or positive) shock increases. We obtain a
J-shape pattern for the US market, revealing that the increase in the kurtosis
in the case of a positive shock is much more pronounced than for a negative
shock.

The asymmetry observed in the response of skewness and kurtosis after a
negative or positive shock appears to be a feature of the US market. These patterns
are confirmed by simply estimating the skewness and kurtosis of returns after
a large shock. For our sample, we computed the skewness and kurtosis only for
realizations that followed a large (negative or positive) return (beyond one standard
deviation). We calculated that the US skewness is significantly lower after a large
negative return than after a large positive return (−0.3 and 0.8, respectively).
In addition, the kurtosis is significantly lower after a large negative return than
after a large positive return (6.6 and 9, respectively). We do not observe such an
asymmetry for the Japanese market.

It is worth noticing that these results are partly related to the frequency of
the data. There are some indications that the effects on skewness and kurtosis
are short-lived. First the analysis of the impulse response functions performed in
Section 5 indicates that the initial response is offset after a few days. In addition,
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Figure 3 This figure displays the news impact curves of the asymmetry parameter, the degree of
freedom, and the conditional skewness and kurtosis for the US and Japanese returns.

re-estimating the model on weekly data shows that a shock of a given sign is gener-
ally followed by a skewness of the opposite sign (see Jondeau and Rockinger 2008).
This additional evidence suggests that the response of higher moments to shocks
can be interpreted as an over-reaction phenomenon.
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Figure 4 These figures display the news impact surfaces of the second moments for the US and
Japanese returns.

4.2 Response of the Covariance Matrix to Shocks

Figure 4 displays the NIS of the covariance matrix between US and Japanese daily
returns. Given that the US market closes first, we use a Cholesky decomposition
of the covariance matrix, which implies that the US unexpected return cannot be
affected by a shock on the Japanese market. Therefore, z1,t−1 denotes the shock
on the US market return, while z2,t−1 denotes the component of the shock on the
Japanese market return that is orthogonal to z1,t−1. The NIS of the US variance
provides the same amount of information as the standard NIC of the variance in
a univariate model. In contrast, the NIS of the Japanese variance provides some
interesting insight on the effect of a shock on both markets. In particular, the figure
reveals that the response of the Japanese variance to a negative Japanese shock is
much more pronounced if there is also a negative shock on the US market. In case
of a positive Japanese shock, the response of the Japanese variance is likewise more
pronounced if there is also a positive shock on the US market.

Inspecting the correlation surface reveals that the correlation increases after
large shocks of the same sign, whatever the sign but decreases after large shocks
of opposite signs. Now, if we consider the effect on the covariance, we observe
that covariance increases after large shocks regardless of sign. The reason is that
the shape of the NIC of variances dominates. Eventually, if the covariance is at its
average level of 0.3 and if we also assume a shock with a magnitude of 3 standard
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deviations for both markets, then the subsequent covariance is equal to 0.87 if the
two shocks are negative, 0.57 if the two shocks are positive, but only 0.34 if the
two shocks are of opposite signs. We observe similar patterns for all other pairs of
market returns.11

4.3 Response of the Higher Co-moments to Shocks

We now describe how changes in the correlation matrix and the conditional distri-
bution combine to affect the higher moments of the joint distribution of unexpected
returns. Figures 5 and 6 display the NIS of the third and fourth central moments
for the US–Japan pair.

We begin with the individual third central moments Sε
i i i (z), which are closely

related to the standard measure of skewness. The response of the US third central
moment Sε

111(z) was already discussed in Section 4.1. For other countries, the shape
of the third moment is affected by the sign and size of the US shock because the
covariance between the two markets intervenes in the computation of Sε

222(z). In
particular, for a given shock on the Japanese return, the subsequent third moment
is higher, the larger the shock on the US market. For instance, for z2 = −3, the
Japanese third moment Sε

222(z) is equal to −5.6 for z1 = −3 and to −2.7 for z1 = 3.
This effect suggests that the probability of another large negative event is higher
in the case of a simultaneous crash on the two markets.

We now turn to the third central co-moments of the form Sε
i i j (z).12 They indicate

if the market in a given country j provides a good hedge against adverse volatility
changes in country i . A positive value implies that the return in country j also goes
up if the volatility in country i goes up, thereby providing a good hedge against
volatility. As Figure 5 shows, co-moments Sε

112 (z) and Sε
122(z) are higher when the

shocks on the two markets are higher: After two large negative shocks (−3 for the
two markets), the subsequent moment Sε

112 (z) is equal to −0.63, while it is as high
as 1.07 after two large positive shocks. Our figures document that, subsequent
to negative shocks, the two markets are bad hedges against volatility in the other
country. Inversely, subsequent to positive shocks, the two markets are good hedges
against volatility in the other country.

The NISs of the fourth central moments are depicted in Figure 6. The individ-
ual fourth moments K ε

i i i i (z) display the following pattern: In all markets, a large
(negative or positive) domestic shock implies an increase in the subsequent fourth
moment. The north-east surface in the figure shows that the tail fatness of the
Japanese return is also strongly affected by the US shock: The response of K ε

2222(z)
to two large negative shocks is 155.2, while the response to a negative Japanese

11To test if these responses are significantly different from each other, we used Monte Carlo simulations
to evaluate their finite-sample distribution. For this purpose, we followed the approach developed by
Koop, Pesaran, and Potter (1996), which will be briefly described in Section 5. We found that the responses
reported in this and the following section are quite precisely estimated. We reject the null hypothesis that
the responses are equal to each other for different sets of shocks.

12Because we consider bivariate models, terms such as Sε
i jk (z) do not appear. Similarly, terms such as

K ε
i i jk (z) and K ε

i jkl (z) do not appear.
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Figure 5 These figures display the news impact surfaces of the third moments for the US and
Japanese returns.

shock and a positive US shock is only 47.2. Similarly, the response to two large
positive shocks is 77.5, while the response to a positive Japanese shock and a nega-
tive US shock is only 60.8. Therefore, the US shock tends to reinforce the dominant
effect of the domestic shock.

The fourth co-moment K ε
1122(z) can be interpreted as a measure of the strength

between the two variances. A large value of K ε
1122(z) indicates that the volatilities

in both markets move together, so both markets provide a bad hedge against high
volatility in the other market. The NIS reveals that, subsequent to large shocks with
the same sign in the two countries, the variances are much more closely related.
This result means that diversification provides the worst hedge during periods
of high volatility in both markets. Such a phenomenon relates to the evidence
provided by Ang and Bekaert (2002).

Last, we turn to fourth co-moments of the form K ε
i i i j (z). Intuitively, a large value

of this measure implies that the distribution of market i becomes more negatively
skewed when the return in market j is lower than expected. Therefore, market i
would be a bad hedge against a fall in market j . We determine that K ε

1112(z) as
well as K ε

1222(z) increase after a (positive or negative) US shock. However, after a
negative US shock, they decrease with the Japanese shock, while after a positive
US shock, they increase with the Japanese shock. This result suggests that when
two large positive shocks or two large negative shocks occur in both markets, the



JONDEAU & ROCKINGER | Impact of Shocks on Higher Moments 99

−4 −2 0 2 4

−4
−2

0
2

4
0

50

100

150

z
2,t- 1

US fourth moment K
1,1,1,1
ε

z
1,t- 1

−4 −2 0 2 4

−4
−2

0
2

4
0

50

100

150

z
2,t- 1

Japanese fourth moment K
2,2,2,2
ε

z
1,t- 1

−4 −2 0 2 4

−4
−2

0
2

4
0

10

20

30

z
2,t- 1

Fourth moment K
1,1,2,2
ε

z
1,t- 1

−4 −2 0 2 4

−4
−2

0
2

4
0

20

40

60

z
2,t- 1

Fourth moment K
1,1,1,2
ε

z
1,t- 1

−4 −2 0 2 4

−4
−2

0
2

4
0

10

20

z
2,t- 1

Fourth moment K
1,2,2,2
ε

z
1,t- 1

Figure 6 These figures display the news impact surfaces of the fourth moments for the US and
Japanese returns.

subsequent skewness of a given market (say, Japan) is more correlated with the
shock on the other market (say, the US). For example, after a crash on both markets,
the subsequent distribution of the Japanese market will lean either to the left if the
US return is negative or to the right if the US return is positive. As a consequence,
the likelihood of another event with the same sign on both markets increases.

5 IMPULSE RESPONSE FUNCTIONS

To gain further insight about the behavior of the conditional distribution after a
shock, we extend the analysis of the NIC and NIS to impulse response functions.
While the NIC and NIS indicate how moments of returns are affected during



100 Journal of Financial Econometrics

the period just after a given shock, we consider now how these moments vary
over time after a shock. As is obvious from Section 1, the relations between an
innovation zi,t and the various higher moments are highly nonlinear. Therefore,
it is rather difficult to analytically compute impulse response functions.13 Instead,
we adopt and generalize the approach developed by Koop, Pesaran, and Potter
(1996), who introduce the concept of generalized impulse response (G I R) in the
case of nonlinear models. In our context, the G I R is the difference between the
expected value of returns after a shock vt at date t and the expected value of
returns without this shock, for a given history. It is defined for a given horizon
h as

G I R(h, vt , ωt−1) = E[rt+h |vt , ωt−1] − E[rt+h |ωt−1], h = 0, 1, . . . , (26)

where ωt−1 = {zt−1, zt−2, . . .} denotes the history of shocks.
In a nonlinear model, defining the G I R raises several difficulties. First, the

shock experiment has to be carefully designed because the G I R may be highly
affected by the level of shocks and their possible correlation. Second, the G I R is
conditional on the history because the realization of past shocks is likely to affect
the subsequent trajectory. Given the complexity of solving some nonlinear models,
Koop, Pesaran, and Potter (1996) recommend the use of Monte Carlo integration
to compute the conditional expectations in Equation (26). The main advantage of
this simulation approach in our context is that the G I R for the covariance matrix
and the higher moments can be very easily computed because they are explicitly
modeled as functions of past innovations zt−1. Therefore, after a given shock, vt , it is
possible to recover the subsequent variances, covariances, skewness, and kurtosis
in a way similar to Equation (26). A precise description of our simulation procedure
is provided in the Technical Appendix.

Figures 7 and 8 display the G I R for the covariance matrix and the higher
co-moments of the conditional distribution of unexpected returns for the US
and Japanese markets, respectively. We study the persistence of a shock using
a 30-day window. In the following, we comment on two experiments, corre-
sponding to a negative and to a positive shock on the US market. If we de-
note vt = (v1,t , v2,t)′ the vector of shocks, the shocks are (−2%, 0) and (2%, 0) ,
respectively.

We begin with a negative shock on the US market (Figure 7). It is well known
that the variance and covariance decrease only very slowly after a shock, given the
high persistence found in GARCH models (see Hafner and Herwatz 2006). A −2%
shock on the US market implies an increase of 0.2 of the US variance the day after
the shock. After 30 days, the variance is still 0.15 higher than it would have been
without the shock. About 100 days are necessary for the variance to return to its
average level.

In contrast, the response of the higher moments to a shock is short-lasting.
A −2% shock induces a decrease in the third central moment of the US return of

13This analytical computation has been partly performed, for instance, by Hafner and Herwartz (2006) for
the volatility impulse responses in a multivariate GARCH model.
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Figure 7 These figures display the generalized impulse response functions for the US and Japanese
daily returns, after a −2% shock on the US return. The reported confidence interval corresponds
to ± one standard deviation.

−0.2. This is a sizeable effect because it is the order of magnitude of the uncon-
ditional third moment. However, the effect is offset after 5 days. We observe a
similar behavior in the other third central moments. Regarding fourth central mo-
ments, we notice a sharp increase of 4 in the US fourth moment K ε

1111,t (while the
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Figure 8 These figures display the generalized impulse response for the US and Japanese daily
returns, after a +2% shock on the US return. The reported confidence interval corresponds to ±
one standard deviation.

unconditional moment is 7). Similar though less pronounced patterns are observed
for the other fourth central moments. Therefore, the contagion effects documented
in the existing literature, for example, Longin and Solnik (2001) or Poon, Rockinger,
and Tawn (2004), are short-lived contemporaneous effects.
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If we consider a positive shock on the US return (Figure 8), we notice three main
changes as compared to a negative shock. First, as expected, the magnitude of the
response of the covariance matrix is smaller than after a negative shock, reflecting
the well-known asymmetric effect of shocks on volatility. Second, the response of
third moments is now positive, suggesting that the multivariate distribution tends
to lean to the right side. Finally, the responses of the third and fourth moments are
significantly larger. This final result was expected from the parameter estimates,
but the figures provide a tool for measuring the temporal evolution of these higher
moments. Typically, a 2% shock on the US market implies an increase of 0.5 and
20 of the US third and fourth moments, respectively. These numbers must be
compared with −0.2 and 4, respectively, in the case of a −2% shock.

6 CONCLUSION

In this paper, we propose two methodological contributions. Our first contribution
is a multivariate model for asset returns, in which shocks have a feedback effect
not only on the covariance matrix but also on the higher moments (co-skewness
and co-kurtosis) of the joint distribution. For this purpose, we extend the DCC
model of Engle (2002) to the case of innovations drawn from a Sk-t distribution
with shape parameters that are function of past shocks. We show that this model
fits daily international stock market returns very well.

Our second contribution is the design of a graphical tool that extends the
concept of the NIC to the shape of the distribution. In a univariate setting, this
leads us to the NIC of skewness and kurtosis. In a multivariate setting, we obtain
the NIS of the various co-moments, thus allowing a better characterization of the
joint distribution of returns. We find that a large shock is likely to be followed by
another large shock because it results in an increase of the subsequent kurtosis. In
addition, a large shock of a given sign generally results in a subsequent skewness
of the same sign, so it is likely to be followed by another large shock of the same
sign. In a multivariate conditional setting, we establish some stylized features.
In particular, we document that past foreign shocks have little impact on the
current co-skewness or co-kurtosis beyond that information contained in US past
shocks. Finally, we investigate the temporal evolution of the response of the higher
moments and co-moments to shocks. This impulse response analysis reveals that
in all cases the effects are significant but short-lasting.

The non-normality and time-variability of the multivariate distribution of asset
returns are very likely to have dramatic consequences from risk and portfolio
management perspectives. It is well recognized that the value-at-risk of a portfolio
has to be computed dynamically to account for changes in the distribution of
returns. Typically, after a shock on market returns, a bank has to reevaluate the VaR
of its portfolio accordingly. Also such changes affect the distributional properties
of portfolio returns. A risk-averse investor would probably reallocate her portfolio
on the basis of the distributional properties and, in particular, on the basis of the
recent characteristics of the asset returns’ distribution.
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