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ABSTRACT
It is well known that strategies that allow investors to allocate their
wealth using return and volatility forecasts, the use of which are termed
market and volatility timing, are of significant value. In this paper, we
show that distribution tim ing, defined here as the ability to use fore-
casts for moments up to the fourth one, yields significant incremental
economic value. By considering the weekly asset allocation among the
five largest international stock markets, we find that distribution tim-
ing yields a gain of around 140 basis points per year over the last
decade. To control for the parameter uncertainty of the model, we cast
the model into a Bayesian setting. We also consider alternative pref-
erence structures and model specifications. In all cases, the value of
distribution timing remains economically significant. ( JEL: G11, F37,
C22, C51)
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A rational investor, if asked to choose between two assets with the same mean
and variance, is likely to invest in the asset with the highest skewness and the
lowest kurtosis (Scott and Horvath 1980; Dittmar 2002). Research on optimal asset
allocation has provided evidence that heterogeneity in higher moments is influen-
tial in explaining the cross section of stock returns, and that skewness should be
priced (Kraus and Litzenberger 1976; Friend and Westerfield 1980; Barone-Adesi
1985). Harvey and Siddique (2000) show that there exists a significant premium
for systematic skewness (i.e., co-skewness with the market return). Barberis and
Huang (2008) show that idiosyncratic skewness also matters in the cross
section.

However, early empirical evidence on asset allocation in a static setting re-
veals that the mean–variance criterion results in allocations that are very similar to
those obtained from a direct optimization of the expected utility, suggesting that
higher moments do not play a significant role in practice (Levy and Markowitz
1979; Kroll, Levy, and Markowitz 1984). Recent papers have provided evidence
that indeed the mean–variance criterion correctly approximates the expected util-
ity except in situations departing significantly from normality or in cases of highly
levered portfolios. For instance, Das and Uppal (2004) have shown that, in the
presence of unexpected jumps occurring at the same time in multiple countries,
loss from a reduction in diversification is not substantial and the cost of ignoring
common jumps is large only for highly levered positions. Jondeau and Rockinger
(2009) have reported empirical evidence that the mean–variance criterion may fail
to approximate the constant relative risk aversion expected utility when assets are
characterized by highly asymmetric and fat-tailed distributions. In such a case,
optimization strategies based on higher moments provide better approximations
of the expected utility. On the whole, therefore, these studies conclude that the
mean–variance framework may fail but only in extreme cases.

This conclusion has been reached under the assumption that the distribu-
tion of the opportunity set remains constant through time, whereas recent work
demonstrates that higher moments may vary through time and may be at least par-
tially predictable (Hansen 1994; Harvey and Siddique 1999; Jondeau and Rockinger
2003; Patton 2004). This result suggests that the role of higher moments found
in the cross section come from the ability of the investor to predict the evolution
of the higher moments. Evaluating the effect of dynamic higher moments on as-
set allocation requires the design of a data-generating process that accounts for
time variability in the higher moments. The first attempts toward this goal were
made by Ang and Bekaert (2002), Guidolin and Timmermann (2007, 2008), and
Guidolin and Nicodano (2009), using a switching-regime approach. In this frame-
work, returns’ mean and variance change depending on the regime. Although the
dynamics of higher moments are not explicitly modeled, (Guidolin and Timmer-
mann 2008) as well as Tu (2010) show that taking into account such changes in
regime improves the performance of the asset allocation. Despite all this work, re-
searchers have not yet conclusively established that improvements due to adding
the complexity of dynamic higher moments to the data-generating process are
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sufficient to yield economic value to investors. The main objective of this paper
was to establish the economic value of distribution timing, that is, the investor’s
ability to forecast the subsequent characteristics of the distribution of asset returns
and to invest accordingly.

The concept of distribution timing essentially echoes the concepts of mar-
ket timing and volatility timing that have already been explored in the literature.
While market timing, which involves the expected return predictability, has been
extensively studied (Kandel and Stambaugh 1996; Barberis 2000, among many oth-
ers), research on volatility timing has appeared only relatively recently. Graham
and Harvey (1996) and Busse (1999) have shown that investors design strategies
that exploit predictability in volatility. Several papers have shown that volatility
timing is of significant economic value for daily to monthly investment horizons
(e.g., Fleming, Kirby, and Ostdiek 2001, 2003; Marquering and Verbeek 2004; Jo-
hannes, Polson, and Stroud 2002). These authors have constructed strategies based
on volatility forecasts and have shown that such strategies are valuable. In this
paper, we study the incremental value of taking skewness and kurtosis into ac-
count, and we compare the magnitude of distribution timing relative to that of
volatility timing. We decided to name allocations that use information on up to
the forth moment as distribution timing to avoid possible confusion with higher-
moment timing that could mean timing of skewness and kurtosis only.1 For this
purpose, we consider two strategies: first, a dynamic mean–variance strategy, in
which investors try to benefit from their ability to predict subsequent volatility;
then, a dynamic higher-moment strategy, in which investors try to benefit from
their ability to predict not only volatility but also the distribution of returns. This
setting allows us to demonstrate, both statistically and economically, the gain of
the higher-moment strategy over the mean–variance strategy.

Evaluating the economic importance of distribution timing requires a rela-
tively elaborate statistical model. We extend the dynamic conditional correlations
(DCC) model of Engle (2002) and Engle and Sheppard (2001) to the case of a joint
distribution with asymmetry and fat tails. This extension incorporates several sta-
tistical features that characterize the dynamics of asset returns. This econometric
model has been extensively analyzed in Jondeau and Rockinger (2009).2 We then
derive closed-form solutions for the moments of the distribution of the portfolio.
These moments can be used directly as inputs to a fourth-order approximation of

1We recognize the limitations of this naming convention since, as shown by Cenesizoglu and Timmer-
mann (2008), predicting moments is not exactly the same thing as predicting an entire distribution.

2While we adopt the same econometric model for the dynamic and the joint distribution of the asset re-
turns, we clearly depart from that paper by describing how to use this model in a portfolio allocation
context. We also investigate a different issue, that is, whether or not an investor can benefit from her abil-
ity to forecast the subsequent joint distribution of asset returns instead of investigating the predictability
of higher moments. Finally, we show that this approach can be used in different contexts, at different
frequencies, and with more assets.
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the expected utility. Within this framework, we show that time variability in higher
moments does matter for effective portfolio allocation.3

One major problem in measuring the economic value of distribution timing
is the parameter uncertainty encountered in estimating the model. We therefore
perform the estimation of the model in a Bayesian setting, which has several ad-
ditional advantages in our context. First, it is a framework that naturally handles
the estimation of highly nonlinear models with a large number of parameter con-
straints. Second, we can take advantage of the large number of parameter draws
to test economic hypotheses. In particular, we can directly test the statistical sig-
nificance of distribution timing. Finally, we perform resampling asset allocation à
la Michaud (1998), which allows us to take care of the parameter uncertainty as
well as robust asset allocation, which aims at maximizing the minimum expected
utility. For all of these reasons, the use of Bayesian analysis appears relevant in the
context of distribution timing.

We applied our approach to the weekly allocation of wealth among the five
largest stock markets, that is, those of the United States, Japan, the UK, Germany,
and France, which represent, at the end of 1999, 60% of world market capitaliza-
tion. We first demonstrate that our model captures the main statistical characteris-
tics of these market returns. Then, we find that the mean–variance criterion results
in excessive risk taking and significant opportunity cost, as compared to a strat-
egy based on higher moments. The performance fee an investor would be willing
to pay to benefit from the higher-moment dynamic strategy (distribution timing)
is similar in magnitude to the fee she would be willing to pay to benefit from
the mean–variance dynamic strategy (volatility timing). For common levels of risk
aversion, the economic value of distribution timing is about 140 basis points (bp)
per year, while the economic value of volatility timing is about 300 bp per year.
When we investigate alternative preference structures, sample periods, or model
specifications, we find that distribution timing remains sizeable and comparable
to volatility timing.

The outline of this paper is as follows. In Section 1, we formulate our approach
for modeling returns with a nonnormal multivariate distribution and for measur-
ing distribution timing. Section 2 presents the empirical results. We discuss the
estimation of the model and the main characteristics of the portfolios obtained,
assuming mean–variance or higher-moments strategies. Then, we measure the
economic value of these strategies, under alternative preference structures, and
we provide some robustness checks of our main results. Section 3 concludes the
paper.4

3Several authors have proposed portfolio criteria based on an extension of the mean–variance criterion.
Examples are the higher-dimensional efficient frontier (Athayde and Flôres (2004)) or the allocation
based on various downside risk measures (Ang, Chen, and Xing (2006). Others have proposed alter-
native utility functions based on prospect theory (Barberis and Huang (2008), ambiguity aversion (Ait-
Sahalia and Brandt (2001), or an approximation of a general utility function based on higher moments
(Jondeau and Rockinger (2006); Guidolin and Timmermann (2008); Harvey et al. (2010).

4The appendix contains the details of the statistical model, describing the evolution of returns.
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1 METHODOLOGY

This section describes our methodology for solving the conditional asset allocation
problem with nonnormal returns. We first present the data-generating process for
asset returns. The process consists of a DCC model with a multivariate skewed t
(Sk-t) distribution, which allows for both asymmetry and fat tails. The parameters
driving the shape of the conditional distribution are allowed to vary over time as
a function of past shocks. For a complete description of the model, see Jondeau
and Rockinger (2009). We then describe how including higher-moments forecasts
in the expected utility of investors is likely to improve the allocation of wealth.
As in Jondeau and Rockinger (2006) and Guidolin and Timmermann (2008), we
approximate the expected utility up to the fourth moment in order to obtain the
optimal asset allocation. Finally, we describe how to measure the gain of distribu-
tion timing and how to test its significance.

1.1 The Multivariate Return Process

Given our interest in the effect of the higher moments on allocation performances,
we build a model that provides a complete description of the returns, rt, in excess
of the risk-free rate, r f ,t−1. The return’s dynamic is written as follows:

r̃t = rt − r f ,t−1 = μt + εt, (1)

εt = Σ1/2
t zt, (2)

zt ∼ g (zt|η) . (3)

Equation (1) decomposes the excess return at time t, r̃t, into two n × 1 vectors,
the expected excess returns, μt, and the unexpected excess returns, εt. Equation (2)
describes the unexpected returns εt, where zt denotes the n× 1 vector of indepen-
dent innovations, with zero mean and an identity covariance matrix, and Σ1/2

t de-
notes the Choleski decomposition of the conditional covariance matrix of returns,
Σt = Et−1[(r̃t − μt) (r̃t − μt)

′]. Equation (3) specifies that zt follows a conditional
distribution g(∙) with shape parameters η.

The specification we adopt for Equations (1)–(3) is described in detail in
Jondeau and Rockinger (2009) and summarized in Appendix A. The main char-
acteristics of this model are the following. First, we follow Fleming, Kirby, and
Ostdiek (2001, 2003) and assume constant expected returns (μt = μ, ∀t). Some re-
cent papers have shown that macroeconomic variables can have predictive power
for monthly returns (Kandel and Stambaugh 1996; Campbell and Thompson 2008;
Cochrane 2008) in particular if forecasts get pooled (Rapach, Strauss, and Zhou
2010). Predictability is, however, a controversial topic (see Cremers 2002; Goyal
and Welch 2008). Because our focus is on the evaluation of volatility and distribu-
tion timing, we mainly focus on the case with constant expected returns.5 Second,
the covariance matrix Σt is described as a dynamic conditional correlation model
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(Engle 2002, and Engle and Sheppard 2001), with asymmetric GARCH dynam-
ics for the conditional variances. This specification is designed to account for the
well-known properties of volatility clustering and dynamic correlations. Third, in-
novations are drawn from the following multivariate Sk-t distribution (Sahu, Dey,
and Branco 2003):

g(zt|η) =
n

∏
i=1

2bi

ξi +
1
ξi

Γ
(

νi+1
2

)

√
π(νi − 2) Γ

( νi
2

)

(

1+
κ2

i,t

νi − 2

)− νi+1
2

, (4)

where η = (ν1, . . . , νn, ξ1, . . . , ξn)′ denotes the vector of shape parameters and

κi,t =






(bizi,t + ai)ξi, if zi,t 6 −ai/bi,

(bizi,t + ai)/ξi, if zi,t > −ai/bi,

with

ai =
Γ
(

νi−1
2

)√
νi − 2

√
π Γ

( νi
2

)
(

ξi −
1
ξi

)

and b2
i = ξ2

i +
1

ξ2
i

− 1− a2
i .

The location and dispersion parameters ai and bi, respectively, ensure that zi,t has
a zero mean and unit variance. The Sk-t distribution is able to capture both the
asymmetry and the fat-tailedness through two shape parameters for each asset
i: the degree of freedom, νi, and the asymmetry parameter, ξi. Finally, the shape
parameters are rendered time varying, as described in the following specification,
proposed in Jondeau and Rockinger (2009):6

(1− ci,2L) log(νi,t − ν) = log ci,0 + c−i,1 |zi,t−1|Ni,t−1 + c+i,1 |zi,t−1| (1− Ni,t−1) (5)

(1− di,2L) log(ξi,t) = log di,0 + d−i,1zi,t−1Ni,t−1 + d+i,1zi,t−1(1− Ni,t−1), (6)

where Ni,t = 1{zi,t<0} and L is the lag operator. The degree of freedom and the
asymmetry parameter are driven by past shocks, as in an exponential GARCH pro-
cess, allowing some asymmetry in the reaction of the higher moments to negative
and positive shocks. The parameter ν is the lower bound for the degree of free-
dom.7 Two main features of equations (5) and (6) are worth emphasizing. First,
νi,t is related to the absolute value of lagged standardized innovations because
zi,t−1 is expected to affect the heaviness of the distribution’s tails regardless of its
sign. In contrast, ξi,t is expected to depend on signed residuals. Second, instead

5In the robustness section, we show that the distribution timing still holds in a GARCH-in-mean setup,
when conditional volatility drives expected returns.

6For a modeling of these parameters in a univariate setting, see Hansen (1994) and Jondeau and Rockinger
(2003). Alternative distributions allowing for asymmetry and fat tails may be found in Patton (2004) or
Mencia and Sentana (2005).

7We impose ν = 4 to make sure that the conditional moments up to the fourth order are well defined.
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of assuming that positive and negative shocks have the same impact on the shape
of the distribution, we allow an asymmetric reaction of the shape parameters to
recent shocks.

This model has several appealing properties. First, it nests the standard nor-
mal and t distributions with constant or time-varying degree of freedom. Sec-
ond, it allows us to analytically compute the moments of a portfolio composed
of assets driven by this distribution. This key insight, combined with a Taylor
approximation of the expected utility, allows us to perform allocation in a very
efficient manner. Third, the model is able to capture most of the features usually
observed in actual financial returns. These features include the time variability in
the covariance matrix, and the presence of asymmetry and fat tails in the distribu-
tion. This model therefore provides an appropriate setting to empirically investi-
gate the magnitude of the volatility and distribution timing.

The model used to describe the evolution of returns involves a large number
of parameters in a nonlinear manner. Given this complexity, the convergence of the
maximum likelihood (ML) optimizer is not guaranteed, and the measurement of
parameter precision may be prone to numerical inaccuracies. For this reason, we
estimate the model in a Bayesian setting, which allows us to take account for esti-
mation risk. This setting also allows us to demonstrate that the reported economic
values are not due to chance but are robust to parameter uncertainty. More details
on Bayesian estimation can be found in Appendix B.

It is worth emphasizing that there are different ways to incorporate param-
eter uncertainty into the allocation problem in a Bayesian setup. In the first ap-
proach, which we adopt, Bayesian estimation is used to produce the multivariate
posterior distribution of the parameter set. Then, we use resampling from this pos-
terior distribution to estimate the optimal weights for all the dates of the sample,
from which we evaluate the economic significance of the portfolio weights and
performance measures reported in the paper. This approach is similar in principle
to Michaud (1998), although we use the posterior distribution of the parameters in-
stead of their asymptotic distribution. As a by-product, this posterior distribution
also provides a solution to the allocation problem for an investor with aversion to
parameter uncertainty.

Alternatively, one could incorporate parameter uncertainty directly into the
portfolio optimization problem. This Bayesian allocation approach has been fol-
lowed, for instance, by Barberis (2000), Polson and Tew (2000), Johannes, Polson,
and Stroud (2002), Tu and Zhou (2004), and Harvey et al. (2010). The idea is to
estimate the so-called predictive distribution of asset returns. This distribution in-
corporates the uncertainty about the parameters and yields a unique set of optimal
portfolio weights. Our purpose in this paper is not to claim that one approach per-
forms better than the other does. Our objective is to provide the empirical distribu-
tion of the performance measures of the various allocation strategies we consider.8

8The relative performance of both approaches has been studied by Markowitz and Usmen (2003) and
Harvey, Liechty, and Liechty (2008).
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This objective is naturally addressed using the resampling approach. A description
of the estimation technique used in this paper can be found in Appendix B.

1.2 The Asset Allocation Strategies

We consider an investor who allocates her portfolio by maximizing the expected
utility Et[U(Wt+1)] over the end-of-period wealth, Wt+1.9 The initial wealth, Wt,
is arbitrarily set equal to one and Et denotes the expectations operator, where
all information up to time t is used. There are n risky assets with return vec-
tor rt+1 = (r1,t+1, . . . , rn,t+1)

′ and a risk-free asset with return r f ,t from time t
to time t + 1. Excess returns are denoted by r̃t+1 = rt+1 − r f ,t. End-of-period
wealth is Wt+1 = 1 + rp,t+1, where rp,t+1 = r f ,t + α′tr̃t+1 denotes the portfolio
return, with αt = (α1,t, . . . , αn,t)′ as the vector of weights allocated to the various
risky assets at time t. With e we denote the n × 1 vector of ones. Short sales are
allowed and the weight of the risk-free asset, α0,t = 1 − ∑n

i=1 αi,t, can be nega-
tive (borrowing) as well as positive (lending). The investor uses our econometric
model (1)–(3) to forecast the expected mean vector μt+1 = Et(r̃t+1), the covariance
matrix Σt+1 = Et[(r̃t+1 − μt+1)(r̃t+1 − μt+1)

′], and possibly the third and fourth
co-moment matrices:

St+1 = Et[(r̃t+1 − μt+1)(r̃t+1 − μt+1)
′ ⊗ (r̃t+1 − μt+1)

′],

Kt+1 = Et[(r̃t+1 − μt+1)(r̃t+1 − μt+1)
′ ⊗ (r̃t+1 − μt+1)

′ ⊗ (r̃t+1 − μt+1)
′].

In Appendix A, we indicate how to compute the components St+1 and Kt+1 as
well as how to compute the moments of the portfolio return distribution for a
given vector of portfolio weights.

Optimal portfolio weights are obtained by maximizing the expected utility

max
{αt}

Et[U(Wt+1(αt))] = Et[U(1+ r f ,t + α′tr̃t+1)]. (7)

In general, this problem does not have a closed-form solution and must be solved
numerically. It can be done using quadrature rules (Balduzzi and Lynch 1999;
Ang and Bekaert 2002) or using Monte Carlo integration (Detemple, Garcia, and
Rindisbacher 2003; Patton 2004; Guidolin and Timmermann 2007). However, these
approaches are practically intractable in a higher-dimensional context.

Because we are primarily interested in measuring the effect of higher moments
on asset allocation, we follow an alternative approach that approximates the ex-
pected utility as a function of the moments of the portfolio return distribution.

9We do not consider a multiperiod investment problem. The reason is that the available approaches
(Monte Carlo simulation or dynamic programming) are too time consuming. As Barberis (2000) demon-
strates, taking parameter uncertainty, learning, and dynamic allocations into account with dynamic
programming techniques is already difficult in a setting with only one risky asset. We wish to defer
this extension to a multiperiod investment to future research.
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This approach allows handling the case of many assets. The utility function can be
written as an infinite-order Taylor series expansion around the wealth at date t:

U(Wt+1) =
∞

∑
k=0

U(k)(Wt)

k!
(Wt+1 −Wt)

k,

where Wt+1 −Wt = r f ,t + α′tr̃t+1 = rp,t+1 denotes the portfolio return at date

t+ 1, and U(k) denotes the kth derivative of the utility function. Under rather mild
conditions, the expected utility is given by

Et[U(Wt+1)] = Et[
∞

∑
k=0

U(k)(Wt)rk
p,t+1

k!
] =

∞

∑
k=0

U(k)(Wt)

k!
m(k)p,t+1, (8)

with m(k)p,t+1 = Et[rk
p,t+1] denoting the noncentral moments of order k.10 There-

fore, the expected utility depends on all of the moments of the distribution of the
portfolio return. The investor’s preference (or aversion) toward the kth moment is
directly given by the kth derivative of the utility function.

Because our aim is to evaluate the gain of forecasting higher moments in ad-
dition to the variance, we consider a Taylor series expansion up to the fourth order
yielding

Êt[U[4](Wt+1)] = ϕ0 + ϕ1 m(1)p,t+1 + ϕ2 m(2)p,t+1 + ϕ3 m(3)p,t+1 + ϕ4 m(4)p,t+1, (9)

where ϕk =
1
k! U
(k)(Wt). Following Jondeau and Rockinger (2006) and Guidolin

and Timmermann (2008), we calibrate the parameters ϕk using the power utility

function U(Wt+1) = W1−γ
t+1 /(1− γ), where γ > 0 (γ 6= 1) measures the investor’s

constant relative risk aversion. In this case, we obtain: ϕ0 = 1/(1− γ), ϕ1 = 1,
ϕ2 = −γ/2, ϕ3 = γ(γ+ 1)/3!, and ϕ4 = γ(γ+ 1)(γ+ 2)/4!.

The effects of the third and fourth moments on the approximated expected
utility are unambiguously positive and negative, respectively. This finding is con-
sistent with the theoretical arguments developed by Scott and Horvath (1980). Ex-
pected utility decreases with large negative skewness (i.e., left-skewed distribu-
tions) and large kurtosis (i.e., fat-tailed distributions).

Maximizing expression (9) for each date t defines a dynamically rebalanced
portfolio that maximizes the expected utility of the investor. This expression clearly
demonstrates how forecasts of the higher moments of the portfolio return
distribution will affect the optimal weights at date t+ 1.

10Such an approach has been adopted in a number of contributions. See Rubinstein (1973), Kraus and
Litzenberger (1976), and Dittmar (2002), among others. Necessary conditions for the infinite Taylor
series expansion to converge to the expected utility have been explored by Loistl (1976). The region
of convergence of the series depends on the utility function considered. For the power utility function,
convergence is guaranteed for wealth levels in the range [0, 2W̄], where W̄ = E[Wt+1]. Such a range is
likely to be large enough for bonds and stocks. In contrast, it may be too small for options, due to their
leverage effect. These results hold for arbitrary return distributions.

 at U
niversitÃ

©
 &

 E
PFL

 L
ausanne on July 12, 2012

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


JONDEAU & ROCKINGER | Time Variability in Higher Moments for Asset Allocation 93

We now describe the strategies used for comparing the magnitude of distri-
bution timing and volatility timing. In the first strategy, the investor estimates a
DCC model with a joint Sk-t distribution, as described in Equations (1)–(6). She
therefore forecasts the time-varying covariance matrix as well as the conditional
distribution of asset returns. With this strategy, the investor is allowed to take full
advantage of volatility and distribution timing. The allocation criterion is based
on the fourth-order Taylor series expansion, Êt[U[4](Wt+1)] given by Equation (9).

This dynamic higher-moment strategy is denoted by HMd.
In the second strategy, the investor still estimates a DCC model but assumes a

joint normal distribution. She therefore forecasts the time-varying conditional co-
variance matrix. The utility function is approximated by a Taylor series expansion
up to the second order, giving

Êt[U[2](Wt+1)] = ϕ0 + ϕ1 m(1)p,t+1 + ϕ2 m(2)p,t+1. (10)

Its performance relative to the static strategy provides a measure of the economic
value of volatility timing. This dynamic mean–variance strategy is denoted by MVd.

To evaluate the distribution and volatility timing, these dynamic strategies
are compared to a benchmark strategy, the naive (mean–variance) strategy. It cor-
responds to a mean–variance investor who estimates the expected returns and
the covariance matrix using sample moments over the estimation period and then
holds these parameter estimates constant over the allocation period. Optimal port-
folio weights are thus constant over time. For purposes of comparison, we follow
the approach recommended by DeMiguel, Garlappi, and Uppal (2009) and con-
sider two basic strategies, the 1/N and the minimum-variance strategies.

1.3 Measuring the Gains of Distribution Timing

We compare the performance of the various strategies using different measures. A
first measure of performance is the standard Sharpe ratio, which is computed us-
ing the ex post average return mp and the volatility σp, as SRp = (mp − r f )/σp.
Because the Sharpe ratio does not provide a measure of out-performance over
alternative strategies with different levels of risk, we also consider the modified
Sharpe ratio mSR, introduced by Graham and Harvey (1997), defined as

mSR =
σ0

σp
(mp − r f )− (m0 − r f ), (11)

where m0 and σ0 are the average return and volatility of the naive strategy. This
measure corresponds to a scaled difference in the prices of risk for the two
allocations being compared.

However, these measures have an obvious drawback in our context, as they
do not capture the effect of nonnormality. Therefore, we consider another tool for
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evaluating the economic value of volatility and distribution timing, namely the
performance fee measure proposed by West, Edison, and Cho (1993) and Fleming,
Kirby, and Ostdiek (2001). It measures the management fee an investor is willing to
pay to switch from the static strategy to a given dynamic strategy. The performance
fee (or opportunity cost), denoted by ϑ, is defined as the average return that has
to be subtracted from the return of the dynamic strategy, such that the investor
becomes indifferent to both strategies

Et[U(1+ r̂p,t+1)] = Et[U(1+ r∗p,t+1 − ϑ)], (12)

where r∗p,t+1 is the optimal portfolio return obtained under the dynamic strategy,
and r̂p,t+1 is the optimal portfolio return obtained under the naive strategy. The
performance fee is obtained by solving equation (12) numerically.11

Finally, we report two widely used measures that reflect the ability of a strat-
egy to account for non-normality features: the value-at-risk (VaR) and the expected
shortfall (ES) of the portfolio return, with a threshold of 1%. These measures are
expected to improve when we use the HMd strategy because this strategy explic-
itly takes the tail behavior of market returns into account.12

There are several issues in testing the statistical significance of the gains due to
distribution timing. First, while the naive strategy requires the estimation of only
the sample mean vector and the covariance matrix, the dynamic strategies rely on
estimation of the dynamics of the covariance and higher co-moments matrices. To
avoid any overfitting of the data or data snooping, we use two nonoverlapping
subsamples for the estimation and allocation stages.13

Another important issue in the evaluation of the economic value of a strategy
is estimation risk. Our results suggest that distribution timing has an economi-
cally sizeable value, but this value may be statistically insignificant if the uncer-
tainty surrounding parameter estimates is too large. To address this issue, we use
Bayesian estimation to generate draws from the finite-sample distribution of the
parameters and to evaluate the significance of the performance measures.

11We also considered the certainty equivalent, previously adopted by Kandel and Stambaugh (1996),
Campbell and Viceira (1999), Ang and Bekaert (2002), and Das and Uppal (2004). It is defined as the
compensation (in percentage of initial wealth) that an investor must receive in order to be willing to put
1 dollar in the suboptimal strategy rather than in the optimal one. Because the performance fee and the
certainty equivalent provide the same measure of the economic gain (up to a few basis points), we only
report the former in our empirical evidence.

12In a previous draft of the paper, we also considered several alternative measures, such as the success
rate or the break-even transaction cost used by Han (2006) among others. Because all these measures
provide the same evidence in favor of the HMd strategy, we will only report some of these measures in
the following.

13Overfitting may arise from the introduction of too many parameters in a model. Some parameters may be
significant only because they help to capture very specific episodes. They would be helpful for improving
in-sample allocation, but useless (at best) for out-of-sample allocation. Data snooping occur if the same
sample is used for both estimation and allocation.
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2 EMPIRICAL INVESTIGATION

2.1 Data Description

To demonstrate that our results are general, we used several datasets to evaluate
the economic significance of distribution timing. In this section, we report results
from our first dataset, consisting of the returns of the five largest international mar-
kets (the United States, Japan, the UK, Germany, and France). The asset allocation
problem is viewed from the perspective of an unhedged U.S. investor, thus, re-
turns are expressed in U.S. dollars. Excess returns are defined over the risk-free
7-day U.S. Federal funds rate.14 The data are weekly and cover the period from
January 1973 through December 2009, for a total of 1931 observations. To avoid
in-sample overfitting as well as spurious findings, this sample period is broken in
two subsamples: the first sample (from 1973 to 1999, 1409 observations) is used for
the estimation of the model, while the second sample (from 2000 to December 2009,
522 observations) is used for the out-of-sample investigation. This dataset has been
selected as the benchmark to establish our results because it covers indices corre-
sponding to large markets. Consequently, it is less likely to be characterized by
extreme behavior that may drive the results. Therefore, for more “exotic” data, we
would expect even stronger findings. In Section 2.5, we report additional evidence
based on alternative subsamples or model specifications. It turns out that our main
results are not significantly altered.15

Table 1 reports several summary statistics for the market returns under inves-
tigation for both the estimation and the allocation periods (Panel A). Over the esti-
mation period, annualized average returns are all positive and significant, ranging
between 13.6% and 16.8%. Annualized volatilities range between 15.3% and 20.6%.
UK and France have high expected returns with high risk, whereas the United
States and Germany have low expected returns and low risk. Japan has low aver-
age returns and high risk over the sample.

Skewness measures are dispersed across markets. United States and French re-
turns are negatively skewed, suggesting that crashes occur more often than booms,
while the Japanese and UK markets have a large positive skewness. Kurtosis
measures are between 4.4 for Germany and 9.3 for the UK, a range that is

14The data consist of Friday-to-Friday weekly returns based on closing prices from Datastream Interna-
tional. At the end of 1999, the United States, Japanese, and UK markets represent 32.9%, 10.2%, 8.3%,
4.1%, and 4.3% of the world market capitalization, respectively. Market returns are measured by the
weekly return on the S&P 500, Nikkei 225, FTSE 100, DAX 30, and CAC 40 indices, respectively. Re-
turns are converted into U.S. dollars using the exchange rate of the same day. Nonsynchronicity of the
markets is expected to be softened by the use of the weekly frequency. These market indices are easy to
trade because they all have tradable futures. Because the transaction costs on these futures are very low,
transaction costs will not be a key issue in the model.

15A technical appendix, available from the authors, contains an analysis of a portfolio containing weekly
returns of stocks, bonds, and gold. Using daily data, we also analyzed a portfolio containing size portfo-
lios sampled at daily frequency. In all these cases, distribution timing was found to add economic value.
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Table 1 Summary statistics on market returns

United States Japan UK Germany France

Panel A: Estimation period (1973–1999)
Mean 14.321 13.585 16.196 13.936 16.756
SD 15.326 20.364 20.479 16.906 20.592
Skewness −0.478 0.282 0.440 −0.179 −0.319
Kurtosis 5.755 5.190 9.263 4.420 4.934
JB 498.815 299.918 2346.610 125.841 243.318

LB(4) 0.920 8.471 5.442 7.660 11.733
LK(4) 7.865 9.523 10.582 8.749 9.750
ρ(r) −0.016 0.050 0.052 0.062 0.105
ρ(r2) 0.266 0.167 0.166 0.176 0.219
Correlation matrix

Japan 0.241 – 0.294 0.365 0.337
UK 0.391 0.294 0.384 0.443
Germany 0.318 0.365 0.384 – 0.535
France 0.352 0.337 0.443 0.535 –

Panel B: Allocation period (2000–2009)
Mean 1.160 −1.787 3.754 4.751 6.178
SD 19.130 21.493 21.312 24.420 23.803
Skewness −0.318 0.018 −0.412 −0.554 −0.450
Kurtosis 6.849 4.550 5.715 5.180 5.363
JB 336.010 53.078 177.719 132.059 141.234
LB(4) 3.829 4.697 3.917 4.213 9.776
LK(4) 5.424 5.459 8.938 7.285 6.822
ρ(r) −0.054 −0.010 −0.082 −0.060 −0.112
ρ(r2) 0.200 0.146 0.372 0.209 0.265
Correlation matrix

Japan 0.432 – 0.460 0.482 0.503
UK 0.733 0.460 – 0.833 0.878
Germany 0.734 0.482 0.833 – 0.931
France 0.732 0.503 0.878 0.931 –

This table reports summary statistics on international market returns for the estimation period
(Panel A) and the allocation period (Panel B): the annualized average return and standard deviation,
the standardized skewness and kurtosis, the Jarque–Bera normality test statistic (JB), the Ljung–Box test
statistic for no serial correlation [LB(4)], the Lee–King test statistic for no serial correlation in squared
returns [LK(4)], the first-order serial correlation of returns [ρ(r)] and of squared returns [ρ(r2)], and
eventually the correlation matrix. The critical values at 5% are 5.99 for JB and 9.488 for LB(4) and LK(4).

inconsistent with the assumption of normality. We reject normality with great
confidence for all markets and, interestingly, these statistics demonstrate that
international stock markets are characterized by very different distribution pat-
terns. Regarding temporal dependence, we find no systematic evidence for serial
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correlation in market returns, but squared returns are strongly correlated, which
suggests temporal variation in second moments.

We observe some changes in the average returns over the allocation period
(2000–2009). Germany and France now have high expected returns and high risk,
whereas the United States and Japan have low expected returns and low risk. Eu-
ropean returns have a highly negatively skewed distribution. The United States
and UK return distributions display the heaviest tails.

Turning to the multivariate characteristics of market returns over the 1973–
1999 period, we notice that the correlation is the largest between the French and
German markets (0.535), while correlation is the lowest between Japan and the
United States (0.241). Given the well-known time variability of correlations, these
sample correlations may be misleading for allocation purposes. Indeed, the corre-
lations between these markets have been much higher over the last decade. For
instance, as may be gleaned from the correlation matrix in Panel B, the sample cor-
relation between the French and German markets is as high as 0.93. On average,
correlations increased by 15% to 40% between the two subperiods. Hence, the
naive strategy is likely to overstate the diversification ability of the stock
markets.

2.2 Model Estimation

Table 2 reports the Bayesian parameter estimates of the multivariate model with
Sk-t distribution and time-varying shape parameters. In all cases, as expected, the
asymmetry-in-volatility parameter, ψi, is significantly positive, suggesting that bad
news has a stronger effect on volatility than good news. In addition, the volatility
persistence, calculated as αi + ψi/2+ βi, is rather large in Japan, but much less so
in France. Turning to the dynamics of correlations, the persistence parameter, δ2,
takes a value of 0.93, translating the fact that correlation dynamics are also highly
persistent.

The second part of the table presents the parameters of the higher-moment
dynamics. Regarding the degree of freedom, we notice that large negative shocks
are generally followed by an increase in the subsequent degree of freedom and
therefore by a decrease in the subsequent kurtosis (c−i,1 > 0). This suggests that
large returns are less likely to occur. In contrast, large positive shocks are often
followed by a large kurtosis, indicating that the probability of large subsequent
shocks increases (c+i,1 < 0).

Regarding the asymmetry of the distribution, we observe that after a large
negative shock, the subsequent skewness tends to be negative in all countries but
France (d−i,1 < 0), suggesting that another negative shock is more likely. After a
large positive shock, the subsequent skewness is negative in the United States
and Japan, indicating that a negative shock is more likely (d+i,1 < 0). In European
markets, a positive shock is more likely to be followed by another positive shock
(d+i,1 > 0).
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To sum up, in the United States and Japan, large shocks (both negative and
positive) tend to be followed by negative shocks, suggesting that negative shocks
are persistent while positive shocks are short-lived. For European countries, the
patterns are less clear, probably because these markets are also contaminated by
the evolution of the U.S. market. Broadly speaking, the evidence provided by these
weekly estimates is similar to that found by Jondeau and Rockinger (2009) for the
daily frequency.

Table 3 summarizes goodness-of-fit tests. It reports the log-likelihood, the
Akaike and Schwarz information criteria, and the Pearson’s goodness-of-fit
statistic proposed by Diebold, Gunther, and Tay (1998) (using 20 cells). The

Table 2 Estimation of the GARCH-DCC parameters

Country Parameter Mean SD 5% Median 95%

United States μ 0.062 0.013 0.040 0.063 0.085
ω 0.514 0.031 0.448 0.520 0.551
α 0.088 0.004 0.078 0.088 0.093
ψ 0.142 0.008 0.126 0.143 0.153
β 0.794 0.009 0.785 0.792 0.815

Japan μ 0.076 0.004 0.069 0.075 0.082
ω 0.985 0.015 0.953 0.989 0.999
α 0.128 0.019 0.095 0.131 0.156
ψ 0.285 0.044 0.197 0.294 0.343
β 0.711 0.013 0.692 0.708 0.729

UK μ 0.082 0.010 0.065 0.083 0.099
ω 0.353 0.001 0.352 0.353 0.355
α 0.097 0.000 0.096 0.097 0.097
ψ 0.018 0.006 0.007 0.019 0.026
β 0.863 0.001 0.861 0.863 0.864

Germany μ 0.148 0.010 0.133 0.148 0.165
ω 0.544 0.014 0.515 0.545 0.564
α 0.118 0.014 0.100 0.115 0.143
ψ 0.021 0.010 0.007 0.020 0.039
β 0.821 0.011 0.802 0.822 0.836

France μ 0.173 0.010 0.156 0.173 0.189
ω 0.463 0.057 0.362 0.482 0.539
α 0.072 0.012 0.045 0.076 0.088
ψ 0.062 0.012 0.041 0.059 0.085
β 0.756 0.027 0.720 0.749 0.806

Correlation δ1 0.007 0.001 0.006 0.007 0.008
δ2 0.930 0.006 0.921 0.931 0.940

(continued)
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Table 2 (continued). Estimation of the Sk-t distribution parameters

Country Parameter Mean SD 5% Median 95%

United States c0 3.186 0.642 2.280 3.130 4.280
c−1 17.384 3.096 12.681 17.740 23.079
c+1 −7.302 1.401 −9.633 −7.163 −5.251
c2 0.618 0.074 0.515 0.608 0.752
d0 1.020 0.029 0.960 1.022 1.065
d−1 0.146 0.035 0.088 0.147 0.202
d+1 −0.084 0.052 −0.174 −0.082 0.008
d2 0.518 0.114 0.332 0.527 0.710

Japan c0 3.172 0.636 2.230 3.110 4.400
c−1 44.455 8.895 29.291 45.084 57.760
c+1 −9.768 1.049 −11.422 −9.488 −8.252
c2 −0.494 0.176 −0.712 −0.536 −0.192
d0 1.198 0.052 1.135 1.180 1.300
d−1 0.093 0.052 0.008 0.090 0.181
d+1 −0.234 0.065 −0.346 −0.229 −0.134
d2 −0.094 0.197 −0.459 −0.084 0.215

UK c0 3.114 0.628 2.280 3.025 4.360
c−1 −10.301 1.798 −12.743 −10.927 −7.525
c+1 −6.943 4.516 −15.857 −5.972 −1.347
c2 −0.060 0.038 −0.126 −0.056 −0.005
d0 1.032 0.053 0.926 1.041 1.103
d−1 0.174 0.049 0.091 0.177 0.257
d+1 0.033 0.075 −0.062 0.011 0.179
d2 −0.010 0.194 −0.323 −0.009 0.292

Germany c0 3.114 0.492 2.380 3.250 3.810
c−1 29.884 4.165 21.950 30.710 35.619
c+1 8.432 1.254 6.614 8.265 10.636
c2 −0.573 0.064 −0.684 −0.572 −0.459
d0 1.019 0.058 0.926 1.019 1.115
d−1 0.307 0.035 0.239 0.309 0.361
d+1 0.212 0.041 0.151 0.208 0.289
d2 −0.397 0.111 −0.589 −0.393 −0.217

France c0 2.499 0.275 1.920 2.550 2.860
c−1 −12.083 2.869 −16.353 −11.893 −7.307
c+1 22.698 4.458 15.116 23.138 29.383
c2 0.149 0.102 0.001 0.142 0.304
d0 0.846 0.069 0.731 0.846 0.955
d−1 −0.158 0.089 −0.300 −0.169 −0.020
d+1 0.279 0.076 0.146 0.288 0.385
d2 −0.141 0.202 −0.413 −0.175 0.237

This table reports Bayesian parameter estimates of the model with a joint Sk-t distribution with time-
varying shape parameters. The first two columns present the mean and standard deviation of the poste-
rior distribution of the parameters. The last columns contain the 5%, median, and 95% quantiles of the
distribution.
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Table 3 Goodness-of-fit test statistics

Normal distribution Sk-t distribution

Statistics p-value Statistics p-value

lnL −15526.156 – −15491.485 –
AIC 19.2861 – 19.2937 –
BIC 19.5261 – 19.8892 –

Pearson’s goodness-of-fit statistics
United States 36.039 0.010 21.947 0.287
Japan 30.402 0.047 19.555 0.422
UK 43.641 0.001 26.388 0.120
Germany 39.456 0.004 21.548 0.307
France 9.306 0.968 19.470 0.427

This table reports the log-likelihood (lnL), Akaike (AIC) and Schwarz information criteria, and goodness-
of-fit test statistics for the model with normal distribution and with Sk-t distribution. Information criteria
are the Akaike and Schwarz criteria. In the lower part of the table, we report, for each market, Pearson’s
goodness-of-fit statistic proposed by Diebold, Gunther, and Tay (1998), with 20 cells.

log-likelihood test statistic (equal to 69.34 with a p-value of 0.3%) and the infor-
mation criteria indicate that the complete GARCH-DCC model with joint Sk-t dis-
tribution clearly dominates the model with joint normal distribution. In addition,
goodness-of-fit tests indicate that the normal distribution fails to fit four of the five
market returns at hand. On the other hand, the Sk-t distribution fits the data very
well.16

Figures 1 and 2 display the dynamics of volatilities σi,t and correlations ρij,t,
respectively. Inspection of these figures reveals several interesting features from
a portfolio perspective. First, volatilities of the UK, German, and French markets
are relatively low over the allocation period. In particular, they are lower than
the U.S. volatility, whereas sample estimates were ranking the United States as
the safest market. Second, we observe some trends in the correlations across mar-
kets. For instance, the conditional correlation between the U.S. and UK markets is
anchored above 0.5 over the allocation period, while it is below 0.5 over the esti-
mation period. Similarly, the correlation between the German and French markets
increases from about 0.6 over the estimation period to about 0.7 over the allocation
period.

Figures 3 and 4 display the dynamics of the conditional skewness ski,t and
kurtosis kui,t for the five markets under study. Several comments are of interest.
First, the conditional skewness and kurtosis differ at times significantly from the

16In Table 3, the column labeled ‘Normal distribution’ corresponds to Engle’s (2002) standard DCC
model.
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Figure 1 The evolution of the conditional volatility, as estimated by the model with a Sk-t dis-

tribution with time-varying shape parameters are displayed. The allocation subperiod begins in

January 2000.

sample counterparts (shown in Table 1), as the innovations have been filtered for
GARCH and DCC effects. We notice that the skewness displayed in Figure 3 for
the United States and Japan has the same level as the sample skewness, whereas
we observe some changes due to volatility filtering for the other countries. The
UK market now has a negative skewness, while in Germany the skewness is now
positive. As Figure 4 illustrates, the conditional kurtosis is found to be rather er-
ratic for the U.S. market and much less so for European markets. The ranking of
the conditional kurtosis and the ranking of the sample measures are essentially
the same. Yet, the levels can differ substantially. In particular, the Japanese and
UK markets have a similar conditional kurtosis (around 7), while the sample mea-
sure is 5.2 for Japan and 9.3 for the UK. This suggests that a significant number of
large shocks in the UK come from volatility spillover and, therefore, probably from
U.S. shocks.

Unreported results demonstrate that most of the co-skewness measures be-
tween international markets are negative. This implies that most markets provide
a bad hedge against adverse changes in volatility in the other markets. Excep-
tions are the co-skewness measures between the Japanese and European markets,
which are mostly positive. This suggests that European market returns are likely
to be higher than expected when the volatility in Japan is high, thus providing a
good hedge against high volatility in this market. In addition, all co-kurtosis mea-
sures are positive and well above the value predicted by a normal distribution.
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Figure 2 The evolution of the conditional correlation, as estimated by the model with a Sk-t distri-

bution with time-varying shape parameters are given. The allocation subperiod begins in January

2000.

Interestingly, there is a positive trend in the co-kurtosis between the European
markets, indicating that the ability of these markets to hedge each other in case
of extreme events is worsening over time.

These results suggest that allocating wealth based on sample moments alone
is likely to be misleading and that the temporal variability of moments, including
higher moments and co-moments, may play an important role in the allocation
process.
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Figure 3 The evolution of the conditional skewness, as estimated by the model with a Sk-t dis-

tribution with time-varying shape parameters are displayed. The allocation subperiod begins in

January 2000.

Figure 4 The evolution of the conditional kurtosis, as estimated by the model with a Sk-t dis-

tribution with time-varying shape parameters are displayed. The allocation subperiod begins in

January 2000.
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2.3 Portfolio and Performance Analysis

We now turn to the analysis of the performance of the various dynamic trading
strategies described above. Each strategy will provide some insight on the relative
value of the volatility and distribution timing over a simple buy-and-hold strategy.

The estimation of the optimal portfolio weights implied by the various strate-
gies under study is performed as follows. For each week of the sample, we fore-
cast the first four moments and co-moments of market returns using the model
described above and maximize the approximated expected utility to produce port-
folio weights.

In Table 4, we report moments of realized portfolio returns for several alloca-
tion strategies. We start with the 1/N portfolio, which has 20% invested in each
of the risky assets, and the minimum-variance portfolio. The weights of the lat-
ter portfolio are given by αMinVar = (44%, 17%, 9%, 27%, and 3%) in the United
States, Japan, the UK, Germany, and France, respectively. Both strategies result in
very poor performance: the Sharpe ratio is close to zero, the skewness highly neg-
ative, and the kurtosis very large.

The portfolio weights of the naive portfolio depend on the level of risk aver-
sion γ. For low risk aversion (γ = 5), the portfolio is mainly composed of United

Table 4 Moments of realized portfolio return over the allocation period

Moments of realized portfolio return
Sharpe

Strategy μ σ sk ku ratio

1/N 3.436 19.020 −0.667 5.667 0.027
MinVar 2.617 18.382 −0.638 5.997 −0.017

γ = 5
Naive 3.418 16.453 −0.610 6.015 0.030
MVd 4.409 17.030 −0.421 4.510 0.086
HMd 4.299 15.577 −0.386 4.157 0.088

γ = 10
Naive 3.176 8.224 −0.626 6.043 0.030
MVd 3.687 8.487 −0.416 4.505 0.088
HMd 3.626 7.811 −0.382 4.164 0.090

γ = 15
Naive 3.097 5.482 −0.641 6.067 0.030
MVd 3.443 5.639 −0.412 4.508 0.091
HMd 3.392 5.212 −0.379 4.163 0.089

This table reports summary statistics on the optimal portfolio return, for the various strategies and for
values of the risk aversion γ ranging from 5 to 15. We report the annualized average (μ), the annualized
standard deviation (σ), the standardized skewness (sk) and kurtosis (ku) of the realized portfolio return,
and the Sharpe ratio. The first two rows correspond to the 1/N and minimum-variance strategies.
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States, UK, and French assets, with α
γ=5
naive = (32%, 8%, 17%, 10%, and 20%). For

medium risk aversion (γ = 10), the weights of the risky assets are all decreased

as expected, α
γ=10
naive = (16%, 4%, 8%, 5%, and 10%). Given the poor performance

of stock markets over the last decade, the Sharpe ratio turns out to be very low,
at 0.03. Nevertheless, we notice that the moments of realized portfolio returns im-
prove compared to the 1/N and the minimum-variance strategies.

2.3.1 Economic Value of Volatility Timing We now turn to the dynamic
strategies and the evaluation of the volatility and distribution timing. We proceed
as follows: we generate 1000 draws at random from the posterior distribution of
the model’s parameters. For each set of parameters, we forecast the first four co-
moment matrices of the assets over the allocation period. Then, we maximize the
approximated utility function based on these co-moments and obtain the portfolio
weights for every week of the period as well as the performance measures of the
strategies. Because this is done for all the draws from the parameters’ posterior
distribution, we can compute the finite-sample distribution of these performance
measures, which allows us to compare the performances of the various strategies
from a statistical point of view.

We begin with the MVd strategy. When the investor accounts for the time vari-
ability in the covariance matrix, the portfolio weights often differ substantially
from those found for the naive strategy. This is clearly shown in Figure 5, which
displays the portfolio weights over the allocation period. When γ = 5, the largest
average weights are obtained for the United States, the UK, and France. The aver-

age weights are α
γ=5
MVd = (20%, 7%, 15%, −30%, and 89%). We notice that there is

a large negative weight for Germany and a large positive weight for France. This
difference is due to a higher expected return in France, while the volatility remains
at a low level over most of the allocation period, as confirmed by Figure 1. We also
notice that there are large changes in the weights over the period. In particular, we
observe a decrease in the portfolio weights, from 150% in 2005 to 25% in 2009 for
the French market, and from 40% in 2005 to 0 in 2009 for the UK market. This de-
crease reflects the large increase in the volatility of both markets at the end of the
period. In 2007–2009, we notice a convergence of portfolio weights to low levels,
reflecting the reduction in the exposure to risky assets during the subprime crisis.
If we contemplate the evolution of the weight of the risk-free asset, we notice that it
was positive only in 2000–2003 during the dotcom crash and in 2007–2009 during
the subprime crisis.

Table 5 reveals that the performance fee a naive investor is willing to pay to
switch from the naive to the dynamic MVd strategy is significantly positive. This
means that capturing volatility timing does increase utility to the investor. This
result holds for all levels of risk aversion: the performance fee is about 300 bp per
year for γ = 5 and 140 bp for γ = 10. Our estimate of the value of volatility timing
is in the range of the estimates reported by Fleming, Kirby, and Ostdiek (2001,
2003) and Han (2006).
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Figure 5 The optimal portfolio weights, for the naive, MVd, and HMd strategies with a risk aver-

sion of γ = 5, over the allocation period are displayed.

 at U
niversitÃ

©
 &

 E
PFL

 L
ausanne on July 12, 2012

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


JONDEAU & ROCKINGER | Time Variability in Higher Moments for Asset Allocation 107

Table 5 Measures of portfolio performance over the allocation period

mSR Performance VaR(1%) ES(1%)
Strategy (%) fee ϑ (%) (%) (%)

γ = 5
MVd 0.935 3.020 6.883 7.922

[0.32; 1.81] [1.96; 4.01] [6.43; 7.42] [7.36; 8.49]
HMd 0.965 4.395 5.722 6.810

[0.74; 1.36] [4.03; 4.76] [5.56; 6.29] [6.58; 7.32]

γ = 10
MVd 0.482 1.423 3.386 3.915

[0.17; 0.91] [0.94; 1.89] [3.16; 3.64] [3.64; 4.19]
HMd 0.493 1.993 2.846 3.386

[0.39; 0.68] [1.84; 2.15] [2.76; 3.10] [3.27; 3.63]

γ = 15
MVd 0.331 0.949 2.219 2.581

[0.12; 0.62] [0.64; 1.25] [2.07; 2.39] [2.39; 2.76]
HMd 0.322 1.284 1.879 2.238

[0.25; 0.45] [1.18; 1.38] [1.83; 2.06] [2.16; 2.41]

This table reports statistics on the performance of the optimal portfolios for the MVd and HMd strategies
and for values of the risk aversion γ ranging from 5 to 15. We report several measures of performance of
the strategies: the modified Sharpe ratio, mSR, defined by equation (11); the annualized performance fee,
ϑ, estimated from the sample counterpart of relation (12); and the VaR and ES, estimated for a threshold
of 1%. For each allocation strategy, the first row corresponds to the median statistics and the second row
reports the 5% and 95% quantiles of the finite-sample distribution.

2.3.2 Economic Value of Distribution Timing When the investor takes the
temporal evolution of the conditional distribution into account (HMd strategy), the
new feature that she has to consider is the trade-off between skewness and kurtosis
in asset returns. Over the allocation period, we observe some sizeable changes in
portfolio weights relative to the MVd strategy. In particular, the weights of the UK
and German markets increase by about 6% on average, whereas the French weight
decreases by 14% compared to the MVd strategy. The resulting average weights

are α
γ=5
HMd = (16%, 6%, 22%, −24%, 75%).

The explanation of these changes in portfolio weights can be found in
Figures 1 through 4. On the one hand, there is a clear trade-off between the
German and French markets, which are highly correlated over the allocation pe-
riod. While the volatility of the French market is lower than the German counter-
part, we notice that the skewness is more negative and that the kurtosis is slightly
higher in the French market than that of the German market. Hence, the HMd in-
vestor puts more emphasis on Germany and less on France. There is also another
less pronounced trade-off between the U.S. and UK markets, which are also highly
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correlated over the allocation period. The skewness is clearly less negative in the
UK than in the United States. We should emphasize that at the beginning and at the
end of the period (2000–2003 and 2006–2007), the kurtosis is lower in the United
States than in the UK. Over these subperiods, we do not observe any decrease in
the U.S. portfolio weight.

We now turn to the relative performance of the MVd and HMd strategies.
Table 4 indicates that the realized return of the latter is slightly lower than the
realized return of the lower (for instance, 4.3% vs. 4.4% per year, for γ = 5), while
the volatility is lower for the HMd, such that both strategies yield similar Sharpe
ratios. We wish to emphasize that ex ante the MVd strategy should yield a higher
Sharpe ratio than the HMd strategy by construction. To objectively compare both
strategies, it is necessary to use a criterion that incorporates the nonnormal char-
acter of returns. Observation of the higher moments indicates that skewness is less
negative and kurtosis lower for the HMd strategy. This evidence suggests that the
HMd strategy is able to generate a portfolio return dynamic that is less prone to
extreme events.

The economic gain due to distribution timing is measured by comparing the
performance of the MVd and HMd strategies. Table 5 reveals that a naive investor
is willing to pay 3% per year to switch to the MVd strategy and 440 bp per year to
switch to the HMd strategy, for γ = 5. Therefore, ability to benefit from distribution
timing generates an additional performance fee of about 140 bp (440 − 300). The
performance fee decreases to 60 bp for γ = 10 and 35 bp for γ = 15. As the investor
reduces her exposure to risky assets, the strategies are less likely to produce large
differences in terms of performance measures.

To assess the statistical significance of the gains to distribution timing, Figure 6
depicts the empirical distribution of the performance fee for MVd and HMd strate-
gies with respect to the naive strategy. One can clearly see that the performance fee
of the HM d strategy is significantly above the fee of the MVd strategy, confirming
the economic value of distribution timing. We performed a Kolmogorov–Smirnov
test for the null hypothesis that the two distributions are the same, and the null
was overwhelmingly rejected at all significance levels. We conclude that the per-
formance of the HMd strategy is economically and statistically superior to that of
the MVd one.

Finally, we investigate the distribution properties of realized portfolio returns
implied by both dynamic strategies. Table 5 reports the VaR and the ES at the 1%
threshold. As is apparent, the gain of adopting the HMd strategy is both statisti-
cally and economically significant, as it decreases the probability and the size of
extreme negative events. For γ = 5, the average returns below the 1% quantile are
−8.9%, −7.9%, and −6.8% for the naive, MVd, and HMd strategies, respectively.

2.4 Aversion to Parameter Uncertainty

At this point, it may be argued that incorporating parameter uncertainty in the
evaluation of the significance of distribution timing is insufficient because it may
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Figure 6 The distribution of the performance fee for MVd and HMd strategies are given. The

two curves are obtained by drawing parameters from the Markov chain generated during the

parameter estimation. The performance fee is the premium the investor is willing to pay to switch

from a naive strategy to either of the dynamic strategies. The dynamic mean-variance strategy

is tantamount to volatility timing, whereas the dynamic higher-moment strategy corresponds to

distribution timing.

directly affect the behavior of investors. As already mentioned in Section 1.1, this
issue has been addressed in a series of contributions that use Bayesian techniques
to evaluate how investors with aversion to parameter uncertainty choose portfo-
lios that maximize the minimum expected utility. This research follows the ap-
proach of Gilboa and Schmeidler (1989), which demonstrates that the minimum
expected utility actually reflects the preferences of an investor who is averse to
uncertainty about the probability distribution.17 The corresponding max–min
optimization program is

max
αt

min
θ∈Θ

Et[U(Wt+1)], (13)

for each period of time, where Θ is the domain characterizing the range of the pa-
rameters required to compute the expectation. Given the complexity of the model,

17Several recent papers also demonstrate the importance of ambiguity aversion in asset allocation. Re-
cent contributions in this domain are Hansen, Sargent, and Tallarini (1999), Maenhout (2004), Garlappi,
Uppal, and Wang (2007) as well as Leippold, Trojani, and Vanini (2008). In these papers, the utility is also
modeled by introducing a max–min criterion; hence, the investor seeks an allocation that will be optimal
under the worst case scenario.
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it is not possible to follow the approach adopted, for instance, by Garlappi, Uppal,
and Wang (2007), who infer, for a given parameter, which part of its domain is more
likely to produce the worst-case scenario. To solve this problem, we take advan-
tage of Bayesian estimation. The parameter vector θ has to obey a set of constraints,
such as those ensuring stationarity and positivity of the covariance matrix. In ad-
dition to this, the range of plausible values of θ is delimited by the Bayesian prior
and the likelihood of the model. We use draws from the posterior distribution of
the parameters to describe the possible domain, Θ, to which θ can belong.

We solve the optimization problem (13) as follows. For a given date t, we con-
sider all the possible sets of parameters in Θ and maximize the corresponding
expected utility over portfolio weights αt. This yields a solution, say α∗t (θ). We
then seek the allocation that solves equation (13). This portfolio weight vector is
expected to produce the best outcome to the investor in the event of a worst-case
scenario.

As expected, the optimal portfolio weights found under ambiguity aversion
are more conservative than those found using the previous resampling approach.
In particular, we observe a reduction in the weight of the French market. For
instance, for γ = 5, it decreases from 89% to 82% for the MVd strategy and from
75% to 72% for the HMd strategy. In Tables 6 and 7, we present moments and char-
acteristics of the resulting allocations. As a comparison of Table 6 with Table 4 indi-
cates, a conservative investor who is uncertain of her parameter estimates accepts a

Table 6 Moments of realized portfolio return over the allocation period (Model with
aversion to parameter uncertainty)

Moments of realized portfolio return
Sharpe

Strategy μ σ sk ku ratio

γ = 5
Naive 3.202 13.798 −0.621 5.961 0.020
MVd 4.027 16.331 −0.438 4.635 0.067
HMd 4.126 15.427 −0.386 4.158 0.077

γ = 10
Naive 3.219 7.273 −0.626 5.901 0.039
MVd 3.516 8.139 −0.433 4.637 0.072
HMd 3.543 7.732 −0.380 4.160 0.079

γ = 15
Naive 3.065 4.757 −0.633 6.071 0.028
MVd 3.330 5.410 −0.426 4.641 0.074
HMd 3.342 5.160 −0.376 4.165 0.080

This table reports summary statistics on the optimal portfolio return in the case of aversion to parameter
uncertainty. The level of risk aversion γ ranges from 5 to 15. The statistics are the same as in Table 4.
Moments of realized portfolio return over the allocation period.
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Table 7 Measures of portfolio performance over the allocation period (Model with
aversion to parameter uncertainty)

mSR Performance VaR(1%) ES(1%)
Strategy (%) fee ϑ (%) (%) (%)

γ = 5
MVd 0.656 0.936 6.660 7.775

HMd 0.799 1.980 5.572 6.775

γ = 10
MVd 0.235 0.655 3.249 3.841
HMd 0.288 1.062 2.769 3.363

γ = 15

MVd 0.217 0.435 2.140 2.536
HMd 0.245 0.672 1.843 2.221

This table reports statistics on the performance of the optimal portfolios in the case of aversion to param-
eter uncertainty. The level of risk aversion γ ranges from 5 to 15. The statistics are the same as in Table 5.
Measures of portfolio performance over the allocation period.

decrease in expected return in order to reduce volatility. The table also demon-
strates that switching from the naive strategy to the dynamic strategies improves
expected returns at the cost of higher volatility. The Sharpe ratio improves as one
considers volatility timing and then again as one considers distribution timing.

Table 7 documents that the economic value of volatility timing under aver-
sion to parameter uncertainty amounts to 95 bp, whereas the economic value of
distribution timing is 105 bp (200 − 95). These estimates suggest that, even when
the strategies are constrained to be more conservative in order to take worst-case
scenarios into account, the gain of distribution timing is large compared to that of
volatility timing. We also observe that, in this context, the HMd strategy also pro-
vides lower VaR and lower ES compared to the MVd strategy. Comparison with
Table 5 also reveals that the VaR and the ES are systematically lower for the con-
servative investor than for the standard power utility investor. Thus, the choice
of conservative allocations to avoid risk due to erroneous parameter estimates
appears to provide additional felicity to the investor.

2.5 Robustness Analysis

As already discussed, we did our best to control for statistical issues. We accounted
for overfitting by using two separate subperiods for the parameter estimation and
asset allocation, and we accounted for parameter estimation risk by using the
finite-sample distribution for all performance measures. To further evaluate the
robustness of the gain due to distribution timing, we have performed an addi-
tional set of analyses, the main results of which are described in this section.
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All these experiments are based on the same data, yet with different specifi-
cations of the model. We start with a subperiod analysis. We split the allocation
period into two subperiods of equal length. The first subsample covers the period
2000–2004, which includes the dotcom bubble burst. The second period (2005–
2009) covers the subprime crisis. Then, we consider the relative performance of
both dynamic strategies for each of the subperiods. Table 8 (Panel A) reports the
moments for realized portfolio returns for γ = 5. As is apparent, compared to
the naive strategy, the dynamic strategies performed well during the first period.
The HMd strategy also managed to generate a lower volatility. Over the second pe-
riod, the HMd strategy outperformed the naive and MVd approaches, according
to all criteria, with a higher expected return, a lower volatility, a higher skewness,
and a lower kurtosis. Observing Table 9 (Panel A) reveals that the performance fee
is much higher for the HMd strategy than for the MVd strategy over both periods.

Table 8 Moments of realized portfolio return over the allocation period (robustness
analysis)

Moments of realized portfolio return Sharpe
Strategy μ σ sk ku ratio

Panel A: Subperiod analysis
First subperiod (2000–2004)

Naive 1.983 15.506 −0.060 4.654 −0.058
MVd 2.384 17.206 −0.213 5.116 −0.002
HMd 2.583 15.923 −0.227 4.653 −0.019

Second subperiod (2005–2009)
Naive 4.858 17.348 −1.007 6.811 0.107
MVd 5.990 16.836 −0.643 3.854 0.179
HMd 6.040 15.193 −0.561 3.558 0.200

Panel B: Constant higher moments
Naive 3.418 16.453 −0.610 6.015 0.030
MVd 4.409 17.030 −0.421 4.510 0.086
HMd 4.299 15.577 −0.386 4.157 0.088
Cst kurtosis 4.447 17.696 −0.415 4.373 0.085
Cst skewness 4.471 17.602 −0.418 4.467 0.087

Panel C: GARCH-in-Mean model
Naive 3.418 16.453 −0.610 6.015 0.030
MVd 3.140 16.348 −0.500 3.779 0.013
HMd 8.341 16.028 −0.412 5.144 0.337

This table reports summary statistics on the optimal portfolio return for alternative specifications of the
allocation period and the econometric model. The level of risk aversion is γ = 5. The statistics are the
same as in Table 4.
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Table 9 Measures of portfolio performance over the allocation period (robustness
analysis)

mSR Performance VaR(1%) ES(1%)
Strategy (%) fee ϑ (%) (%) (%)

Panel A: Subperiod analysis
First subperiod (2000–2004)
MVd −0.912 −0.800 6.742 8.741
HMd −2.307 −0.162 6.630 7.914

Second subperiod (2005–2009)
MVd 1.259 2.528 7.329 7.470
HMd 1.615 4.200 5.726 6.090

Panel B: Constant higher moments
MVd 0.935 3.020 6.883 7.921
HMd 0.965 4.395 5.722 6.810
Cst kurtosis 0.912 2.343 7.133 8.159
Cst skewness 0.940 2.408 7.139 8.231

Panel C: GARCH-in-Mean model
MVd −0.274 2.461 6.547 7.313
HMd 5.058 7.720 6.353 8.119

This table reports statistics on the performance of the optimal portfolios for alternative specifications of
the allocation period and the econometric model. The level of risk aversion is γ = 5. The statistics are
the same as in Table 5.

The values of distribution timing are equal to 65 and 170 bp per year over these
two periods, respectively. In addition, the VaR of the HMd strategy is always much
lower than the VaR of the MVd strategy, especially over the most recent period.

We then turn to two special cases of our general model: in the first one, the
skewness is time varying, but the kurtosis is constrained to be constant over time;
in the second model, the skewness is constant, and the kurtosis is time varying. The
idea is to identify the source of the gains found in distribution timing.
Tables 8 and 9 (Panel B) demonstrate that the models with constant kurtosis or
with constant skewness do not perform very well. In particular, we notice that the
performance fee is lower than the performance of the MVd strategy, around 2.3%
per year. These findings suggest that it is the joint dynamic of the skewness and
kurtosis that causes the gains of distribution timing.

In the last experiment, we introduce a conditional mean in the return’s dy-
namic. Specifically, we allow the expected excess return in market i (μi,t) to depend
on the conditional volatility (σi,t), corresponding to a so-called GARCH-in-mean
effect. In this model, the return process is given by

r̃i,t = μi + λiσi,t + εt.
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We experimented with several specifications for the risk measure (σi,t, σ2
i,t, and

log σi,t, as recommended by Engle, Lilien, and Robbins 1987). The volatility speci-
fication that we adopt is the one with the highest log likelihood. The estimates of
λi for the United States and the UK are highly significant, but not so for the other
countries. Concerning the performances of the strategies, we find that capturing
GARCH-in-mean effects does not improve the MVd allocation. Instead, the perfor-
mances of this strategy are worsened compared to the benchmark because the as-
sociated performance fee decreases from 300 to 246 bp per year. On the other hand,
the HMd strategy performs much better in the case of the GARCH-in-mean model.
The realized return is much higher, at the cost of a small increase in the volatility
and kurtosis. All in all, the performance fee of the HMd strategy increases from
140 bp, obtained in the benchmark case, to 530 bp.

3 CONCLUSION

In this paper, we investigate the consequences of nonnormality of returns on the
optimal asset allocation when the distribution of asset returns changes over time.
Whereas most previous work has been devoted to the case in which the charac-
teristics of investment opportunities remain constant through time, several recent
papers have explored the consequences of ignoring the time variability of some
aspects of the distribution of returns: Fleming, Kirby, and Ostdiek (2001, 2003) and
Han (2006) evaluate the value of volatility timing, while Ang and Bekaert (2002)
and Guidolin and Timmermann (2008) measure the cost of ignoring the presence
of regime shifts. Patton (2004) considers a bivariate model with predictability in
the asymmetric behavior of asset returns. The present study contributes to this
literature by providing several additional insights. From the point of view of re-
turn dynamics, we propose a model that captures most statistical features of mar-
ket returns, such as volatility clustering, correlation persistence, asymmetry, and
fat-tailedness of the distribution. The Bayesian estimation of this model remains
tractable, even when we account for several assets. This setting allows us to inte-
grate out parameter uncertainty as we consider the performance measures.

We demonstrate that, for all levels of risk aversion, the performance fee an in-
vestor is willing to pay to benefit from distribution timing is of a similar magnitude
to the performance fee she would be willing to pay to benefit from volatility tim-
ing. We perform several alternative experiments designed to assess the robustness
of our findings. We consider conservative investors who take parameter uncer-
tainty into account in their allocation process. We measure the economic value of
distribution timing for several specifications and subperiods and confirmed in all
cases the relevance of taking into account the temporal variation of the conditional
distribution of asset returns.

Several extensions to this research may be considered. It would be interesting,
for instance, to have multiperiod investments in order to evaluate the
consequences of nonnormality on hedging demands. As already mentioned, this
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extension would be rather demanding, in light of the way that multiperiod invest-
ment problems are usually solved.

APPENDIX A: A MULTIVARIATE MODEL FOR RETURNS

A.1 The DCC Model

The dynamic of the excess return vector, r̃t, is

r̃t = μt + εt, (A1)

εt = Σ1/2
t zt, (A2)

where μt denotes the vector of expected excess returns and εt the vector of un-
expected excess returns, Σt = {σij,t}i,j=1,...,n is the conditional covariance matrix,
zt is the vector of innovations, such that E[zt] = 0 and V[zt] = In, where In is
the identity matrix. The conditional covariance matrix of returns Σt is defined as
Σt = DtΓtDt, where Dt = {σi,t}i=1,...,n is a diagonal matrix with standard devia-
tions on the diagonal, and Γt = {ρij,t}i,j=1,...,n is the symmetric, positive, definite
correlation matrix. Each conditional variance, σ2

i,t, is described by an asymmetric
GARCH model as in Glosten, Jagannathan, and Runkle (1993):

σ2
i,t = ωi + βiσ

2
i,t−1 + αiε

2
i,t−1 + ψiε

2
i,t−11{εi,t−1<0}, i = 1, . . . , n, (A3)

where all parameters are positive. Equivalently, we have

σ2
i,t − σ̄2

i = ω̃i + γi(σ
2
i,t−1 − σ̄2

i ) + (αi + ψi1{εi,t−1<0})(ε
2
i,t−1 − σ2

i,t−1), (A4)

where γi denotes the variance persistence. The constraint γi < 1 guarantees the
stationarity of the variance process. The conditional correlation matrix, Γt, is time
varying, following the DCC specification of Engle (2002) and Engle and Sheppard
(2001):

Γt = Q∗−1/2
t Qt Q∗−1/2

t , (A5)

Qt = (1− δ1 − δ2)Q̄+ δ1(ut−1u′t−1) + δ2Qt−1, (A6)

where ut = D−1
t εt denotes the vector of normalized unexpected returns, and Q∗t

denotes the n× n diagonal matrix composed of the diagonal elements of Qt. The
matrix Q̄ is the unconditional covariance matrix of ut. We impose the restrictions
0 6 δ1, δ2 6 1 and δ1 + δ2 6 1 so that the conditional correlation matrix is guaran-
teed to be positive definite.

A.2 Moments of the Sk-t Distribution

The n × 1 vector of innovations, zt, is drawn from the multivariate Sk-t distri-
bution defined in Equation (4), with time-varying shape parameters νi,t and ξi,t
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corresponding to the individual degree of freedom and the asymmetry parame-
ter, respectively. The marginal distribution of zi,t is a univariate Sk-t distribution
g(zi,t|νi,t, ξi,t). It is defined for 2 < νi,t < ∞ and ξi,t > 0 for all t. As shown in
Equation (A2), dependence across returns is introduced via the covariance
matrix Σt.

Higher moments of zi,t are easily deduced from those of the symmetric t
distribution t(∙|νi,t). If the rth moment of the t(∙|νi,t) distribution exists, then the as-
sociated variable zi,t with distribution g(∙|νi,t, ξi,t) has a finite rth moment, defined
as

M(r)i,t = m(r)i,t

ξr+1
i,t +

(−1)r

ξr+1
i,t

ξi,t +
1

ξi,t

,

where

m(r)i,t = 2E[Zr
i,t|Zi,t > 0] =

Γ
(

νi,t−r
2

)
Γ
(

r+1
2

)
(νi,t − 2)

r+1
2

√
π(νi,t − 2) Γ

(
νi,t
2

) (A7)

is the rth moment of t(∙|νi,t) truncated to the positive real values. Provided that
they exist, the third and fourth central moments of zi,t are

μ
(3)
i,t = E[Z3

i,t] = M(3)i,t − 3M(1)i,t M(2)i,t + 2(M(1)i,t )
3, (A8)

μ
(4)
i,t = E[Z4

i,t] = M(4)i,t − 4M(1)i,t M(3)i,t + 6M(2)i,t (M
(1)
i,t )

2 − 3(M(1)i,t )
4. (A9)

The skewness and kurtosis are therefore nonlinear functions of the degree of free-
dom, νi,t, and the asymmetry parameter, ξi,t.

A.3 Moments of the Portfolio Return

Analytical expressions for the portfolio’s conditional moments can be easily
obtained for a multivariate Sk-t distribution. The third and fourth central mo-
ments of a Sk-t distributed random variable are given by Equations (A8) and
(A9). Next, because unexpected excess returns are defined as εt+1 = Σ1/2

t+1zt+1,

we have Et[εt+1] = 0 and Vt[εt+1] = Σt+1. We denote Σ1/2
t+1 = (ωij,t+1)i,j=1,...,n as

the Choleski decomposition of the covariance matrix of excess returns, such that
r̃i,t+1 = μi,t+∑n

r=1 ωir,t+1zr,t+1. In addition, denoting by ⊗ the Kronecker product,
the n× n2 third central co-moment matrix is defined as18

St+1 = Et[(r̃t+1 − μt+1)(r̃t+1 − μt+1)
′ ⊗ (r̃t+1 − μt+1)

′] = {sijk,t+1}

18Using these notations, central co-moment matrices can be conveniently represented as bidimensional
matrices. The formulae presented are convenient for theoretical purposes. In our programs, we ex-
ploit, for numerical efficiency, the symmetric structure of these matrices, thereby reducing existing
redundancies.
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with component (i, j, k)

sijk,t+1 =
n

∑
r=1

ωir,t+1 ωjr,t+1 ωkr,t+1 μ
(3)
r,t+1,

and the n× n3 fourth central co-moment matrix is defined as

Kt+1 = Et[(r̃t+1 − μt+1)(r̃t+1 − μt+1)
′ ⊗ (r̃t+1 − μt+1)

′ ⊗ (r̃t+1 − μt+1)
′]

= {κijkl,t+1}

with component (i, j, k, l)

κijkl,t+1 =
n

∑
r=1

ωir,t+1 ωjr,t+1 ωkr,t+1 ωlr,t+1 μ
(4)
r,t+1 +

n

∑
r=1

∑
s 6=r

ψrs,t+1,

where ψrs = ωirωjrωksωls + ωirωjsωkrωls + ωisωjrωkrωls. The numerical compu-
tation of these expressions is extremely fast.

The last step consists of the computation of portfolio moments. For a given
portfolio weight vector αt, the conditional expected return, the conditional vari-
ance, and the conditional third and fourth moments of the portfolio return are
defined as

mp,t+1 = r f ,t + α′tμt+1,

σ2
p,t+1 = α′t Σt+1 αt,

s3
p,t+1 = α′t St+1 (αt ⊗ αt) ,

κ4
p,t+1 = α′t Kt+1 (αt ⊗ αt ⊗ αt) ,

where σ2
p,t+1, s3

p,t+1, and κ4
p,t+1 stand for central moments Et[(rp,t+1 −mp,t+1)

i] for

i = 2, 3, and 4, respectively.19

The relationships between the central and noncentral moments, which are
required in the evaluation of the Taylor approximation of the expected utility, are

m(2)p,t+1 = σ2
p,t+1 +m2

p,t+1,

m(3)p,t+1 = s3
p,t+1 + 3σ2

p,t+1mp,t+1 +m3
p,t+1,

m(4)p,t+1 = κ4
p,t+1 + 4s3

p,t+1mp,t+1 + 6σ2
p,t+1m2

p,t+1 +m4
p,t+1.

19Central moments s3
p,t+1 and κ4

p,t+1 should not be confused with skewness and kurtosis, defined as the

standardized central moments, Et [((rp,t+1 −mp,t+1)/σp,t+1)
i ], for i = 3, 4.
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APPENDIX B: BAYESIAN ESTIMATION

Given the complexity of the model, we use Bayesian estimation to obtain param-
eter estimates. This setting also allows us to assess statistically the economic gain
of our strategy. Bayesian estimation is performed using a Markov chain Monte
Carlo algorithm. We obtain this chain using the Metropolis–Hastings algorithm.
For completeness, we provide a short description of this technique, following the
algorithm A.24 of Robert and Casella (1999). We denote by θ(t) the vector of pa-
rameters obtained at step t. In each step, we generate a new guess, X, for a vector
of parameters. This guess should not be too distant from the previous vector of pa-
rameters. For the first step, θ(1) is drawn from the asymptotic (normal) distribution
of the ML estimation. Subsequent steps t > 1 are given by:

1. Generate X ∼ q(x|θ(t)).
2. Take

θ(t+1) =

{
X with probability ρ(θ(t), X),

θ(t) with probability 1− ρ(θ(t), X),

where

ρ(θ(t), X) = min

{
p(X|y)q(θ(t)|X)

p(θ(t)|y)q(X|θ(t))
, 1

}

.

The meanings of the various elements entering the algorithm are as follows: 1)
q(x|θ(t)) is the so-called proposal or instrumental density. In our case, we choose
for q the asymptotic multivariate normal distribution resulting from the ML
estimation. In the particular case of a symmetric q function, the ratio q(θ(t)|X)/
q(X|θ(t)) = 1. 2) p(θ|y) is the so-called objective or target density, with y =
{r̃1, . . . , r̃T}. In our case, the target density is the posterior distribution:

p(θ|y) = L(y|θ) f (θ),

where L(y|θ) is the data density or likelihood of the model, and f (θ) is the prior
density of the parameter set. The likelihood is obtained by taking the exponential
of

log L(r1, . . . , rT |ζ, η) =
T

∑
t=1

[

log(g(Σt(ζ)
−1/2(rt − μ)|η))−

1
2

log |Σt(ζ)|
]

, (A10)

where g(∙|η) is defined in Equation (4). In words, at step t, once a guess X of the
parameter vector θ has been obtained, we obtain the likelihood of the actual data
y and measure the probability of occurrence of the vector θ, given the prior as-
sumptions. The Metropolis–Hastings algorithm accepts the candidate vector X,
setting θ(t+1) = X if its likelihood p(X|y) is larger than p(θ(t)|y), which is the like-
lihood of the previously retained vector. With a certain probability, given by ρ, the
algorithm accepts parameter vectors that decrease the likelihood. In the case of
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ill-defined likelihoods with local maxima, the Metropolis–Hastings algorithm al-
lows the parameters to eventually reach regions with globally higher likelihood. In
the case in which an investor is uncertain about the true parameters, the chain pro-
vides a sequence of possible values. Thus, the chain implicitly captures parameter
uncertainty.

Before presenting the priors put on the parameters, it should be emphasized
that for each model we ran the chain over 1.5 million estimations and, after a burn-
in period of one million observations, we performed allocations using independent
draws from the Markov chain. These independent draws are typically obtained by
keeping one out of 100 draws. We checked for independence of draws and diag-
nosed convergence of the chains as discussed in Robert and Casella 1999, chapter
8). As usual in such an exercise, the stability of the chain is investigated using sev-
eral chains, each obtained with a different starting value for θ(1).

The prior distributions of the parameters have been chosen to ensure that the
model is stationary. Expected returns, μ, are drawn from a normal distribution
f (μ) ∝ N(μ̂, σ̂2

μ), where μ̂ and σ̂2
μ correspond to the ML estimators of the expected

return and its variance, respectively. Parameters of the GARCH processes (15) are
drawn from Beta(p, q) distributions to ensure positivity:

f (ω) ∝ B(pω , qω), f (α) ∝ B(pα, qα),

f (ψ) ∝ B(pψ, qψ), f (γ) ∝ B(pγ, qγ).

Parameters p and q are selected to ensure that the parameters ω, α, ψ, and γ are in
the range usually obtained for GARCH models on weekly returns.20 In a similar
way, parameters of the DCC model are drawn from Beta distributions21:

f (δ1) ∝ B(pδ1
, qδ1
), f (δ1 + δ2) ∝ B(pδ2

, qδ2
).

The parameters driving the degree of freedom, νt, and the asymmetry parameter,
ξt, of the innovation distribution have the following prior distributions:

f (log(c0)) ∝ N(μc0 , σ2
c0
) f (log(d0)) ∝ N(μd0

, σ2
d0
)

f (c−1 ) ∝ N(μc1 , σ2
c1
), f (d−1 ) ∝ N(μd1

, σ2
d1
),

f (c+1 ) ∝ N(μc1 , σ2
c1
), f (d+1 ) ∝ N(μd1

, σ2
d1
),

f (c2) ∝ N(μc2 , σ2
c2
)Ic2∈[−1;1], f (d2) ∝ N(μd2

, σ2
d2
)Id2∈[−1;1].

Our priors for these parameters are consistent with the null hypothesis that there
are no dynamics in the conditional distribution. Indeed, we assume a mean value
equal to 0 for c−1 , c+1 , d−1 , and d+1 with a large standard deviation (σc1 = σd1

= 2).

20In practice, we take pω = 2, qω = 10, pα = 2, qα = 20, pψ = 2, qψ = 20, pγ = 25, and qγ = 1.5. We then
deduce the prior distribution of β.

21For the estimation, we take pδ1
= 1.5, qδ1

= 100, pδ2
= 100, and qδ2

= 1.5.
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For c2 and d2, we also set a central value equal to 0 with a standard deviation σc2 =
σd2
= 0.3. These distributions are truncated to ensure that the lagged parameter

is between −1 and 1. Finally, the constant terms μc0 and μd0
have a central value

deduced from the unconditional moments reported in Table 1, with large standard
deviations (σc0 = σd0

= 5). Therefore, in the case that there are no dynamics in
the degree of freedom and the asymmetry parameter, the central values are such
that the degree of freedom and the asymmetry parameter are equal to their sample
value.

Received February 15, 2009; revised July 26, 2011; accepted July 26, 2011.
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