
Online Appendix for “When Are Stocks Less

Volatile in the Long Run?”

This document provides supplementary material to the paper “When Are Stocks

Less Volatile in the Long Run?” It provides additional details on the estimation

method (Section 1); additional details on the interval method that we use in Section

4 of the paper (Section 2); and a brief description of the lung-run risks model of

Bansal and Yaron (2004) (Section 3).

1 Estimation Method

1.1 The Bayesian Method

This section introduces the Bayesian MCMC approach for estimating the CV-DC

model. Note that the estimation of the CV-DC model with the NEP constraint is a

special case of this estimation procedure. Specifically, we need to drop random draws

that do not satisfy the NEP condition before we form posterior beliefs. To facilitate

the estimation, we rewrite the CV-DC model in a standard state-space formation.

The measurement equation is

yt+1 = D +Byt + vt+1,
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where

yt+1 =

rt+1 − βt+1xt

xt+1

 , D =

α
0

 , B =

0 β0

0 βx

 , vt+1 =

εt+1

εt+1

 ,
and V ar(vt+1) = Ω. The state equation is

βt+1 = bβt + ηt+1,

with V ar(ηt+1) = σ2
η. The parameters we need to estimate are: Θ = {α, β0, βx, b, σ

2
η,Ω}.

We also need to filter out the latent state variable βt.

There are 6 steps to estimate the CV-DC model. These steps generate the fol-

lowing parameters sequentially: the latent state variable βt, the coefficient matrix

B, the intercept vector D, the covariance matrix Ω, the autoregressive coefficient b,

and the variance σ2
η. We describe how to estimate these parameters using an MCMC

approach. To facilitate the presentation of the Bayesian estimation procedure, let

Yt = {yi}ti=1 denote the observable at time t; Θ− represents the set of model param-

eters except the parameters that we estimate in a specific step.

Step 1: Generation of the latent state variable βt. A multimove-Gibbs sam-

pling method is employed to draw the unobserved state variable (Carter and Kohn,

1994). Kim and Nelson (1999) partition the joint distribution of β = {βt}Tt=1 given

the data set YT and the parameter set Θ:

p(β|YT ,Θ) = p(βT |YT ,Θ)
∏T−1

t=1
p(βt|YT ,Θ).
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It is known that p(βT |YT ,Θ) ∼ N(βT |T , PT |T ), where βT |T is the conditional expec-

tation of βT and PT |T is the conditional covariance matrix of βT . In the estimation,

βT |T and PT |T are obtained from the last step of the Kalman filter. The Kalman filter

algorithm is described as (e.g., Zhu, 2015):

βt−1|{βt, Yt−1} ∼ N(βt|t,βt+1 , Pt|t,βt+1),

with

βt|t,βt+1 = βt|t + bPt|t(b
2Pt|t + σ2

η)
−1(βt+1 − bβt|t)

and

Pt|t,βt+1 = Pt|t − b2P 2
t|t(b

2Pt|t + σ2
η)
−1.

Then, we apply the forward filtering and backward sampling (FFBS) approach to

draw βt.

Step 2: Generation of the intercept vector D. A standard Gibbs sampling

step can be used to draw parameters D. The conjugate priors and posteriors of D

follow a normal distribution. Suppose that the posterior of D conditional on the

observed data YT , the filtered state variable β, and the other parameters Θ− is:

P (D|Θ−, YT , β) ∝ P (YT |Θ, β)P (β|Θ)P (D)

∝ P (YT |D,B, β)P (β|b, σ2
η)P (D)

∝ P (YT |D,B, β)P (D),
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where P (YT |D,B, β) is the likelihood function of the measurement equation, which

can be easily computed conditional on the observations and the filtered state variables,

and P (β|b, σ2
η) is the likelihood function of the state equation.

Step 3: Generation of the autogressive coefficient b. Note that the posterior

of b conditional on YT , β, and Θ− is:

P (b|Θ−, YT , β) ∝ P (YT |Θ, β)P (β|Θ)P (b)

∝ P (YT |D,B, β)P (β|b, σ2
η)P (b)

∝ P (β|b, σ2
η)P (b).

As is standard in the literature, the prior and the posterior of b can be drawn using

a conjugate normal distribution.

Step 4: Generation of the coefficient matrix B. The posterior distribution of

B conditional on YT , β, and Θ− is:

P (B|Θ−, YT , β) ∝ P (YT |Θ, β)P (X|Θ)P (B)

∝ P (YT |D,B, β)P (β|b, σ2
η)P (B)

∝ P (YT |D,B, β)P (B).

Naturally, we specify the prior and the posterior of B as a conjugate normal distri-

bution in the MCMC estimation.

Step 5: Generation of the variance parameter σ2
η. The posterior probability

of σ2
η conditional on YT , β, and Θ− is:
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P (σ2
η|Θ−, YT , β) ∝ P (YT |Θ, β)P (β|Θ)P (σ2

η)

∝ P (YT |Θ, β)P (β|b, σ2
η)P (σ2

η)

∝ P (β|b, σ2
η)P (σ2

η).

According to this formula, if the prior of σ2
η is specified as an inverted Gamma dis-

tribution, σ2
η ∼ IG(v0/2, δ0/2), the posterior distribution of σ2

η is still an inverted

Gamma distribution, σ2
η ∼ IG(v1/2, δ1/2), with v1 = v0 + T and δ1 = δ0 +

∑T
t=1 η

2
t .

Step 6: Generation of the covariance matrix Ω. The posterior of Ω conditional

on YT , β, and Θ− is:

P (Ω|Θ−, YT , β) ∝ P (YT |Θ, β)P (β|Θ)P (Ω)

∝ P (YT |D,B)P (β|b, σ2
η)P (Ω)

∝ P (YT |D,B)P (Ω).

The covariance matrix can be drawn from the inverted Wishart (IW) distribution.

With an informative prior, the posterior distribution of covariance matrix follows:

Ω|Y,Θ− = IW
(
T,
∑T

t=1
v′tvt

)
.

As demonstrated by several studies, Bayesian estimation depends on prior dis-

tributions. It is particularly so for predictive models (see, for example, Pástor and

Stambaugh, 2009). To make our results comparable to Johannes et al. (2014), we

set priors in our Bayesian estimation as described in their paper. Specifically, we
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train the priors from 1952 to 1955 by regressing excess returns on a constant and

the predictor. In so doing, we assume noninformative priors. In the estimation, we

drop the first 100,000 draws and use the subsequent 200,000 draws to calculate the

posteriors.

1.2 Metropolis-Hasting Algorithm

Let Λ denote the parameters that determine the expected return, and ΣΛ denote the

other parameters of the predictive model. Notably, ΣΛ does not include the time

series of {µt} when the model is the predictive system. We have Λ = {Er, β} for the

restricted predictive system and Λ = {α, β0} for the restricted CV-DC model. In the

present context, the Metropolis-Hastings algorithm proceeds as follows:

Step 1: Initialize Λ, ΣΛ, and {µt}. Initial values of {µt}Tt=1 are given by the estimates

obtained with the unrestricted predictive system, but we set µt = 0 if the posterior

mean of µt is negative. Set i = 1.

Step 2: Conditional on the data, Λi, and {µt}i, draw Σi
Λ following the method

presented in Pástor and Stambaugh (2009) (see Section B5.1 in their Online Appendix

for details) for the estimation of the predictive system or the Gibbs sampler presented

in Appendix 1.1 for the estimation of the CV-DC model. Note that this step is a

combination step since it involves multiple steps to draw the elements of ΣΛ.

Step 3: Given the data and the current value Λi, use a symmetric transition density

q(Λi,Λc) to generate a candidate Λc for the next value in the MCMC sequence.1

In our context, the independent Metropolis-Hastings algorithm is applied to draw a

candidate from a normal proposal distribution. The mean of Er (or α for the CV-DC

1If i = 1, we need to keep drawing Λc until Λc does not violate the NEP condition. This involves
repeatedly conducting Steps 3 and 4. We then set Λ1 = Λc.
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model) is equal to the mean of the posterior distribution implied by the unrestricted

model, and the covariance matrix of the normal distribution is equal to that of the

posterior distribution implied by the unrestricted model tuned by a scalar ψ.

Step 4: Given the data, Σi
Λ, and Λc, employ the forward filtering and backward

sampling method to draw the time series of {µt}c for the predictive system.

Step 5: Evaluate the NEP condition at each point in time. If any NEP condition

is violated, set the acceptance probability α(Λi,Λc) = 0 and go to Step 7. For the

predictive system, the NEP condition is binding if {µt}i < 0 for t = 1, ..., T . For

the CV-DC model, the NEP condition is binding if {α0 + β0xt + βt+1xt} < 0 for

t = 1, ..., T .

Step 6: Calculate α(Λi,Λc) = min(g(Λc)/g(Λi), 1), where g(Λ) is the kernel of the

density function of Λ conditional on the data, f(Λ|Y ).

Step 7: Generate an independent uniform random variable u from the interval [0, 1].

Step 8: Set Λi+1 =

 Λc if u ≤ α(Λi,Λc)

Λi if u > α(Λi,Λc).

Similarly, set {µt}i+1 = {µt}c or {µt}i+1 = {µt}i.

Step 9: Set i = i+ 1 and go to Step 2.

Note that Step 4 is a step only for estimating the restricted predictive system,

so the estimation of the restricted CV-DC model consists of Steps (1)–(3) and Steps

(5)–(9).

This iteration scheme generates a sequence of draws with the property that for

large i, Λi+1 is effectively a sample draw from f(Λ|Y ). As a result, the last elements

in the sequence can be regarded as draws from f(Λ|Y ). Importantly, this chain of

draws is consistent with the NEP condition. In the empirical analysis, we simulate
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k = 300, 000 draws with an initial burn-in period of m = 100, 000 observations for

both the predictive system and the CV-DC model under the NEP condition. These

numbers of k and m are set using the convergence diagnostics of Geweke (1992) and

Raftery and Lewis (1992).

The implementation of the Metropolis-Hastings algorithm involves choosing an ar-

bitrary proposal density to produce candidates for inclusion in the MCMC sequence.

In our empirical analysis, we follow prior research and use a normal proposal density,

with a covariance matrix equal to a tuning scalar multiplied by the estimated covari-

ance matrix from the estimation of the unrestricted predictive model. The tuning

scalar, denoted by ψ, is used to control the acceptance rate (i.e., the rate at which

draws are included in the MCMC sequence). According to Roberts et al. (1997),

the optimal acceptance rate for a normal transition density should be between 0.23

and 0.45. In our empirical application, we set ψ = 0.70 for the restricted predictive

system and achieve an acceptance rate of 0.30. We set ψ = 0.65 for the restricted

CV-DC model and obtain an acceptance rate of 0.33.

1.3 Prior Distributions

1.3.1 Predictive system

In the spirit of Pástor and Stambaugh (2009, 2012), we impose informative prior

distributions on three key parameters of the predictive system that affect multiperiod

predictive variance – β, R2, and ρuw, where ρuw is the correlation between unexpected

returns, ut, and innovations in expected returns, wt, and R2 is the fraction of the

variation in rt+1 that can be explained by expected returns, µt. Informative priors

are economically motivated by a large amount of empirical evidence and economic

intuition. Indeed, these prior distributions are an important feature of the predictive
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system. Furthermore, as stressed by Pástor and Stambaugh, these priors are necessary

for model identification. Our priors roughly follow the benchmark priors of Pástor

and Stambaugh (2012), but we slightly adjust the prior distributions to reflect the

different data frequency: we shift the priors for R2 and ρuw to the left and those for β

to the right. The shift of prior distributions attempts to capture the fact that stock

returns are generally less predictable in monthly frequency than in annual data and

the correlation between expected and unexpected returns is likely to be less negative

at lower frequency. Figure A1 plots the prior distributions of the three key parameter

of the predictive system.

Following the method described in Pástor and Stambaugh (2009), we use a mildly

informative normal distribution prior on Er, Er ∼ N(0.058, 0.082), centered at the

sample mean return with a large prior standard deviation. The prior distribution for

Ex is noninformative, Ex ∼ N(0, 0.102). To set priors for Ω, we divide

Ω =


σ2
u σuv σuw

σvu σ2
v σvw

σwu σwv σ2
w


into two subsets: the (2× 2) submatrix Ω11, where

Ω11 =

 σ2
u σuw

σwu σ2
w

 ,

and the vector Ωv = (σ2
v , σvu, σvw). The prior on Ω11 is an inverted Wishart distribu-
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tion

Ω11 ∼ IW


0.402 σuw

σwu 0.012

 , 10

 ,

where σuw is a hyperparameter with a uniform distribution that produces the priors

on ρuw plotted in Figure A1. As discussed in Section B5.1 in the Online Appendix

of Pástor and Stambaugh (2009), the prior of Ωv is determined by the distribution

of C = [σvu, σvw]Ω−1
11 and Ψ = σ2

v − CΩ−1
11 C

′. The prior on Ψ is a normal-inverted

Wishart, Ψ ∼ IW (0.001, 10), and the prior on C is a normal distribution with

vec(C) ∼ N


 −0.033

−0.024

 ,
0.000052 3× 10−8

3× 10−8 0.0022


 .

1.3.2 CV-DC model

For the CV-DC model, we adopt the approach described by Johannes et al. (2014)

in their Internet appendix. We train the priors from 1952 to 1954 by regressing

excess market returns on a constant and the dividend yield and running an AR(1)

process for dividend yield, which corresponds to noninformative priors. Based on

these regressions, we have all priors except those for b and ση (Equation (13)). We

run a rolling window regressions to up to 1954 to have 36 observations of βt, we then

run an AR(1) regression to have prior for b and ση.
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Figure A1: Prior distributions of parameters
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Figure 10: Prior distributions of parameters. The plots display the prior distributions
for �uw, the true R

2 (fraction of variance in rt+1 explained by the observed predictor), and
�.

48

Note: The plots display the prior distributions for the conditional correlation ρuw, the true R2

(fraction of the variation in rt+1 explained by the observed predictor), and the persistence parameter

β.

2 Interval Method

Understanding the effect of parameter estimates and standard errors on the condi-

tional predictive variance can sharpen our understanding on why the non-negative

equity premium restriction reduces conditional volatility in the long run. The con-

ditional predictive variance includes five components (see also Equation (11) in the

11



paper):

V ar(RT :T+k|ZT ) = E(kσ2
u|ZT ) + E(2kσ2

ud̄uwA(k)|ZT )

+E(kσ2
ud̄

2B(k)|ZT ) + E

((
1− βk

1− β

)2

qT |ZT

)

+V ar

(
kEr +

1− βk

1− β
(bT − Er)|ZT

)
.

The first four components E(.) capture the effect of parameter estimate on conditional

predictive variance. The last term V ar(.) is a variance term that represents the effect

of parameter uncertainty on the predictive variance. It is clear from the equation that

parameter uncertainty is affected by both the parameter estimates and the standard

errors of parameter estimates. These effects are likely to be highly nonlinear and in-

terdependent. Even we can use the delta method to linearize them, there is still some

interaction components. Although it is largely impossible to precisely isolate these ef-

fects, we investigate this question using an interval method. First, we compute V ar(.)

for the unrestricted and restricted predictive systems and denote them by V arPS and

V arRPS, respectively. Second, we calculate V ar(.) using the parameter estimates

from the unrestricted predictive system and the standard errors of parameter esti-

mates from the restricted predictive system. This term, labeled as V ar1, captures the

effect of the standard errors difference on parameter uncertainty. Third, we compute

V ar(.) using the parameter estimates from the restricted predictive system and the

standard errors of parameter estimates from the unrestricted predictive system. We

denote this term as V ar2, which captures the effect of parameter estimate difference

on parameter uncertainty. Finally, we define the interdependent term as

V ar3 = (V arPS − V arRPS)− V ar1− V ar2.
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Now we can decompose the predictive variance difference between the unrestricted

and restricted predictive system DV ar(RT :T+k|ZT ) into two terms. Let DE(.) denote

the difference of the four expectations terms between the unrestricted and restricted

predictive system. We have

DV ar(RT :T+k|ZT ) = DE(.) + V ar1 + V ar2 + V ar3.

To attribute the difference on the predictive variance to the difference in parame-

ter estimates and the difference in the standard errors of parameter estimates, we

calculate two ratios:

V ar1

DV ar(RT :T+k|ZT )

and
V ar1 + V ar3

DV ar(RT :T+k|ZT )

These two terms represent the lower and upper bounds of the portion ofDV ar(RT :T+k|ZT )

attributable to the difference in the standard errors of parameter estimates. We find

that the effect of V ar3 is mild. These two ratios are quite stable for k > 5 years,

we can roughly attribute 38-45% (29-35%) of the predictive variance difference to the

difference in the standard errors of parameter estimates for the predictive system (the

CV-DC model). If we take a first-order derivative of V ar(RT :T+k|ZT ) with respect to

various parameters, it is evident that σ2
u and β are the most crucial parameters that

cause divergence between the unrestricted and restricted models, in particular, in the

long run.
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3 The Long-Run Risks Model

3.1 The Model

The long-run risks model views stock price fluctuations as a response to changing

expectations of long-run consumption growth and its volatility. This model has four

salient features. First, there is a persistent and predictable component of consumption

growth. This component can be perceived by economic agents and moves stock

prices, even though it is difficult to measure using time-series techniques. Second,

the volatility of consumption growth has a persistent component. Third, the stock

market is a claim to dividends, which differs from the consumption stream but shares

the same persistent component. Fourth, economic agents are equipped with Epstein-

Zin-Weil preferences (Epstein and Zin, 1989; Weil, 1989).

Bansal and Yaron (2004) describe the dynamics of consumption growth (gt+1) and

dividend growth (gd,t+1) as follows:

gt+1 = µ+ xt + σtηt+1,

xt+1 = ρxt + ϕeσtet+1,

σ2
t+1 = σ̄2 + ν1(σ2

t − σ̄2) + σwwt+1, (A.1)

gd,t+1 = µd + φxt + ϕdσtut+1,

where ηt+1, et+1, wt+1, ut+1 ∼ i.i.d.N(0, 1). Here, xt is the persistently varying com-

ponent of the expected consumption growth rate. The conditional volatility of con-

sumption, σ2
t+1, is also time-varying and persistent, with an unconditional mean σ̄2.

The variance process can take negative values, but this will occur only at a low prob-

ability if the mean is high enough relative to the volatility of variance. The dividend

growth rate imperfectly shares the same persistent and predictable component of
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consumption growth xt scaled by parameter φ. In addition, the conditional variance

of gd,t+1 is proportional to the conditional variance of consumption growth, with a

scaling parameter ϕd.

Economic agents have Epstein-Zin-Weil preferences with a discount factor δ, rel-

ative risk aversion γ, and elasticity of intertemporal substitution ψ. In this setting,

the log stochastic discount factor for the economy is given by

mt+1 = θ log δ − θ

ψ
gt+1 + (θ − 1)ra,t+1, (A.2)

where ra,t+1 is the return on aggregate wealth and θ = (1 − γ)/(1 − 1/ψ). Bansal

and Yaron (2004) use an analytical approximation method to solve the model. They

show that the equity premium in the presence of time-varying economic uncertainty

is

Et(rm,t+1 − rf,t) = βm,eλm,eσ
2
t + βm,wλm,wσ

2
w −

1

2
V art(rm,t+1), (A.3)

where βm,e = κ1,mA1,mϕe, βm,w = κ1,mA2,m, λm,e = (1−θ)κ1A1ϕe, λm,w = (1−θ)κ1A2,

and V art(rm,t+1) = (β2
m,e + ϕ2

d)σ
2
t + β2

m,wσ
2
w. The detailed solutions for A1, A2, A1,m,

and A2,m are defined in the Appendix of Bansal and Yaron (2004).

3.2 Simulation

Our baseline parameter values, which are summarized in Table A1, are consistent

with those used in Bansal and Yaron (2004) and Beeler and Campbell (2012). All

parameters are given in monthly terms. The monthly persistence of the predictable

component of consumption growth is ρ = 0.979, implying half-lives between two and

three years. We first generate four series of i.i.d. standard normal random variables
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and use these series to construct the monthly series of consumption, dividends, and

state variables based on Equations (A.1). In the simulations, there is a low likelihood

that conditional volatility becomes negative. Following Bansal and Yaron (2004) and

Beeler and Campbell (2012), we replace negative realizations of conditional variance

with a small positive number.

We simulate 1,000 samples, which are generated independently (conditional on

the baseline parameters), each consisting of 751 monthly observations to match the

sample size in our empirical analysis. To initialize each simulation, we set state

variables to their steady-state values and run each simulation for a “burn-in” period

of ten years before using the output. For each simulated sample, we estimate the

parameters associated with the unrestricted and restricted predictive system. Table

A2 reports summary statistics on the key parameters, namely the unconditional equity

premium Er and the persistence parameter β (Panels A and B). Reported statistics

are the mean and standard deviation of the parameter estimates over the simulated

samples. We note that the parameter estimates are in the ballpark of the estimates

reported for our data (Table 2). The unconditional equity premium increases from

0.66% to 0.78% when the NEP condition is imposed to the model.2 In contrast, the

persistence parameter slightly decreases from 0.91 to 0.88. Regarding the CV-DC

model (Panels C and D), parameter estimates are barely affected when we impose

the NEP condition.

2The true (approximate) equity premium given by Equation (A.3) is equal to 0.62%.
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Table A1: Long-run Risks Model: Calibrated Parameters

Parameters Symbol Value

Endowment Process

Mean Consumption Growth µ 0.0015
LRR Persistence ρ 0.9790
LRR Volatility Multiple ϕe 0.0440
Mean Dividend Growth µd 0.0015
Dividend Leverage φ 3.0
Dividend Volatility Multiple ϕd 4.5
Baseline Volatility σ̄ 0.0078
Volatility of Volatility σw 0.0000023
Persistence of Volatility ν1 0.987

Preference Parameters

Time Discount Factor δ 0.9980
Risk Aversion γ 8.5
Elasticity of Intertemporal Substitution ψ 1.5

Note: The table displays the calibration of parameters in the long-run risks model for
simulating the equity premium. The endowment process for the model is given by the
system (A.1) in the text. All parameters are given in monthly terms. The standard
deviation of long-run innovations is equal to the volatility of consumption growth
times the long run volatility of multiple (LRR Volatility Multiple), and the standard
deviation of dividend growth innovations is equal to the volatility of consumption
growth times the volatility multiple for dividend growth (Dividend Volatility Multi-
ple).
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Table A2: Parameter Estimates of Predictive Models under the Long-run Risks Model

Parameters Mean Std dev.

Panel A: Unrestricted Predictive System

Er 0.66% 0.21
β 0.91 0.24

Panel B: Restricted Predictive System

Er 0.78% 0.15
β 0.88 0.17

Panel C: Unrestricted CV-DC Model
α 0.62% 0.46
β0 0.32 0.10
βx 0.96 0.29

Panel D: Restricted CV-DC Model
α 0.65% 0.42
β0 0.33 0.08
βx 0.90 0.22

Note: This table presents the results of a Monte Carlo experiment, designed as follows.
First, we use the long-run risks model as the true model to generate a non-negative
equity premium: 1,000 samples of returns are generated from this model. Next, we
estimate the unrestricted and restricted predictive models using the simulated series.
Panels A and B report the parameter estimates for the unrestricted and restricted
predictive systems, respectively: the unconditional equity premium parameter (Er)
and the persistence parameter (β). Panels C and D report the parameter estimates
for the unrestricted and restricted CV-DC models, respectively: the intercept (α),
the sensitivity to dividends (β0), and the dividend persistence parameter (βx). For
each parameter, we report the mean and the standard deviation over the simulated
samples.
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