Appendix

Proof of Proposition 3.2

Proposition 3.2 follows from the two following Lemmas.

Lemma 8.1 There exists $K_1 > 0$ such that

$$V(x_2,c) - V(x_1,c) \le K_1(x_2 - x_1)$$

for all $0 \le x_1 \le x_2$ and $c \le \min \{\overline{c}, p\}$.

Proof. Take $\varepsilon > 0$ and $C \in \Pi_{x_2,c,\overline{c}}$ such that

$$J(x_2; C) \ge V(x_2, c) - \varepsilon. \tag{36}$$

Then the associated control process is given by

$$X_t^C = x_2 + \int_0^t (p - C_s) ds - \sum_{i=1}^{N_t} U_i.$$

Let τ be the ruin time of the process X_t^C . Assume first that $\overline{c} \leq p$ and define $\widetilde{C} \in \Pi_{x_1,c,\overline{c}}$ as $\widetilde{C}_t = C_t$,

where

$$X_t^{\tilde{C}} = x_1 + \int_0^t (p - C_s) ds - \sum_{i=1}^{N_t} U_i.$$

For the ruin time $\tilde{\tau} \leq \tau$ of the process $X_t^{\tilde{C}}$, it holds $X_t^C - X_t^{\tilde{C}} = x_2 - x_1$ for $t \leq \tilde{\tau}$. Since $\bar{c} \leq p$, ruin can occur only at the arrival of a claim. Hence, using (36) we have

$$V(x_{2},c) - V(x_{1},c) \leq J(x_{2};C) - J(x_{1};\widetilde{C}) + \varepsilon$$

$$= \mathbb{E}\left[\int_{\widetilde{\tau}}^{\tau} C_{s} e^{-qs} ds\right] + \varepsilon$$

$$\leq \mathbb{E}\left[\sum_{j=1}^{\infty} I_{\left\{\widetilde{\tau} = \tau_{j} \text{ and } \tau > \tau_{j}\right\}} \left(\int_{\tau_{j}}^{\tau} C_{s} e^{-qs} ds\right)\right] + \varepsilon$$

$$\leq \frac{\overline{c}}{q} \mathbb{E}\left[\sum_{j=1}^{\infty} e^{-q\tau_{j}} I_{\left\{\widetilde{\tau} = \tau_{j} \text{ and } \tau > \tau_{j}\right\}}\right] + \varepsilon.$$
(37)

With the definitions

$$\mathcal{U}_{j-1} := \sum_{i=1}^{j-1} U_i \text{ and } A_t^C := \int_0^t (p - C_s) ds, \tag{38}$$

we have

$$\{\widetilde{\tau} = \tau_j \text{ and } \tau > \tau_j\} = \{x_2 + A_{\tau_j}^C - \mathcal{U}_{j-1} \ge U_j > x_1 + A_{\tau_j}^C - \mathcal{U}_{j-1}\},$$

and by the i.i.d. assumptions τ_j , U_j and U_{j-1} are mutually independent. This implies

$$\mathbb{E}\left[\sum_{j=1}^{\infty} e^{-q\tau_{j}} I_{\left\{\tilde{\tau}=\tau_{j},\tau>\tau_{j}\right\}}\right] \\
\leq K(x_{2}-x_{1})\beta \sum_{j=1}^{\infty} \left[\int_{0}^{\infty} e^{-qt} \left(\frac{\beta^{j-1}t^{j-1}}{(j-1)!}\right) e^{-\beta t} dt\right] \\
\leq K\frac{\beta}{g}(x_{2}-x_{1}), \tag{39}$$

because $F(A_t + x_2 - \mathcal{U}_{j-1}) - F(x_1 + A_t - \mathcal{U}_{j-1}) \le K(x_2 - x_1)$. From (37) and (39) we get the result with $K_1 = K\beta \bar{c}/q^2$.

Consider now $c \leq p < \overline{c}$. The main difference in this case is that ruin can occur not only at the arrival of a claim but also if dividends are paid with current surplus zero at a rate greater than p.

Let us prove first the result for c = p. Consider $C \in \Pi_{x_2,p,\bar{c}}$ as in (36) and

$$T = \min \left\{ t : \int_0^t (C_s - p) \, ds = x_2 - x_1 \right\}. \tag{40}$$

We put $T = \infty$ in the event

$$\int_0^{\tau} (C_s - p) \, ds < x_2 - x_1.$$

Define $\overline{C} \in \Pi_{x_1,p,\overline{c}}$ as follows: $\overline{C}_t = p$ for $t \leq T$ and then $\overline{C}_t = C_t$ and $\overline{\tau} \leq \tau$ as the ruin time of the controlled process $X_t^{\overline{C}}$. Note that if $T \leq \overline{\tau}$ we have $X_T^C = X_T^{\overline{C}}$ because

$$X_T^C - X_T^{\overline{C}} = x_2 - x_1 + \int_0^T (p - C_s) ds = 0$$

and so $X_t^C = X_t^{\overline{C}}$ for $T \leq t \leq \overline{\tau} = \tau$. In the event that $T > \overline{\tau}$, we have $0 < X_t^C - X_t^{\overline{C}} \leq x_2 - x_1$ for all $t \leq \overline{\tau}$; also $\overline{\tau}$ coincides with the arrival of a claim since $\overline{C}_s = p$ for $s \leq \overline{\tau}$. Therefore, from (40) and using the proof of (39) we can write

$$V(x_{2}, p) - V(x_{1}, p)$$

$$\leq J(x_{2}; C) - J(x_{1}; \overline{C}) + \varepsilon$$

$$= \mathbb{E}[I_{T \leq \overline{\tau}} \left(\int_{0}^{T} (C_{s} - p) e^{-qs} ds \right)]$$

$$+ \mathbb{E} \left[I_{T > \overline{\tau}} \int_{0}^{\overline{\tau}} (C_{s} - \overline{C}_{s}) e^{-qs} ds \right] + \mathbb{E} \left[I_{T > \overline{\tau}} \int_{\overline{\tau}}^{\tau} C_{s} e^{-qs} ds \right] + \varepsilon$$

$$\leq 2(x_{2} - x_{1}) + \mathbb{E}[I_{\overline{\tau} \leq T} \sum_{j=1}^{\infty} I_{\{\overline{\tau} = \tau_{j}, \tau > \tau_{j}\}} \left(\int_{\tau_{j}}^{\tau} C_{s} e^{-qs} ds \right)] + \varepsilon$$

$$\leq \left(2 + \overline{c} K \frac{\beta}{q^{2}} \right) (x_{2} - x_{1}) + \varepsilon$$

$$(41)$$

and so we get the result with $K_1 = 2 + \bar{c} K\beta/q^2$.

Let us consider now the case $c , <math>C \in \Pi_{x_2,c,\overline{c}}$ as in (36) and define

$$T_1 = \min\{t : C_t \ge p\};$$

if $C_t \leq p$ for all $t \leq \tau$ then $T_1 = \infty$.

Since $V(\cdot,p)$ is non-decreasing and continuous, we can find (as in Lemma 1.2 of [7]) an increasing sequence (y_i) with $y_1=0$ such that if $y\in[y_i,y_{i+1})$ then $0\leq V(y,p)-V(y_i,p)\leq \varepsilon/2$; consider admissible strategies $\widehat{C}^i\in\Pi_{y_i,p,\overline{c}}$ such that $V(y_i,p)-J(y_i,\widehat{C}^i)\leq \varepsilon/2$. Let us define the dividend payment strategy $\overline{C}\in\Pi_{x_1,c,\overline{c}}$ as follows: $\overline{C}_t=C_t$ for $t< T_1$ and $\overline{C}_t=\widehat{C}^i_{t-T_1}$ for $t\geq T_1$ in the case that $X^C_{T_1}\in[y_i,y_{i+1})$; note that, with this definition, the strategy \overline{C} turns out to be Borel measurable and so it is admissible. With arguments similar to the ones used before, we obtain

$$V(x_2, p) - V(x_1, p) \le \left(2 + 2\overline{c} K \frac{\beta}{q^2}\right) (x_2 - x_1). \blacksquare$$

Lemma 8.2 There exists $K_2 > 0$ such that

$$0 \le V(x, c_1) - V(x, c_2) \le K_2 (c_2 - c_1)$$

for all $x \ge 0$ and $0 \le c_1 \le c_2 \le \min \{\overline{c}, p\}$.

Proof. Take $\varepsilon > 0$ and $C \in \Pi_{x,c_1,\overline{c}}$ such that

$$J(x;C) \ge V(x,c_1) - \varepsilon \tag{42}$$

and define the stopping time

$$\widehat{T} = \min\{t : C_t \ge c_2\}. \tag{43}$$

Recall that τ is the ruin time of the process X_t^C . Consider first the case $\overline{c} \leq p$ and define $\widetilde{C} \in \Pi_{x,c_2,\overline{c}}$ as $\widetilde{C}_t = c_2 I_{t < \widehat{T}} + C_t I_{t \geq \widehat{T}}$; denote by X_t^C the associated controlled surplus process and by $\overline{\tau} \leq \tau$ the corresponding ruin time. Since $\overline{c} \leq p$, both X_t^C and $X_t^{\widehat{C}}$ are non-decreasing between claim arrivals, and ruin can only occur at the arrival of a claim. We also have that $\widetilde{C}_s - C_s \leq c_2 - c_1$. We can write

$$V(x,c_{1}) - V(x,c_{2}) \leq J(x;C) + \varepsilon - J(x;\widetilde{C})$$

$$= \mathbb{E}\left[\int_{0}^{\overline{\tau}} \left(C_{s} - \widetilde{C}_{s}\right) e^{-qs} ds\right] + \mathbb{E}\left[\int_{\overline{\tau}}^{\tau} C_{s} e^{-qs} ds\right] + \varepsilon$$

$$\leq \frac{\overline{c}}{q} \sum_{j=1}^{\infty} \mathbb{E}\left[I_{\{\overline{\tau}=\tau_{j},\tau>\tau_{j}\}} e^{-q\tau_{j}}\right] + \varepsilon.$$
(44)

Then,

$$\mathbb{E}\left[\left(e^{-q\overline{\tau}}-e^{-q\tau}\right)I_{\left\{\overline{\tau}=\tau_{j},\ \tau>\tau_{j}\right\}}\right]\leq\mathbb{E}\left[e^{-q\tau_{j}}I_{\left\{\overline{\tau}=\tau_{j},\ \tau>\tau_{j}\right\}}\right].$$

Using the definitions given in (38), we have

$$\begin{split} & \{ \overline{\tau} = \tau_{j}, \ \tau > \tau_{j} \} \\ & = \left\{ X_{\tau_{j}}^{C} = x + A_{\tau_{j}}^{C} - \mathcal{U}_{j-1} \geq 0 \text{ and } X_{\tau_{j}}^{\widetilde{C}} = x + A_{\tau_{j}}^{\widetilde{C}} - \mathcal{U}_{j-1} < 0 \right\} \\ & = \left\{ x + A_{\tau_{j}}^{C} - \mathcal{U}_{j-1} \geq U_{j} > x + A_{\tau_{j}}^{\widetilde{C}} - \mathcal{U}_{j-1} \right\} \\ & \subseteq \left\{ x + A_{\tau_{j}}^{\widetilde{C}} + (c_{2} - c_{1})\tau_{j} - \mathcal{U}_{j-1} \geq U_{j} > x + A_{\tau_{j}}^{\widetilde{C}} - \mathcal{U}_{j-1} \right\}. \end{split}$$

Note that by the i.i.d. assumptions of the compound Poisson process we have that τ_j , U_j and \mathcal{U}_{j-1} are mutually independent. Hence,

$$\mathbb{E}\left[\sum_{j=1}^{\infty} e^{-q\tau_{j}} I_{\left\{\tilde{\tau}=\tau_{j},\tau>\tau_{j}\right\}}\right] \\
\leq K(c_{2}-c_{1})\beta \sum_{j=1}^{\infty} \left[\int_{0}^{\infty} e^{-qt} \left(\frac{\beta^{j-1}t^{j-1}}{(j-1)!}\right) t e^{-\beta t} dt\right] \\
\leq K\frac{\beta}{q^{2}}(c_{2}-c_{1}), \tag{45}$$

because $F(x+A_t^{\tilde{C}}+(c_2-c_1)t-u)-F(x+A_t^{\tilde{C}}-u)\leq (c_2-c_1)t$. From (44) and (45) we get the result with $K_2=K\beta\bar{c}/q^3$.

Let us consider now the case $\bar{c} > p$. Take $C \in \Pi_{x,c_1,\bar{c}}$ as in (42) and \hat{T} as in (43). For

$$T_1 := \min\{t : C_t \ge p\},\$$

since $c_2 \leq p$, we have that $T_1 \geq \widehat{T}$. Consider the increasing sequence (y_i) and the admissible strategies $\widehat{C}^i \in \Pi_{y_i,p,\overline{c}}$ introduced in the proof of Lemma 8.1, and define the dividend payment strategy $\overline{C} \in \Pi_{x,c_2,\overline{c}}$ as follows: take rate c_2 for $t \leq \widehat{T}$, C_t for $\widehat{T} \leq t < T_1$ and for $t \geq T_1$ take $\overline{C}_t = \widehat{C}^i_{t-T_1}$ in the case that $X^C_{T_1} \in [y_i,y_{i+1})$; as before, the strategy \overline{C} turns out to be Borel measurable and so it is admissible. With arguments similar to the ones used before, we obtain,

$$V(x,c_1) - V(x,c_2) \le \left(\frac{2}{q} + 2\overline{c} K \frac{\beta}{q^3}\right) (c_2 - c_1).$$

Proof of Proposition 3.3

Proposition 3.3 follows from the following two lemmas:

Lemma 8.3 Assume that $\bar{c} > p$, then there exist constants $K_2 > 0$ and $K_3 > 0$ such that

$$V(x_2, c) - V(x_1, c) \le \left[K_2 + \frac{K_3}{c - p}\right](x_2 - x_1)$$

for all $0 \le x_1 \le x_2$ and $p < c \le \overline{c}$.

Proof. Take $\varepsilon > 0$ and $C \in \Pi_{x_2,c,\overline{c}}$ such that

$$J(x_2; C) \ge V(x_2, c) - \varepsilon. \tag{46}$$

Define $\widetilde{C} \in \Pi_{x_1,c,\overline{c}}$ as $\widetilde{C}_t = C_t$, and let us call $\widetilde{\tau} \leq \tau$ the ruin time of the process $X_t^{\widetilde{C}}$, then $X_t^C - X_t^{\widetilde{C}} = x_2 - x_1$ for $t \leq \widetilde{\tau}$. Hence, using (46) and (39) we have,

$$V(x_{2},c) - V(x_{1},c)$$

$$= \mathbb{E}\left[\int_{\tilde{\tau}}^{\tau} C_{s}e^{-qs}ds\right] + \varepsilon$$

$$\leq \mathbb{E}\left[\sum_{j=1}^{\infty} \left(I_{\left\{\tilde{\tau}=\tau_{j},\ \tau>\tau_{j}\right\}} \int_{\tau_{j}}^{\tau} C_{s}e^{-qs}ds\right)\right] + \mathbb{E}\left[\sum_{j=1}^{\infty} \left(I_{\left\{\tilde{\tau}\in\left(\tau_{j-1},\tau_{j}\right)\right\}} \int_{\tilde{\tau}}^{\tau} e^{-qs}C_{s}ds\right)\right] + \varepsilon$$

$$\leq \frac{\bar{c}}{q} \mathbb{E}\left[\sum_{j=1}^{\infty} e^{-q\tau_{j}} I_{\left\{\tilde{\tau}=\tau_{j},\tau>\tau_{j}\right\}}\right] + \frac{\bar{c}}{q} \mathbb{E}\left[\sum_{j=1}^{\infty} I_{\left\{\tilde{\tau}\in\left(\tau_{j-1},\tau_{j}\right)\right\}} \left(e^{-q\tilde{\tau}} - e^{-q\tau}\right)\right] + \varepsilon.$$

$$\leq \bar{c}K \frac{\beta}{q^{2}} (x_{2} - x_{1}) + \frac{\bar{c}}{q} \mathbb{E}\left[\sum_{j=1}^{\infty} I_{\left\{\tilde{\tau}\in\left(\tau_{j-1},\tau_{j}\right)\right\}} \left(e^{-q\tilde{\tau}} - e^{-q\tau}\right)\right] + \varepsilon.$$

$$(47)$$

We also get

$$\mathbb{E}\left[\sum_{j=1}^{\infty} I_{\left\{\widetilde{\tau} \in (\tau_{j-1}, \tau_{j})\right\}} \left(e^{-q\tau} - e^{-q\widetilde{\tau}}\right)\right] \le q \,\mathbb{E}\left[\sum_{j=1}^{\infty} e^{-q\tau_{j-1}} \left(\tau - \widetilde{\tau}\right)\right]. \tag{48}$$

Assume now that $\tilde{\tau} \in (\tau_{j-1}, \tau_j)$ (and so $\tilde{\tau} < \tau$). Then

$$0 = X_{\tilde{\tau}}^{\tilde{C}} = x_1 + \int_0^{\tilde{\tau}} (p - C_s) \, ds - \sum_{k=1}^{j-1} U_k \text{ and } 0 \le X_{\tau^-}^C \le x_2 + \int_0^{\tau} (p - C_s) \, ds - \sum_{k=1}^{j-1} U_k.$$

Hence, we get

$$0 \le X_{\tau^{-}}^{C} - X_{\widetilde{\tau}}^{\widetilde{C}} \le x_{2} - x_{1} + \int_{\widetilde{\tau}}^{\tau} (p - C_{s}) ds \le x_{2} - x_{1} + (p - c)(\tau - \widetilde{\tau})$$

and this implies

$$\tau - \tilde{\tau} \le \frac{x_2 - x_1}{c - p}.\tag{49}$$

We also have

$$\mathbb{E}\left[\sum_{j=1}^{\infty} e^{-q\tau_{j-1}}\right] = 1 + \int_{0}^{\infty} e^{-qs} \beta \sum_{k=1}^{\infty} \left(\frac{\beta^{k-1} s^{k-1}}{(k-1)!}\right) e^{-\beta s} ds$$

$$\leq 1 + \beta/q.$$
(50)

So, from (47), (48), (49) and (50), we get the result with $K_2 = \overline{c}K\beta/q^2$ and $K_3 = \overline{c}(1 + \beta/q)$.

Lemma 8.4 Assume that $\bar{c} > p$, then there exist constants $K_2 > 0$ and $K_3 > 0$ such that

$$V(x, c_1) - V(x, c_2) \le \left[K_2 + \frac{K_3 x}{(c_1 - p)^2} \right] (c_2 - c_1)$$

for all $x \ge 0$ and $p < c_1 \le c_2 \le \overline{c}$.

Proof. If x = 0, V(x,c) = 0 for all c > p. Consider now x > 0 and $p < c_1 < c_2 \le \overline{c}$. Take $\varepsilon > 0$ and $C \in \Pi_{x,c_1,\overline{c}}$ such that $J(x;C) \ge V(x,c_1) - \varepsilon$; we define the admissible strategy

$$\widehat{T} = \min\{t : C_t > c_2\}.$$

 $\overline{C} \in \Pi_{x,c_2,\overline{c}}$ as $\overline{C}_t = c_2 I_{\{t < \widehat{T}\}} + C_t I_{\{t \ge \widehat{T}\}}$, and the ruin times τ and $\overline{\tau}$ of the processes X_t^C and $X_t^{\overline{C}}$ respectively. In this case both τ and $\overline{\tau}$ are finite with $\tau \ge \overline{\tau}$. Note that

$$\tau \le \frac{x}{c_1 - p}.\tag{51}$$

Let us define as $T_0 = \min\{t : x + \int_0^t (p - \overline{C}_s) ds = 0\}$ as the ruin time of the controlled process $X_t^{\overline{C}}$. In the event of no claims, we have $\overline{\tau} \leq T_0$. Since $\overline{c} \geq \overline{C}_s \geq c_2 > p$, T_0 is finite and satisfies

$$\frac{x}{\overline{c} - p} \le T_0 \le \frac{x}{c_2 - p}.\tag{52}$$

So we have

$$0 \le \int_0^t \left(\overline{C}_s - C_s \right) ds \le \begin{cases} (c_2 - c_1)t & \text{if } t \le \widehat{T} \\ (c_2 - c_1)\widehat{T} & \text{if } t > \widehat{T} \end{cases},$$

and then

$$X_{\overline{\tau}}^{C} \le X_{\overline{\tau}^{-}}^{C} \le X_{\overline{\tau}^{-}}^{C} - X_{\overline{\tau}^{-}}^{\overline{C}} \le (c_{2} - c_{1})\overline{\tau} \le (c_{2} - c_{1})T_{0} \le (c_{2} - c_{1})\frac{x}{c_{2} - p}.$$
 (53)

We can write, using (45),

$$V(x,c_{1}) - V(x,c_{2})$$

$$\leq J(x;C) - J(x;\overline{C}) + \varepsilon$$

$$\leq \frac{\overline{c}}{q} \sum_{j=1}^{\infty} \mathbb{E} \left[I_{\left\{\overline{\tau} = \tau_{j}, \ \tau > \tau_{j}\right\}} e^{-q\tau_{j}} \right] + \frac{\overline{c}}{q} \sum_{j=1}^{\infty} \mathbb{E} \left[I_{\left\{\overline{\tau} \in (\tau_{j-1},\tau_{j}), \ \tau > \overline{\tau}\right\}} \left(e^{-q\overline{\tau}} - e^{-q\tau} \right) \right] + \varepsilon$$

$$\leq \frac{\overline{c}\beta K}{q^{3}} (c_{2} - c_{1}) + \frac{\overline{c}}{q} \sum_{j=1}^{\infty} \mathbb{E} \left[I_{\left\{\overline{\tau} \in (\tau_{j-1},\tau_{j}), \ \tau > \overline{\tau}\right\}} \left(e^{-q\overline{\tau}} - e^{-q\tau} \right) \right] + \varepsilon.$$
(54)

In the case that $\overline{\tau} \in (\tau_{j-1}, \tau_j)$ and $\tau > \overline{\tau}$, we have that

$$X_{\overline{\tau}}^{C} + \int_{\overline{\tau}}^{\tau} (p - c_1) ds \ge X_{\tau^{-}}^{C} \ge 0.$$

Then we get, from (53),

$$0 \le \tau - \overline{\tau} \le \frac{X_{\overline{\tau}}^C}{c_1 - p} \le \frac{x}{(c_1 - p)(c_2 - p)}(c_2 - c_1). \tag{55}$$

Hence, by virtue of (48), (50) and (55),

$$\frac{\overline{c}}{q} \sum_{j=1}^{\infty} \mathbb{E} \left[I_{\{\overline{\tau} \in (\tau_{j-1}, \tau_{j}), \ \tau > \overline{\tau}\}} \left(e^{-q\overline{\tau}} - e^{-q\tau} \right) \right]
\leq \frac{\overline{c}}{q} \sum_{j=1}^{\infty} \mathbb{E} \left[I_{\{\overline{\tau} \in (\tau_{j-1}, \tau_{j}), \ \tau > \overline{\tau}\}} q \left(\tau - \overline{\tau} \right) e^{-q\tau_{j-1}} \right]
\leq \sum_{j=1}^{\infty} \mathbb{E} \left[I_{\{\overline{\tau} \in (\tau_{j-1}, \tau_{j}), \ \tau > \overline{\tau}\}} e^{-q\tau_{j-1}} \right] \frac{\overline{c}x}{(c_{1}-p)(c_{2}-p)} (c_{2} - c_{1})
\leq \frac{\overline{c}x}{(c_{1}-p)(c_{2}-p)} (c_{2} - c_{1}) \sum_{j=1}^{\infty} \mathbb{E} \left[e^{-q\tau_{j-1}} \right]
= \frac{\overline{c}x}{(c_{1}-p)(c_{2}-p)} \left(1 + \frac{\beta}{q} \right) (c_{2} - c_{1}).$$

Therefore, from (54) the result is established with $K_2 = \bar{c}\beta K/q^3$ and $K_3 = \bar{c}(1+\beta/q)$.

Proof of Proposition 3.4

The proof of Proposition 3.4 is quite technical. In addition to some technical lemmas below, we will use the exponential inequality

$$e^{-\frac{\gamma}{z^{\eta}}} \le \frac{e^{-\frac{1}{\eta}}}{(\gamma\eta)^{1/\eta}} z \tag{56}$$

for $z>0,\ \gamma>0$ and $\eta>0$, as well as the following elementary remark about convolutions of independent distribution functions.

Remark 8.1 The distribution function F_j of the random variable $U_j = U_1 + ... + U_j$ is Lipschitz with the same Lipschitz constant as F. To see this, consider $U_2 = U_1 + U_2$. Then

$$P(a \le U_1 + U_2 \le a + h) = \int_0^{a+h} \int_{a-u}^{a+h-u} dF(v)dF(u) \le Kh \int_0^{a+h} dF(u) \le Kh.$$

With a recursive argument the proof extends to all U_j for $j \geq 1$.

Let us call J_x^c the value function of the strategy in $\Pi_{x,c,\overline{c}}$ that pays dividends at a constant rate c until ruin. We first compare J_x^p with J_x^c for c > p.

Lemma 8.5 If c > p, there exists a positive constant \overline{K} , such that,

$$-\frac{c-p}{q} \le J_x^p - J_x^c \le \overline{K} \left[1 + \frac{1}{x} + \frac{e^{-\frac{1}{1-\alpha}}}{(xq(1-\alpha))^{1/(1-\alpha)}} + \frac{x}{(c-p)^{1-\alpha}} \right] (c-p),$$

for any $0 < \alpha < 1$ and x > 0.

Proof. Let us call $C \in \Pi_{x,p,\overline{c}}$ the constant strategy $C_t = p$ and $\overline{C} \in \Pi_{x,c,\overline{c}}$ the constant strategy $\overline{C}_t = c > p$ for all t. Define again τ as the ruin time of the process X_t^C and $\overline{\tau}$ the one of the process $X_t^{\overline{C}}$. We have that τ coincides with the arrival of a claim and $\overline{\tau} \leq \tau$, so we get the first inequality since

$$J_x^c \le \int_0^\infty (c-p) e^{-qs} ds + \int_0^{\overline{\tau}} p e^{-qs} ds \le \frac{c-p}{q} + J_x^p.$$

We can write, using (45),

$$J_{x}^{p} - J_{x}^{c} \leq \frac{p}{q} \mathbb{E}\left[e^{-q\overline{\tau}} - e^{-q\tau}\right].$$

$$\leq \frac{p}{q} \sum_{j=1}^{\infty} \mathbb{E}\left[I_{\left\{\overline{\tau} = \tau_{j}, \ \tau > \tau_{j}\right\}} e^{-q\tau_{j}}\right] + \frac{p}{q} \sum_{j=1}^{\infty} \mathbb{E}\left[I_{\left\{\overline{\tau} \in (\tau_{j-1}, \tau_{j}), \ \tau > \overline{\tau}\right\}} e^{-q\overline{\tau}}\right]$$

$$\leq \frac{p\beta K}{q^{3}}(c-p) + \frac{p}{q} \sum_{j=1}^{\infty} \mathbb{E}\left[I_{\left\{\overline{\tau} \in (\tau_{j-1}, \tau_{j}), \ \tau > \overline{\tau}\right\}} e^{-q\overline{\tau}}\right].$$

$$(57)$$

Note that if $\overline{\tau} \in (\tau_{j-1}, \tau_j)$, then $\tau > \overline{\tau}$.

In the event that $\overline{\tau} \in (0, \tau_1)$ we have $\overline{\tau} = x/(c-p)$. From (56), we get

$$\mathbb{E}\left[e^{-q\overline{\tau}}I_{\{\overline{\tau}\in(0,\tau_1)\}}\right] \le e^{-q\frac{x}{c-p}}\mathbb{E}\left[I_{\{\overline{\tau}\in(0,\tau_1)\}}\right] \le \frac{e^{-1}}{qx}(c-p)\mathbb{E}\left[I_{\{\overline{\tau}\in(0,\tau_1)\}}\right]. \tag{58}$$

In the event that $\overline{\tau} \in (\tau_1, \tau_2)$, we have $X_{\tau_1}^{\overline{C}} = x - (c - p)\tau_1 - U_1 > 0$. We consider two cases: $X_{\tau_1}^{\overline{C}} \le x (c - p)^{\alpha}$ and $X_{\tau_1}^{\overline{C}} > x (c - p)^{\alpha}$. In the first case, using the Lipschitz condition on F, we obtain

$$\mathbb{E}\left[e^{-q\overline{\tau}}I_{\{\overline{\tau}\in(\tau_{1},\tau_{2})\}}I_{\{0< X_{\tau_{1}}^{\overline{C}}\leq x(c-p)^{\alpha}\}}\right] \\
\leq \mathbb{E}\left[e^{-q\overline{\tau}}I_{\{\overline{\tau}\in(\tau_{1},\tau_{2})\}}I_{\{x+(p-c)\tau_{1}-x(c-p)^{\alpha}\leq U_{1}< x+(p-c)\tau_{1}\}}\right] \\
\leq \mathbb{E}\left[e^{-q\tau_{1}}I_{\{\overline{\tau}\in(\tau_{1},\tau_{2})\}}I_{\{x+(p-c)\tau_{1}-x(c-p)^{\alpha}\leq U_{1}< x+(p-c)\tau_{1}\}}\right] \\
\leq Kx\left(c-p\right)^{\alpha}\mathbb{E}\left[e^{-q\tau_{1}}I_{\{\overline{\tau}\in(\tau_{1},\tau_{2})\}}\right].$$

In the second case, we have $(\overline{\tau} - \tau_1) = X_{\tau_1}^{\overline{C}}/(c-p) \ge x/(c-p)^{1-\alpha}$, and (56) yields

$$\begin{split} \mathbb{E}\left[e^{-q\overline{\tau}}I_{\{\overline{\tau}\in(\tau_1,\tau_2)\}}I_{\left\{X_{\tau_1}^{\overline{C}}>x(c-p)^{\alpha}\right\}}\right] &= \mathbb{E}\left[e^{-q(\overline{\tau}-\tau_1)}e^{-q\tau_1}I_{\{\overline{\tau}\in(\tau_1,\tau_2)\}}\right] \\ &\leq e^{-\frac{qx}{(c-p)^{1-\alpha}}}\mathbb{E}\left[e^{-q\tau_1}I_{\{\overline{\tau}\in(\tau_1,\tau_2)\}}\right]. \end{split}$$

Hence,

$$\mathbb{E}\left[e^{-q\overline{\tau}}I_{\{\overline{\tau}\in(\tau_1,\tau_2)\}}\right] \leq \mathbb{E}\left[e^{-q\tau_1}\right]\left(Kx\left(c-p\right)^{\alpha} + \frac{e^{-\frac{1}{1-\alpha}}}{\left(qx(1-\alpha)\right)^{1/(1-\alpha)}}(c-p)\right). \tag{59}$$

In a similar way, and using Remark 8.1, we obtain

$$\mathbb{E}\left[e^{-q\overline{\tau}}I_{\left\{\overline{\tau}\in(\tau_{j-1},\tau_{j}),\ \tau>\overline{\tau}\right\}}\right] \leq \mathbb{E}\left[e^{-q\tau_{j}}\right]\left(Kx\left(c-p\right)^{\alpha} + \frac{e^{-\frac{1}{1-\alpha}}}{\left(xq(1-\alpha)\right)^{1/(1-\alpha)}}(c-p)\right)$$

for any $j \geq 3$ and so from (50), (57) and (58) we get the second inequality.

In the next lemma, we give an alternative version of the Lipschitz condition for x>0 and c>p. Here, for $x_2>x_1\geq\delta>0$, the growth of the Lipschitz bound as $c\to p^+$, goes to infinity but slower than the bound obtained in Lemma 8.3.

Lemma 8.6 For any $0 < \alpha < 1$ there exists a positive constant \widetilde{K} such that

$$V(x_2,c) - V(x_1,c) \le \widetilde{K} \left[1 + \frac{1}{x_1} + \frac{e^{-\frac{1}{1-\alpha}}}{(qx_1(1-\alpha))^{1/(1-\alpha)}} + \frac{x_1}{(c-p)^{1-\alpha}} \right] (x_2 - x_1),$$

where $p < c \le \overline{c}$ and $0 < x_1 < x_2$.

Proof. Take $\varepsilon > 0$ and $C \in \Pi_{x_2,c,\overline{c}}$ such that

$$J(x_2; C) \ge V(x_2, c) - \varepsilon \tag{60}$$

and call τ the ruin time of the process X_t^C . Define $\widetilde{C} \in \Pi_{x_1,c,\overline{c}}$ as $\widetilde{C}_t = C_t$ and call $\widetilde{\tau}$ the ruin time of the process $X_t^{\widetilde{C}}$; it holds that $\widetilde{\tau} \leq \tau$ and $X_t^C - X_t^{\widetilde{C}} = x_2 - x_1$ for $t \leq \widetilde{\tau}$. In the event that $\widetilde{\tau} \in (\tau_{j-1},\tau_j)$ (and so $\widetilde{\tau} < \tau$), $X_{\widetilde{\tau}}^{\widetilde{C}} = 0$ and so $X_{\widetilde{\tau}}^C = X_{\widetilde{\tau}}^{\widetilde{C}} + (x_2 - x_1) = x_2 - x_1$. Hence, since $C_s \geq C_{\widetilde{\tau}}$ for $s \geq \widetilde{\tau}$,

$$\tau - \tilde{\tau} \le \frac{1}{C_{\tilde{\tau}} - p} \int_{\tilde{\tau}}^{\tau} (C_s - p) \, ds \le \frac{x_2 - x_1}{C_{\tilde{\tau}} - p}. \tag{61}$$

From (47) and (61), we get

$$V(x_{2},c) - V(x_{1},c)$$

$$\leq \bar{c}K\frac{\beta}{q^{2}}(x_{2} - x_{1}) + \frac{\bar{c}}{q}\mathbb{E}\left[\sum_{j=1}^{\infty} I_{\left\{\tilde{\tau}\in(\tau_{j-1},\tau_{j})\right\}}e^{-q\tilde{\tau}}\left(1 - e^{-q(\tau-\tilde{\tau})}\right)\right] + \varepsilon$$

$$\leq \bar{c}K\frac{\beta}{q^{2}}(x_{2} - x_{1}) + \bar{c}\mathbb{E}\left[\sum_{j=1}^{\infty} I_{\left\{\tilde{\tau}\in(\tau_{j-1},\tau_{j})\right\}}e^{-q\tilde{\tau}}\frac{1}{C_{\tilde{\tau}} - p}\right](x_{2} - x_{1}) + \varepsilon$$

$$(62)$$

since $1 - e^{-ay} \le ay$.

In the event that $\tilde{\tau} \in (0, \tau_1)$,

$$(C_{\widetilde{\tau}}-p)\widetilde{\tau} \geq \int_0^{\widetilde{\tau}} (C_s-p) ds = x_1,$$

so $\tilde{\tau} \geq x_1/(C_{\tilde{\tau}} - p)$. By (56), we get

$$\mathbb{E}\left[\frac{e^{-q\overline{\tau}}}{C_{\widetilde{\tau}} - p} I_{\{\overline{\tau} \in (0,\tau_1)\}}\right] \le \frac{e^{-1}}{qx_1}.$$
(63)

In the event that $\tilde{\tau} \in (\tau_1, \tau_2)$, we consider two cases: $X_{\tau_1}^{\tilde{C}} > x_1 (C_{\tilde{\tau}} - p)^{\alpha}$ and $0 < X_{\tau_1}^{\tilde{C}} \le x_1 (C_{\tilde{\tau}} - p)^{\alpha}$. Analogously to the proof of Lemma 8.5, we use the Lipschitz condition on F in the first case and (56) in the second case to obtain

$$\begin{split} \mathbb{E}\left[I_{\left\{\widetilde{\tau}\in(\tau_{1},\tau_{2}\right\}}\frac{e^{-q\widetilde{\tau}}}{C_{\widetilde{\tau}}-p}\right] &= & \mathbb{E}\left[\frac{e^{-q\widetilde{\tau}}}{C_{\widetilde{\tau}}-p}I_{\left\{\widetilde{\tau}\in(\tau_{1},\tau_{2})\right\}}I_{0< X_{\tau_{1}}\leq x_{1}(C_{\widetilde{\tau}}-p)^{\alpha}}\right] \\ &+ \mathbb{E}\left[\frac{e^{-q\widetilde{\tau}}}{C_{\widetilde{\tau}}-p}I_{\left\{\widetilde{\tau}\in(\tau_{1},\tau_{2})\right\}}I_{X_{\tau_{1}}>x_{1}(C_{\widetilde{\tau}}-p)^{\alpha}}\right] \\ &\leq & \left(\frac{Kx_{1}}{(c-p)^{1-\alpha}}+\frac{e^{-\frac{1}{1-\alpha}}}{(qx_{1}(1-\alpha))^{1/(1-\alpha)}}\right)\mathbb{E}\left[e^{-q\tau_{1}}\right]. \end{split}$$

In a similar way, and using Remark 8.1, we obtain

$$\mathbb{E}\left[I_{\left\{\widetilde{\tau}\in(\tau_{j-1},\tau_{j})\right\}}e^{-q\widetilde{\tau}}\frac{1}{C_{\widetilde{\tau}}-p}\right]\leq\left(\frac{Kx_{1}}{\left(c-p\right)^{1-\alpha}}+\frac{e^{-\frac{1}{1-\alpha}}}{\left(qx_{1}(1-\alpha)\right)^{1/(1-\alpha)}}\right)\mathbb{E}\left[e^{-q\tau_{j-1}}\right]$$

for any $j \geq 3$ and so from (50), (63) and (62), we get the result.

Proof of Proposition 3.4. Consider x > 0, we need to prove that $\lim_{c \to p^+} V(x,c) = V(x,p)$. Let us call, as before, J_y^c the value function of the strategy in $\Pi_{y,c,\overline{c}}$ that pays dividends at a constant rate c until ruin. Then, by Remark 2.1, $V(0,p) = J_0^p$. Also, we get $0 \le J_y^p - J_0^p = J_y^p - V(0,p)$, and from Proposition 3.2 there exists a $K_1 > 0$ such that $V(y,p) - V(0,p) \le K_1 y$. Hence,

$$V(y,p) - J_y^p \le V(y,p) - V(0,p) + V(0,p) - J_y^p \le K_1 y.$$

So, given $\varepsilon > 0$ small enough and taking $\delta \leq \varepsilon/K_1$, we have

$$V(y,p) - J_y^p \le \varepsilon \tag{64}$$

for all initial surplus levels $0 \le y \le \delta$. We assume $\delta < \min\{1/4, x\}$, so $\delta^{3/2} < \delta/2$. Consider $C \in \Pi_{x,p,\overline{c}}$ such that $J(x;C) \ge V(x,p) - \varepsilon$ and define $T_1 := \min\{t \ge 0 : X_t^C \le \delta\}$ and T_2 such that

$$\int_{T_2}^{\infty} e^{-qs} \overline{c} ds = \frac{\overline{c}}{q} e^{-qT_2} \le \varepsilon.$$

Take $c \in (p, \overline{c})$ such that

$$c - p \le \min\{\delta^{3/2}/T_2, (\varepsilon/T_2)^5, \varepsilon, \delta^{3/2}\}.$$
 (65)

Let us define $\widehat{T} := \min\{t : C_t \geq c\}$. Since $V(\cdot, c)$ is non-decreasing and continuous, we can find (as in Lemma 8.1) an increasing sequence (y_i) with $y_1 = 0$ such that if $y \in [y_i, y_{i+1})$, then $0 \leq V(y, c) - V(y_i, c) \leq \varepsilon/2$. Consider admissible strategies $\widehat{C}^i \in \Pi_{y_i, c, \overline{c}}$ such that $V(y_i, c) - J(y_i, \widehat{C}^i) \leq \varepsilon/2$.

Let us now define the admissible strategy $\overline{C} \in \Pi_{x,c,\overline{c}}$ as follows: $\overline{C}_t = c$ for $t < \widehat{T}$; in the event that $T_1 \leq \widehat{T}$ (and so $X_{\widehat{T}}^C \leq \delta$), the strategy for $t \geq \widehat{T}$ consists of paying dividends at constant rate c until ruin; and in the event that $T_1 > \widehat{T}$ (and so $X_{\widehat{T}}^C > \delta$), we define $\overline{C}_t = \widehat{C}_{t-T_1}^i$ for $t \geq \widehat{T}$ in the case that $X_{T_1}^C \in [y_i, y_{i+1})$. Note that with this definition the strategy \overline{C} turns out to be admissible and $C_s - \overline{C}_s \leq 0$ for $s \leq \widehat{T}$.

Let us call τ and $\overline{\tau}$ the ruin times of the processes X_t^C and $X_t^{\overline{C}}$, respectively. In order to prove the result, we consider different cases depending on the value of \widehat{T} :

$$V(x,p) - V(x,c) \le J(x;C) - J(x;\overline{C}) + \varepsilon$$

$$= \mathbb{E}\left[I_{\{\widehat{T} \ge \overline{\tau}\}}(J(x;C) - J(x;\overline{C}))\right] + \mathbb{E}\left[I_{\{\widehat{T} < \overline{\tau},\widehat{T} > T_2\}}(J(x;C) - J(x;\overline{C}))\right]$$

$$+ \mathbb{E}\left[I_{\{\widehat{T} < \overline{\tau},\widehat{T} \le T_2 \land T_1\}}(J(x;C) - J(x;\overline{C}))\right] + \varepsilon$$

$$+ \mathbb{E}\left[I_{\{\widehat{T} < \overline{\tau},\widehat{T} \in [T_1,T_2]\}}(I_{\{T_1 \ne \tau_j, \ 1 \le j\}} + \sum_{j=1}^{\infty} I_{\{T_1 = \tau_j\}})\left(J(x;C) - J(x;\overline{C})\right)\right].$$
(66)

In the event $\widehat{T} \geq \overline{\tau}$, using $\tau \geq \overline{\tau}$ and Lemma 8.5, we can show that

$$\mathbb{E}\left[I_{\left\{\widehat{T} \geq \overline{\tau}\right\}}(J(x;C) - J(x;\overline{C}))\right] \\
\leq \overline{K}\left[1 + \frac{1}{x} + \frac{e^{-\frac{1}{1-\alpha}}}{(xq(1-\alpha))^{1/(1-\alpha)}} + \frac{x}{(c-p)^{1-\alpha}} + \frac{1}{q}\right](c-p).$$
(67)

In the event that $\widehat{T} < \overline{\tau}$ and $\widehat{T} > T_2$, by the definition of T_2 ,

$$\mathbb{E}\left[I_{\left\{\widehat{T}<\overline{\tau},\widehat{T}>T_{2}\right\}}(J(x;C)-J(x;\overline{C}))\right] \leq \mathbb{E}\left[\int_{T_{2}}^{\infty}e^{-qs}\overline{c}ds\right] \leq \varepsilon. \tag{68}$$

In the event that $\widehat{T} < \overline{\tau}, \widehat{T} \le T_2 \wedge T_1$, it holds that $X_{\widehat{T}}^C \ge \delta$ and

$$0 \leq X_{\widehat{T}}^C - X_{\widehat{T}}^{\overline{C}} \leq (c-p)\widehat{T} < (c-p)T_2 \leq \min\left\{\varepsilon, \delta^{3/2}\right\} < \delta/2.$$

Therefore, since $V(\cdot,c)$ is non-decreasing and $X_{\widehat{T}}^{\overline{C}} \in [\delta/2,x)$, we obtain from Lemma 8.6

$$\mathbb{E}\left[I_{\left\{\widehat{T}<\overline{\tau},\widehat{T}\leq T_{2}\wedge T_{1}\right\}}(J(x;C)-J(x;\overline{C}))\right] \\
\leq \widetilde{K}\left(1+\frac{2}{\delta}+\frac{e^{-\frac{1}{1-\alpha}}}{(q(1-\alpha)\delta/2)^{1/(1-\alpha)}}\right)\delta^{3/2}+\widetilde{K}x(c-p)^{\alpha}T_{2}+\varepsilon. \tag{69}$$

In the event that $\widehat{T} < \overline{\tau}$ and $\widehat{T} \ge T_1$, the strategy is $\overline{C}_t = c$ for all t. If T_1 does not coincide with the arrival of a claim, then $X_{T_1}^C = \delta$ (and so $X_{T_1}^{\overline{C}} \ge \delta/2$). Then we can write, using (64), Proposition 3.2 and Lemma 8.5,

$$\mathbb{E}\left[I_{\left\{\widehat{T}<\overline{\tau},\widehat{T}\in[T_{1},T_{2}]\right\}}I_{\left\{T_{1}\neq\tau_{j},\ 1\leq j\right\}}(J(x;C)-J(x;\overline{C}))\right] \\
\leq \mathbb{E}\left[I_{\left\{\widehat{T}<\overline{\tau},\widehat{T}\in[T_{1},T_{2}]\right\}}I_{\left\{T_{1}\neq\tau_{j},\ 1\leq j\right\}}e^{-qT_{1}}(V\left(\delta,p\right)-J_{\delta/2}^{c})\right] \\
\leq (V\left(\delta,p\right)-J_{\delta}^{p})+\left(J_{\delta}^{p}-J_{\delta/2}^{p}\right)+\left(J_{\delta/2}^{p}-J_{\delta/2}^{c}\right) \\
\leq \varepsilon+K_{1}\frac{\varepsilon}{2K_{1}}+\overline{K}\left(1+\frac{2}{\delta}+\frac{e^{-\frac{1}{1-\alpha}}}{(\delta/2q(1-\alpha))^{1/(1-\alpha)}}\right)\delta^{3/2}+\overline{K}\delta/2(c-p)^{\alpha}.$$
(70)

Finally, in the event that $\widehat{T} < \overline{\tau}$, $\widehat{T} \geq T_1$ and T_1 coincides with the j-th claim arrival, then $X_{T_1}^C = X_{\tau_j}^C \in (0, \delta)$ and $X_{\tau_j}^C \geq \delta$. Hence,

$$0 < X_{T_1}^C = X_{\tau_j}^C = X_{\tau_j}^C - U_j < \delta.$$

Therefore, $X_{\tau_j^-}^C > U_j > X_{\tau_j^-}^C - \delta \ge 0$. Since $F(X_{\tau_j^-}^C) - F(X_{\tau_j^-}^C - \delta) \le K\delta$ and, by the compound Poisson assumptions, we obtain

$$\mathbb{E}\left[I_{\left\{\widehat{T}<\overline{\tau},\widehat{T}\in\left[T_{1},T_{2}\right]\right\}}I_{\left\{T_{1}=\tau_{j}\right\}}e^{-q\tau_{j}}\right]\leq K\delta\mathbb{E}\left[e^{-q\tau_{j}}\right].$$

So, by (50) and Proposition 3.3,

$$\sum_{j=1}^{\infty} \mathbb{E} \left[I_{\left\{\widehat{T} < \overline{\tau}, \widehat{T} \in [T_1, T_2]\right\}} I_{\left\{T_1 = \tau_j\right\}} (J(x; C) - J(x; \overline{C})) \right] \\
\leq K \delta V(\delta, c) \sum_{j=1}^{\infty} \mathbb{E} \left[e^{-q\tau_j} \right] \\
\leq \frac{K \overline{c} \beta}{q^2} \delta. \tag{71}$$

Using (65)–(71) with $\alpha = 1/5$, and so $1/(1-\alpha) = 5/4 < 3/2$, we get the result.