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Lúıs Santos-Pinto

University of Lausanne

Adrian Bruhin

University of Lausanne
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Detecting Heterogeneous Risk Attitudes with
Mixed Gambles

Abstract

We propose a task for eliciting attitudes towards risk that is close to real world

risky decisions which typically involve gains and losses. The task consists of ac-

cepting or rejecting gambles that provide a gain with probability p and a loss with

probability 1 − p. We employ finite mixture models to uncover heterogeneity in

risk preferences and find that (i) behavior is heterogeneous, with one half of the

subjects behaving as expected utility maximizers, (ii) for the others, reference-

dependent models perform better than those where subjects derive utility from

final outcomes, (iii) models with sign dependent decision weights perform better

than those without, and (iv) there is no evidence for loss aversion. The procedure

is sufficiently simple so that it can be easily used in field or lab experiments where

risk elicitation is not the main experiment.

1 Introduction

Decisions made when agents confront risky alternatives are conventionally

explained by expected utility (EU) theory. However, evidence from the field

and the lab shows that, on average, subjects’ behavior deviates from EU

predictions (see Schoemaker, 1982 and Starmer, 2000 for reviews). Further-

more, studies looking at individual decisions under risk like Lattimore et al.

(1992) and Hey and Orme (1994) found heterogeneity in behavior. These

studies typically found that some subjects behave in line with EU, but most

do not. Recent studies that use finite mixture models to take the presence

of EU and non-EU types into account report similar results (Bruhin et al.

2010 and Conte et al. 2011).1

1Harrison and Rutström (2009) apply finite mixture models too in order to distinguish

EU from non-EU behavior. However, they classify decisions instead of subjects. Therefore,
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Ignoring this behavioral heterogeneity may lead to biased conclusions.

For instance, studies that attempt to discriminate between alternative the-

ories of non-EU behavior assuming a representative decision maker may

suffer from such biased conclusions. Failure to acknowledge that a signifi-

cant proportion of subjects may behave according to EU leads to confounded

parameter estimates that do not correctly reflect the non-EU subjects’ be-

havior. Furthermore, acknowledging behavioral heterogeneity may also be

important for field and lab experiments that are increasingly being used in

a diversity of fields (Levitt and List, 2007, and Falk and Heckman, 2009).

Rather than assuming a representative decision maker – who is typically

postulated to act according to EU – experimental researchers would benefit

from being able to identify in their samples who acts according to EU and

who does not. Accounting for this heterogeneity may prove to be important

to explain what may seem to be odd patterns of choices.

We propose a method that allows the experimenter to economically elicit

information about risk preferences, while accounting for the presence of both

EU and non-EU subjects. Due to its simplicity, our procedure can be easily

used for characterizing EU and non-EU subjects in field or lab experiments,

even when elicitation of risk preferences is not the main concern.

The proposed method consists of a lottery-choice task in which subjects

accept or reject a series of simple two-outcome mixed gambles, i.e., gambles

involving a gain and a loss. The task has a clear-cut reference point, uses

30 decisions per subject, and applies monetary incentives in a symmetric

way across the gain and loss domains. The use of mixed gambles yields

data that are rich enough to control for heterogeneity in risk attitudes and

to discriminate between reference-dependent and non-reference dependent

models of choice under risk.2

their results are not directly comparable to Bruhin et al. (2010) and Conte et al. (2011).
2Mixed gambles bring the experimental task closer to real world risky decisions than

most previous experimental work. Real world decisions typically involve gain-loss gambles,
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We use finite mixture models to simultaneously segregate EU from non-

EU types and compare the descriptive power of the different models that

depart from EU maximization. Finite mixture models endogenously classify

subjects making noisy decisions into a pre-defined number of distinct prefer-

ence types. They require substantially less parameters than estimations at

the individual level but are still able to account for the most important as-

pect of heterogeneity, namely, the existence of such distinct preference types.

Therefore, mixture models represent a neat compromise between parsimony

and flexibility. These models are relatively new in decision theory but have

previously been used to uncover different types of behavior in complex deci-

sion situations (El-Gamal and Grether 1995, Stahl and Wilson 1995, Houser

et al. 2004, Houser and Winter 2004).

To model non-EU behavior we focus on four theories: rank dependent

utility (RDU), weighted utility (WU), prospect theory (PT), and salience

theory (ST). In RDU people evaluate utility over final wealth levels and the

only deviation from EU is probability weighting (Quiggin, 1982). In WU

people also evaluate utility over final wealth levels and the only deviation

from EU is outcome weighting (Chew, 1983). In PT there are multiple

deviations from EU: people evaluate utility relative to a reference point, they

can exhibit diminishing sensitivity to monetary gains and losses, they may

apply different probability weights in the gain and loss domains, and they

may be averse to losses (Kahneman and Tversky 1979, 1992). In ST people

deviate from EU in similar ways as in PT but overweight the probabilities

of salient payoffs (Bordalo et al., 2012).3

but most prior experimental research on the elicitation of risk attitudes used lotteries

involving only gains (e.g., Brunner et al., 2007; Ebert and Wiesen, 2009; and Deck and

Schlesinger, 2010) or lotteries involving either only gains or only losses (e.g. Holt and

Laury, 2002; Fehr-Duda et al.,2010; and Bruhin et al., 2010).
3Most of prior experimental work on reference-dependent models has been limited to

testing a subset of the behavioral features of PT. For example, Abdellaoui (2000) and

Bruhin et al. (2010) use lotteries involving either only gains or only losses and estimate
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Our main results are as follows. First, individual behavior is heteroge-

neous with roughly 50% of the subjects behaving as expected utility (EU)

maximizers and 50% as non-EU maximizers. There is a clean segregation

into types, i.e., almost all subjects are unambiguously classified either as

EU or non-EU. Second, models where the non-EU types have reference-

dependent preferences, i.e., they derive utility from gains and losses relative

to a reference point, perform better than those where non-EU types derive

utility from final outcomes. Third, the individual classification into EU and

non-EU types remains the same regardless of whether the non-EU types

are specified by PT or ST. Fourth, models that allow for domain specific

decision weights outperform models which constrain the decision weights’

pattern to be the same for gains and losses. Fifth, there is no evidence for

loss aversion.

The paper proceeds as follows. Section 2 describes the experimental

design. Section 3 introduces the different theories for non-EU behavior.

Section 4 explains our estimation strategy. Section 5 presents the results.

Finally, Section 6 concludes the paper.

2 Experimental Design

The experiment was performed at the University of Zurich. All subjects were

students of the University of Zurich or the Swiss Federal Institute of Technol-

ogy Zurich (ETH), recruited via ORSEE (Greiner, 2004). Economists and

psychologists were excluded from the subject pool. To make sure subjects

probability distortion parameters for the gain and loss domains but do not estimate a loss

aversion parameter since that is neither feasible nor meaningful. Tversky and Kahneman

(1992) and Abdellaoui et al. (2007) study all features of risk preferences proposed by PT

but use hypothetical choices. Abdellaoui et al. (2008) use real incentives for lotteries with

only gains but not for lotteries with only losses or with gains and losses. As far as we know,

there are only two other studies that analyze all aspects of PT using monetary incentives

for all types of lotteries: Harrison and Rutström (2009) and Tanaka et al. (2010).
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fully understood the procedures and the payoff consequences of the available

actions, each subject had to read a detailed set of instructions before the

session started and was allowed to ask clarifying questions.

Our lottery choice task must accomplish two goals: (1) distinguish EU

from non-EU types and (2) provide data rich enough to estimate fully speci-

fied versions of different non-EU models. Moreover, cognitively the lotteries

should be as simple as possible and have a clear-cut reference point.

We offer subjects a task with three sets of choices. Each set of choices

was designed in prize-list style with 10 decision rows. Each decision row

was a choice between a mixed gamble (accept) and a certain amount of zero

(reject). The certain amount is kept fixed across the three sets of choices so

subjects see it as a reference point.

Let Xj
i denote gamble i in set of choices j, where i ∈ {1, 2, ..., 10} and

j ∈ {1, 2, 3}. Let E(Xj
i ) and V (Xj

i ) denote, respectively, the mean and

variance of gamble Xj
i . The first set of choices contains ten gambles each

offering a 10% probability of a large loss and a 90% probability of a small

gain. Gamble i in the first set of choices is X1
i = (0.1, (15 − i)x; 0.9,−x),

where x > 0. The second set of choices contains ten gambles each offering

a 50% probability of a moderate loss and a 50% probability of a moderate

gain. Gamble i in the second set of choices is X2
i = (0.5, 1.2x; 0.5,−0.2ix).

Finally, the third set of choices contains ten gambles each offering a 90%

probability of a small loss and a 10% probability of a large gain. Gamble i

in the third set of choices is X3
i = (0.9, x; 0.1,−(3 + i)x) .

The gambles’ means satisfy:

E(X1
i ) = E(X2

i ) = E(X3
i ) =

6− i
10

x, for all i,

that is, the mean of the i-th gamble is the same across the three sets of

choices and equal to (6−i)x/10. Hence, the ten gambles in each set of choices

are ordered in terms of expected value. The expected value is positive for

the first five gambles, zero for the sixth gamble, and negative for the last
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four gambles. Hence, subjects should begin each set of choices by preferring

the gamble and then switching to the certain amount.

The gambles’ variances satisfy the following conditions:

V (X2
i ) < V (X1

i ) < V (X3
i ), if i ≤ 5,

and

V (X2
i ) < V (X1

i ) = V (X3
i ), if i = 6,

and

V (X2
i ) < V (X3

i ) < V (X1
i ), if i ≥ 7.

This lottery choice task allows us to distinguish EU from non-EU be-

havior. According to EU an individual can have linear, concave, or convex

utility defined over final wealth states reflecting neutrality, aversion, or love

for risk. Irrespective of variance, a risk neutral EU person accepts all gam-

bles with positive mean and reject all gambles with negative mean across

the three sets of choices. Depending on variance, a risk averse EU person

rejects all gambles with non-positive mean and rejects some gambles with

positive mean across the three sets of choices. Finally, depending on vari-

ance, a risk loving EU person accepts all gambles with nonnegative mean

and some gambles with negative mean across the three sets of choices.

The task also allows us to estimate fully specified versions of different

non-EU models. The varying outcome probabilities across the three sets

of choices allows us to identify subjective decision weights. For example,

a PT subject characterized by a linear utility function and inverse s-shape

probability weighting would accept less than 6 gambles in the first set of

choices, 6 gambles in the second set of choices, and more than 6 gambles

in the third set of choices. Moreover, since all gambles involve gains and

losses we can not only distinguish reference-dependent from non-reference-

dependent models but also identify the degree of loss aversion in reference-

dependent models.
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We run the experiment with two levels of stakes (x = 5 CHF and x = 10

CHF hereafter called the 1x stake and 2x stake conditions, respectively).

Subjects in the 1x stake condition are faced with the three sets of choices

displayed in Tables 3, 2, and 1 (the columns with expected value and the

variance of the lotteries were not shown to subjects). In the 2x stake condi-

tion stakes are twice as high.

insert Tables 1, 2, and 3 here

The order of the three sets of choices was randomly assigned and coun-

terbalanced. A total of 109 subjects participated in the experiment, 70 in

the 1x stakes condition and 39 in the 2x stakes condition. In order to provide

incentive for truthful revelation of preferences, subjects were randomly paid

for one of their choices. Each subject received a show-up fee of 10 CHF.

Since subjects could not walk away from the laboratory making losses all

subjects were endowed with the maximum possible loss they could incur in

the experiment (65 CHF in the 1x stake condition and 130 CHF in the 2x

stake condition).

In the laboratory, we are challenged to implement losses that are viewed

by subjects as “true losses” and not just lesser gains. In order to minimize a

house-money effect and therefore to make losses more real, one week before

the experiment took place subjects who would be assigned to the 1x stake

condition received an email where they were told: “Next week you will

participate in an experiment on decision making under risk. You will be

paid 10 CHF as compensation for your time spent. Additionally, you will be

given 65 CHF and you will keep the 65 CHF with 90% probability.” Subjects

who would be assigned to the 2x stake condition received a similar email,

the only difference being that 65 CHF was replaced by 130 CHF.

The goal of this email was to induce subjects to think that their (prob-

abilistic) reference point regarding rewards from the experiment is close to

the actual expected earnings. If this manipulation was successful, then a
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subject who comes out of the laboratory with less than the expected earn-

ings will feel like he suffered a loss and one that comes out with more will

feel like he has made a gain.

Subjects’ earnings were determined after task completion. The roll of

a six-sided die determined which of the three sets of choices was relevant

for payment. Subsequently, the roll of a ten-sided die indicated the deci-

sion row (decisions 1 through 10) relevant for payment. Each subject was

paid according to the realizations of the dies and his or her choices (accept

or reject). The mean earnings of subjects in the 1x stake condition were

79.18 CHF and 173.74 CHF in the 2x stake condition (excluding the 10

CHF show-up fee). Total earnings paid to subjects including show-up fees

were 13,409.00 CHF. The experimental instructions are in the Experimental

Material Appendix.

3 Summary Statistics

This section presents summary statistics of subjects’ behavior across the

three sets of choices. On average, people seem to deviate from EU and there

is substantial heterogeneity in choices. Table 4 displays the mean number

of accepted gambles in each set of choices (the first row) and the absolute

frequencies (the remaining rows).

insert Table 4 here

Table 4 reveals that, on average, subjects deviate from EU behavior. In

the first set of choices subjects accept, on average, 3.69 gambles. Thus, on

average, subjects are willing to reject a small stake positive mean gamble

to avoid facing a small probability of incurring a large loss (first-order risk

averse behavior). In the second set of choices subjects accept, on average,

5.27 gambles. Hence, on average, subjects accept fifty-fifty gambles with

positive mean and reject fifty-fifty gambles with negative mean (risk neutral
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behavior). Finally, in the third set of choices subjects accept, on average,

6.94 gambles. Therefore, on average, subjects are willing to accept a small

stake negative mean gamble in exchange for a small probability of attaining

a large gain (first-order risk seeking behavior).

The pattern of choices described in the previous paragraph is incompat-

ible with all subjects following EU and making random errors. In contrast

to EU, the absolute frequencies vary substantially across the three different

sets of choices. The number of subjects who reject at least one gamble with

positive mean goes from 68 (out of 109) in the first set of choices to 31 (in the

second) and then to 20 (in the third). The number of subjects who accept

at least one gamble with negative mean is 18 in the first set of choices, 18 in

the second, and 59 in the third. Finally, the number of multiple switchers

is 8 (6, 2 and 4 in the different skew conditions).

Table 5 shows the results of regressions using the number of accepted

gambles as the dependent variable.4 Column 1 shows the results of a regres-

sion including a constant and two dummies for the second and third choice

sets as regressors. The estimates are, of course, consistent with average

number of lotteries accepted reported in the first row of Table 4. Moreover,

the differences in lottery choice patterns across the three sets of choices are

statistically significant: on average, subjects accept more gambles (1.606

and 3.284) in the second and third sets of choices than in the first one.

insert Table 5 here

The regression reported in Column 2 also includes dummy variables to

control for the magnitude of the stakes and for the order in which the three

sets of choices were presented to subjects. Since none of these effects are

significant, we pool the data with respect to stakes and order from now on.

4The regressions reported in table 5 exclude the 8 multiple switchers so that the number

of accepted lotteries corresponds to the switching point. The subsequent analysis includes

all 109 subjects.
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4 Decision Models

This section briefly summarizes the four non-EU decision models under con-

sideration. It starts with the non-reference-dependent models, RDU and

WU, and then it moves on to the reference-dependent models, PT and ST.

4.1 Rank Dependent Utility

According to rank dependent utility (Quiggin, 1982) the value of a gamble

X which yields a gain of g > 0 with probability p and a loss of l < 0 with

probability 1− p is

RDU(w +X) = d1u(w + g) + d2u(w + l)

= h(p)u(w + g) + [1− h(p)]u(w + l),

where u(·) is the utility function, h(p) is the probability weighting function,

and w is the endowment. We specify u(·) using exponential utility, i.e.,

constant absolute risk aversion:

u(w + x)

 1−e−β(w+x)

β , β 6= 0

w + x, β = 0
,

where x is the outcome of a gamble. The parameter β determines the

curvature of the utility function. β > 0 corresponds to risk aversion, β = 0

to risk neutrality, and β < 0 to love for risk. Exponential utility has been

widely used in economics and it generally fits experimental data on utility

measurement well (e.g. Abdellaoui et al. 2007).

To model probability weighting, we use the one-parameter probability

weighting function in Goldstein and Einhorn (1987):5

h(p) =
pη

pη + (1− p)η
,

5Given that our gambles only have three probability values and that we will measure

loss aversion in the PT model we cannot identify a two parameter probability weighting

function.
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where the parameter η determines the degree of probability weighting. When

η = 1 there is no probability weighting and we are back to EU. If η ∈ (0, 1),

the function captures the inverse s-shape pattern where low probabilities are

upweighted and high probabilities are downweighted. If η > 1 we have an

s-shape pattern where low probabilities are downweighted and high proba-

bilities are upweighted.

4.2 Weighted Utility

According to weighted utility (Chew, 1983) the value of a gamble X which

yields a gain of g > 0 with probability p and a loss of l < 0 with probability

1− p is

WU(w +X) =
pWw+gu(w + g) + (1− p)Ww+lu(w + l)

pWw+g + (1− p)Ww+l
,

where u(·) is the utility function, which will be the same as with RDU, and

Ww+g and Ww+l are the outcome weights. We specify these outcome weights

as Ww+g = eα(w+g) and Ww+g = eα(w+l). Hence, if α = 0 we have EU, if

α > 0 then larger outcomes get more weight and if α < 0 larger outcomes

get less weight.

4.3 Prospect Theory

According to prospect theory (Kahneman and Tversky, 1992), the value of

a gamble X that offers a gain g > 0 with probability p and a loss l < 0 with

probability 1− p is

PT (X|r) = d+u(g|r) + d−u(l|r) = h+(p)u(g|r) + h−(1− p)u(l|r),

where d+ and d− are the gain and loss decision weights, respectively, h+

and h− are the gain and loss probability weighting functions, respectively,

u is the gain-loss utility, and r represents some fixed referent, usually the

status-quo.
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There are different definitions of loss aversion in the literature and it is

still not clear which one is the best (see Schmidt and Zank, 2005; Abdellaoui

et al., 2007). Here we follow Köbberling and Wakker’s (2005) definition,

which assumes that u(x|r) is a composition of a loss aversion index λ > 0,

reflecting the different processing of gains and losses, and basic utility of

gains and losses. Formally,

u(x|r) =

 u+(x|r) if x ≥ r

−λu−(−x|r) if x < r
.

where u+ is the basic utility from gains, and u− the basic utility from losses.

If people pay more attention to losses, λ exceeds 1, and u is steeper for losses

than for gains.6

To estimate the PT model we take r = 0, u(0|0) = 0, and we adopt the

exponential specification to parameterize the basic utility of gains

u+(x|0) =

 1−e−β+x
β+ , β+ 6= 0

x, β+ = 0
,

and the basic utility of losses

u−(−x|0) =

 1−e−β−(−x)

β− , β− 6= 0

−x, β− = 0
.

The parameters β+ and β− determine basic utility of gains and losses, re-

spectively. When β+ and β− are positive, there is diminishing sensitivity to

outcomes since u(x|0) is concave over gains and convex over losses. When

β+ and β− are negative, there is increasing sensitivity to outcomes since

6The function u has a kink at r and is smooth everywhere else. The kink is caused by

loss aversion, and does not reflect an intrinsic value of outcomes. That is, it is plausible

that the basic utility function is differentiable at r. Thus, they define the loss aversion

index as λ = u′↑(x|r)/u′↓(x|r), where u′↑(x|r) denotes the left, and u′↓(x|r) the right deriva-

tive of u at r (both derivatives are assumed to exist and be positive and finite). If the loss

aversion index is equal to 1, there is no loss aversion. If the index is greater than 1, the

agent is loss averse.
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u(x|0) is convex over gains and concave over losses. Under (4.3) and (4.3)

both the utility for gains and the utility for losses have derivative 1 at 0

and, thus, the basic utility functions are differentiable at 0. Consequently,

Köbberling and Wakker’s (2005) definition of loss aversion can be computed

under exponential utility. The exponential specification also has the desir-

able feature that if λ ≥ 1 then we have not only loss aversion in the sense

of Köbberling and Wakker (2005), but also loss aversion in the sense of

Kahneman and Tversky (1979), that is, for any gain x, −U(−x|r) ≥ U(x|r).

As before, we adopt Goldstein and Einhorn’s (1987) specification to pa-

rameterize probability weighting. Here we will consider two specifications.

The first specification, PT1, has the same probability weighting parameter

η for gains and for losses. The second specification, PT2, is more flexible

and allows the degree of probability weighting to be different in the gain and

loss domains (η+ and η−, respectively). When η+ and η− are both less than

unity, there is inverse s-shape probability distortion over gains and losses.

When η+ and η− are both greater than unity, there is s-shape probability

distortion over gains and losses.

4.4 Salience Theory

According to salience theory (Bordalo et al., 2012), the value of a gamble X

that offers a gain g > 0 with probability p and a loss l < 0 with probability

1− p is

ST (X|r) = d+u(g|r) + d−u(l|r),

where d+ and d− are the gain and loss decision weights, respectively, u

is the gain-loss utility, and r represents the reference point. To estimate

the ST model we take r = 0, u(0|0) = 0, and we adopt the exponential

specification in (4.3) and (4.3) to parameterize the basic utility of gains and
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losses, respectively. The gain decision weight is given by

d+ =
p(δ+)kg

p(δ+)kg + (1− p)(δ+)kl
,

and the loss decision weight by

d− =
(1− p)(δ−)kl

(1− p)(δ−)kl + p(δ−)kg
.

In the above expressions the parameters δ+ and δ− measure the extent to

which salience distorts the gain and loss decision weights, respectively, cap-

turing the degree of local thinking. When δ+ and δ− are both equal to 1,

decision weights coincide with objective probabilities. When δ+ and δ− are

below 1 however, the decision maker is a local thinker, namely, she over-

weights the most salience states and underweights the least salient states.

The gain and loss salience rankings, kg and kl, follow from the gain and loss

salience functions

σ(g, 0) =
|g − 0|

|g|+ |0|+ ζ

and

σ(l, 0) =
|l − 0|

|l|+ |0|+ ζ

where ζ = 1. When σ(g, 0) > σ(l, 0) then kg = 1 < 2 = kl. When σ(g, 0) <

σ(l, 0) then kg = 2 > 1 = kl. When σ(g, 0) = σ(l, 0) then kg = 1 = kl. As

in PT we will consider two ST specifications. The first specification, ST1,

has the same δ for gains and for losses whereas the second specification,

ST2, allows δ to be different in the gain and loss domains (δ+ and δ−,

respectively).

5 Estimation Strategy

This section presents our estimation strategy. First, it briefly discusses

the random utility approach we apply for estimating the decision models’

parameters. Subsequently, it introduces the finite mixture specification to

account for EU and non-EU preferences.
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5.1 Random Utility Approach

To estimate the different decision models’ parameters, we follow McFad-

den’s (1981) random utility approach for discrete choices. Consider a subject

whose behavior is described by decision modelM ∈ {EU,RDU,WU,PT, ST}.

The subject’s utility from accepting or rejecting the lottery O ∈ {a, r}, at a

given decision,

UM (O; θM , γM ) = UM (O; θM ) + εO ,

is random and consists of option O’s deterministic utility UM (O; θM ) as

well as an i.i.d. random variable εO. The random variable εO represents

noise in the subject’s utility evaluation. It follows a type 1 extreme value

distribution with scale parameter 1/γM . The vector θM contains model M ’s

behavioral parameters.

If UM (O = a; θM , γM ) ≥ UM (O = r; θM , γM ) the subject accepts the

lottery. Hence, the conditional probability of accepting the lottery is given

by

Pr (O = a|θM , γM ) = Pr[UM (O = a; θM )− UM (O = r; θM ) ≥ εr − εa]

=
exp[γMUM (O = a; θM )]

exp[γMUM (O = a; θM )] + exp[γMUM (O = r; θM )]
.

Note that the parameter γM governs the choice sensitivity towards dif-

ferences in deterministic utility. If γM is 0 the subject chooses each option

with probability 50% regardless of the deterministic utility it provides. If

γM is arbitrarily large the probability of choosing the option with the higher

deterministic utility approaches 1.

The subject’s contribution to the random utility model’s density function

follows directly from the product of the above conditional probabilities over
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all decisions:

fM (O; θM , γM ) =

10∏
i=1

3∏
j=1

Pr (Oij= a|θM , γM ) I(Oij=a) · Pr (Oij= r|θM , γM ) 1−I(Oij=a) ,

where the indicator I(Oij = a) is 1 if the subject accepts the lottery and 0

otherwise.

Reported standard errors are clustered on subjects to account for the

potential serial correlation across decisions that may result from the prize-

list design.

5.2 Finite Mixture Specification

While on average observed risk taking behavior typically contradicts ex-

pected utility theory’s predictions, there is vast individual heterogeneity. In

particular, previous studies found the population to be made up by a ma-

jority type who clearly deviates from EU and a minority type who behaves

in line with EU.

To avoid confounds in our parameter estimates, we take this behavioral

heterogeneity into account and apply the following finite mixture specifi-

cation to segregate the subjects into EU and a non-EU types. Ex-ante

individual type-membership is unknown, i.e. we cannot observe whether a

subject belongs to the EU or the non-EU type. Hence, to obtain an sub-

ject’s likelihood contribution, we need to weight her type-specific density

contributions fM (O; θM , γM ) with the corresponding ex-ante probabilities

πEU of type-membership:

`(Ψ;O) = πEUfEU (O; θEU , γEU )+(1−πEU )fnon−EU (O; θnon−EU , γnon−EU ) ,

where the parameter vector Ψ = (θEU , θnon−EU , γEU , γnon−EU , πEU ) con-

tains the EU and non-EU types’ behavioral parameters as well as the un-

known ex-ante probability of being an EU type. The ex-ante probability of
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being an EU type, πEU , is the same across all subjects and corresponds to

the EU type’s share among the population.

Once we obtain the finite mixture model’s maximum likelihood estimates

Ψ̂, the individual ex-post probabilities of belonging to the EU type follow

directly by Bayes’ law:7

τEU =
π̂EUfEU (O; θ̂EU , γ̂EU )

π̂EUfEU (O; θ̂EU , γ̂EU ) + (1− π̂EU )fnon−EU (O; θ̂non−EU , γ̂non−EU )

These ex-post probabilities of EU type-membership allow us to classify each

subject into the type that best fits her behavior given the finite mixture

model’s parameter estimates Ψ̂. Furthermore, they also enable us to asses

the ambiguity of the subjects’ type-classification. If the finite mixture model

classifies the subjects cleanly into either the EU or the non-EU type most of

these ex-post probabilities of EU type-membership are either close to 1 or

close to 0, respectively. However, if the finite mixture model fails to come

up with a unambiguous classification, many subjects exhibit a τEU close to

1/2. We therefore inspect the distribution of these ex-post probabilities of

EU type-membership to assess the finite mixture model’s performance in

classifying the subjects into the EU and non-EU types.

In total, we estimate six such finite mixture specifications each using a

different behavioral model for the non-EU type: Two non-reference-dependent

models, RDU and WU, as well as four reference-dependent models, PT1,

7Note that the above individual likelihood contribution is highly non-linear even af-

ter taking logs. Maximizing the finite mixture model’s likelihood is therefore not trivial

and standard numerical maximization techniques, such as the BFGS algorithm for ex-

ample, will usually fail in finding its global maximum. We therefore apply Dempster et.

al’s (1977) expectation maximization (EM) algorithm to obtain the model’s maximum

likelihood estimates Ψ̂. Instead of maximizing the finite mixture model’s complete log

likelihood, the EM algorithm proceeds iteratively in two steps: In the E-step, it computes

the individual ex-post probabilities of type-membership given the actual fit of the model.

In the subsequent M-step, the EM-algorithm updates the model’s fit by using these ex-post

probabilities to maximize each types’ log likelihood contribution separately.

17



PT2, ST1, and ST2.

6 Results

In this section we present and discuss our findings. We explain and present

the results of our model selection strategy. Afterwards, we present and

interpret the estimation results.

6.1 Model Selection

To select the model with the best descriptive power we first compare the log

likelihood values of all models that share the same number of parameters.

Subsequently, we apply the Integrated Complete Likelihood criterion (ICL)

to select the best fitting model among the remaining candidates that differ

in the number of parameters. We start by comparing the descriptive power

of six finite mixture models versus the six pooled models. After that, within

the group of finite mixture models, we compare the reference-dependent to

the non reference-dependent models.

The ICL is a criterion to select among finite mixture models with differ-

ent numbers of types C, a task where classical model selection criteria such

as the Akaike Information Criterion (AIC) and the Bayesian Information

Criterion (BIC) may perform badly (Biernacki et al., 2000 and McLach-

lan and Peel, 2000) 8. The ICL penalizes the BIC for the entropy in the

classification of subjects into types:

ICL = BIC − 2

N∑
i=1

C∑
c=1

τic ln τic

8Lo, Mendell, and Rubin (2001) proposed a statistical test (LMR-test) to select among

finite mixture models with varying numbers of types, which is based on Vuong’s (1989)

test for non-nested models. However, the LMR-test is unlikely to be suitable when the

alternative is a single-type model with strongly nonnormal outcomes (Muthén, 2003).
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Note that the entropy is low if the finite mixture model unambiguously

classifies each subject into one type, i.e. when all τic are either close to 0

or close to 1. The entropy is high, on the other hand, if the classification

of subjects into types is ambiguous and many subjects exhibit τic close to

1/C. In the pooled model with C = 1 type the ICL coincides with the BIC

as the entropy is zero. The model with the best descriptive power exhibits

the lowest ICL.

The columns in Table 6 display the ICL for the pooled and the corre-

sponding mixture models. In the rows are the six different specifications

for non-EU behavior: PT1, PT2, ST1, ST2, RDU and WU. In each row

the corresponding specification is used in the pooled model and in the finite

mixture model’s non-EU group (see (5.2)).

insert Table 6 here

The values in the table show that the ICL prefers the finite mixture mod-

els that control for EU and non-EU behavior over the pooled models. This

is in line with previous evidence that there is heterogeneity in individual risk

attitudes and that this heterogeneity may be characterized by an EU type

and a non-EU type (Bruhin et al. (2010) and Conte et al. (2011)). The

pooled models for non-EU behavior ignore this heterogeneity. Consequently,

their parameter estimates do not correctly reflect the non-EU subjects’ av-

erage behavior since they are confounded by the presence of EU subjects

(the estimates of the pooled models are available upon request).

Table 6 also shows that within the group of finite mixture models,

reference-dependent models always perform better than non-reference ones.

The finding supports the idea that reference-dependence is the most im-

portant deviation from EU. Within the group of reference-dependent finite

mixture models PT and ST perform almost equally well and models with

sign dependent decision weights, (PT2 and ST2) perform better than those

without (PT1 and ST1). Within the group of non reference-dependent fi-
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nite mixture models RDU performs better than WU. Given these results,

we will focus on interpreting the estimates of the reference-dependent finite

mixture models in the remainder of the paper. For the interested reader, the

parameter estimates of the non-reference-dependent finite mixture models

are presented in an Appendix at the end of the paper. Furthermore, the

appendix also shows that we arrive at the same results if we select among

the models based on the AIC or BIC instead of the ICL.

6.2 Estimation Results

In this section we report and interpret the estimation results of the reference-

dependent finite mixture models. We first compare the segregation into the

EU and non-EU types before interpreting the estimates of the behavioral

parameters.

The parameter estimates for the PT and ST models are displayed in

Tables 7 and 8, respectively. The tables show that at the aggregate level

approximately one half of the subjects can be classified as EU and the other

half as non-EU. The tables also show that we find the same aggregate pro-

portion of EU types irrespective of the alternative models.

insert Tables 7 and 8 here

At the individual level, subjects are cleanly segregated into either EU or

non-EU types. This clean segregation of subjects into types is reflected by

the subjects’ posterior probabilities of EU type-membership, τEU , obtained

from (5.2). Figure 1 reports the distribution of τEU obtained from the four

finite mixture models.

insert Figure 1 here

The two panels on the top show the τEU for the models where non-EU

types have PT1 and PT2 preferences. The two panels on the bottom report

the τEU for the models where non-EU types have ST1 and ST2 preferences.
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In each of the four panels we see that almost all subjects get unambiguously

classified as either EU (τEU close to 1) or non-EU (τEU close to 0). There

are only very few subjects with an ambiguous classification, i.e., τEU in

the vicinity of 1/2. Moreover, the four models yield essentially the same

segregation of types at the individual level: 53 (52) subjects are classified

as EU types and 56 (57) as non-EU by the ST1 and PT1 (ST2 and PT2)

models.

Like Bruhin et al. (2010) and Conte et al. (2011) we also find a majority

of non-EU types. In contrast to these two studies we find a higher proportion

of EU types: 50% versus around 20%. This difference might arise from the

fact that in our study subjects only have to decide whether they accept or

reject two-outcome lotteries, the simplest possible choice under risk involving

both gains and losses. The other studies involved more complex decisions.

In Bruhin et al. (2010) subjects had to choose between a sure amount

and a two-outcome gamble involving only gains or only losses at various

probability levels. In Conte et al. (2011) subjects made choices between two

three-outcome gambles involving only gains at various probability levels.

Across all models there is some evidence for the EU subjects being risk

averse since the estimate of β is positive and either marginally significant or

insignificant. The preferences of non EU subjects are characterized by three

features: (1) the shape of the basic utility over gains and losses (parameters

β+ and β−), (2) the decision weights (η, η+ and η− for PT and δ, δ+ and δ−

for ST), and (3) the loss aversion index (λ).

For the models without sign dependent decision weights, PT1 and ST1,

we obtain: (i) linear utility over gains since β+ is not significantly different

from 0 and convex utility over losses since β− is significantly greater than

0, (ii) inverse s-shape probability weighting for PT1 since η is significantly

less than 1, (iii) nonlinear context dependent probability weights since δ is

significantly less than 1, and (iv) loss neutrality for PT1 since λ is not sig-
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nificantly different from 1 and (v) loss seeking for ST1 since λ is significantly

less than 1.

For the models with sign dependent decision weights, PT2 and ST2, we

find: (i) diminishing sensitivity to monetary gains and losses (s-shaped gain-

loss utility function) for PT2, (ii) diminishing sensitivity to monetary gains

and constant sensitivity to losses for ST2, (iii) inverse s-shape probability

weighting in the gain domain and linear probability weighting in the loss

domain for PT2, (iv) nonlinear context dependent probability weights in

the gain domain and linear context dependent probability weights in the

loss domain (v) (slight) loss seeking for PT2 and loss neutrality for ST2.

Overall, PT and ST yield similar results, which is not surprising since the

main goal of the lottery choice task is not to discriminate between these two

theories through special lotteries for which they make different predictions.

Generally, these parameter estimates are plausible given the existing

literature. Studies that report utility curvature for gains and losses find that

utility for losses displays diminishing sensitivity in most cases but losses are

evaluated more linearly than gains. Bruhin et al. (2010) and Conte et al.,

(2011) also find evidence of inverse s-shape probability weighting in their

non-EU samples.9 We also find more upweighting of low probabilities for

gains than for losses like Fehr-Duda et al. (2010). Finally, our subjects do

not display loss aversion. This result is consistent with Ert and Erev (2010),

and Fehr-Duda et al. (2010) as well as some field evidence (e.g. Barseghyan

et al. 2010), but stands in contrast to the many studies which interpret

rejection of fifty-fifty gain-loss gambles with positive mean as loss aversion

9The finding is also consistent with evidence from field studies. For example, both

Snowberg and Wolfers (2010) and Jullien and Salanié (2000) find that inverse s-shape

probability weighting dominates in explaining why there is overbetting on the long-shot

horse while favorites are underbet. In the context of insurance choices, Cohen and Einav

(2007) and Barseghyan et al. (2010) find preferences in which inverse s-shape probability

weighting plays the most important role.

22



(e.g., Gächter et al. 2007). Our results support the idea that loss aversion

is volatile and depends on framing (see Wakker 2010, pp. 265).

7 Conclusion

We propose a task to elicit attitudes towards risk that is sufficiently sim-

ple and compact to be easily used in field or lab experiments where risk

elicitation is not the main experiment.

Our elicitation of risk attitudes is done with mixed gambles. This al-

lows us to discriminate between the two main classes of alternatives to EU:

reference-dependent models where utility is defined over gains and losses

relative to a reference point (e.g., PT and ST) and non-reference-dependent

ones where utility is defined over final outcomes (e.g., RDU and WU). The

use of mixed gambles also allows us to estimate the PT and ST models in

their fully specified forms, i.e., accounting for reference-dependent utility

functions, sign dependent decision weights and loss aversion. We obtain the

following main results.

First, individual behavior is heterogeneous with roughly 50% of the sub-

jects behaving as EU maximizers and 50% as non-EU maximizers, and these

proportions are mostly robust to the consideration of different alternatives to

EU. This result reinforces the idea that the measurement of risk attitudes

should take preference heterogeneity into account. This heterogeneity, as

other research has suggested and our data confirms, implies that basing risk

preference elicitation procedures on a single preference theory is inappropri-

ate and may lead to biased results.

Second, models where subjects evaluate utilities relative to a reference

point outperform models where subjects derive utility from final wealth

outcomes. In particular, PT and ST describe behavior better than non-

reference-dependent alternatives such as RDU and WU which only assume

non-linear decision or outcome weights.
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Gächter, Simon, Johnson, Eric and Andreas Herrmann (2007). “Individual-

Level Loss Aversion in Riskless and Risky Choices,” Centre for Decision

Research and Experimental Economics Discussion Paper Series, ISSN 1749-

3293.

26



Goldstein, William and Hillel Einhorn (1987): “Expression Theory and the

Preference Reversal Phenomena,” Psychological Review, 94, 236–254.

Greiner, Ben (2004). “An Online Recruiting System for Economic Experi-

ments,” In Forschung und wissenschaftliches Rechnen 2003. GWDG Bericht

63, ed. Kurt Kremer and Volker Macho, 79-93. Göttingen: Ges. für Wiss.

Harrison, Glenn and Elisabet Rutström (2009). “Expected Utility Theory

and Prospect Theory: One Wedding and a Decent Funeral,” Experimental

Economics, 12, 133-158.

Hey, John and Chris Orme (1994). “Investigating Generalizations of Ex-

pected Utility Theory Using Experimental Data,” Econometrica, 62(6), 1291-

1326.

Holt, Charles, and Susan Laury (2002). “Risk Aversion and Incentive Ef-

fects,” American Economic Review, 92(5), 1644-55.

Houser, Daniel and John Winter (2004). “How Do Behavioral Assumptions

Affect Structural Inference?” Journal of Business and Economic Statistics,

22, 64-79.

Houser, Daniel, Michael Keane, and Kevin McCabe (2004). “Behavior in a

Dynamic Decision Problem: An Analysis of Experimental Evidence Using a

Bayesian Type Classification Algorithm,” Econometrica, 72, 781-822.
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Appendix: RDU and WU Results

Table 9 reports the parameter estimates of the mixture models where the

non-EU have RDU or WU preferences, respectively.

insert Table 9

Figure 2 displays the probabilities of EU-type-membership for the two

models. We see that both models cleanly segregate subjects into the two

types. In the model where the non-EU types have WU preferences we find 58

EU subjects and 51 non-EU subjects. In the model where the non-EU types

have RDU preferences we find 55 EU subjects and 54 non-EU subjects. In

contrast to the reference-dependent models, however, the individual classifi-

cations of the non-reference-dependent models differ considerably: the RDU

and the WU models only classify 54 out of the 109 subjects into the same

types.

insert Figure 2
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Tables and Figures

Table 1: First Set of Choices (1x stake)

Choice Lottery (L) Accept Reject E(L) V (L)

1 10% of -20 CHF, 90% of 5 CHF 2.50 56

2 10% of -25 CHF, 90% of 5 CHF 2.00 81

3 10% of -30 CHF, 90% of 5 CHF 1.50 110

4 10% of -35 CHF, 90% of 5 CHF 1.00 144

5 10% of -40 CHF, 90% of 5 CHF 0.50 182

6 10% of -45 CHF, 90% of 5 CHF 0 225

7 10% of -50 CHF, 90% of 5 CHF -0.50 272

8 10% of -55 CHF, 90% of 5 CHF -1.00 324

9 10% of -60 CHF, 90% of 5 CHF -1.50 380

10 10% of -65 CHF, 90% of 5 CHF -2.00 441

Note: The last two columns were not displayed to experimental subjects.
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Table 2: Second Set of Choices (1x stake)

Choice Lottery (L) Accept Reject E(L) V (L)

1 50% of -1 CHF, 50% of 6 CHF 2.50 12

2 50% of -2 CHF, 50% of 6 CHF 2.00 16

3 50% of -3 CHF, 50% of 6 CHF 1.50 20

4 50% of -4 CHF, 50% of 6 CHF 1.00 25

5 50% of -5 CHF, 50% of 6 CHF 0.50 30

6 50% of -6 CHF, 50% of 6 CHF 0 36

7 50% of -7 CHF, 50% of 6 CHF -0.50 42

8 50% of -8 CHF, 50% of 6 CHF -1.00 49

9 50% of -9 CHF, 50% of 6 CHF -1.50 56

10 50% of -10 CHF, 50% of 6 CHF -2.00 64

Note: The last two columns were not displayed to experimental subjects.

Table 3: Third Set of Choices (1x stake)

Choice Lottery (L) Accept Reject E(L) V (L)

1 90% of -5 CHF, 10% of 70 CHF 2.50 506

2 90% of -5 CHF, 10% of 65 CHF 2.00 441

3 90% of -5 CHF, 10% of 60 CHF 1.50 380

4 90% of -5 CHF, 10% of 55 CHF 1.00 324

5 90% of -5 CHF, 10% of 50 CHF 0.50 272

6 90% of -5 CHF, 10% of 45 CHF 0 225

7 90% of -5 CHF, 10% of 40 CHF -0.50 182

8 90% of -5 CHF, 10% of 35 CHF -1.00 144

9 90% of -5 CHF, 10% of 30 CHF -1.50 110

10 90% of -5 CHF, 10% of 25 CHF -2.00 81

Note: The last two columns were not displayed to experimental subjects.
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Table 4: Number of Lotteries Accepted Across Choice Sets

Acceptance Behavior First Second Third

(lottery choice category) Choice Set Choice Set Choice Set

Average number of lotteries accepted 3.69 5.27 6.94

Reject all lotteries 20 1 9

Accept 1, reject 2 to 10 11 2 1

Accept 1 and 2, reject 3 to 10 17 4 4

Accept 1 to 3, reject 4 to 10 11 11 3

Accept 1 to 4, reject 5 to 10 9 13 3

Accept 1 to 5, reject 6 to 10 11 38 16

Accept 1 to 6, reject 7 to 10 6 20 10

Accept 1 to 7, reject 8 to 10 1 3 5

Accept 1 to 8, reject 9 and 10 3 4 4

Accept 1 to 9, reject 10 2 2 3

Accept all 12 9 47

Multiple Switchers 6 2 4

Total 109 109 109
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Table 5: Regression Results: Number of Accepted Lotteries

(1) (2)

Constant 3.661 3.601

(0.298) (0.384)

Second set 1.606∗∗∗ 1.608∗∗∗

(0.359) (0.362)

Third set 3.284∗∗∗ 3.287∗∗∗

(0.434) (0.436)

2x stake −0.093

(0.329)

Order (2nd) 0.121

(0.403)

Order (3rd) 0.152

(0.382)

R2 0.179 0.179

R̄2 0.174 0.167

No. subj. 101

No. obs. 3030

Note: Robust standard errors in parentheses. *** indicates significance at 1%.
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Table 6: Integrated Complete Likelihood for Model Selection

Mixture Models Pooled Models

Reference-Dependent Models

PT1 2,705.435 3,346.132

PT2 2,640.207 3,353.295

ST1 2,688.582 3,303.387

ST2 2,681.154 3,311.029

Non Reference-Dependent Models

RDU 2,780.694 3,453.561

WU 3,059.138 3,630.937
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Table 7: PT Mixture Models’ Parameter Estimates

EU-PT1 Model EU-PT2 Model

EU PT1 EU PT2

π 0.481 0.519 0.477 0.523

(0.077) (0.077) (0.062) (0.062)

β 0.0041 0.0044∗

(0.0026) (0.0025)

β+ 0.0100 0.0415∗∗∗

(0.0150) (0.0126)

β− 0.0179∗∗ 0.0157∗∗∗

(0.0079) (0.0052)

η 0.6487†††

(0.0658)

η+ 0.2036†††

(0.1481)

η− 0.8846

(0.0936)

λ 0.9079 0.8716†

(0.1043) (0.0760)

γ 1.2786∗∗∗ 0.9882∗∗∗ 1.3899∗∗ 1.2417∗∗∗

(0.5934) (0.2514) (0.4935) (0.1764)

LL −1, 477.858 −1, 438.898

No. par. 8 9

No. subj. 109 109

No. obs. 3,270 3,270

Note: Stars (daggers) indicate coefficients that are significantly different from 0 (1) at

the following levels: ∗,† 10%, ∗∗,†† 5%, ∗∗∗,††† 1%.
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Figure 1: Distribution of individual probabilites of EU-type-membership
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Table 8: ST Mixture Models’ Parameter Estimates

EU-ST1 Model EU-ST2 Model

EU ST1 EU ST2

π 0.486 0.514 0.478 0.522

(0.061) (0.061) (0.066) (0.066)

β 0.0041∗ 0.0044

(0.0021) (0.0029)

β+ 0.0099 0.0285∗

(0.0188) (0.0163)

β− 0.0104∗∗ 0.0050

(0.0048) (0.0051)

δ 0.3885†††

(0.0645)

δ+ 0.1598†††

(0.0711)

δ− 0.9999

(0.0607)

λ 0.6368†† 0.8511

(0.1532) (0.1579)

γ 1.2883∗∗ 0.5417∗∗∗ 1.3876∗∗ 0.5358∗∗∗

(0.5340) (0.1085) (0.6575) (0.0794)

LL −1, 467.634 −1, 461.164

No. par. 8 9

No. subj. 109 109

No. obs. 3,270 3,270

Note: Stars (daggers) indicate coefficients that are significantly different from 0 (1) at

the following levels: ∗,† 10%, ∗∗,†† 5%, ∗∗∗,††† 1%.
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Table 9: Parameter Estimates of Non-Reference Dependent Mixture Models

EU-RDU Model EU-WU Model

EU RDU EU WU

π 0.505 0.495 0.553 0.447

(0.095) (0.095) (0.054) (0.054)

β −0.002 0.0082∗∗∗ 0.0039∗∗∗ 0.0096∗∗

(0.0019) (0.0026) (0.0010) (0.0039)

η 0.787†††

(0.0401)

α 1.5822∗∗∗

(0.0064)

γ 0.4983∗∗∗ 2.2317∗∗∗ 1.2986∗∗∗ 0.1561∗∗

(0.1310) (0.4594) (0.1800) (0.0637)

LL −1, 515.559 −1, 660.461

No. par. 6 6

No. subj. 109 109

No. obs. 3,270 3,270

Note: Stars (daggers) indicate coefficients that are significantly different from 0 (1) at

the following levels: ∗,† 10%, ∗∗,†† 5%, ∗∗∗,††† 1%.
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Table 10: BIC and AIC

Mixture Models Pooled Models

BIC AIC BIC AIC

Reference-Dependent Models

PT1 3, 020.455 2, 971.715 3, 346.132 3, 315.670

PT2 2, 950.629 2, 895.796 3, 353.295 3, 316.740

ST1 3, 000.007 2, 951.267 3, 303.387 3, 272.924

ST2 2, 995.161 2, 940.328 3, 311.029 3, 274.474

Non Reference-Dependent Models

RDU 3, 079.673 3, 043.118 3, 453.561 3, 435.283

WU 3, 369.477 3, 332.921 3, 630.937 3, 612.659

Figure 2: Distribution of individual probabilites of EU-type-membership
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Experimental Material: Detecting Heterogeneous Risk Atti-

tudes with Mixed Gambles

Research Study

Decision-Making under Risk

Instructions

Read these instructions carefully as your understanding of them will

affect your ability to earn money.

Your decision sheet shows a table with ten decisions listed on the left.

Each decision is a choice between ”Accept” and ”Reject” the Lottery. If

you Accept the lottery you have the chance of either winning or losing some

money. If you Reject the lottery you will not earn anything and you will

not lose anything – your payoff will be zero.

You will make ten choices and record these by ten check marks, but only

one of them will be used in the end to determine your earnings. Before you

start making your ten choices, please let me explain how these choices will

affect your earnings for this part of the experiment.

We will use a ten-sided die to determine payoffs; the faces are numbered

from 1 to 10 (the ”0” face of the die will serve as 10.) After you have made

all of your choices, we will throw this die twice, once to select one of the

ten decisions to be used, and a second time to determine your payoff if you

chose ”Accept” for that Lottery.

Even though you will make ten decisions, only one of these will end up

affecting your earnings, but you will not know in advance which decision

will be used. Obviously, each decision has an equal chance of being used in

the end.

Now, please look at Decision 1 at the top of Example Problem Set on

the next page. If you Accept the Lottery you will earn 50.00 CHF if the

throw of the ten sided die is 1, and you will lose 5.00 CHF if the throw is
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2-10. The other Decisions are similar, except that as you move down the

table, the value of the highest payoff decreases. For each Decision you are

asked to choose whether or not you want to take the gamble by checking

the Accept or Reject columns.

This table is just an example and is not to be used to make real decisions.

The problems for which you will be asked to make decisions have a similar

structure, but the magnitudes of the gains and losses will be different, as

well as the numbers on the dies that will determine if you make a gain or a

loss.

Your gains - You may win or lose money if you Accept the Lottery. If

you win you will be paid the amount won; if you lose you will have to pay

the amount lost. The maximum amount that you can lose in the gambles is

CHF 65. However, because we don’t want you to end with less money than

you started out you will be given CHF 65 from which we will deduct any

loss that you may experience. In addition, you will be paid an additional

CHF 15 as a compensation for your time spent.

There will be a total of three problem sets (A B, and C), each composed

of ten decisions. In each problem set the gains, losses and chances to win

will be different. In the end we will only use one of the three problem

sets to determine your earnings. The choice of which problem set to use to

determine earnings will be made by using a six-sided die. Each problem set

has the same probability of being chosen. If the outcome of the six sided

die is either 1 or 2, problem set A counts, if the outcome is either 3 or 4 set

B counts, and if the outcome is either 5 or 6 set C counts.

To summarize, in each problem set you will make ten choices: for each

choice you will have to decide between Accept or Reject the Lottery. You

may choose Accept for some decisions and Reject for other decisions, and

you may change your decisions and make them in any order. When you are

finished with making all ten choices you will move on to the next problem
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Table 11: Example Problem Set (not to be used for actual decisions)

Decision Lottery Accept Reject

1 50 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

2 45 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

3 40 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

4 35 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

5 30 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

6 25 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

7 20 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

8 15 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

9 10 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

10 5 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

set. This will be repeated three times. After the three problems sets are

done, we will ask you a few demographic questions about yourself.

At the end, a randomly chosen participant will first cast a six sided die,

numbered from 1 to 6, and then a 10-sided die, numbered 0 to 9 to select

the decision which determines your earnings. The 6-sided die will decide

which problem will be used and the 10-sided die will decide which decision

will be used to determine your gains or losses. The same participant will

then throw the 10-sided die again to choose whether you win or lose on that

Lottery if you decided to Accept that lottery. You will be paid all earnings
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in cash when finished.

Are there any questions? Now you may begin making your choices.

Please, do not talk with anyone while we are doing this; raise your hand if

you have a question.

Problem Set A

Instructions

Your decision sheet shows ten decisions listed on the left. Each decision

is a choice between ”Accept” and ”Reject” the Lottery. If you Accept the

lottery you have the chance of either winning or losing some money. If you

Reject the lottery you will not earn anything and you will not lose anything

– your payoff will be zero.

You will make ten choices and record these by ten check marks, but only

one of them will be used in the end to determine your earnings.

In this problem set, the gains and losses associated to each choice is dif-

ferent from before. Also, note that whether there will be gains or losses may

be determined by different numbers on the dice. Once you have completed

your choices you will move on to the next problem set. Earnings will be

determined at the end of the study.

Please check whether you Accept or Reject each lottery

Problem Set B

Instructions

As before, your decision sheet shows ten decisions listed on the left.

Each decision is a choice between ”Accept” and ”Reject” the Lottery. If

you Accept the lottery you have the chance of either winning or losing some
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Table 12: Problem Set A

Decision Lottery Accept Reject

1 70 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

2 65 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

3 60 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

4 55 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

5 50 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

6 45 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

7 40 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

8 35 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

9 30 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

10 25 CHF if the throw of the die is 1

-5 CHF if the throw of the die is 2-10

money. If you Reject the lottery you will not earn anything and you will

not lose anything – your payoff will be zero.

You will make ten choices and record these by ten check marks, but only

one of them will be used in the end to determine your earnings.

In this problem set, the gains and losses associated to each choice is dif-

ferent from before. Also, note that whether there will be gains or losses may

be determined by different numbers on the dice. Once you have completed

your choices you will move on to the next problem set. Earnings will be

determined at the end of the study.

Please check whether you Accept or Reject each lottery
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Table 13: Problem Set B

Decision Lottery Accept Reject

1 6 CHF if the throw of the die is 1-5

-1 CHF if the throw of the die is 6-10

2 6 CHF if the throw of the die is 1-5

-2 CHF if the throw of the die is 6-10

3 6 CHF if the throw of the die is 1-5

-3 CHF if the throw of the die is 6-10

4 6 CHF if the throw of the die is 1-5

-4 CHF if the throw of the die is 6-10

5 6 CHF if the throw of the die is 1-5

-5 CHF if the throw of the die is 6-10

6 6 CHF if the throw of the die is 1-5

-6 CHF if the throw of the die is 6-10

7 6 CHF if the throw of the die is 1-5

-7 CHF if the throw of the die is 6-10

8 6 CHF if the throw of the die is 1-5

-8 CHF if the throw of the die is 6-10

9 6 CHF if the throw of the die is 1-5

-9 CHF if the throw of the die is 6-10

10 6 CHF if the throw of the die is 1-5

-10 CHF if the throw of the die is 6-10

Problem Set C

Instructions

As before, your decision sheet shows ten decisions listed on the left.

Each decision is a choice between ”Accept” and ”Reject” the Lottery. If

you Accept the lottery you have the chance of either winning or losing some

money. If you Reject the lottery you will not earn anything and you will

not lose anything – your payoff will be zero.

You will make ten choices and record these by ten check marks, but only

one of them will be used in the end to determine your earnings.
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In this problem set, the gains and losses associated to each choice is dif-

ferent from before. Also, note that whether there will be gains or losses may

be determined by different numbers on the dice. Once you have completed

your choices you will move on to the next problem set. Earnings will be

determined at the end of the study.

Please check whether you Accept or Reject each lottery

Table 14: Problem Set C

Decision Lottery Accept Reject

1 -20 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

2 -25 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

3 -30 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

4 -35 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

5 -40 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

6 -45 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

7 -50 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

8 -55 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

9 -60 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10

10 -65 CHF if the throw of the die is 1

5 CHF if the throw of the die is 2-10
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