Subjective Evaluation Contracts for Overconfident Workers
Matteo Foschi, Charles River Associates

Luis Santos-Pinto, Faculty of Business and FEconomics, University of Lausanne*
This version: March 22, 2021
—-—-— Main Appendix ---
Proof of Lemma 1: To prove (i), note that:
Ve = Nyt (L=N )y = NPy +(1-N) Py = P [N + (L= NM)nf] = PIY.
To prove (ii), start from Assumption 2 and use (i) to obtain:

PaaPuu_PauPua >O

PuuPuul’T9 — Py PuulVTY > 0

VéaViu - fygu’yvia >0 (7)
by positivity of TYIV. To prove (iii), note that P,, = 1 — Py, and P,y = 1 — Py,.

Substitute for the latter in Assumption 2 to obtain:

<1_Pau)Puu_Pau(1_Puu>>O
Puu_Pau>0

Similarly, substitute for P,, = 1—-P,, and P,, = 1— P,, to obtain that P,,— P,, > 0.
Finally, to prove (iv), note that

AT, = Iy =Ty = MF+(1=M)y/ = M + (1= M) = (W = AF) (oF = 7).



Therefore

AL, + AL, = (W= M) (07 =) = (VT = AF) (v =7

This proves Lemma 1.

Proof of Lemma 2: Simple checking yields:

'Wmfyjuu - idm;?jua = (Paapuu - Paupua)ril_‘i
which is positive when

( _Paa)-pua
:paa_paapua_pua—i_paa ua:Paa_Pua+ba_bu>0-

Since, by Lemma 1, P,, > P,,, the latter inequality always holds for b, > b,. For

values of b, > b,, it yields condition (3). This proves Lemma 2.

Basic Features of Contracts: We now state and prove three results on problem
(4) which are valid for biased as well as for rational agents. Note that in order for
the truthful reporting constraints to hold, it cannot be optimal for either party to al-
ways report the same performance evaluation regardless of that party’s performance
evaluation realization. Hence, truthful reporting imposes constraints on the equilib-
rium wages and compensation levels. For example, suppose we had w,, > w,, and
Way = Wyy, With at least one inequality holding strictly. In this case, it would be
optimal for the principal to always report an unacceptable performance, regardless of
her performance evaluation realization, and this would violate the principal’s truth-
ful reporting constraints. Similarly, suppose we had c,q > ¢4 and ¢y > Cyy, With at

least one inequality holding strictly. In this case, it would be optimal for the agent to

always report an acceptable performance, regardless of his performance evaluation



realization, and this would violate the agent’s truthful reporting constraints. Since
the principal wants to pay the lowest possible wage, the direction of the inequali-
ties must be such that the wages are the lowest when the performance evaluation
reports are identical, that is, ¢ = s, the most probable outcome (under truthful re-
porting) given that signals are positively correlated. Similarly, since the agent wants
to obtain the highest possible compensation, if he believes signals are positively cor-
related, then the direction of the inequalities must be such that the compensations
are the highest when ¢ = s, the most probable believed outcome. This produces the

following two Lemmas.

Lemma 5. Given Assumption 2, any optimal contract implementing high effort fea-

tures either (i) Wyy = Waq aNd Way = Wyy, 0T (11) Wyq > Waa AN Way > Wy,
Proof. Rearranging the two (T'Rp) constraints:
H
Pyau

(wua - waa) Z (wau - wuu) H
aa

,yH
(wua - waa) S (wau - wuu)%
ua

Vot Van
= (wau - wuu)% S (wua - waa) S (wau - wuu)% (8)
aa ua

Given Assumption 2, either all the brackets in (8) are 0 (case (i)), or they have

positive signs (case (ii)). This proves Lemma 5. §

Lemma 6. If the agent believes signals are positively correlated, i.e. (3) holds, then
any optimal contract implementing high effort features either (i) cuq = Can and ¢y, =

Cua OT (i1) Caq > Can aNA Cyuyy > Cyq-



Proof. For Lemma 6 follow the same steps with the (T'R4) constraints to obtain:

;‘}'/H ,7H

When the agent believes signals are positively correlated, that is, ¥ 3% 52 37~
we have: Ty Ty

F}/Ua P)/uu

“H < ZH-

/Yaa ’yau

Given this last inequality, either all the brackets in (9) are 0 (case (i)), or they have

positive signs (case (ii)). This proves Lemma 6. §

Lemmas 5 and 6 allow us to state a Lemma which confirms one of the main
results of MacLeod (2003) for an agent who believes signals are positively correlated.
That is, unless the optimal contract features a deadweight loss, it is impossible to

implement high effort under truthful reporting. This proves Lemma 6.

Lemma 7. If the principal wishes to implement high effort under truthful reporting
and the agent believes signals are positively correlated, then there ought to exist at

least one combination of realizations of t and s where wys > 4.

Proof. Suppose not, then w;s = ¢ for all ¢t and s. Given Lemma 5 and 6, we have:
C’U/lL Z C’lLCL 2 CCLCL 2 CCLU Z C’U/UJ

where the first and third inequalities follow from Lemma 6 and the second and fourth

follow from Lemma 5. Obviously, for all inequalities to hold together we need

Cuu = Cua = Caa = Cau-

This implies that E(ci| A7) = E(cis|AF), since the agent compensation is completely

independent from the realization of ¢ and s. This, of course, violates the (IC')



constraint since

E(cis| M) — VM) < E(e| ) — V(AD).

This proves Lemma 7.

Simplifying the Effort Implementation Problem: When the (PC) is slack

problem (4) becomes:

min - Waa VL + WauVon + Waa Vi + Wun Vi, (10)
{wtsvcts}t,se{u,a}
st > adih =V 2D adh - V() (IC)
ts ts
waa’ygl + wau'}/ﬂ S wua’ygl + wuuyﬂ (TR%)
wua'}/ﬁt + wuu'yi < waa%ﬁz + wau%ﬁt (TP%)
Caa:Ysza + Cua:}/zlja > Cau:}/é{a + Cuu:ﬂ{i (TRZl)
Wts Z Cts 2 0 \V/t, s € {CL, u} (LLts)
We now show that problem (10) can be simplified to:
100 Caal (Vo) Fan + Vaa Ve Vo + T VYo — Vo Vau Vua)

+ Cau (VYA + Vo Var Ty — Fan Yo Yo T Von Yo Vo) (11)

;?H ;}'/H
s.t.  Caa <Aiaa + —F Aﬁuu) + Cau (A%u - =5 Aﬁuu) > AV (1C)

;)V/Huu uu
Caa < (1 - ~—”j}‘> Cau (TR%)
Caa Z Caus (TRGA)

where AV = V(M) — V(\F).
Lemma 8 below states that an agent believing that signals are positively cor-

related ought to be compensated in the “most positive” case, that is, when both



principal and agent report an acceptable performance. It also states that the agent
obtains no compensation when the principal deems the performance unacceptable
and the agent disagrees. Together with Lemma 10 below, Lemma 8 proves that a
deadweight loss happens only when the principal deems unacceptable a performance

deemed acceptable by the agent.

Lemma 8. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features cq,q > cyq = 0.

Proof. Define Ay, = 41 — 4L and A,, = 37 — 3L, First, we prove that A9,, > 0
and A9, < 0 for any s € {a,u} (it is easy to see that the same holds for Av,s and
A#yys). Notice that Assumption 1 is independent from Assumption 3. Therefore:

Aoy = Aty = T
= M0+ (1= MNF5 = M3 — (1= M)A7
=M Pof + (1= NPy = NPy = (1= APy
= (M = M) Pa(v7 =),

which is positive at ¢ = a and negative otherwise.?> Now we rewrite the (IC) in the

following way:
CaaDY0q T CaulDY gy T CuaDV s + Con DY = AV, (12)

Recall that any optimal contract with truthful reporting for an agent who believes
signals are positively correlated satisfies either case (i) or case (ii) of Lemma 6.

Assume case (i) of Lemma 6 holds, then (12) becomes:

Caa (A/?aa + Aﬁlau) _I_Cuu (A’?ua + Ar?uu) Z AV

N J/ N J/

TV TV
>0 <0

ZFor future reference, this also proves that, as long as b, and b, are both positive, A%,, > Aviq
and A%, < Ay, for any t.



Because of the negative sign of the second bracket, and since AV > 0 and ¢, > 0,
the above requires ¢y, > 0 to always hold. Assume now case (ii) of Lemma 6 holds,
for a similar argument, we need at least one between c¢,, and ¢, to be positive. Since
Cau > 0, case (ii) implies ¢,q > €4y > 0. This proves the first part of Lemma 8.

To prove the second part of Lemma 8, we suppose it is false, i.e., at optimum
cua > 0, and prove that there exists a profitable deviation from such a contract,
which contradicts its optimality. First of all, from Lemma 6 we know that c,, > cu.
and also ¢, > c4y. The proof now depends on whether ¢4, > 0 or ¢4, = 0.

Suppose ¢q,, > 0. Let the principal decrease both ¢,, and c¢,, by € so that their
difference remains constant (so not to affect the (T'R4) constraints). From (12)
above, we see that both ¢, and ¢,, enter negatively in the LHS of the (/C). Hence,
decreasing them, would relax the (/C') rather than tightening it. In particular, the
LHS of the (IC') constraint has increased by —e(A7,,, + A7%,,). Since we are in the

case where ¢, > 0, the principal can also decrease both c¢,, and c,, by €. In this

way, the overall change in the LHS of the (/C') is given by

—€ (A:Yaa + Ai/au =+ Ai’ua =+ Ai/uu)
— e (PaaAFa 4 PoAT, + PuAT, + PWAF“>
— (AL, + AT,) = —¢ (AT, — AT,) = 0

and therefore the (/C') binds again.

Finally, since both ¢,, and ¢,, have been decreased by ¢, the principal can decrease
also w,, and wg,, by the same amount. This holds their difference constant and does
not violate any of the relevant (LL;s). Hence, it does not violate any of the (T'Rp)
constraints either. This new contract {wys, ¢1s}es implements high effort at a lower
cost. Hence, a contract where ¢,, > 0 and c¢,, > 0 cannot be the solution to the
problem.

Suppose now, instead, that the optimal contract features c,, = 0 and define

Acy = Cuy — Cyq- Notice that this implies ¢, > ¢4, and that we are in case (ii) of



Lemma 6. We divide the proof for this case in three steps.
Step 1
When ¢,, = 0, the (T'R4) constraints imply

~H ~H
Acuff—t;f < Cga < ACUY—?}, (13)

where, since we are in case (ii) of Lemma 6 either only one of the two inequalities
holds as equality, or none. Suppose none of the two does, or just the second one, the
principal can decrease both ¢, and ¢,, by € keeping Ac, constant, relaxing the (1C)
constraint. In particular, the LHS of the (/C) has decreased by €(A%,, + AYuu)-
He can then decrease c,, by 0 = % bringing the LHS of the (IC') back to
its original value. Clearly, for some ¢, this deviation can lead to the first inequality
in (13) binding. Finally, to see that this is optimal for the principal, notice that
according to the (LL;) constraints, she can decrease w,, up to € and w,, up to d.
By decreasing both by min{e, d}, their difference does not change. Hence, (T'Rp)

constraints are not affected, while the objective function decreases. This implies

~H
Fin aa

that, at optimum, if ¢,,, = 0 the first inequality of (13) must bind and Ac,
Step 2
Given that Acu@ = C,q When c,, = 0, we now show that the principal has at

’Yaa
her disposal the following optimal deviation from a contract with c,, = 0. Let her

decrease ¢, by € and c,, by € < e. Then Ac, has decreased by (¢ — ¢y). In order
7 Vo
Vi
if this deviation can be made in such a way that it does not violate the (IC'). The

. It remains to check

to keep Ac,

H
;1;,“ = Cqa, the principal decreases c,, by (€ — €)
aa



change in the (/C) is:

;yH
_(6 - 60) ~1]L;Ai/aa - EOAﬁ/ua - eAi/uu

aa

P, I
ra

_ 5 FH 5 FH
:AFQ{ <Puu_PuaF_H)+€0Pua (F—H+1):|

AT, [ /- T _
- o [e (Puurf —Pua+PuaFf> +60PM}

= —(e—€) AT, + €gP, AT, + eP,, AT,

Fa
AT . N
= TH [6 (Ff—Pua> +€0Pua:| s

a

which is positive when:
¢ (Fff — Pua) + €9 Py > 0.

If Ff > ]Sua, the above is always true. If instead Ff < PM then the principal has to
choose € € {60, €©F ]Sj“rH }
Step 3

To conclude, we show that the above deviation is optimal. Given the decreases in
~H
the ¢, the principal can now decrease w,, up to €y and wy, up to (€ — eo);’%“. By an

argument similar to the one in Step 1, she can decrease both wages by the smallest
of the two limits, decreasing the objective function. This proves that a contract with
Cua > 0 and ¢, = 0 cannot be optimal, since the principal can deviate optimally
from it.

Hence, since a contract where ¢,, > 0 and ¢,, > 0 cannot be a solution to the

problem it follows that ¢,, = 0. This concludes the proof of the Lemma. g

We now study the principal’s incentives to report her performance evaluation
truthfully.

Lemma 9. If the agent believes signals are positively correlated, i.e. (3) holds, then

constraint (T'R%) always binds in any optimal contract implementing high effort.



Proof. Of course, in case (i) of Lemma 5 this is trivially proven. Assume now case
(ii) of Lemma 5 holds and suppose (T'R%) is slack. Then w,, > 0 must hold. From
Lemma 8, then ¢,, = 0, and the principal can simply decrease w,, until (T'R%) binds.

This would relax (T'RY%), not affect (LL,,) and decrease the objective function. §
We now solve for all w;, as functions of the compensation c.

Lemma 10. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features:
(Z) Waa = Caas
(ZZ) Wy = Cyus

(ZZZ) Way = maX{Cam cuu};

) H
(1) Wyq = Caq + (Max{Cau, Cun} — Cun) 12}:
Proof. First of all, notice that, by Lemma 9, wyq = Waq + (Way — wuu)ﬁ‘ Hence,

the principal’s objective function in (4) can be rearranged as:

H
Waa Y + Wau VL + {waa + (Wau — wuu)%} Voo + Waw Vs

and further as:

H_ H H_ H
f}/auvua q/au’)/ua
Waa (Yaa + Vua) + Wau (vf; I ) + W (%ﬁ - ) ,

where the last bracket is positive by Assumption 2. Furthermore, setting w,, =

Waa + (Wau — wuu)ﬁ; in (TRY%) we have

aa

H
Yau | H H H H
Waq + (wau - wuu)_H ’yua + wuu%u S waa’}/ua + wauVuu’
aa

which is equivalent to

Wy < Way-

10



Hence, given the Lemmas so far, w.,, Way, and w,, are only bound by wy, < wg,
and the three corresponding (LL;s). This implies that wae, Wey, and wy, will be set
to the lowest possible value. By Lemma 5, and in order to minimize the objective
function, Wy, = Caq, Wyy = Cyu aNd W4y, = Max{cyy, Wy b, implying points (i), (ii)

and (iii) of Lemma 10. Point (iv) follows by substitution. n

The next Lemma completes case (ii) of Lemma 6 by ranking c,,, and c,,. As ex-
pected, when the principal deems the performance acceptable, the agent may obtain

a compensation premium even when he observes S = u.

Lemma 11. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features cqay > Cyy.

Proof. Suppose not. Then ¢, > ¢4, > 0. By Lemma 8, ¢,, = 0. Hence ¢,, > cyuq,
implying we are in case (ii) of Lemma 6 and c,, > ¢4,. By Lemma 10, we have
Wyy = Way = Cuy aNd Wyq = Cqq = Waq. This implies that ¢, disappears from the
objective function and from constraints. The principal can, therefore, increase cy,
and decrease other compensation (and therefore wage payments) in such a way that
the rest of the constraints are still satisfied. This operation can be repeated until

Cau = Cuu- Hence, the contradiction.

Given this, we can further decrease the amount of binding constraints by proving

the following:

Lemma 12. If the agent believes signals are positively correlated, i.e. (3) holds, then

constraint (T'RY) always binds in any optimal contract implementing high effort.

Therefore:
,7H
Cyy = ’?_i_lu(caa - Cau)-
Proof. Let ¢y, = 0. Then we are in case (i) of Lemma 6 and (T'RY) is trivially
binding. Suppose now that ¢,, > 0 and (T'RY) is not binding. The principal can

reduce ¢,, until it binds. Given the proven Lemmas, the (T'Rp) still hold, while

11



(TR%) and (IC) are relaxed by this change. To complete the proof, we need to
check whether a decrease in ¢,, would decrease the objective function as well. By
Lemmas 10 and 11, we can substitute for all wages in the objective function and find
that the coefficient of ¢, becomes (7{1 — %), which is positive by Assumption 2.
Hence, decreasing c,, also decreases cost and it is therefore optimal for the principal
to do so. This provides the desired contradiction and proves that (T'RY%) always binds

at optimum.

This concludes the set of Lemmas yielding problem (11). Notice that, when
plugging in the values from Lemma 10, the objective function in (10), simplifies to
(11) divided by v24H _ This is however irrelevant for the minimization problem and

therefore omitted.

The next Lemma presents a condition on the agent’s overprecision that leads to
a result original to our model. That is, as we show later, the existence of a new
contract where the principal’s wage cost is determined only by the agent’s perfor-
mance evaluation report and the agent’s compensation is determined by both parties’
performance evaluation reports. This stands in contrast to the baseline subjective
evaluation contract in the literature where the principal’s wage cost is determined by
both parties’ performance evaluation reports and the agent’s compensation is tied

only to the principal’s performance evaluation report.

Lemma 13. If the agent is overconfident in the sense of overprecision and his beliefs

satisfy:

b s p THTH (Pog — Pua) + (Puw — by) (PoTH + P, IE) TH
‘e Ffrf (Paa - Pua) + (Puu - bu) (Paarg + Puarg)

then the optimal contract implementing high effort features caq > Cau, (TRY) slack
and (T'RY%) binding. If the agent is overconfident in the sense of overprecision and
his beliefs violate (5), then the optimal contract implementing high effort features
Caa = Cau, (TRY) binding and (T RY) slack.

12



Proof. The inequality in Lemma 13 follows from the comparisons of the slope of the

(1C) with the slope of the iso-costs. This produces the following condition

A, — A, < Tan T Yoo Vo~ Fon Yo on + Ve Den Ve

(fYaa) ,}/uu + ’yaa’yuaquu + fYau’yuu’yaa - ’yau’yauf)/ua

A;?aa + ;;?{“ Af}/uu

We start from simplifying the slope of the (1C')

. SH . ~ ~ S

LHS = A’}/au ’::?i A,yu“ . ’Yéiu - ’y(gu - /ng/ + :yaHu 7511 ;’?{u ’Yuu Yau
COAA L dmAs RH AL ~H_w£’u L  ~H =~ H_ah 1
Yaa + 5H Yuu Yaa Yaa + Yau F}/uu Yaa f}/aa + ’yau 50 Yauu

w_paurall ﬁau(rgrg_rgrg)

Py TH B
paaAFa + pauFaH <1 - %) PaaAFaFuH + PauFaHAFu

Notice that, since I'/ + '/ = 1 for any j = H, L, we can substitute for ¥ =1 —T#

and 'L = 1-TZ%. Also, from Lemma 1, AT, = —AT,. Hence we can further simplify

the LHS:
pau (F(?Ff; - Fgrf) pau (Ff(l - Fé) - Fé(l - Ff))
P AT, TH 4 P THAT, P AT,(1 —TH) + P, ,TH(—AT,)
PauAFa o Pau o Pau B ba

= Ara [paa(l _ FaH) _ paul—wg:| Paa - Ff Paa - F({{ + ba

The slope of the iso-costs, instead, is given by

ﬁvﬂviﬂ + vﬁvﬁvi vivﬁvﬁ + vivﬂvﬂ
(’yaa) P)/uu + W/aawuafyuu + ’yauﬁyuur)/aa - Pyaur)/au’yua
f (PaaPuu - PauPua)

. (Puu - b ) (PaapauFH + PauPuaFH) - (Pau - ba)F
B (P (PaaPaaFH + PaaPuaFH) (Pau - ba)l_‘gl (PaaPuu - PauPua)

bu)
_ (Puu u)PauZ ( - ba)W
( bu)

Puu u Paa ( —ba>W’

13



where Z = (Paaff + PWFf) and W =TH (P, Pyy — PouPua) =TH (P, — Pua).

a

Hence the inequality in Lemma 13 is equivalent to

Pau_ba < (Puu_bu)PauZ_ (Pau_ba)W

Paa_rgl+ba o (Puu_bu)PaaZ'f_(Pau_ba)W’
or

(Pau - ba) (Puu - bu)PaaZ + (Pau - ba)2 W
S (Paa - FaH + ba) (Puu - bu)PauZ - (Paa - Ff + ba) (Pau - ba)W7
or
(Pau - ba)2 W + (Paa - FaH + ba) (Pau - ba)W
S (Paa - Ff + ba) (Puu - bu)PauZ - (Pau - ba) (Puu - bu)PaaZ7
or
(Pau_ba) [(Pau_‘_Paa)_Fgl} WS (Puu_bu) [ba<Paa+Pau)_PauF(Ij:| Z7

or

(Paw — ba) (1 =THYW

bu < Puu -
- (by — P I Z

(14)

Solving (14) for b, we obtain (5). To conclude the proof of Lemma 13 consider the
graphical analysis of (11). Figure 3 below shows the three constraints binding in
(Caus Caa) space and highlights the set of contracts satisfying all constraints of (11)
— and therefore of (4).

In order to understand whether at optimum it is the (T'R%) or the (T'RY) that
binds, and therefore where the optimal contract lies in Figure 3, we compare the sign
and magnitude of the slope of the iso-costs and the (/C'). Hence, Lemma 13 shows
that the optimal contract lies either at point X or Y of Figure 3, depending on how
the slope of the (/C) and of the iso-costs compare. §

14



Caa

(TR%) (TR%)

(1C)

Cau

Figure 3: The shaded area represents the set of contracts satisfying all the constraints
in the minimization problem (11) — and therefore (4).

Proof of Proposition 1: The proof is divided into three parts. First, we show
that when b, = b, = 0, the slope of the (IC) is never lower than the slope of the
iso-costs. Seccond, we derive the optimal contract for a rational agent. Third, we
show that the optimal contract satisfies the (PC') when

u < av

H Hy — -~
< Ar L VO =, (15)

Using the algebra presented in the proof of Lemma 13, consider the slope of the (1C)

when the agent is unbiased:
Pau

P, —-TH
This implies that the (IC') is negatively sloped if and only if ¥ < P,,. First we
assume I'! < P,, and show that the (16) always holds. Then we move to the case

of FaH > P,

15



Let T < P,,. The comparison between slopes then becomes:

Paw YENIANE + vEAEAE, — AEAEAE A EAEAE

Poo —TH = yHyBANE 4 yHAyBAH Byl 8y HyHAH

We now rearrange the RHS, which is less nicely simplified.

H.H H H H.H _ H.H. H H_ H.H
RHS = YaaVauVuu + YauYua Tun YauVuwVaa + YauYauVua

YENENE + yENEAE - yEAyBAH — yBEyHAE

 YHANHAE 4 yEAHyE g Hy A H A H oy H A

(16)

Before going ahead, notice that this proves that in the case of an unbiased agent

isocosts are always negatively sloped. Carrying on we obtain

VEANEAE +vEANEAE

YEAVEAE, + Y ENEAE, A+ VEAEANE — VEAEAE

B PouPouu P! + P, P Py TH

" PauPuPulH + PooPuo PuuUH + PuyPuy PoTH — Poy Poy PuuTH
B PouPua(Puu(1 = Tg) + PuuT3)

" PuaPuTH + Puo(PuoPuu(1 — TH) — P, P, TH)

B PauPua(Puw — T (Pur — Pua))

"~ PwPuTH + Py(PouPu(1 —TH) — P, P, TH)

This implies that comparing the slopes boils down to:

Pau PauPua(Puu_Ff<Puu _Pua))
Pao —TH ~ Py PouTH + Pyy(Pag Pa(1 — T) — Py Pyl
1 Pua(Puw = T (P = Pua))
Pow —TF ~ Py PoTH 4 Poy(PasPan(1 — TF) — Py Pl

PaaPuuFaH + Pua(PaaPuu(l - Ff) - PauPauF(];I> > (Paa - FaH)Pua(Puu - FaH(Puu -

16

Pua))'



Recall that Lemma 1 showed P,, > P,, and P,, > P,,.

PaaPuuFf + PuaPaaPuu - PuaPaaPuuFf - PuaPauPaqu
> PuaPaaPuu - PuaPuuFf - PaaPuaFf<Puu - Pua) + Pua(rg)z(Puu - Pua)u

which, by simplifying and dividing by ' on both sides, is equivalent to:

PaaPuu - PuaPauPau > _PuaPuu + PaaPuaPua + PuaPuuFiI - PuaPuaFg
PaaPuu_PuaPazu> _PuaPuu—i_PaaPia—i_puuPuaFg_p2 FH

ua— a

Puu(Paa+Pua)_Puarf(Puu_Pua>_PuaPa?u_PaaPia >O
Now we substitute for P, =1— P,, and P,, =1 — P,, and we get:

(1 = Pua) (Pag + Pua) — PualZ(1 — 2P,,) — Pua(1 — Puo)? — Py P2, > 0
Paa+Pua_Paapua_Pia_PuaFaH(l_2Pua)_Pua+2paaPuQ_PuaPa2a_Paapia>0
Py + PuyPuu(1 — Py — Poy) — P2 + P, T2 (2P, — 1) > 0.

~
r

Suppose first that P,, < %, then I' < 0 and the LHS gets smaller the greater is I'ZZ.
Hence, to be sure the condition holds, we set 'l — P,,, the highest possible value

it can get. This yields I' — 2P,,P? — P,,P,,. Hence the condition converges to

Paa+PaaPua(1_Pua_Paa)_P3a+2paaP3Q_PaaPua>0
Puo + Py P2 — P2 P,, — P2 > 0. (17)

Notice that if this holds for all P,, > P,, then so will the condition for the case of

P,, > 1. 1In that case, in fact, I' > 0, which means that the LHS would increase

5
with T2, Hence, to check it holds we set it to 0. This would set I' = 0 and yield a
condition looser than (17).

To see that (17) always holds, notice that the derivative of the LHS with respect

17



to P,, is given by:

OLHS
3P 2P, Pyy — P2, — 2P,y = 2Pyy(Poy — 1) — P2,

which is negative for all P,, < 1. Hence, the condition is monotonically decreasing

in P,,. We therefore check for the maximum value of P,,, which in this case is %

At this value, condition (17) becomes simply
—2P2 + 5P, —1>0

By Lemma 1, F,, must be strictly larger than P,,. The second order equation
above always holds for P,, € [3,1]. Hence when the (IC) is negatively sloped and
ba = b, = 0, (5) always holds.

We are now left to show that the same holds when the (IC') is positively sloped.
Suppose that the (IC) is positively sloped. This implies that it requires ¢,, to be
smaller than c,, times a positive number. First of all, notice from the (IC') that
when it is positively sloped, its intercept for ¢,, = 0 is negative. Further, its slope is

now given by

~ ~H ~
A/Yau — T A’7/uu

~H
Yuu

~H
~ _ Yau

- A’Yaa FH, Aﬁ/uu

which is obviously larger than 1. Hence, the set of constraint compatible contracts
becomes the one highlighted in Figure 4.
Regardless of whether the iso-costs are positively or negatively sloped, the optimal

contract lies at point Y in the graph. Hence, the optimal contract has (IC') binding
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Caa

(TRY) (TR)

(IC)

Cau

Figure 4: The shaded area represents the set of contracts satisfying all the constraints
of the minimization problem (11) when the agent believes that signals are positively

correlated and the (IC') is positively sloped.

and (T'R%) binding. Therefore it is the solution to:

Crg =0
Co =0
Caa = Cou
. H v Pau
caaﬁ (Pao = TJ) AT, + ¢, pit AT, = AV

Setting ¢, = ¢, and solving the last equation for ¢}, gives us:

AV rf AV TH AV TH

AV

C =

“@ ™ P—TH{P,Al, 1-THAT, THAL, AT,

Hence, the optimal contract is given by:
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* % * % * * __ Chag
Woo = Caa Wau = Caa Wyu = 0 Wyq = Paa
x __ AV * % * *
Caa = AT, Cau = Caa Couu = 0 Cua = 0.

To complete the proof we show that the optimal contract satisfies the (PC'). The
LHS of the (PC) is:

AV 4 AV

il V) = AT Yoo+ g aw — V)
ts a a
_ AV H H H
- Ara(’yaa_'_ﬂyau)_‘/()\ )
AV
= —(Pu+ P)TT =V (N
A (Paa+ Pu) D = V)
AV 4 I _ _
= — = >
AFaF“ VI =u; >u

Hence, the optimal contract for a rational agent satisfies the (PC).

Impact of Overestimation on (PC) and (I/C) for fixed compensation. The
following two results characterize the impact of overestimation on (PC) and (IC)
when the agent’s compensation is held fixed.
(i) If the optimal contract implementing high effort features coq = Cay > Cuw = Cua,
then overestimation relaxes the (PC') for fized compensation. To see this note that
the (PC) is

thﬂg - V(AH) > U,

ts

or
Caai/aHa + Cauﬁ’é‘; + CU(I;}(/'[I;I(L + Cuu/?qilu - V<)\H) Z ﬂa
or
caaPaaff + Caupauff + CuaPuaff + CuuPuuff - V()\H) Z 77/7
or

(CaaPaa + CauPau)f‘(]j + (CuaPua + CuuPuu)ff - V<>\H) Z aa

20



or
Caa<Paa + Pau)ff + Cuu(Pua + Puu)(l - f‘é{) - V()\H) Z ﬂ,

or
Cuu + (Caq — cuu)ff — V() >

Since f‘f > T'H it follows that overestimation relaxes the (PC) for fixed compensa-

tion.

(i) If the optimal contract implementing high effort features c,q = Cau > Cuuw = Cua,

then overestimation relazes the (IC') for fized compensation if and only if AN > AN

To see this note that the (1C) is

D At =V > adrn - VA,
ts

ts

or
CaaA'?aa + CauA'?au + CuaA'?ua + Cuuﬁﬁ/uu > AV,
or
CaaPaaAfa + CauPaUAfa + CuaPU(lAfu + CUUPUUAfu Z AV?
or
Caa(Paa + Pau)Af‘a + Cuu(Pua + Puu)Af‘u Z A‘/:
or

(Caa - Cuu)Afa 2 A‘/;

Hence, if the optimal contract implementing high effort features c,, = cou > Cuuw =

Cua, then overestimation relaxes the (/C') for a fixed compensation as long as
AT, > AT,

or
AME + (1= ANYE > ANE + (1 — ANAE,
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or

AN > AN

Similarly, if the optimal contract implementing high effort features c,, = Cqy > Cuu =

Cuas then overestimation tightens the (/C') for a fixed compensation if and only if
AN < AN,

Proof of Proposition 2: The proof is divided into three parts. First, we show that
the slope of the (I/C') is never lower than the slope of the iso-costs. Second, we derive
the optimal contract for an agent who displays overestimation. Third, we show that
the optimal contract satisfies the (PC') when

AV -
u < A—Yl‘f — VO = a,. (18)

a

The definition of overestimation implies

et = Pul't and 7%, = Pa,l'k

Jo = Pulll and 7%, = Pu I

¥4 — p 2 and AL =P, T

Y = Pull and 5%, = Pull
A,y = =3k = Pul? — P Tl = PuAT,
AY,, = -3k =Pl — Pl = PLAT,
A,y = A8 =3k =PI — PTL = P,AT,
A, = AW =4k =PIl — P Tk = P, AT,
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The reduced effort implementation problem (11) becomes

min coo[(V2)? + VA2 P T + Py T (VA — AH A ]

o+ Cau (VNI + A8 Pl — PouBH (3108 — 51141 )

PH nH
s, Caa | PadAly + Paulj“ P AU, | + cou | P AT, — Paulj“ P,AT, | > AV
P, TH P, TH

uut uu-
P, TH

Caa < | 14+ —7=% | Cau
P,.I'L

Caa Z Cau7

or

min coo[((vE)? + 22 P T + P TE(VEAE — A H )

Caa,Cau

o Cau (VAL + 9B Pl — PuTE (278 — 1201 )

st. Caa (PaaAFa + Paf‘ra AFU> + Cau (PauAFa — PafLF“ AFU> > AV

r# r4
(14 P, T
Coa > = Cau
P, TH
Caa > Cau,
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Let’s simplify the (/C):

P, 1
P,, AT, + ‘;‘GAF —

u

<PaaFHAF + P, [HAT, )

[Paa (1-TH) - (1 Paa)rH} AT,

(
(

Pr— Pl —TH PaaFH) AT,

e e e e

P, — FH> AL,

and

P, AL, — L ““FEAF - (FHAF _PHAT )

'12

g

- (FH + FH) AT,

=2l

= AT,

=
£

The simplified (/C) becomes

1 LN - P
Con e (Paa _pH ) AT, + cou = AT, > AV.
I Iy
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Hence, the reduced effort implementation problem (11) becomes

Cmicn Caa[(('ng)Q + 751’751)Puuqu + Pauff(’yﬂ'YgL - 7£L7$)]
o Cau (VB 9B PuTl = PulE (2 E — 001 )

1 - - Pau -
st Copme (PW - Ff) AT, + cou 2 AT, > AV
I I

P, T4
Caa S 1+ - Cau
P, I
caa 2 c(l'LLJ
The slope of the (IC) is:
Pau I
LHS = iy Al __ P
fLH <Paa - ff) Afa P —TY

The slope of the iso-cost is

(YEANE + yEAE )Pl — PulH (yEAE — yHAE)

(V)2 + YEAE) P + PoTH (VAR — AHA )

(Poal¥ + PyuTH) Py PuuTHTH — Poy(PaaPuw — PauPua) VAT ITY
(PoalH + PyuTH) Py Py THTH 4 Pyy(Pag Py — Pay Pug) THTHTH
(PaalH + PyaTH) Py Pyl — Poy(Pag — Pua) THTH

(PaalH + PyuTH) Py Py TH + Py (Poy — Po)THTH

Let us start by assumig the (IC) is negatively sloped, that is, I’/ < P,,. In this

case, the slope of the (IC) is never lower than the slope of iso-cost since:

Y

Pau > (Paarf + PuaFuH)PauPuuff - Pau(Paa - Pua)rgff
Paa - FH (Paar(];l + Puarg)PaaPuuff + Pau(Paa - Pua)PqufH

a
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or

or

or

or

or

or

or

1

Y N
(P TH + P, THP, I —(P,, — P,)THTH

P,—-TH ~

a

. i
(Paara + Puarf)PaaPuuFf + Pau(-Paa - Pua>FHfH

~H } u a

> (PM Tt ) [(Paal“f + P TT) P T (P, — Pua)FHfH]

H H I
(Paara + Puaru )PaaPuuFi{ + Pau<Paa - Pua)ri{ff

> (Pua =TI (Pl " P,,[ )
a (aara +Puaru)PuuF5]_<Paa_F5> (Paa_Pua)

Pau(Paa

_ HTH =
P )THTH ¢ <Paa _pH ) (Pow — Pu)THTH

u .
(PuTH + P, THYP, P TH + P, (Poy — Puo)THTH’

LHDH

u a )

> (Paa — fH> H [
a (PaaFa + PuaFuH)PuuF{;I - (Paarf + PuaFZI)PaaPuufH

>

>

(Paa

<Pau+Paa _ff) (Paa - Pua>FHfH

P, — ~H) SH S H
[( [H) [ Paaru] Pou(PaalTH + PoulH),

(1 T4) (Pa = Pu)TETY

p, [H _THFH _ p [H
(Paaltf = FHTL = Paall) P (Paall + Pual'l),

_Pua FH~H~H nHTH
)JPATHTE L THTE P (P, TH 4 P, I > 0,
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or
(Paa - Pua)Fqu + Puu(PaaFf + Puarf) > O,

which holds. This implies that, like in Proposition 1, the optimal contract has the
(IC) binding and the (T'R%) binding when I'' < P,,. Let us now assume the (IC)
is positively sloped, that is, faH > P,,. In this case, the slope of the (IC) is

Pau
FH_Paa.

a

Hence, the slope of the (/C') is larger than 1 since

Pau
= > 1,
? — P,
or
P, >TH - P,
or
1>T8

The intercept of the (IC) for ¢4, = 0 is negative since I'7 > P,,. This implies that,
just as in Proposition 1, the optimal contract has the (/C) binding and the (T'R%)
binding when T'# > P,,. Hence, the optimal contract has (IC) binding and (T'R%)

binding. Therefore it is the solution to:

¢, =0
c,=0
CO — CO
1 LN P -
& (Paa _pH > AT, + ¢ “"AT, = AV
Iy Iy
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Setting ¢, = ¢, and solving the last equation for ¢, gives us:

AV AV TH  AVITE AV

“  Pu—TH4+ P, AT, 1-THAT, THAT, AT,

Hence, the optimal contract is given by:

O 0 o
Waa = Caq Wy

o _ AV o _ O o
Caa = AT, Cau = Caa Cuy = 0

To complete the proof we need
(PC). The LHS of the (PC) is:

Z cfs’?g - V()‘H)

ts

Hence, the optimal contract for an
(PC).

— o [
= Caa Wyy = 0 Wye = P(::

C<>
¢ =0.

ua

to show that the optimal contract satisfies the

AV AV _,

~H H

AT, Vaa Ma%u (A7)
AV ~H ~H H

= 7= Yaa + au) V(A
AT, (Yaa T Vau) (A7)
A -

= —Y (Pao + P )TH — v (N
AT,
AV

= — T _yoh>aq
A

a

agent who displays overestimation satisfies the

Impact of Overprecision on (/C) and (TR%) for fixed compensation. The

following two Lemmas characterize

the impact of overprecision on (/C) and (T'R%)

when the agent’s compensation is held fixed.

Lemma 14. If the optimal contract implementing high effort features c,q = Co and

Cuu = Cua, then overprecision has no impact on (IC) and (TR).

Proof. see the proof for Lemma 15.

Lemma 14 states that if the agent’s compensation is independent of his own

performance evaluation report, then his overprecision has no effect on (IC) and

(T'R?) and therefore on implementability of any level of effort.
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Lemma 15. If the optimal contract implementing high effort features c,, > ¢4, and

Cuu > Cua, then overprecision has an ambiguous effect on (IC') but relazes (T RY).

Proof. The (IC)
> cs(ii — k) = AV,
ts

can be rewritten as

Z cis(Vis = i) + (Caa = Cau) (T = T)ba + (Cuw — Cua) (Cy = Tl )by > AV. (19)
ts

Note that T > 'L TL > TH p, > 0, and b, € <—%ba,—%ba>. It follows
from (19) that overconfidence has no impact on (/C) when the optimal contract
features c,q = oy and ¢y = Cuq. It also follows from (19) that overconfidence has
an ambiguous impact on (IC) when the optimal contract features c,, > ¢4, and
Cuu > Cyq Since the second term in the LHS of (19) is positive whereas the third term
is negative.

The (TR%)

~H ~H ~H ~H
Caaf)/aa + C’uaqua Z Cauf)/aa + Cuufyum

can be rewritten as

It follows from (20) that overconfidence has no impact on (7'R%) when the optimal
contract features c,, = Cay and cyy = cyq. It also follows from (20) that overcon-
fidence relaxes (T'R%) when the optimal contract features c,, > Cu and cuy > Cua
since the third term in the LHS of (20) is positive and the third term in the RHS of
(20) is negative.

The (TRY)

~H ~H ~H ~H
cau7au + cuufyuu 2 Caa’}/au + Cua’)/uu,
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can be rewritten as
Cau’yf; + Cuu/iju + (Caa - Cau)rfba Z Caa7£ + Cua’yﬂ + (Cuu - Cua)Fquu (21)

It follows from (21) that overconfidence has no impact on (7°'R" ) when the optimal
contract features c,, = Cay and cyy = cyq. It also follows from (21) that overcon-
fidence relaxes (T'RY%) when the optimal contract features c,, > Co and cuy > Cua
since the third term in the LHS of (21) is positive and the third term in the RHS of
(21) is negative. This proves Lemmas 14 and 15.

By Lemma 6, the agent knows that given what the principal observes, he obtains
a premium when he reports T = S. A positive b, and a negative b, increase the
agent’s belief of both signals showing either a or u. This means that, given effort, an
agent who displays overprecision with beliefs satisfying (3) overestimates the chances
of obtaining premium c¢,, — ¢,,, more than he overestimates the chances of obtaining
premium c,, — Cyue. Since T = a is most probable when he exerts high effort, an
agent who displays overprecision with beliefs satisfying (3) requires a lower incentive
to exert M. That is to say, exerting high effort is part of his “strategy” to increase

the chance of reports (¢, s) = (a,a).

Proof of Proposition 3: The proof is divided into six steps. First, we show that
when either the (IC) or the iso-costs (or both) are positively sloped, the optimal
contract is the standard one. Then, we derive conditions for this case not to happen.
Third, we prove that condition (5) implies all the conditions derived as well as (3)
— and hence it is sufficient and necessary to our result — and we identify the shape
of the area where the APE contract is set up (that is we provide an explanation to
the shape of Figure 1). Fourth, we derive the values of wages and compensations of
the APE contract. Fifth, we show that the optimal contract satisfies the (PC') when
AV ., P, 4+ P,I'H

u < - — — V(A = as. 22

a
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Sixth, we prove how the deadweight loss of the APE contract is lower than the one
of the BPE contract.

Step 1

First of all, note from (11) that an increase of ¢,, always increases the expected
cost of implementing high effort. The effect of an increase of ¢,,, however, is not
straightforward when b, = b, = 0. If it is positive, then iso-costs are negatively
sloped in (¢qy, Caq) Space and costs decrease towards the origin. If it is negative, then
iso-costs are positively sloped and costs decrease towards the bottom right of the
graph.

Suppose the latter is true. Since iso-costs are positively sloped in (c,y, caq) Space,
optimal contracts lie at point Y of Figure 3. Notice, however, that a further check
is needed here. Suppose the iso-costs are positively sloped. If their slope is larger
than 1, then they are steeper than the locus of points where c,, = cq,. Hence, for
any given c,q = Cqu = ¢, there would always exists a ¢ > ¢ lying on an iso-costs
further to the right of Figure 3 satisfying all constraints and lowering costs. Hence,
an optimal contract would feature c,, = ¢4 = ¢ — 0. In order to check that this
cannot happen, we study the value of the slope of the iso-costs when the latter is

positive. From the algebra in the proof of Lemma 13, we can get this value as:

(Pau - ba)Ff(Paa - Pua) - (Puu - bu)Pau(PaaFf + PuaFfLI)
(Pau - ba)F(II{(Paa - Pua) + (Puu - bu)Paa(PaaF(Il—I + Puarg)

which is trivially never larger than 1. Hence in equilibrium the baseline contract is
set up.

The case of a positively sloped (IC) has already been discussed in the proof of
Proposition 1.

Step 2

The slope of the (IC) is negative as long as b, > I'! — P,,. The condition for
the slope of the iso-cost to be negative, instead, can be derived as follows.

Consider the slope derived in the proof of Lemma 13 again, this time without
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looking at its absolute value

(Puu - bu)Pau (Paarf + PuaFuH) - (Pau - ba)FaH (Paa - Pua)
(Puu - bu)Paa (Paargl + PuaFfL]L{) + (Pau - ba)rf (Paa - Pua) '

The iso-costs are negatively sloped when the numerator of the above is positive. This

happens when:

(Puu - bu)Pau (Paarf + Puarf) _(Pau - ba) Ff (Paa - Pua) > 0

Z W

which yields condition:
(P — ba)W

by < P, —
P..Z

(23)

Step 3

In this part of the proof we show how, for b, € [Pauf‘f , Pau] , condition (5) implies
the negativity of the slope of the (/C') and condition (23). We also show how the
area it delimits has a concave shape in (b,,b,) space and how it always lies in the
interval (P,,I'y, Pu) on b,. In order to study this we use version (14) of condition
(5).

First, note that the (IC) is negatively sloped if
baZFaH_Paa:FaH_1+Pau
and that
 —1+p,<P % = P,(1-TH)<1-TH

Hence, when b, > P, 'Y (which is necessary for (14) to matter) the (IC) is negatively
sloped.
Second, for (14) to imply (23) it is enough for the RHS of (23) to be larger than

(14). This comparison corresponds to comparing the second terms of the RHS of
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each inequality. Condition (23) is looser if

(Pau—ba) (]‘_FCI;I)W > (Pau_ba)W
(be— PoTHYZ = PuZ

which corresponds to
Pau<1_rf)2ba_PauFf = Pauzba

which is always true.
To conclude this part of the proof we show that the RHS of (14) is concave in b,.
To see this, consider the first derivative of the RHS of (14) with respect to b,

P (1 -TH2Wz
[(ba - Paurf) Z]2

Y

and note that it is decreasing in b,. Hence, (14) identifies a concave area.?* To see

that its lower bound is always larger than P, 'Y substitute b, = 0 in the condition

to obtain
(Pau - ba) (1 _ Ff) w
0 S Puu -
(b, — Pl Z
which is equivalent to
b > p (1 —Pf)WJrPuuFffZ.

(1-TIHW + P, Z
To prove our claim we then show that

(1— Ff)W + PuuFfZ o H
1-TOW + Pz ~

With simple algebra, it is easy to see that this condition boils down to 'Y < 1, which

is always true.

24Recall that the derivative is of the entire RHS not only of the second term.
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This concludes this part and proves that the area identified by the feasible values
of b, and condition (5) always features the APE contract. Its shape, furthermore,
always resembles the representation in Figure 1.

Step 4

Given all the above and Lemma 13 we finally solve problem (11) by setting the
(T'RY%) binding together with the (/C). This yields the following system in two

equations:

;)'/H ,'?H
Caa (Af?aa + ~?Aﬁuu) + Cau (Ars/au - ~([1-}LA’?uu) = AV

uu uu

~H
Caa = (1 + 2/_1;;1) Cau

au

from which we obtain:

A AV
U (14 B (M + BrAT,,) + A, - B0,

B AV

Ayt Mg+ BEAT,, + AT,

B AV

AT Puy + ALy Py, + BLLAT, Py, — AT, P,
AV P, T

AT By lF o+ Puy(1= T Pag — PPl
. Poul'y!

BT PP~ TH)

To conclude the proof, we obtain c,, = (1 + zzzz) Cay from the above discussion, and

Cou = Cyu from Lemma 12.

Hence, the optimal contract is given by
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T o=t T of Tt T ot
waa - Caa wau - Cau wuu - Cau wua - Caa

~H D H
'i' — 'i' Yuu T — AV - Pgura~ T — T T —
Caa Cau 1+ A Cau ATq Py TH 4Py (Pao—TH) Cun Cau Cua 0.

Step 5
Now we need to show that the optimal contract satisfies the (PC). The LHS of
the (PC) is:

~H
- - Yuu ~ - ~
ddali vt = d, (Vfa + ey A+ 752) - V()
ts au

t D H PUUFIIL{ » H D H » H H
= C Paara + = Paara + Paura + P“UFU o V()\ )

au H
au- q

au

puu . >
= o [ TH+ P—PMFUH + P, T4 ) — V(A1)

P
= o ([ TH+ P““Pf) — V(A"

au
au

AV P, I P
_ _ au”a_ Pf + ﬁFuH -V )\H
Ara Pauff + Puu(Paa - Ff) < P ) ( )

AV p, 24+ p, TH
- 2w o« Tl (M) > g,

au

Step 6
To see that the APE contract features a lower deadweight loss, notice that this

is equal to 32, (w}, — ¢V = (w?, — ¢&,)vE in a BPE contract and to 3, (w], —

)y = (wl, — ¢t )7E in the APE contract. Since ¢, = ¢l = 0, the deadweight
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loss is smaller under the APE contract if

o AV 1 _ AV gnye (1 n _%Hu)
w w = AT P P P (P
ua ua Ara Paa Ara PauFaH + puu(Paa - Ff) ;g/gl
paurgl ﬁaur(lj + PUUFUH

1> P,.—= — L
Paurf + Puu(Paa - Ff) Paurgl

PauU + Puu(Paa = T2) > PaoPauTl + Pao Pl
(1 - Pu)P Y + PPy — P TY — PP, T > 0
PouPuuT + Puu(Paa + by — T — Pog + Poal) > 0
PauPuuT + Py [ba — (1 — Poa)TE] >0,

which is always true since in the APE contract we have b, € (P, I'Z, P,,].

Proof of Lemma 3: While ¢/, < ¢, we also have ¢/, > ¢l . Therefore the check

for i, > ¢, is given by:

(1 + N—}‘;‘) - 5 > 1
Yau PauFf + Puu(Paa - F(I;I)

which is equivalent to

and to

which is always true since f’aa <1.

Proof of Lemma 4:
Point (i) is trivial. Condition (5) comes from the study of how to minimize cost and
it selects the optimal contract precisely on the basis of the lowest possible expected

wage. Since both contracts are available at the moment of minimization none of the
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two can minimize costs when the other is optimal.

To prove point (ii), notice that

E(cly) = ChaVan + Couan T CoaVus + Con Vo
— SO all) = ST,
and
E(¢) = G+ i + G + ch i,
- SEGE+A) = ST,

where we used the fact that 7/ + 5 = 3% + 35 — TH (which is easily proven from

Lemma 1).
Point (iii) requires us to calculate E(c},).
~H | ~H
n ~ ~ ~ ~ au T Vuu ~ ~ ~
B(cl,) = ch2 + b A2 + e + el A, = o, | T s E | SE
CLu ~H |, ~H\/~H |, ~H Czu H/~H , ~H
= ZH (/yaa + ’Yau)(’yau + ,yuu) = ﬁra (/yau + ,yuu)
P, " p, 11

AV P, T4+ P, TH .
= ST (A T .
Paurg + Puu(Paa - FaH)

a AFa “ paurf + puu(ﬁ)aa - Ff)

Since T =1 — T it is clear that the numerator is at least as large as the denomi-

nator. This proves point (iii).

Finally, for point (iv), we need to calculate E(c],).

t ’S/fu_‘_ﬁ/i]u H

E(cl,) = et vE + b A+ d v 4 oyl = o, | ey 4y A
AV AEAE 4 3N B AT A P
AF“ paurf paurf + ~uu(ﬁaa - Ff)

PuaTH + P Paal'H + P PouTH
PauFaH—'—puu(paa_Ff) '

AV ;}d/aurf + ’?uupaarf + ’YuHupauFf E( * )
= — = = — C
AF@ PauFaH + Puu(Paa - Ff)
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Hence, to prove our result we are left to show that

P, "+ P, P+ P,,P,TH

- — > 1
PauF5+Puu(Paa_Pg)

which is equivalent to
ﬁuuPaaFf + PuupauFuH Z Puu(paa - FaH)

This requires some algebra.

puupaa(l_rf)+Puu(1_Paa)(l_rf)_Puuﬁaa+puqu ZO
Puupaa_Puupaarf—i_Puu_Puupaa_Puqu—i_PuuPaaFf_Puu-lsaa—i_puurf 20
ﬁuupaa_PuuPaa_puupaa_Puurf—i_puurf_puupaarf—i_PuupaaFg—i_Puu ZO
From here, we substitute for some of the P, to get

(puupaa - Puupaa - Puupaa - p’uuba) + (_PuuF(II—I + Puurg - burf)—i_
+<_PuuPaaFf + buPaaFf + PuuPaaFf + Puubarf) + Puu Z 0

and finally

- Puupaa - Puuba - burf _I' Puubarf + buPaaFf + Puu Z O
- PuuPaa - Puuba - Puuba + buba - burf + Puubarg + bupaarf + Puu Z 0
- Puu (Paa + ba) _Puuba + buba - buFaH + Puubarf + bupaarf + Puu Z O
%{—/
1—Puu
b (ba — T + PoaTH) + P, [1 b1 —TH)y —(1— Pau)} >0
bu (ba - PauFaH> Z Puu [ba<1 - FaH> - Pau + ba:|
bu(ba_PauFf) zpuu(ba(l_l'rf)_Pau)
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Note that the APE requires b, > P,,I', as described in the proof of Proposition 2.
This means that the LHS is always positive and we can therefore derive the condition

presented in the proposition.

Proof of Proposition 4: First we study condition (6).

bo(1+TH) - P,
> P C
bu - ba - Paur(lj

At b, = 0, condition (6) corresponds to b, < P,,/(1+T). Hence, P,,/(1+TH)

is the intercept of the RHS of the condition with the z-axis. Let
Pau/(]' + FuH) = l—)a‘

To show that this condition is compatible with (5), we once again refer to (14), that is
(5) solved for b, and therefore that an area where overconfidence is socially desirable
always exists. We need to show that b, is larger than the intercept of condition (14)
(holding with equality) with the z-axis. We start from the latter, which we already
calculated in Part 3 of the proof to Proposition 3.

1-THw + P, THZ

ba = Pau
(1-TIHW + P,.Z

We then need to show that

(1-THYW + P, THZ Pa,

P < .
(1-TIHW + P.Z (1+TH)
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To do this, we get

A-THw+P.Z>0-THW + P THZ + (1 -THwrH 4 P, THZTH
Po.(1-THz (1 -THwr? — p, 17 > 0
P27 —w@iH? - p, 187 >0
P THZ(1-TH -wWTH?: >0 = PuZ-W >0
N —

rf

We can now expand Z and W to get

P,z —-—W>0

PuiPaalyl + PuuPualy) = T3 Pag + T Py > 0
— P 04 p, TH 4+ TH >0

Py + T (1= Pag) >0,

which is obviously always true. This proves that an area where overconfidence is
socially desirable always exists, at least for b, = 0. We now show that this area also
exists for positive values of b,. Since we know that the curve representing condition
(5) intercepts the z-axis before (6), it is enough to show that the loci of points where
the two conditions hold cross only once in (b,,b,) space and that they do so at
(ba, by) = (Pau, Puu). To formally prove the shape of Figure 2, we are also going to

show that the locus where (6) binds is concave in (b,, b,) space.
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Take the two conditions binding and equate the two RHSs to get:

ba(1+1—‘5[)_Pau_P _(Pau_ba)(l_rc{{)w

b — Poul'H (bo — PuTH) Z
Puu [(bo(L+TY) = Po)Z — (b — PalE)Z] = = (Pou — b,) (1 =THYW
Py — Po)TIZ = — (P — b)) (1 =T W
(PuwZ = W)(ba — Pau) =0
(PuwPaalt + PuuPualtf = Paall + Puall) (by — Pau) = 0
Pua(Paull 4+ PuT3) (b — Paw) = 0,

Puu

which holds only if b, = P,,.When plugged into any of the two conditions we get
that the corresponding value is b, = P,,. Hence the two curves cross only at that
point. This concludes the proof of the Proposition. To show that the RHS of (6) is

concave simply calculate the first derivative and obtain:

s, bo(1+TH) - P, P bo(1+TH) — P, TH(1 +TH) —p,(1+TH) + P,
Oby | ™ by — P, TH . (by — Py IH)2
1—TH(14TH) 1 — oDH 4 (TH)?2 (1—TH)?
:PuuPau < - Puu:Pzzu “ < :Puupau—a>0-
(ba - Paur{z{)z (ba - Paurf)2 (ba - Paqu)2

The second derivative is obviously negative since b, only appears at the denominator.

Proof of Proposition 5: To prove this result, we present the derivations for the
optimal contract implementing A* for a rational and an agent who displays overpre-
cision. First of all, recall that SPEs are positively correlated regardless of the effort
exerted (Assumption 2).

The problem the principal faces is the same as (4) with a reversed (/C) and %
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instead of v for all ¢ and s.

i WaaVaa + WauVauTWaaVa + WV (24)
s.t. Z csYh — VAE) >4 (PC)
ts

D A, <AV (1C)

ts
Waa Ve + WauVhy < Wua ¥l + Wau VL, (TR%)
wua7£a + wuu%jiu < waa%jia, + wau%fu (T'Rp)
Caa'Vaa + CuaTra 2 CauTag + CunVua (TRy)
CauTau T CunTagu 2 CaaVau + CuaVuu (TRY)
Wyg > Cps > 0 Vt, s €{a,u}. (LLys)

Lemma 16. For all by and b, low effort can be implemented by the principal with a
truth-telling, budget-balancing contract wy, = ¢j, = V(AL) +a. Contract {wy,, cfs}t i

is optimal among all budget-balancing contracts. It is also guile-free.

Proof. First, notice that Lemma 5 and 6 hold also for the case of low effort implemen-

~ L ~ L
tation, given Assumption 2 and % > ;’LL“ Hence, following the same logic behind

the proof of Lemma 7, any budget balancing contract must feature w;s = ¢;s = ¢ for
all ¢ and s. Contrary to the case of high effort implementation, however, a contract

like this always satisfies the (IC') since

c <Z Aim) =0<AV.
ts

All truthful reporting constraints also hold, as well as the (LL) ones. The participa-

tion constraint becomes

c (ny) >V +a = e>VA)+a

ts
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Since the objective function is now simply minss ¢ then the restricted problem is
solved by ¢ = V(A\L) + u. o

The Lemma above yields the only solution for a rational agent.?> However, since
our agent can display overprecision, we have to check whether the principal can find
a way to manipulate the contract taking advantage of the agent’s biased beliefs. In
other words, a contract that grants E(c,) = @+ V(AY) but that in fact yields (and
costs) less, that is E(c,) < @+ V(M) = E(cs). Lemma 16 states that, if such a
contract exists, it must feature some deadweight loss. This is because Lemma 7 does
not apply here and Lemma 16 shows that {wfs, cfs} . . is the only optimal contract
featuring no deadweight loss. This implies that, if ther;} were to exist another contract
implementing optimally low effort, this ought to feature some deadweight loss. This
result is key for this analysis.

A second key feature of this analysis is that we are going to assume again that
the agent’s outside option is small enough . What this does it to allow us to ignore
the (PC') and solve the problem without it.?

We are now going to present a series of Lemmas, from 17 to 22, to prove that,

under (15), {w},, cf;}+ is the only optimal contract to implement low effort.

Lemma 17. Given (15), for any value of the bias, when the principal implements
low effort, the (PC) always binds.

Proof. Suppose not. In that case, the principal can decrease all w;s and all ¢;s by
e > 0. All the other constraints are unchanged and cost of implementation decreases.

This does not fully prove the statement, however. It could be that w;, = ¢;s = 0

5To see that a rational agent is always assigned {wj,, cf,} . » notice that the (PC') always binds,

as we argue below. Hence, a rational agent must be granted at least %+ V (AL). Since principal and
agent have the same beliefs, there is no room for the principal to manipulate the contract trying to
decrease E(wys) below @+ V(A\L).

26Numerical simulations show that for a very large i, or a very low AV, low effort is implemented
by a BPE-like contract, the values of which are independent of b, and b, as in the case of high
effort implementation.
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for some ¢ and s, in which case, the principal cannot decrease them all. We need to
prove that a deviation is possible in these cases as well.

Recall that the (1C) is assumed slack when (15) holds and let us rewrite the (T'R)

constraints as in the proofs of Lemmas 5 and 6.

L L
v i
(wau - wuu) aLu S (wua - waa) S (wau - wuu)%
Vaa Yua
~ L ~L
g Y
(Cuu - Cua) ~1£a S (Caa - Cau) S (Cuu - Cua)~_1£u~
’yaa 'Vau

By Lemma 16, we know that at least one w;, > ¢;s must hold, otherwise any
contract derived would be dominated by {wf,,cf };s. Also, from From (T'R,), if
only one of the ¢ is strictly positive then at least one of the two inequalities will
fail. Hence, at least two ¢;s must be positive for the (T'R4) to hold. Further, notice
that they must be ¢, and ¢y, or ¢y, and ¢, or ¢y, and c.,. Suppose c¢,, and
Cqu are positive, with c,, = ¢y = 0, then given Lemma 5 at least w,, > 0 must
hold. The principal can decrease Cuq, Cou, Waq ANA Wey by € € [0, Wyq — Cya), While
also decreasing w,,, to adjust for the (T'Rp) to hold. This does not violate any
constraints and decreases costs. The symmetric logic holds for ¢, and ¢,, positive
and c,, = ¢qu, = 0. For the case of ¢, and ¢,, positive and c,, = ¢4, = 0, instead,
notice that, from (T'Rp), it must be that w,, and w,, are greater then zero. The
principal can then decrease ¢, and ¢, in a way that (T'R4) is not violated. Further,
she decreases by the same amount w,, and w,,, and uses a decrease in w,, and wg,
to adjust the (T'Rp) to the new values of wy, and wg,.

Now suppose only one of the ¢ is 0. Notice that, from (T'R4), it can only be
either the ¢, or the ¢,,. Suppose it is ¢,, then, by Lemma 5, w,, > 0. The principal
can then decrease Cuy, Cuay Wyus Wya DY € € [0, Wqy — €4y) and use the wg, to adjust
for the (T'Rp) to hold. This does not violate any constraints and decreases costs.

The symmetric logic holds for ¢,,. This concludes the proof. 1

Using the symmetric versions of the algebra used in all other derivations, we solve
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the (PC) for ¢4, and rewrite the (T'R4) constraints.

1
Caq = I (ﬂ + V()\L) - Cau’?aLu - Cuuﬁlﬁu - Cua’?ﬁa)

= a+ VO > ol + cul:

= Coudl 4 CondE, — Cua (P,w _ Pua> L > (4 V(A\Y)) P,

The new problem is therefore

. L L L L
min WaaVan + WarYqu + WuaVya + Wy, Yoy
{wes,Cts bt sefu,a}
,.)/L
au
s.t. (wau — wuu) I S (wua - waa)
aa
,yL
wLU
(wua — U)aa) S (wau - wu’u) L
Yua

a+ V() > ol + eIt
Cauﬁ/aLu + Cuuﬁ/gu — Cyqa (Paa - pua) Fﬁ Z (ﬂ + V()\L)) Pau

1
Waa > Caa = T(ﬂ’ + V<)\L) - C(luﬁ/gu - Cuuﬁ/ﬁu - CUCL;?ﬁa) > 0

Way, = Cay > 0
Wyy = Cyy = 0

wua Z Cua 2 O

Lemma 18. Given (15), for any value of the bias, when the principal implements

low effort with a contract featuring a deadweight loss, the (T'RY) always binds.

Proof. Suppose not. The proof changes depending on which one among the (T'Rp)

binds at optimum.

Suppose the (T'R$) binds, while the (T'RY%) is slack, then the principal can de-

crease Cq and wg, by €. This relaxes the (T'R%). At the same time, (LL,,) implies

that c,, increases by e% and w,, by an amount at most as large. This affects the

a
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(TRp). The (T'R%) changes to the LHS by —6%’; and to the RHS by —G%Z. The

RHS changes less since, for an overconfident agent, b, > 0 implying P,, < P,, and

Paa > P,,. The (TRY%) is tightened by the change but, since it is assumed slack,

there always exists an € small enough for it to still hold. Finally, to see that this

deviation is optimal, notice that the change in the objective function is given by
Yelo _ T 5 =

—G’qu -+ Ep— = EP (Paapau - PaaPau)a

which is negative since paa > P,, and f’au < P
Now suppose it is the (T'R%) that binds while the (T'R%) is slack, we will show
that this can never be the case or otherwise the (T'RY%) would be violated.

First of all, since the (T'RY%) binds, we can re-state the objective function as

Waa (%fa + 75(1) + Way (75u + 76%’11)7

and set it subject to:

i+ V(A > ol + ¢ TE (TRY)
1
Waq 2 Caa = T(ﬂ + V()\L) - Cau’?é/u - Cuu:yq[;u - Cua:yql;a) >0 (LLaa)
Waa, Z Cau Z O (LL&U)
Wya 2 Cua Z O (LLUG)

Given the above, it is obvious that w,, = ¢4 and wy, = C4. Substituting them into

the problem and re-ordering constraints for simplicity one obtains

Caa (f)/fa + Vfa) + Cau (ryiu + ,yalt/u)7
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subject to:

Caul'y + Dy <u+V(NY) (TRY)
Cau ¥l + CunVly, < T+ VN = cuavh, (LLaa)
Way > Cau > 0 (LLau)

Wy > Cyu > 0 (LLuw)

Wy > Cya > 0 (LLua)

Notice that we have rewritten (LL,,) as slack. This is because if it were to bind
then, first, c¢,, would be zero, second, by Lemma (4) also ¢,, would be zero, and
third, by the (T'R%) binding we would have

L L
wua’yua + wuuﬁ)/uu = 0

which by the limited liability constraints implies that w,, = w,, = 0 and therefore
Cua = Cuy = 0 which violates the (T'RY%).To see this, note that the LHS of the
constraint will be zero while the RHS will be positive

Given this and that c,, cannot equal zero, to minimize c,q(vE, + L) + cau(VE, +
vE ) the principal can only set c,, = 0 instead — since both (T'R%) and (LL,,) are

relaxed by this. The problem is therefore to minimize

Caa (fy(fa + fy'zfa) )
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subject to:

cudy <+ V(A") (TR%)
Cun Vi, < 1+ V(N) = cuntl, (LLaa)
Wau = Cay > 0 (LLqu)
Wy > Cuy > 0 (LLuu)
Wyg > Cyaq > 0 (LLua)

We now use again the binding (T'RY%) to get Coq = Cua + cuuﬁ and rewrite the

ua

objective function to get

min [ + 1—] (k) (26)
subject to the same constraints above. However, once again the principal finds itself
unconstrained by (T'R%) and (LL,,). He will set ¢,, = ¢4 = 0 and offer a contract
that violates the (T'RY). As above, note that the LHS of the constraint will be zero
while the RHS will be positive Hence, when (T'RY) is slack, the optimal contract
cannot feature (T'RY%) binding and the (T'R%) being slack.

Finally suppose that both (T'Rp) bind, that is w,, = Wy, and wg, = wy,. Given
Lemma 16, it must be that either wa, > Caq OF Wy > Cuq (0r both). When wy, > g,
the principal can decrease cuy, Cuu, Way and wy, keeping w,, constant. There always
exists an e small enough for this to be possible. This is obviously optimal and it

relaxes all other constraints. When w,, > c.,, the principal can increase c,, by e.
Viia
Yaa .

the w,, down by the same amount. Regardless of whether e;% is larger or smaller

This will decrease ¢4, and wg, by €2 which, by the assumption on the (T'Rp) forces
than e, there always exists an € small enough for w,, > ¢,, to be preserved.

Of course, if no (T'Rp) binds, the principal can decrease cuy, Cyu, Wau and wy,
and the increasing effect on w,, is not enough to offset the gain, in the same fashion

as above. This proves Lemma 18. §
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By Lemma 18 we can solve for ¢,, from the (T'RY),

CauT by + CanFy — (W4 V(A)) P
(Paa - Pua) F5 7

Cua -

and plug it into the function for ¢,, from the (PC') to obtain

(’lj + V()\L)) puu - Cau:yé/u - CU/U;)(/i[/ju
<paa - pua) Fé’ |

Caa =

The above poses the following additional restrictions on ¢,, and ¢, respectively

(via the (LL;s) constraints):

(ﬂ + V()‘L))pau < Cau:)/gu + Cuu:Yﬁu’

Rearranging the second equation we have

a+ V(") > cauiff + CculE
Py
Since P,, < P,, by positive correlation, this restriction is implied by the (TR%)
and can be, therefore, disregarded. It also proves that c,, is always at least weakly
positive and that it is strictly positive as long as ¢4, > 0. Let us decompose each
(L L) into (LL},), which requires ¢;s > 0, and (LLZ,), which requires w;, > ¢45. The
above implies that (LL!,) is implied by the other constraints. The new problem of
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the principal is given by

i WaaVaa + WauVau + WaaVua + War Vo (27)
St (Wau — Won) o < (Wyg — Waa) (TR%)
(10— i) < (i — 00 72 (TR})

-+ V) > ol 4 ¢ TE (TR)

i+ V(AL < el + cw%nf; (LLL,)

Way > Cau > 0 (LLaw)

Wyy > Cyy > 0 (LLuw)

Wua 2 Cua (LL,)

Waa = Caa (LL?w)

Lemma 19. Given (15), for any value of the bias, if there exists a contract featuring

a deadweight loss that the principal optimally sets to implement low effort, it features

the (T'R%) binding.

Proof. First of all, notice that the Lemma does not rule out the case that suboptimal
contracts can implement low effort with the (T'R%) slack. Rather, it states that there
exist no generally optimal way to implement low effort with a contract featuring a
deadweight loss and the (T'R$) slack.

Suppose this is not true and let the (T'R%) be slack. Recall that constraint (LL.,)
ensures that c,, > 0. When it binds, ¢,, = 0. Suppose the (LL},) does bind and
Cue = 0. This also implies that w,, > 0. To see why, notice that, if w,, = 0, then

also wg, = 0, by Lemma 5. Hence, ¢4, and ¢, have to be such that ¢,, = 0 from the
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(PC) binding. This then implies

_ (@ +V(AY)) (Puw — Puu) o

(Paa = Pua) T

Cua

Hence, when (LL.,) binds, it must be that w,, > 0. It is immediate to see how
the (T'R%) cannot be slack then, since the principal could simply decrease w,,, and
decrease the objective function tightening the (7'R%).

Now suppose the (LL!,) is slack. This implies that c,, > 0 and, by Lemma 6,
also ¢, > 0. The proof further divides depending on whether ¢,, = 0 or not.

Suppose ¢, = 0. We are going to show that any solution either sets the (LL.,)
binding or is suboptimal to the no deadweight loss contract. First of all, it must be
that wy, > 0. Otherwise w,, = 0 would be implied by Lemma 5. Then ¢,, = 0
would make ¢,, < 0. Hence if ¢4, = 0, wg, > 0. Given this, the principal can

decrease wg, until (T'R%) binds. Hence,

Wan = (wua - waa)ﬂ + Wy

Puu
Further, all other w;, are set equal to their respective ¢;s. In fact, suppose this was
not the case. If wy, > Cuu Or Wy > Cuqe, the principal can simply decrease them,
without violating any constraint. If w,, > c.., instead, the principal can decrease it
by € while increasing w,, by €2 . This does not violate the (T'R%) and it is optimal

Pu
since the change in the objective function is given by

PauPua FLPaa_Pua
—€ (%fa—P—Ff) = —€ o D )

< 0.

To conclude this part of the proof, notice that given wy, = Cuu, Waa = Caay Wua = Cua,

Way = (Wyq — Waq) gzz + w,, and the fact that all ¢;; can be written as a function of
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Cuu, the objective function depends only on ¢, and is subject to

= L
e < BV
Depending on the sign of the coefficient of ¢, in the objective function, if the latter

is minimized by minimizing c,,, the assumption that the (LL. ) is slack would be

violated, yielding a contradiction. If it is minimized by maximizing c,,, then (T'R%)

binds and c¢,, = %QAL) At this value, the rest of compensations and wages are
given by

Waa = 0 Wau = ICJLHZ Wy, = Cuu Wya = Cua

Caa =0 Cou =10 Cuy = ﬂJr‘I{é)\L) Cua = Cyuy

This implies a contract with E(wys) = wa,vE, + @+ V(ML) which is clearly larger
than F(w!,).?” Hence, even if this contract implements A\’, it is never optimal.

To conclude the proof, we derive a similar contradiction for the case of ¢4, > 0.
In this case, when both (LL. ) and (T'R%) are slack, the principal faces

min waafyfa + wauvfu + wua’yga + wuu,ylfu (28)
{wi37ct8}t,.96{u,a}

Puu U

s.t. (wua - waa) < (wau - wuu)P_ (TRP)

U+ V(A > cauls + cund s (TR3)

Way = Cay (LLzu)

Wyq = Cyuq (LLia)

Waq = Caa (LL?LCL)

2TTechnically, to be sure that this is indeed a potential solution, we need to check that it satisfies
the (IC). It is easy to see that it does so even regardless of (15), since

(@+ V)

TT Al'y, <0< AV.

- u+ V(A - -
Z A’Ytscts = %(Arﬁiu + A’Yua) =
ts w
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where all ¢;; > 0 following Lemma 6. It is immediate to see how the (LL?,) and
(LL?)) bind in this case. If they do not, decreasing the relevant w;, decreases costs
and does not affect any constraint. At this point, from Lemma 16, we know that
only one between (LL?,) and (LL?2,) binds. Suppose it is the latter, then wy > Caq-
In this case, the the principal can decrease c,, until (LL. ) binds, violating the

assumption. Suppose instead, that wg, = ¢4q While wyy, > ¢a. The (T'RY) becomes

Cau;?aLu + Cuu:yilju + PUU u + V()\L)
Cuu - ~ ~
(Pao = Pua)TiTE " Pon (P = P ) TETE

(5/([1/71 + ﬁﬁu) S Waz -

Since the (LL2,) is slack, the principal can decrease w,, until the (T'R%) binds. We
can now calculate the new objective function where w;s = ¢;s with the exception of

the wy,, (which, instead, comes from the (T'RY%)):

L L L L
waa,}/aa + wauf}/au + wuary'u,a + w’uu/yuu

u+ V(AL Puu—cau~§u—cuu~5u
_ (V) P cudy (7 DN
<Paa - Pua> ]-—‘g

Cau;?gu + Cuu;;/ﬁu - (a + V(AL>) PCW

(-ﬁaa - pua) Fﬁ

X wauf)/fu(paa - Pua) + Cauﬁ/élu(Pua - Paa) + Cuu (ﬁgu(Pua - Pazz) + Vlfu)
Pau
FL

u

L L
/yua + Cuufyuu

")/Clblupuu(paa - Pua)
Pua

X Cau’?aLu |:<Pua - Paa) + ’?ﬁu(Pua - Paa) + ’qu + Paupuu +

In the reduced problem, the objective function is subject only to
i+ V(N > ol 4 ¢, TE.

Since the sign of the coefficients of ¢,, and ¢, is not trivial, we study all possible

cases and show that all of them lead to a contradiction. First, suppose the case
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where both ¢,, and ¢,, increase the objective functions, then the principal wants to
decrease them both. This violates the assumption that (LL! ) is slack. Now suppose
Cuu increases the objective function while ¢,, decreases it. Then the principal sets
cuw = 0 and ¢, such that the (T'R%) binds. However, when ¢, = 0, the (T'R%)
coincides with the (LL!,) and therefore the latter binds, providing a contradiction
again. Now suppose ¢,,, decreases the objective function while ¢,,, increases it. Then
caw = 0 which violates the assumption that ¢, > 0. Finally, suppose both ¢,, and
Cau decrease the objective function. Then the principal sets the (T'R%) binding and

solves for ¢, to get
_u+ V(A L
Cou = FL — Cuu FL .

(29)

Substituting this into the objective function, we obtain the final form of the reduced

problem:

(ﬁaLuFaL _ ﬁﬁurg) szuPuU(paa — Pua) B :VaLuPau

L ~
P(IUPUU

min ¢y | (P — Paa) -
I

If the coefficient of ¢,, is positive, then the solution to the problem is ¢,, = 0 and
Cau = %C?L) yielding, once again, to the (LL.,) binding since it coincides with the
(T'RY%). If the coefficient is negative, instead, the problem is solved by the maximum
possible ¢,,. That is, the value that sets c¢,, = 0 from (29). This violates the
assumption that c¢,, > 0. This concludes the proof for the case of a positive ¢4, and
(LL! ) slack.

This concludes the proof of the Lemma showing that, if there exists an optimal

contract that implements low effort with a deadweight loss, it must be that it sets
the (T'R$) binding. B

Now that we know that the (T'R%) binds, we are going to re-write the problem
in two different ways. With the first one, we are going to prove that c¢,, = 0. With
the second, we are going to select a value for each w;, as a function of c.

First, solve the (T'R%) for wa,vk, = wuavk, + wuuyk, — waayk, and substitute

o4



it into the objective function. This makes the w,, disappear from the objective

function, which is now given by wyq (v, +vE) + wuu(VE, +7E).

Lemma 20. Given (15), for any value of the bias, if there exists a contract featuring

a deadweight loss that implements low effort, it features c,, = 0.

Proof. Suppose not, and consider the objective function wyq (7% + L) + weu (VE, +
vL ). Notice that ¢, > 0 corresponds to (LL! ) slack. Hence, the only constraint on
Can aNd ¢y is the (TRY). Decreasing cg,, and ¢, by € also decreases ¢,, and increases
Caa- The latter produces no effect on the objective function while the decrease in ¢,
Cuuw and ¢, allows the principal to decrease the objective function via either w,, or

Wye. This provides a contradiction to (LL!,) being slack. B

Lemma 21. Given (15), for any value of the bias, if there exists a contract, featuring

a deadweight loss that implements low effort, it must feature

Wy = Cyu
Waa = Caa

Way = max{cau, Cuu}

P
Wya = (maX{Caua Cuu} - Cuu)ﬂ + Caq

PLLCL

Proof. First of all, from Lemma 18, we can solve the (T'R%) for

au
Wya = (wau - wuu>P_ + Wygq.
aa

When plugged into the objective function, it yields

Pau Pau
waa(’}/fa _'_ 75(1) + Way (7£u + P 75(1) + Wy <’y£u - P 75(1)

X waa(%fa + 7£a)Paa + wau{'VaLu + %ﬁ;)Pau + wuurﬁ(Paa — Pua).

The above is subject only to the (LL,,) and to wg, > wy,, by Lemma 5. Hence,
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the principal can decrease the wage levels and set Wy, = Cuu, Waa = Caq aNd Wy =
max{ oy, Wyu } = Max{Cau, Cuu}- The proof is concluded by plugging these into the

function for wy,. B

Given Lemmas 20 and 21, we have the new objective function
Caa(’ytfa + r)/’Ifa)Paa + maX{Cauv Cuu}(’y(fu + ’Y’L[[,la) + Cuurﬁ(Paa - Pua)-

Before plugging in the value for c,,, notice that we can solve the (LL.)) to get

i+ V(A Vi
Cau = — Cuu .
I Vau

We plug this into the value for ¢,, to obtain

(ﬂ + V()‘L)) Puu - Cau’?cl;u - Cuuﬁ/ﬁu u+ V()‘L)
Caa = - ’
(Paa — Pua) TE La

which is, therefore, irrelevant for the objective function of the reduced problem. This

latter is given by

min  max{cau, Cuu (V2 + V) Pow + a2 (Pag — Pua).- (30)

Cau;Cuu

This allows us to state the final Lemma, that shows how there exist no optimal

contract implementing low effort with deadweight loss.

Lemma 22. When (15) holds, the principal implements low effort with {w?,, ct, }s..

Proof. First of all, we show that c,, > ¢y, in (30). Suppose not, and ¢, > ¢4y, then
the objective function only depends (positively) on ¢,,. The problem is then solved
by ¢, = 0, which contradicts ¢, > ¢4, Given that ¢y, > ¢, the problem becomes

(disregarding any constant term)

~L
min —Cuu?/—lgu(’}/fu + 75;1) + Cuurﬁ(Paa - Pua)

Cuu
au

56



Suppose the coefficient of ¢, is negative, then the solution would imply c¢,, such
that ¢4, = 0. This would violate ¢4, > cu,. Hence, a solution only exists when the
coefficient of ¢, is negative. Regardless of whether this is the case or not, notice

that the solution to the problem would be

_ _ — __ C
Waa = Caa Way = Caa Wyu =0 Wy = 5=
_ V() _ _ —

Caa = =1L — Cau = Caa Cuu =0 Cug =0

which yields an expected wage payment of

E(wis) = Waq (Ffb - ;fz) = (a+ V() (1 + %) > (a+ V() = E(wl,).

Hence, even when a solution does exist, it is more expensive than the constant
wage one.?® This implies that when (15) holds, low effort is implemented with a

constant wage contract. I

Given Lemma 22, it is immediate to see that the magnitude, or presence, of the
bias does not affect the expected cost of implementing low effort. From Proposition 2
and Lemma 4, we know that the expected cost of implementing high effort, instead,

is at least weakly decreasing in the bias. This concludes the proof.

281t is possible to show that the contract with deadweight loss above satisfies the (IC) under
(15).
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