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--- Main Appendix ---

Proof of Lemma 1: To prove (i), note that:

γjts = λjγGts+(1−λj)γBts = λjPtsγ
G
t +(1−λj)PtsγBt = Pts

[
λjγGt + (1− λj)γBt

]
= PtsΓ

j
t .

To prove (ii), start from Assumption 2 and use (i) to obtain:

PaaPuu − PauPua > 0

PaaPuuΓ
j
aΓ

j
u − PauPuaΓjaΓju > 0

γjaaγ
j
uu − γjauγjua > 0 (7)

by positivity of ΓjaΓ
j
u. To prove (iii), note that Paa = 1 − Pau and Pua = 1 − Puu.

Substitute for the latter in Assumption 2 to obtain:

(1− Pau)Puu − Pau(1− Puu) > 0

Puu − Pau > 0

Similarly, substitute for Pau = 1−Paa and Puu = 1−Pua to obtain that Paa−Pua > 0.

Finally, to prove (iv), note that

∆Γt = ΓHt −ΓLt = λHγGt +(1−λH)γBt −
[
λLγGt + (1− λL)γBt

]
=
(
λH − λL

) (
γGt − γBt

)
.
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Therefore

∆Γa + ∆Γu =
(
λH − λL

) (
γGa − γBa

)
−
(
λH − λL

) (
γGu − γBu

)
=

(
λH − λL

)
[(γGa − γGu )− (γBu − γBa )]

=
(
λH − λL

)
[(γGa − γGu )− (γGa − γGu )] = 0.

This proves Lemma 1.

Proof of Lemma 2: Simple checking yields:

γ̃jaaγ̃
j
uu − γ̃jauγ̃jua = (P̃aaP̃uu − P̃auP̃ua)ΓjaΓju

which is positive when

P̃aaP̃uu − P̃auP̃ua = P̃aa(1− P̃ua)− (1− P̃aa)P̃ua
= P̃aa − P̃aaP̃ua − P̃ua + P̃aaP̃ua = Paa − Pua + ba − bu > 0.

Since, by Lemma 1, Paa > Pua, the latter inequality always holds for ba ≥ bu. For

values of bu > ba, it yields condition (3). This proves Lemma 2.

Basic Features of Contracts: We now state and prove three results on problem

(4) which are valid for biased as well as for rational agents. Note that in order for

the truthful reporting constraints to hold, it cannot be optimal for either party to al-

ways report the same performance evaluation regardless of that party’s performance

evaluation realization. Hence, truthful reporting imposes constraints on the equilib-

rium wages and compensation levels. For example, suppose we had waa ≥ wua and

wau ≥ wuu, with at least one inequality holding strictly. In this case, it would be

optimal for the principal to always report an unacceptable performance, regardless of

her performance evaluation realization, and this would violate the principal’s truth-

ful reporting constraints. Similarly, suppose we had caa ≥ cau and cua ≥ cuu, with at

least one inequality holding strictly. In this case, it would be optimal for the agent to

always report an acceptable performance, regardless of his performance evaluation
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realization, and this would violate the agent’s truthful reporting constraints. Since

the principal wants to pay the lowest possible wage, the direction of the inequali-

ties must be such that the wages are the lowest when the performance evaluation

reports are identical, that is, t = s, the most probable outcome (under truthful re-

porting) given that signals are positively correlated. Similarly, since the agent wants

to obtain the highest possible compensation, if he believes signals are positively cor-

related, then the direction of the inequalities must be such that the compensations

are the highest when t = s, the most probable believed outcome. This produces the

following two Lemmas.

Lemma 5. Given Assumption 2, any optimal contract implementing high effort fea-

tures either (i) wua = waa and wau = wuu or (ii) wua > waa and wau > wuu.

Proof. Rearranging the two (TRP ) constraints:

(wua − waa) ≥ (wau − wuu)
γHau
γHaa

(wua − waa) ≤ (wau − wuu)
γHuu
γHua

⇒ (wau − wuu)
γHau
γHaa
≤ (wua − waa) ≤ (wau − wuu)

γHuu
γHua

. (8)

Given Assumption 2, either all the brackets in (8) are 0 (case (i)), or they have

positive signs (case (ii)). This proves Lemma 5.

Lemma 6. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features either (i) caa = cau and cuu =

cua or (ii) caa > cau and cuu > cua.
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Proof. For Lemma 6 follow the same steps with the (TRA) constraints to obtain:

(cuu − cua)
γ̃Hua
γ̃Haa
≤ (caa − cau) ≤ (cuu − cua)

γ̃Huu
γ̃Hau

. (9)

When the agent believes signals are positively correlated, that is, γ̃Haaγ̃
H
uu−γ̃Hauγ̃Hua > 0,

we have:
γ̃Hua
γ̃Haa

<
γ̃Huu
γ̃Hau

.

Given this last inequality, either all the brackets in (9) are 0 (case (i)), or they have

positive signs (case (ii)). This proves Lemma 6.

Lemmas 5 and 6 allow us to state a Lemma which confirms one of the main

results of MacLeod (2003) for an agent who believes signals are positively correlated.

That is, unless the optimal contract features a deadweight loss, it is impossible to

implement high effort under truthful reporting. This proves Lemma 6.

Lemma 7. If the principal wishes to implement high effort under truthful reporting

and the agent believes signals are positively correlated, then there ought to exist at

least one combination of realizations of t and s where wts > cts.

Proof. Suppose not, then wts = cts for all t and s. Given Lemma 5 and 6, we have:

cuu ≥ cua ≥ caa ≥ cau ≥ cuu,

where the first and third inequalities follow from Lemma 6 and the second and fourth

follow from Lemma 5. Obviously, for all inequalities to hold together we need

cuu = cua = caa = cau.

This implies that Ẽ(cts|λH) = Ẽ(cts|λL), since the agent compensation is completely

independent from the realization of t and s. This, of course, violates the (IC)
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constraint since

Ẽ(cts|λH)− V (λH) < Ẽ(cts|λL)− V (λL).

This proves Lemma 7.

Simplifying the Effort Implementation Problem: When the (PC) is slack

problem (4) becomes:

min
{wts,cts}t,s∈{u,a}

waaγ
H
aa + wauγ

H
au + wuaγ

H
ua + wuuγ

H
uu (10)

s.t.
∑
ts

ctsγ̃
H
ts − V (λH) ≥

∑
ts

ctsγ̃
L
ts − V (λL) (IC)

waaγ
H
aa + wauγ

H
au ≤ wuaγ

H
aa + wuuγ

H
au (TRa

P )

wuaγ
H
ua + wuuγ

H
uu ≤ waaγ

H
ua + wauγ

H
uu (TRu

P )

caaγ̃
H
aa + cuaγ̃

H
ua ≥ cauγ̃

H
aa + cuuγ̃

H
ua (TRa

A)

cauγ̃
H
au + cuuγ̃

H
uu ≥ caaγ̃

H
au + cuaγ̃

H
uu (TRu

A)

wts ≥ cts ≥ 0 ∀t, s ∈ {a, u}. (LLts)

We now show that problem (10) can be simplified to:

min
caa,cau

caa[(γ
H
aa)

2γ̃Huu + γHaaγ
H
uaγ̃

H
uu + γ̃Hauγ

H
uuγ

H
aa − γ̃HauγHauγHua]

+ cau
(
γHaaγ

H
auγ̃

H
uu + γHauγ

H
uaγ̃

H
uu − γ̃HauγHuuγHaa + γ̃Hauγ

H
auγ

H
ua

)
(11)

s.t. caa

(
∆γ̃aa +

γ̃Hau
γ̃Huu

∆γ̃uu

)
+ cau

(
∆γ̃au −

γ̃Hau
γ̃Huu

∆γ̃uu

)
≥ ∆V (IC)

caa ≤
(

1 +
γ̃Huu
γ̃Hau

)
cau (TRu

P )

caa ≥ cau, (TRa
A)

where ∆V = V (λH)− V (λL).

Lemma 8 below states that an agent believing that signals are positively cor-

related ought to be compensated in the “most positive” case, that is, when both
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principal and agent report an acceptable performance. It also states that the agent

obtains no compensation when the principal deems the performance unacceptable

and the agent disagrees. Together with Lemma 10 below, Lemma 8 proves that a

deadweight loss happens only when the principal deems unacceptable a performance

deemed acceptable by the agent.

Lemma 8. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features caa > cua = 0.

Proof. Define ∆γts = γHts − γLts and ∆γ̃ts = γ̃Hts − γ̃Lts. First, we prove that ∆γ̃as > 0

and ∆γ̃us < 0 for any s ∈ {a, u} (it is easy to see that the same holds for ∆γas and

∆γus). Notice that Assumption 1 is independent from Assumption 3. Therefore:

∆γ̃ts = γ̃Hts − γ̃Lts
= λH γ̃Gts + (1− λH)γ̃Bts − λLγ̃Gts − (1− λL)γ̃Bts

= λHP̃tsγ
G
t + (1− λH)P̃tsγ

B
t − λLP̃tsγGt − (1− λL)P̃tsγ

B
t

= (λH − λL)P̃ts(γ
G
t − γBt ),

which is positive at t = a and negative otherwise.23 Now we rewrite the (IC) in the

following way:

caa∆γ̃aa + cau∆γ̃au + cua∆γ̃ua + cuu∆γ̃uu ≥ ∆V, (12)

Recall that any optimal contract with truthful reporting for an agent who believes

signals are positively correlated satisfies either case (i) or case (ii) of Lemma 6.

Assume case (i) of Lemma 6 holds, then (12) becomes:

caa (∆γ̃aa + ∆γ̃au)︸ ︷︷ ︸
>0

+cuu (∆γ̃ua + ∆γ̃uu)︸ ︷︷ ︸
<0

≥ ∆V.

23For future reference, this also proves that, as long as ba and bu are both positive, ∆γ̃ta > ∆γta
and ∆γ̃tu < ∆γtu for any t.
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Because of the negative sign of the second bracket, and since ∆V > 0 and cuu ≥ 0,

the above requires caa > 0 to always hold. Assume now case (ii) of Lemma 6 holds,

for a similar argument, we need at least one between caa and cau to be positive. Since

cau ≥ 0, case (ii) implies caa > cau ≥ 0. This proves the first part of Lemma 8.

To prove the second part of Lemma 8, we suppose it is false, i.e., at optimum

cua > 0, and prove that there exists a profitable deviation from such a contract,

which contradicts its optimality. First of all, from Lemma 6 we know that cuu ≥ cua

and also caa ≥ cau. The proof now depends on whether cau > 0 or cau = 0.

Suppose cau > 0. Let the principal decrease both cuu and cua by ε so that their

difference remains constant (so not to affect the (TRA) constraints). From (12)

above, we see that both cuu and cua enter negatively in the LHS of the (IC). Hence,

decreasing them, would relax the (IC) rather than tightening it. In particular, the

LHS of the (IC) constraint has increased by −ε(∆γ̃ua + ∆γ̃uu). Since we are in the

case where cau > 0, the principal can also decrease both caa and cau by ε. In this

way, the overall change in the LHS of the (IC) is given by

−ε (∆γ̃aa + ∆γ̃au + ∆γ̃ua + ∆γ̃uu)

= −ε
(
P̃aa∆Γa + P̃au∆Γa + P̃ua∆Γu + P̃uu∆Γu

)
= −ε (∆Γa + ∆Γu) = −ε (∆Γa −∆Γa) = 0

and therefore the (IC) binds again.

Finally, since both cua and caa have been decreased by ε, the principal can decrease

also wua and waa by the same amount. This holds their difference constant and does

not violate any of the relevant (LLts). Hence, it does not violate any of the (TRP )

constraints either. This new contract {wts, cts}t,s implements high effort at a lower

cost. Hence, a contract where cua > 0 and cau > 0 cannot be the solution to the

problem.

Suppose now, instead, that the optimal contract features cau = 0 and define

∆cu = cuu − cua. Notice that this implies caa > cau and that we are in case (ii) of
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Lemma 6. We divide the proof for this case in three steps.

Step 1

When cau = 0, the (TRA) constraints imply

∆cu
γ̃Hua
γ̃Haa
≤ caa ≤ ∆cu

γ̃Huu
γ̃Hau

, (13)

where, since we are in case (ii) of Lemma 6 either only one of the two inequalities

holds as equality, or none. Suppose none of the two does, or just the second one, the

principal can decrease both cuu and cua by ε keeping ∆cu constant, relaxing the (IC)

constraint. In particular, the LHS of the (IC) has decreased by ε(∆γ̃ua + ∆γ̃uu).

He can then decrease caa by δ ≡ ε(∆γ̃ua+∆γ̃uu)
∆γ̃aa

bringing the LHS of the (IC) back to

its original value. Clearly, for some ε, this deviation can lead to the first inequality

in (13) binding. Finally, to see that this is optimal for the principal, notice that

according to the (LLts) constraints, she can decrease wua up to ε and waa up to δ.

By decreasing both by min{ε, δ}, their difference does not change. Hence, (TRP )

constraints are not affected, while the objective function decreases. This implies

that, at optimum, if cau = 0 the first inequality of (13) must bind and ∆cu
γ̃Hua
γ̃Haa

= caa.

Step 2

Given that ∆cu
γ̃Hua
γ̃Haa

= caa when cau = 0, we now show that the principal has at

her disposal the following optimal deviation from a contract with cau = 0. Let her

decrease cuu by ε and cua by ε0 < ε. Then ∆cu has decreased by (ε − ε0). In order

to keep ∆cu
γ̃Hua
γ̃Haa

= caa, the principal decreases caa by (ε− ε0) γ̃
H
ua

γ̃Haa
. It remains to check

if this deviation can be made in such a way that it does not violate the (IC). The
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change in the (IC) is:

−(ε− ε0)
γ̃Hua
γ̃Haa

∆γ̃aa − ε0∆γ̃ua − ε∆γ̃uu

= −(ε− ε0)
P̃uaΓ

H
u

ΓHa
∆Γa + ε0P̃ua∆Γa + εP̃uu∆Γa

= ∆Γa

[
ε

(
P̃uu − P̃ua

ΓHu
ΓHa

)
+ ε0P̃ua

(
ΓHu
ΓHa

+ 1

)]
=

∆Γa
ΓHa

[
ε
(
P̃uuΓ

H
a − P̃ua + P̃uaΓ

H
a

)
+ ε0P̃ua

]
=

∆Γa
ΓHa

[
ε
(

ΓHa − P̃ua
)

+ ε0P̃ua

]
,

which is positive when:

ε
(

ΓHa − P̃ua
)

+ ε0P̃ua > 0.

If ΓHa > P̃ua, the above is always true. If instead ΓHa < P̃ua then the principal has to

choose ε ∈
{
ε0, ε0

P̃ua

P̃ua−ΓH
a

}
.

Step 3

To conclude, we show that the above deviation is optimal. Given the decreases in

the cts, the principal can now decrease wua up to ε0 and waa up to (ε− ε0) γ̃
H
ua

γ̃Haa
. By an

argument similar to the one in Step 1, she can decrease both wages by the smallest

of the two limits, decreasing the objective function. This proves that a contract with

cua > 0 and cau = 0 cannot be optimal, since the principal can deviate optimally

from it.

Hence, since a contract where cua > 0 and cau ≥ 0 cannot be a solution to the

problem it follows that cua = 0. This concludes the proof of the Lemma.

We now study the principal’s incentives to report her performance evaluation

truthfully.

Lemma 9. If the agent believes signals are positively correlated, i.e. (3) holds, then

constraint (TRa
P ) always binds in any optimal contract implementing high effort.
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Proof. Of course, in case (i) of Lemma 5 this is trivially proven. Assume now case

(ii) of Lemma 5 holds and suppose (TRa
P ) is slack. Then wua > 0 must hold. From

Lemma 8, then cua = 0, and the principal can simply decrease wua until (TRa
P ) binds.

This would relax (TRu
P ), not affect (LLua) and decrease the objective function.

We now solve for all wts as functions of the compensation cts.

Lemma 10. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features:

(i) waa = caa;

(ii) wuu = cuu;

(iii) wau = max{cau, cuu};

(iv) wua = caa + (max{cau, cuu} − cuu) γHau
γHaa

.

Proof. First of all, notice that, by Lemma 9, wua = waa + (wau − wuu)γ
H
au

γHaa
. Hence,

the principal’s objective function in (4) can be rearranged as:

waaγ
H
aa + wauγ

H
au +

[
waa + (wau − wuu)

γHau
γHaa

]
γHua + wuuγ

H
uu,

and further as:

waa
(
γHaa + γHua

)
+ wau

(
γHau +

γHauγ
H
ua

γHaa

)
+ wuu

(
γHuu −

γHauγ
H
ua

γHaa

)
,

where the last bracket is positive by Assumption 2. Furthermore, setting wua =

waa + (wau − wuu)γ
H
au

γHaa
in (TRu

P ) we have

[
waa + (wau − wuu)

γHau
γHaa

]
γHua + wuuγ

H
uu ≤ waaγ

H
ua + wauγ

H
uu,

which is equivalent to

wuu ≤ wau.
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Hence, given the Lemmas so far, waa, wau, and wuu are only bound by wuu ≤ wau

and the three corresponding (LLts). This implies that waa, wau, and wuu will be set

to the lowest possible value. By Lemma 5, and in order to minimize the objective

function, waa = caa, wuu = cuu and wau = max{cau, wuu}, implying points (i), (ii)

and (iii) of Lemma 10. Point (iv) follows by substitution.

The next Lemma completes case (ii) of Lemma 6 by ranking cau and cuu. As ex-

pected, when the principal deems the performance acceptable, the agent may obtain

a compensation premium even when he observes S = u.

Lemma 11. If the agent believes signals are positively correlated, i.e. (3) holds, then

any optimal contract implementing high effort features cau ≥ cuu.

Proof. Suppose not. Then cuu > cau ≥ 0. By Lemma 8, cua = 0. Hence cuu > cua,

implying we are in case (ii) of Lemma 6 and caa > cau. By Lemma 10, we have

wuu = wau = cuu and wua = caa = waa. This implies that cau disappears from the

objective function and from constraints. The principal can, therefore, increase cau

and decrease other compensation (and therefore wage payments) in such a way that

the rest of the constraints are still satisfied. This operation can be repeated until

cau = cuu. Hence, the contradiction.

Given this, we can further decrease the amount of binding constraints by proving

the following:

Lemma 12. If the agent believes signals are positively correlated, i.e. (3) holds, then

constraint (TRu
A) always binds in any optimal contract implementing high effort.

Therefore:

cuu =
γ̃Hau
γ̃Huu

(caa − cau).

Proof. Let cuu = 0. Then we are in case (i) of Lemma 6 and (TRu
A) is trivially

binding. Suppose now that cuu > 0 and (TRu
A) is not binding. The principal can

reduce cuu until it binds. Given the proven Lemmas, the (TRP ) still hold, while
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(TRa
A) and (IC) are relaxed by this change. To complete the proof, we need to

check whether a decrease in cuu would decrease the objective function as well. By

Lemmas 10 and 11, we can substitute for all wages in the objective function and find

that the coefficient of cuu becomes
(
γHuu −

γHauγ
H
ua

γHaa

)
, which is positive by Assumption 2.

Hence, decreasing cuu also decreases cost and it is therefore optimal for the principal

to do so. This provides the desired contradiction and proves that (TRu
A) always binds

at optimum.

This concludes the set of Lemmas yielding problem (11). Notice that, when

plugging in the values from Lemma 10, the objective function in (10), simplifies to

(11) divided by γHaaγ̃
H
uu. This is however irrelevant for the minimization problem and

therefore omitted.

The next Lemma presents a condition on the agent’s overprecision that leads to

a result original to our model. That is, as we show later, the existence of a new

contract where the principal’s wage cost is determined only by the agent’s perfor-

mance evaluation report and the agent’s compensation is determined by both parties’

performance evaluation reports. This stands in contrast to the baseline subjective

evaluation contract in the literature where the principal’s wage cost is determined by

both parties’ performance evaluation reports and the agent’s compensation is tied

only to the principal’s performance evaluation report.

Lemma 13. If the agent is overconfident in the sense of overprecision and his beliefs

satisfy:

ba ≥ Pau
ΓHu ΓHa (Paa − Pua) + (Puu − bu)

(
PaaΓ

H
a + PuaΓ

H
u

)
ΓHa

ΓHu ΓHa (Paa − Pua) + (Puu − bu) (PaaΓHa + PuaΓHu )

then the optimal contract implementing high effort features caa > cau, (TRa
A) slack

and (TRu
P ) binding. If the agent is overconfident in the sense of overprecision and

his beliefs violate (5), then the optimal contract implementing high effort features

caa = cau, (TRa
A) binding and (TRu

P ) slack.
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Proof. The inequality in Lemma 13 follows from the comparisons of the slope of the

(IC) with the slope of the iso-costs. This produces the following condition

∆γ̃au −
γ̃Hau
γ̃Huu

∆γ̃uu

∆γ̃aa + γ̃Hau
γ̃Huu

∆γ̃uu
≤ γHaaγ

H
auγ̃

H
uu + γHauγ

H
uaγ̃

H
uu − γ̃HauγHuuγHaa + γ̃Hauγ

H
auγ

H
ua

(γHaa)
2γ̃Huu + γHaaγ

H
uaγ̃

H
uu + γ̃Hauγ

H
uuγ

H
aa − γ̃HauγHauγHua

.

We start from simplifying the slope of the (IC)

LHS =
∆γ̃au −

γ̃Hau
γ̃Huu

∆γ̃uu

∆γ̃aa + γ̃Hau
γ̃Huu

∆γ̃uu
=
γ̃Hau − γ̃Lau − γ̃Hau + γ̃Hau

γ̃Huu
γ̃Luu

γ̃Haa − γ̃Laa + γ̃Hau −
γ̃Hau
γ̃Huu

γ̃Luu
=

γ̃Hau
γ̃Huu

γ̃Luu − γ̃Lau
γ̃Haa − γ̃Laa + γ̃Hau −

γ̃Hau
γ̃Huu

γ̃Luu

=

P̃auP̃uuΓH
a ΓL

u

P̃uuΓH
u
− P̃auΓLa

P̃aa∆Γa + P̃auΓHa

(
1− ΓL

u

ΓH
u

) =
P̃au

(
ΓHa ΓLu − ΓLaΓHu

)
P̃aa∆ΓaΓHu + P̃auΓHa ∆Γu

.

Notice that, since ΓJa + ΓJu = 1 for any j = H,L, we can substitute for ΓHu = 1− ΓHa

and ΓLu = 1−ΓLa . Also, from Lemma 1, ∆Γa = −∆Γu. Hence we can further simplify

the LHS:

P̃au
(
ΓHa ΓLu − ΓLaΓHu

)
P̃aa∆ΓaΓHu + P̃auΓHa ∆Γu

=
P̃au

(
ΓHa (1− ΓLa )− ΓLa (1− ΓHa )

)
P̃aa∆Γa(1− ΓHa ) + P̃auΓHa (−∆Γa)

=
P̃au∆Γa

∆Γa

[
P̃aa(1− ΓHa )− P̃auΓHa

] =
P̃au

P̃aa − ΓHa
=

Pau − ba
Paa − ΓHa + ba

.

The slope of the iso-costs, instead, is given by

γHaaγ
H
auγ̃

H
uu + γHauγ

H
uaγ̃

H
uu − γ̃HauγHuuγHaa + γ̃Hauγ

H
auγ

H
ua

(γHaa)
2γ̃Huu + γHaaγ

H
uaγ̃

H
uu + γ̃Hauγ

H
uuγ

H
aa − γ̃HauγHauγHua

=
(Puu − bu)

(
PaaPauΓ

H
a + PauPuaΓ

H
u

)
− (Pau − ba)ΓHa (PaaPuu − PauPua)

(Puu − bu) (PaaPaaΓHa + PaaPuaΓHu ) + (Pau − ba)ΓHa (PaaPuu − PauPua)

=
(Puu − bu)PauZ − (Pau − ba)W
(Puu − bu)PaaZ + (Pau − ba)W

,
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where Z =
(
PaaΓ

H
a + PuaΓ

H
u

)
and W = ΓHa (PaaPuu − PauPua) = ΓHa (Paa − Pua).

Hence the inequality in Lemma 13 is equivalent to

Pau − ba
Paa − ΓHa + ba

≤ (Puu − bu)PauZ − (Pau − ba)W
(Puu − bu)PaaZ + (Pau − ba)W

,

or

(Pau − ba) (Puu − bu)PaaZ + (Pau − ba)2W

≤
(
Paa − ΓHa + ba

)
(Puu − bu)PauZ −

(
Paa − ΓHa + ba

)
(Pau − ba)W,

or

(Pau − ba)2W +
(
Paa − ΓHa + ba

)
(Pau − ba)W

≤
(
Paa − ΓHa + ba

)
(Puu − bu)PauZ − (Pau − ba) (Puu − bu)PaaZ,

or

(Pau − ba)
[
(Pau + Paa)− ΓHa

]
W ≤ (Puu − bu)

[
ba (Paa + Pau)− PauΓHa

]
Z,

or

bu ≤ Puu −
(Pau − ba)

(
1− ΓHa

)
W

(ba − PauΓHa )Z
. (14)

Solving (14) for ba we obtain (5). To conclude the proof of Lemma 13 consider the

graphical analysis of (11). Figure 3 below shows the three constraints binding in

(cau, caa) space and highlights the set of contracts satisfying all constraints of (11)

— and therefore of (4).

In order to understand whether at optimum it is the (TRu
P ) or the (TRa

A) that

binds, and therefore where the optimal contract lies in Figure 3, we compare the sign

and magnitude of the slope of the iso-costs and the (IC). Hence, Lemma 13 shows

that the optimal contract lies either at point X or Y of Figure 3, depending on how

the slope of the (IC) and of the iso-costs compare.

14
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Figure 3: The shaded area represents the set of contracts satisfying all the constraints
in the minimization problem (11) — and therefore (4).

Proof of Proposition 1: The proof is divided into three parts. First, we show

that when ba = bu = 0, the slope of the (IC) is never lower than the slope of the

iso-costs. Seccond, we derive the optimal contract for a rational agent. Third, we

show that the optimal contract satisfies the (PC) when

ū ≤ ∆V

∆Γa
ΓHa − V (λH) ≡ ū1. (15)

Using the algebra presented in the proof of Lemma 13, consider the slope of the (IC)

when the agent is unbiased:
Pau

Paa − ΓHa

This implies that the (IC) is negatively sloped if and only if ΓHa < Paa. First we

assume ΓHa < Paa and show that the (16) always holds. Then we move to the case

of ΓHa > Paa.

15



Let ΓHa < Paa. The comparison between slopes then becomes:

Pau
Paa − ΓHa

>
γHaaγ

H
auγ

H
uu + γHauγ

H
uaγ

H
uu − γHauγHuuγHaa + γHauγ

H
auγ

H
ua

γHaaγ
H
aaγ

H
uu + γHaaγ

H
uaγ

H
uu + γHauγ

H
uuγ

H
aa − γHauγHauγHua

(16)

We now rearrange the RHS, which is less nicely simplified.

RHS =
γHaaγ

H
auγ

H
uu + γHauγ

H
uaγ

H
uu − γHauγHuuγHaa + γHauγ

H
auγ

H
ua

γHaaγ
H
aaγ

H
uu + γHaaγ

H
uaγ

H
uu + γHauγ

H
uuγ

H
aa − γHauγHauγHua

=
γHauγ

H
uaγ

H
uu + γHauγ

H
auγ

H
ua

γHaaγ
H
aaγ

H
uu + γHaaγ

H
uaγ

H
uu + γHauγ

H
uuγ

H
aa − γHauγHauγHua

Before going ahead, notice that this proves that in the case of an unbiased agent

isocosts are always negatively sloped. Carrying on we obtain

γHauγ
H
uaγ

H
uu + γHauγ

H
auγ

H
ua

γHaaγ
H
aaγ

H
uu + γHaaγ

H
uaγ

H
uu + γHauγ

H
uuγ

H
aa − γHauγHauγHua

=
PauPuaPuuΓ

H
u + PauPauPuaΓ

H
a

PaaPaaPuuΓHa + PaaPuaPuuΓHu + PauPuuPaaΓHa − PauPauPuaΓHa

=
PauPua(Puu(1− ΓHa ) + PauΓ

H
a )

PaaPuuΓHa + Pua(PaaPuu(1− ΓHa )− PauPauΓHa )

=
PauPua(Puu − ΓHa (Puu − Pua))

PaaPuuΓHa + Pua(PaaPuu(1− ΓHa )− PauPauΓHa )

This implies that comparing the slopes boils down to:

Pau
Paa − ΓHa

>
PauPua(Puu − ΓHa (Puu − Pua))

PaaPuuΓHa + Pua(PaaPuu(1− ΓHa )− PauPauΓHa )

1

Paa − ΓHa
>

Pua(Puu − ΓHa (Puu − Pua))
PaaPuuΓHa + Pua(PaaPuu(1− ΓHa )− PauPauΓHa )

PaaPuuΓ
H
a + Pua(PaaPuu(1− ΓHa )− PauPauΓHa ) > (Paa − ΓHa )Pua(Puu − ΓHa (Puu − Pua)).

16



Recall that Lemma 1 showed Paa > Pua and Puu > Pau.

PaaPuuΓ
H
a + PuaPaaPuu − PuaPaaPuuΓHa − PuaPauPauΓHa

> PuaPaaPuu − PuaPuuΓHa − PaaPuaΓHa (Puu − Pua) + Pua(Γ
H
A )2(Puu − Pua),

which, by simplifying and dividing by ΓHa on both sides, is equivalent to:

PaaPuu − PuaPauPau > −PuaPuu + PaaPuaPua + PuaPuuΓ
H
A − PuaPuaΓHA

PaaPuu − PuaP 2
au > −PuaPuu + PaaP

2
ua + PuuPuaΓ

H
a − P 2

uaΓ
H
a

Puu(Paa + Pua)− PuaΓHa (Puu − Pua)− PuaP 2
au − PaaP 2

ua > 0.

Now we substitute for Puu = 1− Pua and Pau = 1− Paa and we get:

(1− Pua) (Paa + Pua)− PuaΓHa (1− 2Pua)− Pua(1− Paa)2 − PaaP 2
ua > 0

Paa + Pua − PaaPua − P 2
ua − PuaΓHa (1− 2Pua)− Pua + 2PaaPua − PuaP 2

aa − PaaP 2
ua > 0

Paa + PaaPua(1− Pua − Paa)− P 2
ua + PuaΓ

H
a (2Pua − 1)︸ ︷︷ ︸

Γ

> 0.

Suppose first that Pua <
1
2
, then Γ < 0 and the LHS gets smaller the greater is ΓHa .

Hence, to be sure the condition holds, we set ΓHa → Paa, the highest possible value

it can get. This yields Γ→ 2PaaP
2
ua − PaaPua. Hence the condition converges to

Paa + PaaPua(1− Pua − Paa)− P 2
ua + 2PaaP

2
ua − PaaPua > 0

Paa + PaaP
2
ua − P 2

aaPua − P 2
ua > 0. (17)

Notice that if this holds for all Paa > Pua then so will the condition for the case of

Pua >
1
2
. In that case, in fact, Γ > 0, which means that the LHS would increase

with ΓHa . Hence, to check it holds we set it to 0. This would set Γ = 0 and yield a

condition looser than (17).

To see that (17) always holds, notice that the derivative of the LHS with respect

17



to Pua is given by:

∂LHS

∂Pua
= 2PaaPua − P 2

aa − 2Pua = 2Pua(Paa − 1)− P 2
aa

which is negative for all Paa < 1. Hence, the condition is monotonically decreasing

in Pua. We therefore check for the maximum value of Pua, which in this case is 1
2
.

At this value, condition (17) becomes simply

−2P 2
aa + 5Paa − 1 > 0

By Lemma 1, Paa must be strictly larger than Pua. The second order equation

above always holds for Paa ∈ [1
2
, 1]. Hence when the (IC) is negatively sloped and

ba = bu = 0, (5) always holds.

We are now left to show that the same holds when the (IC) is positively sloped.

Suppose that the (IC) is positively sloped. This implies that it requires caa to be

smaller than cau times a positive number. First of all, notice from the (IC) that

when it is positively sloped, its intercept for cau = 0 is negative. Further, its slope is

now given by

∆γ̃au −
γ̃Hau
γ̃Huu

∆γ̃uu

−∆γ̃aa −
γ̃Hau
γ̃Huu

∆γ̃uu

which is obviously larger than 1. Hence, the set of constraint compatible contracts

becomes the one highlighted in Figure 4.

Regardless of whether the iso-costs are positively or negatively sloped, the optimal

contract lies at point Y in the graph. Hence, the optimal contract has (IC) binding

18
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Figure 4: The shaded area represents the set of contracts satisfying all the constraints
of the minimization problem (11) when the agent believes that signals are positively
correlated and the (IC) is positively sloped.

and (TRa
A) binding. Therefore it is the solution to:

c∗ua = 0

c∗uu = 0

c∗aa = c∗au

c∗aa
1

ΓHu

(
Paa − ΓHa

)
∆Γa + c∗au

Pau
ΓHu

∆Γa = ∆V

Setting c∗au = c∗aa and solving the last equation for c∗aa gives us:

c∗aa =
∆V

Paa − ΓHa + Pau

ΓHu
∆Γa

=
∆V

1− ΓHa

ΓHu
∆Γa

=
∆V

ΓHu

ΓHu
∆Γ̃a

=
∆V

∆Γa
.

Hence, the optimal contract is given by:
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w∗aa = c∗aa w∗au = c∗aa w∗uu = 0 w∗ua = c∗aa
Paa

c∗aa = ∆V
∆Γa

c∗au = c∗aa c∗uu = 0 c∗ua = 0.

To complete the proof we show that the optimal contract satisfies the (PC). The

LHS of the (PC) is:

∑
ts

c∗tsγ
H
ts − V (λH) =

∆V

∆Γa
γHaa +

∆V

∆Γa
γHau − V (λH)

=
∆V

∆Γa
(γHaa + γHau)− V (λH)

=
∆V

∆Γa
(Paa + Pau)Γ

H
a − V (λH)

=
∆V

∆Γa
ΓHa − V (λH) = ū1 ≥ ū

Hence, the optimal contract for a rational agent satisfies the (PC).

Impact of Overestimation on (PC) and (IC) for fixed compensation. The

following two results characterize the impact of overestimation on (PC) and (IC)

when the agent’s compensation is held fixed.

(i) If the optimal contract implementing high effort features caa = cau > cuu = cua,

then overestimation relaxes the (PC) for fixed compensation. To see this note that

the (PC) is ∑
ts

ctsγ̃
H
ts − V (λH) ≥ ū,

or

caaγ̃
H
aa + cauγ̃

H
au + cuaγ̃

H
ua + cuuγ̃

H
uu − V (λH) ≥ ū,

or

caaPaaΓ̃
H
a + cauPauΓ̃

H
a + cuaPuaΓ̃

H
u + cuuPuuΓ̃

H
u − V (λH) ≥ ū,

or

(caaPaa + cauPau)Γ̃
H
a + (cuaPua + cuuPuu)Γ̃

H
u − V (λH) ≥ ū,
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or

caa(Paa + Pau)Γ̃
H
a + cuu(Pua + Puu)(1− Γ̃Ha )− V (λH) ≥ ū,

or

cuu + (caa − cuu)Γ̃Ha − V (λH) ≥ ū.

Since Γ̃Ha > ΓHa it follows that overestimation relaxes the (PC) for fixed compensa-

tion.

(ii) If the optimal contract implementing high effort features caa = cau > cuu = cua,

then overestimation relaxes the (IC) for fixed compensation if and only if ∆λ̃ > ∆λ.

To see this note that the (IC) is

∑
ts

ctsγ̃
H
ts − V (λH) ≥

∑
ts

ctsγ̃
L
ts − V (λL),

or

caa4γ̃aa + cau4γ̃au + cua4γ̃ua + cuu4γ̃uu ≥ 4V,

or

caaPaa4Γ̃a + cauPau4Γ̃a + cuaPua4Γ̃u + cuuPuu4Γ̃u ≥ 4V,

or

caa(Paa + Pau)4Γ̃a + cuu(Pua + Puu)4Γ̃u ≥ 4V,

or

(caa − cuu)4Γ̃a ≥ 4V,

Hence, if the optimal contract implementing high effort features caa = cau > cuu =

cua, then overestimation relaxes the (IC) for a fixed compensation as long as

4Γ̃a > 4Γa,

or

∆λ̃γGa + (1−∆λ̃)γBa > ∆λγGa + (1−∆λ)γBa ,
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or

∆λ̃ > ∆λ.

Similarly, if the optimal contract implementing high effort features caa = cau > cuu =

cua, then overestimation tightens the (IC) for a fixed compensation if and only if

∆λ̃ < ∆λ.

Proof of Proposition 2: The proof is divided into three parts. First, we show that

the slope of the (IC) is never lower than the slope of the iso-costs. Second, we derive

the optimal contract for an agent who displays overestimation. Third, we show that

the optimal contract satisfies the (PC) when

ū ≤ ∆V

∆Γ̃a
Γ̃Ha − V (λH) ≡ ū2. (18)

The definition of overestimation implies

γ̃Haa = PaaΓ̃
H
a and γ̃Laa = PaaΓ̃

L
a

γ̃Hau = PauΓ̃
H
a and γ̃Lau = PauΓ̃

L
a

γ̃Hua = PuaΓ̃
H
u and γ̃Lua = PuaΓ̃

L
u

γ̃Huu = PuuΓ̃
H
u and γ̃Luu = PuuΓ̃

L
u

∆γ̃aa = γ̃Haa − γ̃Laa = PaaΓ̃
H
a − PaaΓ̃La = Paa∆Γ̃a

∆γ̃au = γ̃Hau − γ̃Lau = PauΓ̃
H
a − PauΓ̃La = Pau∆Γ̃a

∆γ̃ua = γ̃Hua − γ̃Lua = PuaΓ̃
H
u − PuaΓ̃Lu = Pua∆Γ̃u

∆γ̃uu = γ̃Huu − γ̃Luu = PuuΓ̃
H
u − PuuΓ̃Lu = Puu∆Γ̃u
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The reduced effort implementation problem (11) becomes

min
caa,cau

caa[((γ
H
aa)

2 + γHaaγ
H
ua)PuuΓ̃

H
u + PauΓ̃

H
a (γHuuγ

H
aa − γHauγHua)]

+ cau

(
(γHaaγ

H
au + γHauγ

H
ua)PuuΓ̃

H
u − PauΓ̃Ha (γHuuγ

H
aa − γHauγHua)

)
s.t. caa

(
Paa∆Γ̃a +

PauΓ̃
H
a

PuuΓ̃Hu
Puu∆Γ̃u

)
+ cau

(
Pau∆Γ̃a −

PauΓ̃
H
a

PuuΓ̃Hu
Puu∆Γ̃u

)
≥ ∆V

caa ≤

(
1 +

PuuΓ̃
H
u

PauΓ̃Ha

)
cau

caa ≥ cau,

or

min
caa,cau

caa[((γ
H
aa)

2 + γHaaγ
H
ua)PuuΓ̃

H
u + PauΓ̃

H
a (γHuuγ

H
aa − γHauγHua)]

+ cau

(
(γHaaγ

H
au + γHauγ

H
ua)PuuΓ̃

H
u − PauΓ̃Ha (γHuuγ

H
aa − γHauγHua)

)
s.t. caa

(
Paa∆Γ̃a +

PauΓ̃
H
a

Γ̃Hu
∆Γ̃u

)
+ cau

(
Pau∆Γ̃a −

PauΓ̃
H
a

Γ̃Hu
∆Γ̃u

)
≥ ∆V

caa ≤

(
1 +

PuuΓ̃
H
u

PauΓ̃Ha

)
cau

caa ≥ cau,
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Let’s simplify the (IC):

Paa∆Γ̃a +
PauΓ̃

H
a

Γ̃Hu
∆Γ̃u =

1

Γ̃Hu

(
PaaΓ̃

H
u ∆Γ̃a + PauΓ̃

H
a ∆Γ̃u

)
=

1

Γ̃Hu

[
Paa(1− Γ̃Ha )− (1− Paa)Γ̃Ha

]
∆Γ̃a

=
1

Γ̃Hu

(
Paa − PaaΓ̃Ha − Γ̃Ha + PaaΓ̃

H
a

)
∆Γ̃a

=
1

Γ̃Hu

(
Paa − Γ̃Ha

)
∆Γ̃a

and

Pau∆Γ̃a −
PauΓ̃

H
a

Γ̃Hu
∆Γ̃u =

Pau

Γ̃Hu

(
Γ̃Hu ∆Γ̃a − Γ̃Ha ∆Γ̃u

)
=

Pau

Γ̃Hu

(
Γ̃Hu + Γ̃Ha

)
∆Γ̃a

=
Pau

Γ̃Hu
∆Γ̃a

The simplified (IC) becomes

caa
1

Γ̃Hu

(
Paa − Γ̃Ha

)
∆Γ̃a + cau

Pau

Γ̃Hu
∆Γ̃a ≥ ∆V.
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Hence, the reduced effort implementation problem (11) becomes

min
caa,cau

caa[((γ
H
aa)

2 + γHaaγ
H
ua)PuuΓ̃

H
u + PauΓ̃

H
a (γHuuγ

H
aa − γHauγHua)]

+ cau

(
(γHaaγ

H
au + γHauγ

H
ua)PuuΓ̃

H
u − PauΓ̃Ha (γHuuγ

H
aa − γHauγHua)

)
s.t. caa

1

Γ̃Hu

(
Paa − Γ̃Ha

)
∆Γ̃a + cau

Pau

Γ̃Hu
∆Γ̃a ≥ ∆V

caa ≤

(
1 +

PuuΓ̃
H
u

PauΓ̃Ha

)
cau

caa ≥ cau,

The slope of the (IC) is:

LHS =

Pau

Γ̃H
u

∆Γ̃a

1
Γ̃H
u

(
Paa − Γ̃Ha

)
∆Γ̃a

=
Pau

Paa − Γ̃Ha

The slope of the iso-cost is

(γHaaγ
H
au + γHauγ

H
ua)PuuΓ̃

H
u − PauΓ̃Ha (γHuuγ

H
aa − γHauγHua)

((γHaa)
2 + γHaaγ

H
ua)PuuΓ̃

H
u + PauΓ̃Ha (γHuuγ

H
aa − γHauγHua)

=
(PaaΓ

H
a + PuaΓ

H
u )PauPuuΓ

H
a Γ̃Hu − Pau(PaaPuu − PauPua)ΓHu ΓHa Γ̃Ha

(PaaΓHa + PuaΓHu )PaaPuuΓHa Γ̃Hu + Pau(PaaPuu − PauPua)ΓHu ΓHa Γ̃Ha

=
(PaaΓ

H
a + PuaΓ

H
u )PauPuuΓ̃

H
u − Pau(Paa − Pua)ΓHu Γ̃Ha

(PaaΓHa + PuaΓHu )PaaPuuΓ̃Hu + Pau(Paa − Pua)ΓHu Γ̃Ha
.

Let us start by assumig the (IC) is negatively sloped, that is, Γ̃Ha < Paa. In this

case, the slope of the (IC) is never lower than the slope of iso-cost since:

Pau

Paa − Γ̃Ha
>

(PaaΓ
H
a + PuaΓ

H
u )PauPuuΓ̃

H
u − Pau(Paa − Pua)ΓHu Γ̃Ha

(PaaΓHa + PuaΓHu )PaaPuuΓ̃Hu + Pau(Paa − Pua)ΓHu Γ̃Ha
,
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or
1

Paa − Γ̃Ha
>

(PaaΓ
H
a + PuaΓ

H
u )PuuΓ̃

H
u − (Paa − Pua)ΓHu Γ̃Ha

(PaaΓHa + PuaΓHu )PaaPuuΓ̃Hu + Pau(Paa − Pua)ΓHu Γ̃Ha
,

or

(PaaΓ
H
a + PuaΓ

H
u )PaaPuuΓ̃

H
u + Pau(Paa − Pua)ΓHu Γ̃Ha

>
(
Paa − Γ̃Ha

) [
(PaaΓ

H
a + PuaΓ

H
u )PuuΓ̃

H
u − (Paa − Pua)ΓHu Γ̃Ha

]
,

or

(PaaΓ
H
a + PuaΓ

H
u )PaaPuuΓ̃

H
u + Pau(Paa − Pua)ΓHu Γ̃Ha

>
(
Paa − Γ̃Ha

)
(PaaΓ

H
a + PuaΓ

H
u )PuuΓ̃

H
u −

(
Paa − Γ̃Ha

)
(Paa − Pua)ΓHu Γ̃Ha ,

or

Pau(Paa − Pua)ΓHu Γ̃Ha +
(
Paa − Γ̃Ha

)
(Paa − Pua)ΓHu Γ̃Ha

>
(
Paa − Γ̃Ha

)
(PaaΓ

H
a + PuaΓ

H
u )PuuΓ̃

H
u − (PaaΓ

H
a + PuaΓ

H
u )PaaPuuΓ̃

H
u ,

or (
Pau + Paa − Γ̃Ha

)
(Paa − Pua)ΓHu Γ̃Ha

>
[(
Paa − Γ̃Ha

)
Γ̃Hu − PaaΓ̃Hu

]
Puu(PaaΓ

H
a + PuaΓ

H
u ),

or (
1− Γ̃Ha

)
(Paa − Pua)ΓHu Γ̃Ha

>
(
PaaΓ̃

H
u − Γ̃Ha Γ̃Hu − PaaΓ̃Hu

)
Puu(PaaΓ

H
a + PuaΓ

H
u ),

or

(Paa − Pua)ΓHu Γ̃Hu Γ̃Ha + Γ̃Ha Γ̃Hu Puu(PaaΓ
H
a + PuaΓ

H
u ) > 0,
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or

(Paa − Pua)ΓHu + Puu(PaaΓ
H
a + PuaΓ

H
u ) > 0,

which holds. This implies that, like in Proposition 1, the optimal contract has the

(IC) binding and the (TRa
A) binding when Γ̃Ha < Paa. Let us now assume the (IC)

is positively sloped, that is, Γ̃Ha > Paa. In this case, the slope of the (IC) is

Pau

Γ̃Ha − Paa
.

Hence, the slope of the (IC) is larger than 1 since

Pau

Γ̃Ha − Paa
> 1,

or

Pau > Γ̃Ha − Paa,

or

1 > Γ̃Ha .

The intercept of the (IC) for cau = 0 is negative since Γ̃Ha > Paa. This implies that,

just as in Proposition 1, the optimal contract has the (IC) binding and the (TRa
A)

binding when Γ̃Ha > Paa. Hence, the optimal contract has (IC) binding and (TRa
A)

binding. Therefore it is the solution to:

c�ua = 0

c�uu = 0

c�aa = c�au

c�aa
1

Γ̃Hu

(
Paa − Γ̃Ha

)
∆Γ̃a + c�au

Pau

Γ̃Hu
∆Γ̃a = ∆V
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Setting c�au = c�aa and solving the last equation for c�aa gives us:

c�aa =
∆V

Paa − Γ̃Ha + Pau

Γ̃Hu
∆Γ̃a

=
∆V

1− Γ̃Ha

Γ̃Hu
∆Γ̃a

=
∆V

Γ̃Hu

Γ̃Hu
∆Γ̃a

=
∆V

∆Γ̃a

Hence, the optimal contract is given by:

w�aa = c�aa w�au = c�aa w�uu = 0 w�ua = c�aa
Paa

c�aa = ∆V
∆Γ̃a

c�au = c�aa c�uu = 0 c�ua = 0.

To complete the proof we need to show that the optimal contract satisfies the

(PC). The LHS of the (PC) is:

∑
ts

c�tsγ̃
H
ts − V (λH) =

∆V

∆Γ̃a
γ̃Haa +

∆V

∆Γ̃a
γ̃Hau − V (λH)

=
∆V

∆Γ̃a
(γ̃Haa + γ̃Hau)− V (λH)

=
∆V

∆Γ̃a
(Paa + Pau)Γ̃

H
a − V (λH)

=
∆V

∆Γ̃a
Γ̃Ha − V (λH) ≥ ū

Hence, the optimal contract for an agent who displays overestimation satisfies the

(PC).

Impact of Overprecision on (IC) and (TRs
A) for fixed compensation. The

following two Lemmas characterize the impact of overprecision on (IC) and (TRs
A)

when the agent’s compensation is held fixed.

Lemma 14. If the optimal contract implementing high effort features caa = cau and

cuu = cua, then overprecision has no impact on (IC) and (TRs
A).

Proof. see the proof for Lemma 15.

Lemma 14 states that if the agent’s compensation is independent of his own

performance evaluation report, then his overprecision has no effect on (IC) and

(TRs
A) and therefore on implementability of any level of effort.
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Lemma 15. If the optimal contract implementing high effort features caa > cau and

cuu > cua, then overprecision has an ambiguous effect on (IC) but relaxes (TRs
A).

Proof. The (IC) ∑
ts

cts(γ̃
H
ts − γ̃Lts) ≥ ∆V,

can be rewritten as

∑
ts

cts(γ
H
ts − γLts) + (caa − cau)(ΓHa − ΓLa )ba + (cuu − cua)(ΓLu − ΓHu )bu ≥ ∆V. (19)

Note that ΓHa > ΓLa , ΓLu > ΓHu , ba > 0, and bu ∈
(
−γGa
γGu
ba,−γBa

γBu
ba

)
. It follows

from (19) that overconfidence has no impact on (IC) when the optimal contract

features caa = cau and cuu = cua. It also follows from (19) that overconfidence has

an ambiguous impact on (IC) when the optimal contract features caa > cau and

cuu > cua since the second term in the LHS of (19) is positive whereas the third term

is negative.

The (TRa
A)

caaγ̃
H
aa + cuaγ̃

H
ua ≥ cauγ̃

H
aa + cuuγ̃

H
ua,

can be rewritten as

caaγ
H
aa + cuaγ

H
ua + (caa − cau)ΓHa ba ≥ cHauγ

H
aa + cuuγ

H
ua + (cuu − cua)ΓHu bu. (20)

It follows from (20) that overconfidence has no impact on (TRa
A) when the optimal

contract features caa = cau and cuu = cua. It also follows from (20) that overcon-

fidence relaxes (TRa
A) when the optimal contract features caa > cau and cuu > cua

since the third term in the LHS of (20) is positive and the third term in the RHS of

(20) is negative.

The (TRu
A)

cauγ̃
H
au + cuuγ̃

H
uu ≥ caaγ̃

H
au + cuaγ̃

H
uu,
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can be rewritten as

cauγ
H
au + cuuγ

H
uu + (caa − cau)ΓHa ba ≥ caaγ

H
au + cuaγ

H
uu + (cuu − cua)ΓHu bu (21)

It follows from (21) that overconfidence has no impact on (TRu
A) when the optimal

contract features caa = cau and cuu = cua. It also follows from (21) that overcon-

fidence relaxes (TRu
A) when the optimal contract features caa > cau and cuu > cua

since the third term in the LHS of (21) is positive and the third term in the RHS of

(21) is negative. This proves Lemmas 14 and 15.

By Lemma 6, the agent knows that given what the principal observes, he obtains

a premium when he reports T = S. A positive ba and a negative bu increase the

agent’s belief of both signals showing either a or u. This means that, given effort, an

agent who displays overprecision with beliefs satisfying (3) overestimates the chances

of obtaining premium caa− cau more than he overestimates the chances of obtaining

premium cuu − cua. Since T = a is most probable when he exerts high effort, an

agent who displays overprecision with beliefs satisfying (3) requires a lower incentive

to exert λH . That is to say, exerting high effort is part of his “strategy” to increase

the chance of reports (t, s) = (a, a).

Proof of Proposition 3: The proof is divided into six steps. First, we show that

when either the (IC) or the iso-costs (or both) are positively sloped, the optimal

contract is the standard one. Then, we derive conditions for this case not to happen.

Third, we prove that condition (5) implies all the conditions derived as well as (3)

— and hence it is sufficient and necessary to our result — and we identify the shape

of the area where the APE contract is set up (that is we provide an explanation to

the shape of Figure 1). Fourth, we derive the values of wages and compensations of

the APE contract. Fifth, we show that the optimal contract satisfies the (PC) when

ū ≤ ∆V

∆Γa
ΓHa

P̃auΓ
H
a + P̃uuΓ

H
u

P̃auΓHa + P̃uu(P̃aa − ΓHa )
− V (λH) ≡ ū3. (22)
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Sixth, we prove how the deadweight loss of the APE contract is lower than the one

of the BPE contract.

Step 1

First of all, note from (11) that an increase of caa always increases the expected

cost of implementing high effort. The effect of an increase of cau, however, is not

straightforward when ba = bu = 0. If it is positive, then iso-costs are negatively

sloped in (cau, caa) space and costs decrease towards the origin. If it is negative, then

iso-costs are positively sloped and costs decrease towards the bottom right of the

graph.

Suppose the latter is true. Since iso-costs are positively sloped in (cau, caa) space,

optimal contracts lie at point Y of Figure 3. Notice, however, that a further check

is needed here. Suppose the iso-costs are positively sloped. If their slope is larger

than 1, then they are steeper than the locus of points where caa = cau. Hence, for

any given caa = cau = c, there would always exists a c′ > c lying on an iso-costs

further to the right of Figure 3 satisfying all constraints and lowering costs. Hence,

an optimal contract would feature caa = cau = c → ∞. In order to check that this

cannot happen, we study the value of the slope of the iso-costs when the latter is

positive. From the algebra in the proof of Lemma 13, we can get this value as:

(Pau − ba)ΓHa (Paa − Pua)− (Puu − bu)Pau(PaaΓHa + PuaΓ
H
u )

(Pau − ba)ΓHa (Paa − Pua) + (Puu − bu)Paa(PaaΓHa + PuaΓHu )

which is trivially never larger than 1. Hence in equilibrium the baseline contract is

set up.

The case of a positively sloped (IC) has already been discussed in the proof of

Proposition 1.

Step 2

The slope of the (IC) is negative as long as ba ≥ ΓHa − Paa. The condition for

the slope of the iso-cost to be negative, instead, can be derived as follows.

Consider the slope derived in the proof of Lemma 13 again, this time without
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looking at its absolute value

−
(Puu − bu)Pau

(
PaaΓ

H
a + PuaΓ

H
u

)
− (Pau − ba)ΓHa (Paa − Pua)

(Puu − bu)Paa (PaaΓHa + PuaΓHu ) + (Pau − ba)ΓHa (Paa − Pua)
.

The iso-costs are negatively sloped when the numerator of the above is positive. This

happens when:

(Puu − bu)Pau
(
PaaΓ

H
a + PuaΓ

H
u

)︸ ︷︷ ︸
Z

−(Pau − ba) ΓHa (Paa − Pua)︸ ︷︷ ︸
W

> 0

which yields condition:

bu < Puu −
(Pau − ba)W

PauZ
. (23)

Step 3

In this part of the proof we show how, for ba ∈
[
PauΓ

H
a , Pau

]
, condition (5) implies

the negativity of the slope of the (IC) and condition (23). We also show how the

area it delimits has a concave shape in (ba, bu) space and how it always lies in the

interval (PauΓa, Pau) on ba. In order to study this we use version (14) of condition

(5).

First, note that the (IC) is negatively sloped if

ba ≥ ΓHa − Paa = ΓHa − 1 + Pau

and that

ΓHa − 1 + Pau < PauΓ
H
a ⇒ Pau(1− ΓHa ) < 1− ΓHa .

Hence, when ba > PauΓ
H
a (which is necessary for (14) to matter) the (IC) is negatively

sloped.

Second, for (14) to imply (23) it is enough for the RHS of (23) to be larger than

(14). This comparison corresponds to comparing the second terms of the RHS of
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each inequality. Condition (23) is looser if

(Pau − ba)
(
1− ΓHa

)
W

(ba − PauΓHa )Z
≥ (Pau − ba)W

PauZ

which corresponds to

Pau(1− ΓHa ) ≥ ba − PauΓHa ⇒ Pau ≥ ba

which is always true.

To conclude this part of the proof we show that the RHS of (14) is concave in ba.

To see this, consider the first derivative of the RHS of (14) with respect to ba[
Pau(1− ΓHa )2WZ

[(ba − PauΓHa )Z]2

]
,

and note that it is decreasing in ba. Hence, (14) identifies a concave area.24 To see

that its lower bound is always larger than PauΓ
H
a , substitute bu = 0 in the condition

to obtain

0 ≤ Puu −
(Pau − ba)

(
1− ΓHa

)
W

(ba − PauΓHa )Z

which is equivalent to

ba ≥ Pau
(1− ΓHa )W + PuuΓ

H
a Z

(1− ΓHa )W + PuuZ
.

To prove our claim we then show that

(1− ΓHa )W + PuuΓ
H
a Z

(1− ΓHa )W + PuuZ
> ΓHa .

With simple algebra, it is easy to see that this condition boils down to ΓHa ≤ 1, which

is always true.

24Recall that the derivative is of the entire RHS not only of the second term.
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This concludes this part and proves that the area identified by the feasible values

of ba and condition (5) always features the APE contract. Its shape, furthermore,

always resembles the representation in Figure 1.

Step 4

Given all the above and Lemma 13 we finally solve problem (11) by setting the

(TRu
P ) binding together with the (IC). This yields the following system in two

equations:

caa

(
∆γ̃aa +

γ̃Hau
γ̃Huu

∆γ̃uu

)
+ cau

(
∆γ̃au −

γ̃Hau
γ̃Huu

∆γ̃uu

)
= ∆V

caa =

(
1 +

γ̃Huu
γ̃Hau

)
cau

from which we obtain:

cau =
∆V(

1 + γ̃Huu
γ̃Hau

)(
∆γ̃aa + γ̃Hau

γ̃Huu
∆γ̃uu

)
+ ∆γ̃au −

γ̃Hau
γ̃Huu

∆γ̃uu

=
∆V

∆γ̃aa + ∆γ̃au + γ̃Huu
γ̃Hau

∆γ̃aa + ∆γ̃uu

=
∆V

∆ΓaP̃aa + ∆ΓaP̃au + P̃uuΓH
u

P̃auΓH
a

∆ΓaP̃aa −∆ΓaP̃uu

=
∆V

∆Γa

P̃auΓ
H
a

P̃auΓHa + P̃uu(1− ΓHa )P̃aa − P̃uuP̃auΓHa

= c∗aa
P̃auΓ

H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )
.

To conclude the proof, we obtain caa =
(

1 + γ̃Huu
γ̃Hau

)
cau from the above discussion, and

cau = cuu from Lemma 12.

Hence, the optimal contract is given by
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w†aa = c†aa w†au = c†au w†uu = c†au w†ua = c†aa

c†aa = c†au

(
1 + γ̃Huu

γ̃Hau

)
c†au = ∆V

∆Γa

P̃auΓH
a

P̃auΓH
a +P̃uu(P̃aa−ΓH

a )
c†uu = c†au c†ua = 0. .

Step 5

Now we need to show that the optimal contract satisfies the (PC). The LHS of

the (PC) is:

∑
ts

c†tsγ̃
H
ts − V (λH) = c†au

(
γ̃Haa +

γ̃Huu
γ̃Hau

γ̃Haa + γ̃Hau + γ̃Huu

)
− V (λH)

= c†au

(
P̃aaΓ

H
a +

P̃uuΓ
H
u

P̃auΓHa
P̃aaΓ

H
a + P̃auΓ

H
a + P̃uuΓ

H
u

)
− V (λH)

= c†au

(
ΓHa +

P̃uu

P̃au
P̃aaΓ

H
u + P̃uuΓ

H
u

)
− V (λH)

= c†au

(
ΓHa +

P̃uu

P̃au
ΓHu

)
− V (λH)

=
∆V

∆Γa

P̃auΓ
H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )

(
ΓHa +

P̃uu

P̃au
ΓHu

)
− V (λH)

=
∆V

∆Γa
ΓHa

P̃auΓ
H
a + P̃uuΓ

H
u

P̃auΓHa + P̃uu(P̃aa − ΓHa )
− V (λH) ≥ ū.

Step 6

To see that the APE contract features a lower deadweight loss, notice that this

is equal to
∑

ts(w
∗
ts − c∗ts)γHts = (w∗ua − c∗ua)γHua in a BPE contract and to

∑
ts(w

†
ts −

c†ts)γ
H
ts = (w†ua − c†ua)γHua in the APE contract. Since c∗ua = c†ua = 0, the deadweight
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loss is smaller under the APE contract if

w∗ua > w†ua ⇐⇒ ∆V

∆Γa

1

Paa
>

∆V

∆Γa

P̃auΓ
H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )

(
1 +

γ̃Huu
γ̃Hau

)
1 > Paa

P̃auΓ
H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )

P̃auΓ
H
a + P̃uuΓ

H
u

P̃auΓHa

P̃auΓ
H
a + P̃uu(P̃aa − ΓHa ) > PaaP̃auΓ

H
a + PaaP̃uuΓ

H
u

(1− Paa)P̃auΓHa + P̃uuP̃aa − P̃uuΓHa − PaaP̃uuΓHu > 0

PauP̃auΓ
H
a + P̃uu(Paa + ba − ΓHa − Paa + PaaΓ

H
a ) > 0

PauP̃auΓ
H
a + P̃uu

[
ba − (1− Paa)ΓHa

]
> 0,

which is always true since in the APE contract we have ba ∈ (PauΓ
H
a , Pau].

Proof of Lemma 3: While c†au < c∗aa we also have c†aa > c†au. Therefore the check

for c†aa > c∗aa is given by:

(
1 +

γ̃Huu
γ̃Hau

)(
P̃auΓ

H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )

)
≥ 1

which is equivalent to(
P̃auΓ

H
a + P̃uuΓ

H
u

P̃auΓHa

)(
P̃auΓ

H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )

)
≥ 1

and to
P̃auΓ

H
a + P̃uu(1− ΓHA )

P̃auΓHa + P̃uu(P̃aa − ΓHa )
≥ 1,

which is always true since P̃aa ≤ 1.

Proof of Lemma 4:

Point (i) is trivial. Condition (5) comes from the study of how to minimize cost and

it selects the optimal contract precisely on the basis of the lowest possible expected

wage. Since both contracts are available at the moment of minimization none of the
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two can minimize costs when the other is optimal.

To prove point (ii), notice that

E(c∗ts) = c∗aaγ
H
aa + c∗auγ

H
au + c∗uaγ

H
ua + c∗uuγ

H
uu

=
∆V

∆Γa
(γHaa + γHau) =

∆V

∆Γa
ΓHa ,

and

Ẽ(c∗ts) = c∗aaγ̃
H
aa + c∗auγ̃

H
au + c∗uaγ̃

H
ua + c∗uuγ̃

H
uu

=
∆V

∆Γa
(γ̃Haa + γ̃Hau) =

∆V

∆Γa
ΓHa ,

where we used the fact that γHta + γHtu = γ̃Hta + γ̃Htu = ΓHt (which is easily proven from

Lemma 1).

Point (iii) requires us to calculate Ẽ(c†ts).

Ẽ(c†ts) = c†aaγ̃
H
aa + c†auγ̃

H
au + c†uaγ̃

H
ua + c†uuγ̃

H
uu = c†au

[
γ̃Hau + γ̃Huu

γ̃Hau
γ̃Haa + γ̃Hau + γ̃Huu

]
=
c†au
γ̃Hau

(γ̃Haa + γ̃Hau)(γ̃
H
au + γ̃Huu) =

c†au
γ̃Hau

ΓHa (γ̃Hau + γ̃Huu)

=
∆V

∆Γa
ΓHa

P̃auΓ
H
a + P̃uuΓ

H
u

P̃auΓHa + P̃uu(P̃aa − ΓHa )
= Ẽ(c∗ts)

P̃auΓ
H
a + P̃uuΓ

H
u

P̃auΓHa + P̃uu(P̃aa − ΓHa )
.

Since ΓHu = 1− ΓHa , it is clear that the numerator is at least as large as the denomi-

nator. This proves point (iii).

Finally, for point (iv), we need to calculate E(c†ts).

E(c†ts) = c†aaγ
H
aa + c†auγ

H
au + c†uaγ

H
ua + c†uuγ

H
uu = c†au

[
γ̃Hau + γ̃Huu

γ̃Hau
γHaa + γHau + γHuu

]
=

∆V

∆Γa

γHaaγ̃
H
au + γ̃Huuγ

H
aa + γHauγ̃

H
au + γHuuγ̃

H
au

P̃auΓHa

P̃auΓ
H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )

=
∆V

∆Γa

γ̃auΓ
H
a + γ̃uuPaaΓ

H
a + γHuuP̃auΓ

H
a

P̃auΓHa + P̃uu(P̃aa − ΓHa )
= E(c∗ts)

P̃auΓ
H
a + P̃uuPaaΓ

H
u + PuuP̃auΓ

H
u

P̃auΓHa + P̃uu(P̃aa − ΓHa )
.
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Hence, to prove our result we are left to show that

P̃auΓ
H
a + P̃uuPaaΓ

H
u + PuuP̃auΓ

H
u

P̃auΓHa + P̃uu(P̃aa − ΓHa )
> 1

which is equivalent to

P̃uuPaaΓ
H
u + PuuP̃auΓ

H
u ≥ P̃uu(P̃aa − ΓHa ).

This requires some algebra.

P̃uuPaa(1− ΓHa ) + Puu(1− P̃aa)(1− ΓHa )− P̃uuP̃aa + P̃uuΓ
H
a ≥ 0

P̃uuPaa − P̃uuPaaΓHa + Puu − PuuP̃aa − PuuΓHa + PuuP̃aaΓ
H
a − P̃uuP̃aa + P̃uuΓ

H
a ≥ 0

P̃uuPaa − PuuP̃aa − P̃uuP̃aa − PuuΓHa + P̃uuΓ
H
a − P̃uuPaaΓHa + PuuP̃aaΓ

H
a + Puu ≥ 0

From here, we substitute for some of the P̃ts to get

(P̃uuPaa − PuuP̃aa − P̃uuPaa − P̃uuba) + (−PuuΓHa + PuuΓ
H
a − buΓHa )+

+(−PuuPaaΓHa + buPaaΓ
H
a + PuuPaaΓ

H
a + PuubaΓ

H
a ) + Puu ≥ 0

and finally

− PuuP̃aa − P̃uuba − buΓHa + PuubaΓ
H
a + buPaaΓ

H
a + Puu ≥ 0

− PuuPaa − Puuba − Puuba + buba − buΓHa + PuubaΓ
H
a + buPaaΓ

H
a + Puu ≥ 0

− Puu (Paa + ba)︸ ︷︷ ︸
1−P̃au

−Puuba + buba − buΓHa + PuubaΓ
H
a + buPaaΓ

H
a + Puu ≥ 0

bu
(
ba − Γa + PaaΓ

H
a

)
+ Puu

[
1− ba(1− ΓHa )− (1− P̃au)

]
≥ 0

bu
(
ba − PauΓHa

)
≥ Puu

[
ba(1− ΓHa )− Pau + ba

]
bu
(
ba − PauΓHa

)
≥ Puu

(
ba(1 + ΓHu )− Pau

)
.
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Note that the APE requires ba > PauΓa as described in the proof of Proposition 2.

This means that the LHS is always positive and we can therefore derive the condition

presented in the proposition.

Proof of Proposition 4: First we study condition (6).

bu ≥ Puu
ba(1 + ΓHu )− Pau
ba − PauΓHa

At bu = 0, condition (6) corresponds to ba < Pau/(1 + ΓHu ). Hence, Pau/(1 + ΓHu )

is the intercept of the RHS of the condition with the x-axis. Let

Pau/(1 + ΓHu ) ≡ ba.

To show that this condition is compatible with (5), we once again refer to (14), that is

(5) solved for bu, and therefore that an area where overconfidence is socially desirable

always exists. We need to show that ba is larger than the intercept of condition (14)

(holding with equality) with the x-axis. We start from the latter, which we already

calculated in Part 3 of the proof to Proposition 3.

ba = Pau
(1− ΓHa )W + PuuΓ

H
a Z

(1− ΓHa )W + PuuZ
.

We then need to show that

Pau
(1− ΓHa )W + PuuΓ

H
a Z

(1− ΓHa )W + PuuZ
<

Pau
(1 + ΓHu )

.
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To do this, we get

(1− ΓHa )W + PuuZ > (1− ΓHa )W + PuuΓ
H
a Z + (1− ΓHa )WΓHu + PuuΓ

H
a ZΓHu

Puu(1− ΓHa )Z − (1− ΓHa )WΓHu − PuuΓHa ΓHu Z > 0

PuuΓ
H
u Z −W (ΓHu )2 − PuuΓHa ΓHu Z > 0

PuuΓ
H
u Z (1− ΓHa )︸ ︷︷ ︸

ΓH
u

−W (ΓHu )2 > 0 ⇒ PuuZ −W > 0

We can now expand Z and W to get

PuuZ −W > 0

PuuPaaΓ
H
a + PuuPuaΓ

H
u − ΓHa Paa + ΓHa Pua > 0

− PaaΓHa + PuuΓ
H
u + ΓHa > 0

PuuΓ
H
u + ΓHa (1− Paa) > 0,

which is obviously always true. This proves that an area where overconfidence is

socially desirable always exists, at least for bu = 0. We now show that this area also

exists for positive values of bu. Since we know that the curve representing condition

(5) intercepts the x-axis before (6), it is enough to show that the loci of points where

the two conditions hold cross only once in (ba, bu) space and that they do so at

(ba, bu) = (Pau, Puu). To formally prove the shape of Figure 2, we are also going to

show that the locus where (6) binds is concave in (ba, bu) space.
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Take the two conditions binding and equate the two RHSs to get:

Puu
ba(1 + ΓHu )− Pau
ba − PauΓHa

= Puu −
(Pau − ba)

(
1− ΓHa

)
W

(ba − PauΓHa )Z

Puu
[
(ba(1 + ΓHu )− Pau)Z − (ba − PauΓHa )Z

]
= − (Pau − ba)

(
1− ΓHa

)
W

Puu(ba − Pau)ΓHu Z = − (Pau − ba)
(
1− ΓHa

)
W

(PuuZ −W )(ba − Pau) = 0

(PuuPaaΓ
H
a + PuuPuaΓ

H
u − PaaΓHa + PuaΓ

H
a )(ba − Pau) = 0

Pua(PauΓ
H
a + PuuΓ

H
u )(ba − Pau) = 0,

which holds only if ba = Pau.When plugged into any of the two conditions we get

that the corresponding value is bu = Puu. Hence the two curves cross only at that

point. This concludes the proof of the Proposition. To show that the RHS of (6) is

concave simply calculate the first derivative and obtain:

∂

∂ba

[
Puu

ba(1 + ΓHu )− Pau
ba − PauΓHa

]
Puu

ba(1 + ΓHu )− PauΓHa (1 + ΓHu )− ba(1 + ΓHu ) + Pau
(ba − PauΓHa )2

=PuuPau
1− ΓHa (1 + ΓHu )

(ba − PauΓHa )2
Puu = Pau

1− 2ΓHa + (ΓHa )2

(ba − PauΓHa )2
= PuuPau

(1− ΓHa )2

(ba − PauΓHa )2
> 0.

The second derivative is obviously negative since ba only appears at the denominator.

Proof of Proposition 5: To prove this result, we present the derivations for the

optimal contract implementing λL for a rational and an agent who displays overpre-

cision. First of all, recall that SPEs are positively correlated regardless of the effort

exerted (Assumption 2).

The problem the principal faces is the same as (4) with a reversed (IC) and γLts
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instead of γHts for all t and s.

min
{wts,cts}t,s∈{u,a}

waaγ
L
aa + wauγ

L
au+wuaγ

L
ua + wuuγ

L
uu (24)

s.t.
∑
ts

ctsγ̃
L
ts − V (λL) ≥ ū (PC)∑

ts

cts∆γ̃ts ≤ ∆V (IC)

waaγ
L
aa + wauγ

L
au ≤ wuaγ

L
aa + wuuγ

L
au (TRa

P )

wuaγ
L
ua + wuuγ

L
uu ≤ waaγ

L
ua + wauγ

L
uu (TRu

P )

caaγ̃
L
aa + cuaγ̃

L
ua ≥ cauγ̃

L
aa + cuuγ̃

L
ua (TRa

A)

cauγ̃
L
au + cuuγ̃

L
uu ≥ caaγ̃

L
au + cuaγ̃

L
uu (TRu

A)

wts ≥ cts ≥ 0 ∀t, s ∈{a, u}. (LLts)

Lemma 16. For all bA and bu, low effort can be implemented by the principal with a

truth-telling, budget-balancing contract w`ts = c`ts = V (λL) + ū. Contract
{
w`ts, c

`
ts

}
t,s

is optimal among all budget-balancing contracts. It is also guile-free.

Proof. First, notice that Lemma 5 and 6 hold also for the case of low effort implemen-

tation, given Assumption 2 and γ̃Lua
γ̃Laa

> γ̃Luu
γ̃Lau

. Hence, following the same logic behind

the proof of Lemma 7, any budget balancing contract must feature wts = cts = c for

all t and s. Contrary to the case of high effort implementation, however, a contract

like this always satisfies the (IC) since

c

(∑
ts

∆γ̃ts

)
= 0 < ∆V.

All truthful reporting constraints also hold, as well as the (LL) ones. The participa-

tion constraint becomes

c

(∑
ts

γ̃Lts

)
≥ V (λL) + ū ⇒ c ≥ V (λL) + ū.
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Since the objective function is now simply mints c then the restricted problem is

solved by c = V (λL) + ū.

The Lemma above yields the only solution for a rational agent.25 However, since

our agent can display overprecision, we have to check whether the principal can find

a way to manipulate the contract taking advantage of the agent’s biased beliefs. In

other words, a contract that grants Ẽ(cts) = ū+ V (λL) but that in fact yields (and

costs) less, that is E(cts) < ū + V (λL) = Ẽ(cts). Lemma 16 states that, if such a

contract exists, it must feature some deadweight loss. This is because Lemma 7 does

not apply here and Lemma 16 shows that
{
w`ts, c

`
ts

}
t,s

is the only optimal contract

featuring no deadweight loss. This implies that, if there were to exist another contract

implementing optimally low effort, this ought to feature some deadweight loss. This

result is key for this analysis.

A second key feature of this analysis is that we are going to assume again that

the agent’s outside option is small enough . What this does it to allow us to ignore

the (PC) and solve the problem without it.26

We are now going to present a series of Lemmas, from 17 to 22, to prove that,

under (15), {w`ts, c`ts}t,s is the only optimal contract to implement low effort.

Lemma 17. Given (15), for any value of the bias, when the principal implements

low effort, the (PC) always binds.

Proof. Suppose not. In that case, the principal can decrease all wts and all cts by

ε > 0. All the other constraints are unchanged and cost of implementation decreases.

This does not fully prove the statement, however. It could be that wts = cts = 0

25To see that a rational agent is always assigned
{
w`

ts, c
`
ts

}
t,s

, notice that the (PC) always binds,

as we argue below. Hence, a rational agent must be granted at least ū+V (λL). Since principal and
agent have the same beliefs, there is no room for the principal to manipulate the contract trying to
decrease E(wts) below ū+ V (λL).

26Numerical simulations show that for a very large ū, or a very low ∆V , low effort is implemented
by a BPE-like contract, the values of which are independent of ba and bu as in the case of high
effort implementation.
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for some t and s, in which case, the principal cannot decrease them all. We need to

prove that a deviation is possible in these cases as well.

Recall that the (IC) is assumed slack when (15) holds and let us rewrite the (TR)

constraints as in the proofs of Lemmas 5 and 6.

(wau − wuu)
γLau
γLaa
≤ (wua − waa) ≤ (wau − wuu)

γLuu
γLua

(cuu − cua)
γ̃Lua
γ̃Laa
≤ (caa − cau) ≤ (cuu − cua)

γ̃Luu
γ̃Lau

.

By Lemma 16, we know that at least one wts > cts must hold, otherwise any

contract derived would be dominated by {w`ts, c`ts}t,s. Also, from From (TRA), if

only one of the cts is strictly positive then at least one of the two inequalities will

fail. Hence, at least two cts must be positive for the (TRA) to hold. Further, notice

that they must be caa and cau or cuu and cua or cuu and caa. Suppose caa and

cau are positive, with cua = cuu = 0, then given Lemma 5 at least wua > 0 must

hold. The principal can decrease caa, cau, waa and wau by ε ∈ [0, wua − cua), while

also decreasing wua, to adjust for the (TRP ) to hold. This does not violate any

constraints and decreases costs. The symmetric logic holds for cuu and cua positive

and caa = cau = 0. For the case of cuu and caa positive and cua = cau = 0, instead,

notice that, from (TRP ), it must be that wua and wau are greater then zero. The

principal can then decrease cuu and caa in a way that (TRA) is not violated. Further,

she decreases by the same amount wuu and waa, and uses a decrease in wua and wau

to adjust the (TRP ) to the new values of wuu and waa.

Now suppose only one of the cts is 0. Notice that, from (TRA), it can only be

either the cau or the cua. Suppose it is cau then, by Lemma 5, wau > 0. The principal

can then decrease cuu, cua, wuu, wua by ε ∈ [0, wau − cau) and use the wau to adjust

for the (TRP ) to hold. This does not violate any constraints and decreases costs.

The symmetric logic holds for cua. This concludes the proof.

Using the symmetric versions of the algebra used in all other derivations, we solve
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the (PC) for caa and rewrite the (TRA) constraints.

caa =
1

γ̃Laa

(
ū+ V (λL)− cauγ̃Lau − cuuγ̃Luu − cuaγ̃Lua

)
⇒ ū+ V (λL) ≥ cauΓ

L
a + cuuΓ

L
u

⇒ cauγ̃
L
au + cuuγ̃

L
uu − cua

(
P̃aa − P̃ua

)
ΓLu ≥

(
ū+ V (λL)

)
P̃au

The new problem is therefore

min
{wts,cts}t,s∈{u,a}

waaγ
L
aa + wauγ

L
au + wuaγ

L
ua + wuuγ

L
uu (25)

s.t. (wau − wuu)
γLau
γLaa
≤ (wua − waa) (TRa

P )

(wua − waa) ≤ (wau − wuu)
γLuu
γLua

(TRu
P )

ū+ V (λL) ≥ cauΓ
L
a + cuuΓ

L
u (TRa

A)

cauγ̃
L
au + cuuγ̃

L
uu − cua

(
P̃aa − P̃ua

)
ΓLu ≥

(
ū+ V (λL)

)
P̃au (TRu

A)

waa ≥ caa =
1

γ̃Laa
(ū+ V (λL)− cauγ̃Lau − cuuγ̃Luu − cuaγ̃Lua) ≥ 0 (LLaa)

wau ≥ cau ≥ 0 (LLau)

wuu ≥ cuu ≥ 0 (LLuu)

wua ≥ cua ≥ 0 (LLua)

Lemma 18. Given (15), for any value of the bias, when the principal implements

low effort with a contract featuring a deadweight loss, the (TRu
A) always binds.

Proof. Suppose not. The proof changes depending on which one among the (TRP )

binds at optimum.

Suppose the (TRa
P ) binds, while the (TRu

P ) is slack, then the principal can de-

crease cau and wau by ε. This relaxes the (TRa
A). At the same time, (LLaa) implies

that caa increases by ε P̃au

P̃aa
and waa by an amount at most as large. This affects the

45



(TRP ). The (TRa
P ) changes to the LHS by −εPau

Paa
and to the RHS by −ε P̃au

P̃aa
. The

RHS changes less since, for an overconfident agent, ba > 0 implying P̃au < Pau and

P̃aa > Paa. The (TRu
P ) is tightened by the change but, since it is assumed slack,

there always exists an ε small enough for it to still hold. Finally, to see that this

deviation is optimal, notice that the change in the objective function is given by

−εγLau + ε
γLaaP̃au

P̃aa
= ε

ΓLa
P̃aa

(PaaP̃au − P̃aaPau),

which is negative since P̃aa > Paa and P̃au < Pau.

Now suppose it is the (TRu
P ) that binds while the (TRa

P ) is slack, we will show

that this can never be the case or otherwise the (TRu
A) would be violated.

First of all, since the (TRu
P ) binds, we can re-state the objective function as

waa(γ
L
aa + γLua) + wau(γ

L
uu + γLau),

and set it subject to:

ū+ V (λL) ≥ cauΓ
L
a + cuuΓ

L
u (TRa

A)

waa ≥ caa =
1

γ̃Laa
(ū+ V (λL)− cauγ̃Lau − cuuγ̃Luu − cuaγ̃Lua) ≥ 0 (LLaa)

wau ≥ cau ≥ 0 (LLau)

wuu ≥ cuu ≥ 0 (LLuu)

wua ≥ cua ≥ 0 (LLua)

Given the above, it is obvious that waa = caa and wau = cau. Substituting them into

the problem and re-ordering constraints for simplicity one obtains

caa(γ
L
aa + γLua) + cau(γ

L
uu + γLau),
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subject to:

cauΓ
L
a + cuuΓ

L
u ≤ ū+ V (λL) (TRa

A)

cauγ̃Lau + cuu ˜γLuu < ū+ V (λL)− cuaγ̃Lua (LLaa)

wau ≥ cau ≥ 0 (LLau)

wuu ≥ cuu ≥ 0 (LLuu)

wua ≥ cua ≥ 0 (LLua)

Notice that we have rewritten (LLaa) as slack. This is because if it were to bind

then, first, caa would be zero, second, by Lemma (4) also cau would be zero, and

third, by the (TRu
P ) binding we would have

wuaγ
L
ua + wuuγ

L
uu = 0

which by the limited liability constraints implies that wua = wuu = 0 and therefore

cua = cuu = 0 which violates the (TRu
A).To see this, note that the LHS of the

constraint will be zero while the RHS will be positive

Given this and that caa cannot equal zero, to minimize caa(γ
L
aa + γLua) + cau(γ

L
uu +

γLau) the principal can only set cau = 0 instead – since both (TRa
A) and (LLaa) are

relaxed by this. The problem is therefore to minimize

caa(γ
L
aa + γLua),
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subject to:

cuuΓ
L
u ≤ ū+ V (λL) (TRa

A)

cuu ˜γLuu < ū+ V (λL)− cuaγ̃Lua (LLaa)

wau ≥ cau ≥ 0 (LLau)

wuu ≥ cuu ≥ 0 (LLuu)

wua ≥ cua ≥ 0 (LLua)

We now use again the binding (TRu
P ) to get caa = cua + cuu

γLuu
γLua

and rewrite the

objective function to get

min

[
cua + cuu

γLuu
γLua

]
(γLaa + γLua) (26)

subject to the same constraints above. However, once again the principal finds itself

unconstrained by (TRa
A) and (LLaa). He will set cua = cuu = 0 and offer a contract

that violates the (TRu
A). As above, note that the LHS of the constraint will be zero

while the RHS will be positive Hence, when (TRu
A) is slack, the optimal contract

cannot feature (TRu
P ) binding and the (TRa

P ) being slack.

Finally suppose that both (TRP ) bind, that is waa = wua and wau = wuu. Given

Lemma 16, it must be that either waa > caa or wua > cua (or both). When waa > caa,

the principal can decrease cau, cuu, wau and wuu keeping waa constant. There always

exists an ε small enough for this to be possible. This is obviously optimal and it

relaxes all other constraints. When wua > cua, the principal can increase cua by ε.

This will decrease caa and waa by ε γ̃
L
ua

γ̃Laa
which, by the assumption on the (TRP ) forces

the wua down by the same amount. Regardless of whether ε γ̃
L
ua

γ̃Laa
is larger or smaller

than ε, there always exists an ε small enough for wua > cua to be preserved.

Of course, if no (TRP ) binds, the principal can decrease cau, cuu, wau and wuu

and the increasing effect on waa is not enough to offset the gain, in the same fashion

as above. This proves Lemma 18.
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By Lemma 18 we can solve for cua from the (TRu
A),

cua =
cauγ̃

L
au + cuuγ̃

L
uu −

(
ū+ V (λL)

)
P̃au(

P̃aa − P̃ua
)

ΓLu

,

and plug it into the function for caa from the (PC) to obtain

caa =

(
ū+ V (λL)

)
P̃uu − cauγ̃Lau − cuuγ̃Luu(

P̃aa − P̃ua
)

ΓLa

.

The above poses the following additional restrictions on cau and cuu respectively

(via the (LLts) constraints):

(ū+ V (λL))P̃au ≤ cauγ̃
L
au + cuuγ̃

L
uu,

(ū+ V (λL))P̃uu ≥ cauγ̃
L
au + cuuγ̃

L
uu.

Rearranging the second equation we have

ū+ V (λL) ≥ cau
P̃au

P̃uu
ΓLa + cuuΓ

L
u .

Since P̃au < P̃uu by positive correlation, this restriction is implied by the (TRa
A)

and can be, therefore, disregarded. It also proves that caa is always at least weakly

positive and that it is strictly positive as long as cau > 0. Let us decompose each

(LLts) into (LL1
ts), which requires cts > 0, and (LL2

ts), which requires wts > cts. The

above implies that (LL1
aa) is implied by the other constraints. The new problem of
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the principal is given by

min
{wts,cts}t,s∈{u,a}

waaγ
L
aa + wauγ

L
au + wuaγ

L
ua + wuuγ

L
uu (27)

s.t. (wau − wuu)
Pau
Paa
≤ (wua − waa) (TRa

P )

(wua − waa) ≤ (wau − wuu)
Puu
Pua

(TRu
P )

ū+ V (λL) ≥ cauΓ
L
a + cuuΓ

L
u (TRa

A)

ū+ V (λL) ≤ cauΓ
L
a + cuu

P̃uu

P̃au
ΓLu (LL1

ua)

wau ≥ cau ≥ 0 (LLau)

wuu ≥ cuu ≥ 0 (LLuu)

wua ≥ cua (LL2
ua)

waa ≥ caa (LL2
aa)

Lemma 19. Given (15), for any value of the bias, if there exists a contract featuring

a deadweight loss that the principal optimally sets to implement low effort, it features

the (TRa
P ) binding.

Proof. First of all, notice that the Lemma does not rule out the case that suboptimal

contracts can implement low effort with the (TRa
P ) slack. Rather, it states that there

exist no generally optimal way to implement low effort with a contract featuring a

deadweight loss and the (TRa
P ) slack.

Suppose this is not true and let the (TRa
P ) be slack. Recall that constraint (LL1

ua)

ensures that cua ≥ 0. When it binds, cua = 0. Suppose the (LL1
ua) does bind and

cua = 0. This also implies that wua > 0. To see why, notice that, if wua = 0, then

also waa = 0, by Lemma 5. Hence, cau and cuu have to be such that caa = 0 from the
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(PC) binding. This then implies

cua =

(
ū+ V (λL)

)
(P̃uu − P̃au)(

P̃aa − P̃ua
)

ΓLu

> 0.

Hence, when (LL1
ua) binds, it must be that wua > 0. It is immediate to see how

the (TRa
P ) cannot be slack then, since the principal could simply decrease wua and

decrease the objective function tightening the (TRa
P ).

Now suppose the (LL1
ua) is slack. This implies that cua > 0 and, by Lemma 6,

also cuu > 0. The proof further divides depending on whether cau = 0 or not.

Suppose cau = 0. We are going to show that any solution either sets the (LL1
ua)

binding or is suboptimal to the no deadweight loss contract. First of all, it must be

that wau > 0. Otherwise wuu = 0 would be implied by Lemma 5. Then cuu = 0

would make cua < 0. Hence if cau = 0, wau > 0. Given this, the principal can

decrease wau until (TRu
P ) binds. Hence,

wau = (wua − waa)
Pua
Puu

+ wuu.

Further, all other wts are set equal to their respective cts. In fact, suppose this was

not the case. If wuu > cuu or wua > cua, the principal can simply decrease them,

without violating any constraint. If waa > caa, instead, the principal can decrease it

by ε while increasing wau by εPua

Puu
. This does not violate the (TRu

P ) and it is optimal

since the change in the objective function is given by

−ε
(
γLaa −

PauPua
Puu

ΓLa

)
= −εΓ

L
a (Paa − Pua)

Puu
< 0.

To conclude this part of the proof, notice that given wuu = cuu, waa = caa, wua = cua,

wau = (wua − waa)Pua

Puu
+ wuu and the fact that all cts can be written as a function of
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cuu, the objective function depends only on cuu and is subject to

cuu ≤
ū+ V (λL)

ΓLu
.

Depending on the sign of the coefficient of cuu in the objective function, if the latter

is minimized by minimizing cuu, the assumption that the (LL1
ua) is slack would be

violated, yielding a contradiction. If it is minimized by maximizing cuu, then (TRa
A)

binds and cuu = ū+V (λL)
ΓL
u

. At this value, the rest of compensations and wages are

given by

waa = 0 wau = cuu
Puu

wuu = cuu wua = cua

caa = 0 cau = 0 cuu = ū+V (λL)
ΓL
u

cua = cuu

This implies a contract with E(wts) = wauγ
L
au + ū+V (λL) which is clearly larger

than E(w`ts).
27 Hence, even if this contract implements λL, it is never optimal.

To conclude the proof, we derive a similar contradiction for the case of cau > 0.

In this case, when both (LL1
ua) and (TRa

P ) are slack, the principal faces

min
{wts,cts}t,s∈{u,a}

waaγ
L
aa + wauγ

L
au + wuaγ

L
ua + wuuγ

L
uu (28)

s.t. (wua − waa) ≤ (wau − wuu)
Puu
Pua

(TRu
P )

ū+ V (λL) ≥ cauΓ
L
a + cuuΓ

L
u (TRa

A)

wau ≥ cau (LL2
au)

wuu ≥ cuu (LL2
uu)

wua ≥ cua (LL2
ua)

waa ≥ caa (LL2
aa)

27Technically, to be sure that this is indeed a potential solution, we need to check that it satisfies
the (IC). It is easy to see that it does so even regardless of (15), since∑

ts

∆γ̃tscts =
(ū+ V (λ))

ΓL
u

(∆γ̃uu + ∆γ̃ua) =
(ū+ V (λ))

ΓL
u

∆Γu < 0 ≤ ∆V.
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where all cts > 0 following Lemma 6. It is immediate to see how the (LL2
uu) and

(LL2
ua) bind in this case. If they do not, decreasing the relevant wts decreases costs

and does not affect any constraint. At this point, from Lemma 16, we know that

only one between (LL2
aa) and (LL2

au) binds. Suppose it is the latter, then waa > caa.

In this case, the the principal can decrease cuu until (LL1
ua) binds, violating the

assumption. Suppose instead, that waa = caa while wau > cau. The (TRu
P ) becomes

cauγ̃
L
au + cuuγ̃

L
uu(

P̃aa − P̃ua
)

ΓLuΓLa

+ cuu
Puu
Pua
− ū+ V (λL)(

P̃aa − P̃ua
)

ΓLuΓLa

(
γ̃Lau + γ̃Luu

)
≤ wau.

Since the (LL2
au) is slack, the principal can decrease wau until the (TRu

P ) binds. We

can now calculate the new objective function where wts = cts with the exception of

the wau (which, instead, comes from the (TRu
P )):

waaγ
L
aa + wauγ

L
au + wuaγ

L
ua + wuuγ

L
uu

=

(ū+ V (λL)
)
P̃uu − cauγ̃Lau − cuuγ̃Luu(

P̃aa − P̃ua
)

ΓLa

 γLaa + wauγ
L
au

+

cauγ̃Lau + cuuγ̃
L
uu −

(
ū+ V (λL)

)
P̃au(

P̃aa − P̃ua
)

ΓLu

 γLua + cuuγ
L
uu

∝ wauγ
L
au(P̃aa − P̃ua) + cauγ̃

L
au(Pua − Paa) + cuu

(
γ̃Luu(Pua − Paa) + γLuu

)
∝ cauγ̃

L
au

[
(Pua − Paa) +

Pau
ΓLu

]
+ cuu

[
γ̃Luu(Pua − Paa) + γLuu + PauP̃uu +

γLauPuu(P̃aa − P̃ua)
Pua

]
.

In the reduced problem, the objective function is subject only to

ū+ V (λL) ≥ cauΓ
L
a + cuuΓ

L
u .

Since the sign of the coefficients of cau and cuu is not trivial, we study all possible

cases and show that all of them lead to a contradiction. First, suppose the case
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where both cuu and cau increase the objective functions, then the principal wants to

decrease them both. This violates the assumption that (LL1
ua) is slack. Now suppose

cuu increases the objective function while cau decreases it. Then the principal sets

cuu = 0 and cau such that the (TRa
A) binds. However, when cuu = 0, the (TRa

A)

coincides with the (LL1
ua) and therefore the latter binds, providing a contradiction

again. Now suppose cuu decreases the objective function while cau increases it. Then

cau = 0 which violates the assumption that cau > 0. Finally, suppose both cuu and

cau decrease the objective function. Then the principal sets the (TRa
A) binding and

solves for cau to get

cau =
ū+ V (λL)

ΓLa
− cuu

ΓLA
ΓLu
. (29)

Substituting this into the objective function, we obtain the final form of the reduced

problem:

min
cuu

cuu

[
(Pua − Paa)

(γ̃LauΓ
L
a − γ̃LuuΓLu)

ΓLu
+ γLuu + PauP̃uu +

γLauPuu(P̃aa − P̃ua)
Pua

− γ̃LauPau
ΓLu

]

If the coefficient of cuu is positive, then the solution to the problem is cuu = 0 and

cau = ū+V (λL)
ΓL
a

yielding, once again, to the (LL1
ua) binding since it coincides with the

(TRa
A). If the coefficient is negative, instead, the problem is solved by the maximum

possible cuu. That is, the value that sets cau = 0 from (29). This violates the

assumption that cau > 0. This concludes the proof for the case of a positive cau and

(LL1
ua) slack.

This concludes the proof of the Lemma showing that, if there exists an optimal

contract that implements low effort with a deadweight loss, it must be that it sets

the (TRa
P ) binding.

Now that we know that the (TRa
P ) binds, we are going to re-write the problem

in two different ways. With the first one, we are going to prove that cua = 0. With

the second, we are going to select a value for each wts as a function of cts.

First, solve the (TRa
P ) for wauγ

L
au = wuaγ

L
aa + wuuγ

L
au − waaγ

L
aa and substitute
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it into the objective function. This makes the waa disappear from the objective

function, which is now given by wua(γ
L
aa + γLua) + wuu(γ

L
au + γLuu).

Lemma 20. Given (15), for any value of the bias, if there exists a contract featuring

a deadweight loss that implements low effort, it features cua = 0.

Proof. Suppose not, and consider the objective function wua(γ
L
aa + γLua) + wuu(γ

L
au +

γLuu). Notice that cua > 0 corresponds to (LL1
ua) slack. Hence, the only constraint on

cau and cuu is the (TRa
A). Decreasing cau and cuu by ε also decreases cua and increases

caa. The latter produces no effect on the objective function while the decrease in cau,

cuu and cua allows the principal to decrease the objective function via either wuu or

wua. This provides a contradiction to (LL1
ua) being slack.

Lemma 21. Given (15), for any value of the bias, if there exists a contract, featuring

a deadweight loss that implements low effort, it must feature

wuu = cuu

waa = caa

wau = max{cau, cuu}

wua = (max{cau, cuu} − cuu)
Pau
Paa

+ caa

Proof. First of all, from Lemma 18, we can solve the (TRa
P ) for

wua = (wau − wuu)
Pau
Paa

+ waa.

When plugged into the objective function, it yields

waa(γ
L
aa + γLua) + wau

(
γLau +

Pau
Paa

γLua

)
+ wuu

(
γLuu −

Pau
Paa

γLua

)
∝ waa(γ

L
aa + γLua)Paa + wau(γ

L
au + γLua)Pau + wuuΓ

L
u(Paa − Pua).

The above is subject only to the (LLua) and to wau ≥ wuu, by Lemma 5. Hence,
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the principal can decrease the wage levels and set wuu = cuu, waa = caa and wau =

max{cau, wuu} = max{cau, cuu}. The proof is concluded by plugging these into the

function for wua.

Given Lemmas 20 and 21, we have the new objective function

caa(γ
L
aa + γLua)Paa + max{cau, cuu}(γLau + γLua) + cuuΓ

L
u(Paa − Pua).

Before plugging in the value for caa, notice that we can solve the (LL1
ua) to get

cau =
ū+ V (λL)

ΓLa
− cuu

γ̃Luu
γ̃Lau

.

We plug this into the value for caa to obtain

caa =

(
ū+ V (λL)

)
P̃uu − cauγ̃Lau − cuuγ̃Luu(

P̃aa − P̃ua
)

ΓLa

=
ū+ V (λL)

ΓLa
,

which is, therefore, irrelevant for the objective function of the reduced problem. This

latter is given by

min
cau,cuu

max{cau, cuu}(γLau + γLua)Pau + cuuΓ
L
u(Paa − Pua). (30)

This allows us to state the final Lemma, that shows how there exist no optimal

contract implementing low effort with deadweight loss.

Lemma 22. When (15) holds, the principal implements low effort with {w`ts, c`ts}t,s.

Proof. First of all, we show that cau ≥ cuu in (30). Suppose not, and cuu > cau, then

the objective function only depends (positively) on cuu. The problem is then solved

by cuu = 0, which contradicts cuu > cau. Given that cau ≥ cuu, the problem becomes

(disregarding any constant term)

min
cuu

[
−cuu

γ̃Luu
γ̃Lau

(γLau + γLua) + cuuΓ
L
u(Paa − Pua)

]
.
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Suppose the coefficient of cuu is negative, then the solution would imply cuu such

that cau = 0. This would violate cau ≥ cuu. Hence, a solution only exists when the

coefficient of cuu is negative. Regardless of whether this is the case or not, notice

that the solution to the problem would be

waa = caa wau = caa wuu = 0 wua = caa
Paa

caa = ū+V (λL)
ΓL
a

cau = caa cuu = 0 cua = 0

which yields an expected wage payment of

E(wts) = waa

(
ΓLa +

γLua
Paa

)
= (ū+ V (λL))

(
1 +

γLua
γLaa

)
> (ū+ V (λL)) = E(w`ts).

Hence, even when a solution does exist, it is more expensive than the constant

wage one.28 This implies that when (15) holds, low effort is implemented with a

constant wage contract.

Given Lemma 22, it is immediate to see that the magnitude, or presence, of the

bias does not affect the expected cost of implementing low effort. From Proposition 2

and Lemma 4, we know that the expected cost of implementing high effort, instead,

is at least weakly decreasing in the bias. This concludes the proof.

28It is possible to show that the contract with deadweight loss above satisfies the (IC) under
(15).
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