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1 Introduction

This paper investigates the role of overconfidence in contests. This question is of

relevance since evidence from psychology and economics shows that humans tend

to be overconfident. A majority of people believe they are better than others in a

wide variety of positive traits and skills (Myers 1996, Santos-Pinto and Sobel 2005).

Examples include entrepreneurs (Cooper et al. 1988), judges (Guthrie et al. 2001),

CEOs (Malmendier and Tate 2005, 2008), fund managers (Brozynski et al. 2006),

currency traders (Oberlechner and Osler 2008), or poker and chess players (Park and

Santos-Pinto 2010)

Competitions often take the form of contests. For example, an R&D race to be

the first to develop or get a patent in new product or technology, election campaigns,

rent-seeking games, competitions for monopolies, litigation, and wars, are examples

of contests. Overconfidence matters for entry and performance in competitions and

for labor markets (Camerer and Lovallo 1999, Niederle and Vesterlund 2007, Moore

and Healy 2008, Dohmen and Falk 2011, Malmendier and Taylor 2015, Huffman et

al. 2019, Santos-Pinto and de la Rosa 2020). Overconfidence also seems to play

a role in mate competition and acquisition (Waldman 1994, Murphy et al. 2015).

Interestingly, Lyons et al. (2020) provide evidence that high-status lobbyists working

for private interest groups in Washington, DC, USA tend to be overconfident: they

overate their achievements and their success. This empirical finding is in line with

the experimental findings of Niederle and Vesterlund (2007) and Dohmen and Falk

(2011) according to which overconfident participants tend to self select more into

more competitive environments.

Does overconfidence make a player more or less likely to win a contest? What is

the effect of players’ overconfidence on their effort provision and on rent dissipation?

Does overconfidence lead to more entry in a contest? These are important questions

since although the extant literature has characterized in depth equilibria in contests,

behavioral biases have so far received limited attention by scholars (e.g. Baharad

and Nitzan 2008).
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To address these questions, we employ a generalized Tullock contest (1980) where

v is the prize being contested, ai the effort of player i, and c(ai) the cost of effort to

player i. Player i’s probability of winning the contest is P (ai, a−i) =
qi(ai)

qi(ai)+
∑
j ̸=i qj(aj)

,

where qi(ai) is often referred to as the impact function (Ewerhart 2015). In an

environment with fully rational players, the expected utility of player i is given

by E[Ui(ai, a−i)] = Pi(ai, a−i)v − c(ai). Earlier studies that inquired into the same

research question adopted the specification E[Ui(ai, a−i; β)] = Pi(ai, a−i)βv − c(ai),

where β > 1 describes player i’s overconfidence bias as an overestimation of the prize

(Ando 2004). Subsequent studies modelled overconfidence as an underestimation of

the cost of effort: E[Ui(ai, a−i; β)] = Pi(ai, a−i)v−γc(ai), where 0 < γ < 1 (Ludwig et

al. 2011). Likewise, overconfidence can also be modelled as an overestimation of the

rival’s cost of effort (Deng et al. 2024). These approaches to modelling overconfidence

are isomorphic. We follow a novel approach by assuming an overconfident player i

thinks, mistakenly, his impact function is λiqi(ai), where λi > 1, and has correct

beliefs about his rivals’ impact functions. Accordingly, an overconfident player’s

perceived winning probability is Pi(ai, a−i;λi) = λiqi(ai)
λiqi(ai)+

∑
j ̸=i qj(aj)

, which is larger

than his actual winning probability. This alternative way of modelling overconfidence

has previously been applied to tournaments (Santos Pinto 2010), but has not been

applied to Tullock contests this far. Since the impact function embeds a player’s

ability, we conceptualize overconfidence as an overestimation of the impact of one’s

effort—which is a common way of defining overconfidence (e.g. Bénabou and Tirole

2002, 2003)—on the outcome of the contest, while holding a correct assessment of

the winning prize and his cost of effort. Importantly, our results on the impact of

overconfidence in contests are diametrically opposed to earlier findings.

We start by considering two player contests where technology is symmetric, that

is, the players have identical impact and cost functions. These symmetry assump-

tions allow us to focus exclusively on the role that the heterogeneity in beliefs plays

in determining effort provision and the winner of the contest. Moreover, they im-

ply that the player who exerts the highest effort has the highest objective winning
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probability. We define as the Nash winner (loser) the player with the highest (low-

est) objective probability of winning at the pure-strategy equilibrium. Proposition 1

shows that in such a contest, the more overconfident player is the one who exerts the

lowest effort. Hence, the more overconfident player is the Nash loser. Furthermore,

as the overconfidence of either player increases, both players’ efforts monotonically

decrease. The rationale behind this finding is quite straightforward: overconfident

players are (mistakenly) convinced that they are able to optimally bid in a contest

with lower efforts than what they would need to provide if they were rational. As

the competitors fully perceive and integrate in their reasoning this overconfidence

bias, they, in turn, are equally incentivized to reduce their own bids for any degree of

overconfidence they may themselves be subject to. Eventually, we end up with both

players under-investing in the contest as compared to what rational players would

have done. This result stands in contrast with earlier literature where, in a contest

between an overconfident player and a rational one, an increase in overconfidence

raises the equilibrium effort of the overconfident player while pushing downwards

the equilibrium effort of the rational player (Ando 2004, Ludwig et al. 2011).

Next, we consider two player contests where technology and beliefs can be asym-

metric. Here we show that the more overconfident and the less efficient player always

exerts less effort. In addition, we show that very large levels of overconfidence lead

both players to exert very low effort for the same reasons as in the symmetric setup.

The comparative statics on the overconfidence bias are of particular interest since

an increase in a player’s overconfidence can either increase, or decrease, his effort.

For example, if players’ impact functions are asymmetric and player i is sufficiently

less efficient, then an increase in player i’s overconfidence can raise the equilibrium

efforts of both players. In this case, player i’s perceived winning probability is low,

and an increase in that player’s overconfidence raises his perceived marginal winning

probability, which eventually pushes him to exert higher effort. To the best of our

knowledge this is the first study on overconfidence in contests that allows players to

be asymmetric along all existing dimensions, including the degree of overconfidence,
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the players’ impact functions, and their cost of effort.

We then consider symmetric n > 2 player contests where all players are equally

overconfident. We demonstrate that the number of players as well as the degree of

overconfidence matters in terms of understanding the effects of overconfidence on

effort provision and rent dissipation in contests. On the one hand, overconfidence

raises individual and aggregate efforts when λ is smaller than n− 1. In this case all

players expect to be unlikely to win the contest and their best response functions

will then be negatively slopped at equilibrium. Hence, an increase in overconfidence

raises the perceived marginal probability of winning, which pushes players’ efforts

upwards. On the other hand, overconfidence lowers individual and aggregate efforts

if λ is greater than n − 1. In such instances, all players expect to be highly likely

to win the contest, and their best response functions are positively slopped at equi-

librium. Therefore, an increase in overconfidence will lower the perceived marginal

probability of winning, which pushes players’ efforts downwards as in the 2 player

contest. This stands out as another novel contribution of our work compared to the

existing literature which has exclusively focused on 2 player contests.

Finally, we inquire how overconfidence affects entry in a contest. In order to

answer this question, we assume N ≥ 2 symmetric potential entrants that have an

outside option. Overconfidence affects incentives to enter the contest through two

channels. First, it raises the perceived winning probability, and thus the benefit

of entry for given efforts of players. Second, it incentivizes players to modify their

equilibrium efforts, thereby indirectly impacting the potential entrants’ payoffs. We

show that even when an increase in overconfidence raises players’ individual efforts,

and the two effects then go in opposite directions, higher overconfidence always

results in more entry.

The paper is organized as follows. Section 2 discusses related literature. Section

3 sets-up the contest model. Section 4 derives the results for two player contests

with symmetric technology. Section 5 derives the results for two player contests

with asymmetric technologies. Section 6 derives results for contests with n ≥ 2
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overconfident players. Section 7 studies entry. Section 8 concludes the paper. Unless

otherwise stated, all proofs are in the Appendix.

2 Related Literature

This study relates to three strands of literature. First, it contributes to the literature

on behavioral biases in contests and tournaments.

Ando (2004) studies a contest between two players who are uncertain about their

monetary value of winning the contest. Both players are overconfident and two

definitions of overconfidence are considered. An overconfident player can either over-

estimate his monetary value of winning the contest or, alternatively, underestimate

the rival’s monetary value of winning it. Ando (2004) finds that an overconfident

player who overestimates his monetary value of winning the contest always exerts

more effort. In contrast, an overconfident player who underestimates his rival’s mon-

etary value of winning the contest might exert less effort. The intuition behind these

results is that an overconfident player who overestimates the monetary value of the

prize has a higher perceived marginal utility from winning the contest for any given

marginal cost which leads him to put more effort. In addition, an overconfident

player who underestimates his rival’s monetary value of the prize will lower his effort

because he expects the rival to lower her effort.

Ludwig et al. (2011) analyze a Tullock contest where an overconfident player

competes against a rational player. The overconfident player is assumed to under-

estimate his cost of effort. Ludwig et al. (2011) find that the overconfident player

exerts more effort and the rational player exerts less effort than if both players were

rational. They also find that the bias makes the contest organizer better off since the

overconfident player’s increase in effort more than compensates the rational player’s

decrease in effort. The intuition of these results is that an overconfident player has

a lower perceived marginal cost of effort for any given marginal utility from winning

the contest which leads him to put more effort. In turn, the rational player reduces
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his own effort because of strategic substitutability.

Our results show that when overconfidence is an overestimation of the impact of

one’s effort, its effects on equilibrium efforts are quite different than those in found

in Ando (2004) and Ludwig et al. (2011). The differences in the results are driven

by the fact that overconfidence in our setup raises the marginal perceived probability

from winning for low values of effort whereas it lowers it for high value of effort. As a

consequence, and in contrast to Ando (2004) and Ludwig et al. (2011), in our study,

overconfidence shifts a player’s best response function in a non-monotonic way as

shown in Lemma 3 and depicted in Figure 1. Our definition of overconfidence is

adequate when both the monetary value of winning the contest and the cost of effort

are known before entry.

Deng et al. (2024) consider a Tullock contest between two employees where

a newly hired employee has private information about his cost of effort, while the

incumbent employee has biased beliefs on the former’s cost of effort. They study how

the asymmetry in beliefs affects aggregate expected effort provision, and whether a

contest organizer should disclose or conceal information on the new hire’s cost of

effort to the incumbent. We instead model overconfidence as an overestimation of

the impact of one’s effort. Moreover, we focus on individual effort provision and

extend the analysis to setups where technologies can be asymmetric and consider

contests with more than 2 players.

Bansah et al. (2024) also explore the role of overconfidence in a Tullock contest.

Overconfidence is modelled as an overestimation of the winning probability, rather

than an overestimation of the impact of one’s effort. Observe, however, that their

definition of overconfidence does not satisfy the property that the perceived winning

probabilities are well defined for any value of the bias. Besides the difference in

modelling overconfidence, in our own study we consider more general impact and

cost functions, and we extend the analysis to players with asymmetric technologies,

as well as to n players.

Santos Pinto (2010) studies how a tournament organizer optimally sets the prizes
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in a Lazear and Rosen (1981) rank-order tournament with overconfident players.

We adopt the same definition of overconfidence and equilibrium concept. Observe,

however, that although players’ winning probabilities in both Lazear-Rosen tour-

naments and Tullock contests are logistic functions, the way in which noise affects

the mapping of players’ efforts to winning probabilities differs. As a consequence,

overconfidence shifts players’ best response functions differently in these two models.

Santos Pinto (2010) finds in a symmetric two player tournament that an increase in

overconfidence raises the equilibrium efforts of players. In contrast, we find the op-

posite in a two player contest. Besides extending the analysis to asymmetric players,

we equally consider more than two players in our study.

Baharad and Nitzan (2008) and Keskin (2018) amend the standard model of

contests by introducing probability weighting in line with Tversky and Kahneman’s

(1992) Cumulative Prospect Theory. This behavioral bias is modeled with an inverse

S-shaped probability weighting function, i.e., a function where the marginal increase

in the (perceived) subjective probability is higher for extreme (i.e. low and high)

probabilities. Our own approach assumes a constant bias in players’ beliefs that

they are better than they really are at contesting their opponents. We thus see our

approach as complementary to these earlier works since nothing precludes players

from both assigning ‘weights’ to probabilities and be subject to an overconfidence

bias. Notice that in terms of contribution to the literature on behavioral biases, our

approach has the advantage to be flexible enough to accommodate a very large family

of contest success functions while also allowing for any possible heterogeneities among

players. Last, whereas Baharad and Nitzan (2008) and Keskin (2018)’s approach

applies exclusively to probabilistic setups, our own model is equally suited to describe

sharing contests that have gained in importance over the years (e.g. Dickson et al.

2018).1

1Other scholars have equally focused on the effect of behavioural biases on equilibrium out-

comes in the presence of uncertainty. Kelsey and Melkonyan (2018) consider both optimistic and

pessimistic attitudes to ambiguity, while Cornes and Hartley (2012) and Fu et al. (2022) introduce

loss aversion in probabilistic contests.
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Second, our study relates to the experimental literature on behavior in contests.

Scholars have also long tried to explain the puzzle that contestants in lab experiments

spend significantly higher amounts than the game’s Nash equilibrium (Chowdhury

et al. 2014, Price and Sheremeta 2015, Mago et al. 2016), and even over-dissipation

can occur (Sheremeta 2011). The theoretical literature has attempted to explain

overspending, but also extreme manifestations of such phenomena where contestants

over-dissipate the rent by expending on aggregate more resources than the value

of the prize that is contested. overspending has so far been attributed to players’

risk attitudes (Jindapon and Whaley 2015) or to mixed strategy equilibria where

overspending occurs with some probability but not in expectation (Baye et al. 1999).

Our paper demonstrates that with overconfident contestants, overspending and even

over-dissipation can result when the number of players is sufficiently large and the

overconfidence bias is relatively mild; overconfident players individually expend more

effort than rational players when their odds of winning are low because of the high

number of participants.

Last, our study contributes to the literature on contests with heterogeneous play-

ers. Baik (1994) analyzes two player contests where the players differ in their valua-

tion of the prize and in their marginal productivity of effort. Stein (2002) determines

the equilibrium number of active players when players are heterogeneous. Drugov

and Ryvkin (2022) show that heterogeneity in technology or preferences can either

lead to a discouragement or an encouragement effect on the effort provision of play-

ers. Building on previous findings of Baik (1994), we are able to characterize the

game’s equilibrium for a very wide array of contest success functions and for any

type of heterogeneity, thereby providing useful guidance for scholars of contests.

3 Set-up

In a standard two player Tullock (1980) contest with linear effort costs the players

compete for the winner prize v. Player i chooses an effort level ai to maximize
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E[Ui(ai, aj)] = Pi(ai, aj)v − ai, where Pi(ai, aj) is the probability player i wins the

contest–the contest success function (CSF). Tullock (1980) assumes the CSF is:

Pi(ai, aj) =

{
ari/(a

r
i + arj) if ai + aj > 0

1/2 if ai + aj = 0
,

where r ≥ 0.2 Note that the player who exerts the highest effort does not necessarily

win the contest. However, a player who exerts zero effort has a zero probability

of winning if the other player exerts some positive amount of effort no matter how

small.3

To study the role of overconfidence in contests we consider a generalized Tullock

contest. The effort cost is ci(ai) with ci(0) = 0, c′i(ai) > 0 and c′′i (ai) ≥ 0. Following

Baik (1994) we assume the CSF is:

Pi(ai, a−i) =

{
qi(ai)/

∑
j qj(aj) if

∑
j qj(aj) > 0

1/n if
∑

j qj(aj) = 0
,

where qi(0) ≥ 0, q′i(ai) > 0 and q′′i (ai) ≤ 0. The overconfident player i mistakenly

perceives his impact function to be λiqi(ai), with λi > 1, and correctly perceives the

rivals’ impact functions. This way of modelling overconfidence in a contest implies

that an overconfident player i’s perceived winning probability is equal to

Pi(ai, a−i;λi) =

{
λiqi(ai)/[λiqi(ai) +

∑
j ̸=i qj(aj)] if λiqi(ai) +

∑
j ̸=i qj(aj) > 0

1/n if λiqi(ai) +
∑

j ̸=i qj(aj) = 0
.

2The parameter r captures the degree of noise in the Tullock contest. The higher is r, the more

sensitive is the success probability to effort. When r = 0 effort plays no role and each player always

has a success probability of 1/2. The most popular versions of the Tullock contest are the lottery

(r = 1) and the first-price all-pay auction (r = ∞).
3There are at least three reasons why Tullock contests are widely employed. First, a number of

studies have provided axiomatic justification for it (Skaperdas 1996, Clark and Riis 1998). Second,

a variety of rent-seeking contests, innovation tournaments, and patent-race games are strategically

equivalent to the Tullock contest (Baye and Hoppe 2003). Third, its tractability. The drawback of

Tullock contests is that they do not separate the degree to which luck as opposed to effort affects

behavior (Amegashie 2006).
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This specification of overconfidence in a contest satisfies four desirable properties.

First, contests where players have heterogeneous productivity of effort are mod-

elled similarly, that is, the players are assumed to have heterogeneous impact func-

tions (Baik 1994, Singh and Wittman 2001, Stein 2002, Fonseca 2009). Second,

the overconfident player’s perceived winning probability is well defined for any value

of λi > 1.4 Third, the overconfident player’s perceived winning probability is in-

creasing in λi. Fourth, overestimating one’s impact function is equivalent to un-

derestimating the rivals’ impact functions since λiqi(ai)/[λiqi(ai) +
∑

j ̸=i qj(aj)] =

qi(ai)/[qi(ai) +
∑

j ̸=i qj(aj)/λi].
5

To be able to compute equilibria when players hold mistaken beliefs we assume

that: (1) a player who faces a biased opponent is aware that the latter’s perception

of his own impact function (and probability of winning) is mistaken, (2) each player

thinks that his own perception of his impact function (and probability of winning) is

correct, and (3) both players have a common understanding of each other’s beliefs,

despite their disagreement on the accuracy of their opponent’s beliefs. Hence, players

agree to disagree about their impact functions (and winning probabilities). This

approach follows Heifetz et al. (2007a,2007b) for games with complete information,

and Squintani (2006) for games with incomplete information.

These assumptions are consistent with the psychology literature on the “Blind

Spot Bias” according to which individuals believe that others are more susceptible to

behavioral biases than themselves (Pronin et al. 2002, Pronin and Kugler 2007). As

stated by Pronin et al. (2002: 369) “people recognize the existence, and the impact,

of most of the biases that social and cognitive psychologists have described over the

past few decades. What they lack recognition of, we argue, is the role that those same

4This is not the case with alternative specifications. For example, if one assumes an overconfident

player’s perceived winning probability is Pi(ai, aj , λi) = λiq(ai)/[q(ai) + q(aj)], with λi > 1, then

Pi(ai, aj , λi) is not a well defined probability for any value of λi > 1.
5This way of modeling overconfidence is often used in studies that analyze the impact of overcon-

fidence on contracts (Bénabou and Tirole 2002 and 2003, Gervais and Goldstein 2007, Santos-Pinto

2008 and 2010, and de la Rosa 2011).
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biases play in governing their own judgments and inferences.” For example, Libby

and Rennekamp (2012) conduct a survey which shows that experienced financial

managers believe that other managers are likely to be overconfident while failing to

recognize their own overconfidence. Hoffman (2016) runs a field experiment which

finds that internet businesspeople recognize others tend to be overconfident while

being unaware of their own overconfidence.6

4 Contests with Symmetric Technology

This section studies a contest where an overconfident player 1 competes against a

player 2 that can be overconfident (λ2 > 1), underconfident (λ2 < 1), or unbiased

(λ2 = 1). Player imistakenly perceives his impact function to be λiq(ai), when λi ̸= 1

and correctly perceives the rival’s impact function to be q(aj). In this section we

assume, without loss of generality, that λ1 > λ2. We will later relax this assumption

when introducing further asymmetries in the model. Any player i, i = {1, 2}, chooses
the optimal effort level that maximizes his perceived expected utility:

E[Ui(ai, aj;λi)] = Pi(ai, aj;λi)v − c(ai) =
λiq(ai)

λiq(ai) + q(aj)
v − c(ai).

The first-order condition is

∂E[Ui(ai, aj;λi)]

∂ai
=

λiq
′(ai)q(aj)

[λiq(ai) + q(aj)]
2v − c′(ai) = 0. (1)

The second-order condition is

∂2E[Ui(ai, aj;λi)]

∂a2i
=
q′′(ai)[λiq(ai) + q(aj)]− 2λi[q

′(ai)]
2

[λiq(ai) + q(aj)]3
λiq(aj)v − c′′(ai) < 0, (2)

and the above inequality is satisfied since q
′′
(ai) ≤ 0 and c′′(ai) ≥ 0.

6Ludwig and Nafziger (2011) conduct a lab experiment that elicits participants’ beliefs about

own and others’ overconfidence and abilities. On the one hand they find that the largest group of

participants thinks that they are themselves better at judging their ability correctly than others. On

the other hand, they find that with a few exceptions, most people believe that others are unbiased.
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Let ai = Ri(aj) denote player i’s best response obtained from (1). Along player

i’s best response we have

λiq
′(ai)q(aj)v = c′(ai) [λiq(ai) + q(aj)]

2 .

Lemma 1 describes the shapes of the players’ best responses.

Lemma 1. Ri(aj) is concave in aj and reaches a maximum for q(aj) = λiq(ai).

Lemma 1 tells us that the players’ best responses are non-monotonic. Given high

effort of the rival, a player reacts to an increase in effort of the rival by decreasing

effort; given low effort of the rival, a player reacts to an increase in effort of the rival

by increasing effort.

A second useful lemma describes how the players’ best responses changes with

their overconfidence parameter λi.

Lemma 2. An increase in player i’s overconfidence λi leads to a contraction of his

best response function,
∂Ri(aj)

∂λi
< 0, for q(aj) < λiq(ai) and to an expansion of his

best response function,
∂Ri(aj)

∂λi
> 0, for q(aj) > λiq(ai). Moreover, the maximum

value of the players’ best response is independent of their degree of overconfidence.

Lemma 2 characterizes the best response function of players who are subject to an

overconfidence bias. For a high effort of the rival, an increase in overconfidence raises

player i’s effort level, while for low effort of the rival, an increase in overconfidence

lowers player i’s effort level. Moreover, the maximal value taken by player i’s best

response is independent of his overconfidence bias.

Making use of these results, we can establish equilibrium uniqueness in the fol-

lowing lemma:

Lemma 3. A two player contest featuring at least one overconfident contestant ad-

mits a unique equilibrium.

We next present our first proposition that uncovers the effect of overconfidence

on equilibrium efforts.
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Proposition 1. In a two player contest where both players are overconfident and

where λi > λj, the more overconfident player i exerts lower effort. Hence, the more

overconfident player i is the Nash loser since Pi(a
∗
i , a

∗
j) < 1/2 < Pj(a

∗
i , a

∗
j).

Corollary 1. Both players exert less effort than if both were rational, and as the

overconfidence of either player increases, both players’ efforts decrease.

If the overconfidence of player i goes up, then player i’s best response shifts

inwards for q(aj) < λiq(ai) (as shown in Lemma 2). Corollary 1 follows from the fact

that the players’ best responses are positively-slopped at the Nash equilibrium.

We illustrate Proposition 1 in Figure 1. On that figure we represent the two

players’ best response functions given that player 1 is more overconfident than player

2, i.e. given that λ1 > λ2. From Lemma 1 we know that the best response functions

are concave, while from Lemma 2 we also know that the maximal value player i’s

best response function takes is given by q(aj) = λiq(ai), hence the crossing of the

dotted lines with the maxima of the best response functions. To better gauge the

effect of overconfidence, we have also drawn the best response functions of fully

rational players as seen in the two concave dotted curves crossing on the 45o line

at (amax1 , amax2 ). The higher is a player’s overconfidence, the more the best response

function flattens for values of the rival’s effort aj below q−1 (λiq(ai)), and steepens

for values above that threshold, while the maximand of the best response function

increases with overconfidence. Consequently, and in line with Proposition 1, the

more overconfident player 1 will experience a harsher contraction of his best response

function below amax2 , and since the best response functions of both players i = {1, 2}
are strictly increasing in [0, amaxj ], the equilibrium E will lie above the 45o line in the

space where a2 > a1.

Increasing the overconfidence of player 1, implies that the player’s best response

function shifts inwards for low values of a2 as represented graphically by the dashed

and dotted best response function. Consequently, since R2(a1) remains unaffected by

this shift in the overconfidence of his rival, at the new equilibrium E
′
both players will

necessarily exert less effort that in E, while the concavity of R2(a1) also implies that
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the new probability that player 1 wins the contest is now lower. Upon observing the

figure, it is equally obvious that an increase in λ2 will also result in lower equilibrium

efforts of both players, while the probability that player 1 wins the contest would

then increase instead.

We now consider a contest where an overconfident player i competes against an

underconfident player j. Lemma 4 describes how the underconfident player’s best

response shifts with his bias λj.

Lemma 4. An increase in player j’s underconfidence (λj goes down) leads to a

contraction of player j’s best response function,
∂Rj(ai)

∂λj
< 0, for q(ai) > λjq(aj)

and to an expansion of player j’s best response function,
∂Rj(ai)

∂λj
> 0, for q(ai) <

λjq(aj). Moreover, the maximum value of player j’s best response is independent of

the player’s degree of underconfidence.

For the proof see the proof of Lemma 2.

Proposition 2. In a two player contest where player i is overconfident and player j

is underconfident, λi > 1 > λj, the overconfident player exerts more effort than the

underconfident player if and only if λiλj < 1.

If the underconfidence of player j goes up (λj goes down), then player j’s best

response shifts inwards for q(ai) > λjq(aj). As before, if the overconfidence of player

i goes up (λi goes up), then player i’s best response shifts inwards for q(aj) < λiq(ai).

Hence such increases in the players’ biases lead the best responses of both players

to cross the 45 degree line at increasingly lower values of effort. When player j is

sufficiently underconfident (λj < 1/λi), player j’s best response crosses the 45 degree

line at a lower effort level, thence implying that player j’s equilibrium effort is less

than that of player i.
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Figure 1: Equilibrium with λ1 > λ2.
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5 Contests with Asymmetric Technologies

In the previous section we assumed that the only source of asymmetry was the

degree of confidence of players. We now lift this assumption to consider the effect of

asymmetries in the players’ impact functions, qi(ai), and cost functions, ci(ai). As

such, we are not imposing that q1(a1) = q2(a2), nor that c1(a1) = c2(a2), for a1 = a2,

and we assume that λ1 and λ2 are both larger than 1.

It is immediate to observe that the first-order condition for player i is given by:

∂E[Ui(ai, aj;λi)]

∂ai
=

λiq
′
i(ai)qj(aj)

[λiqi(ai) + qj(aj)]
2v − c′i(ai) = 0, (3)

while the second-order condition is easily shown to be satisfied and, adopting the

same approach as before, the equilibrium can be shown to be unique. Reproducing

the reasoning of the proof of Lemma 2 we can also show that the maximal value

taken by the best response function of player i, amaxi , is implicitly defined as:

q′i(a
max
i )

4qi(amaxi )
v = c′i(a

max
i ). (4)

A first observation allowing us to characterize the equilibrium is contained in the

next lemma:

Lemma 5. If the two players are subject to the same overconfidence bias, amax1 >

amax2 ⇔ a∗1 > a∗2.

This lemma shows that any competitive edge in the contest technology or in the

cost of effort by a player will map in a higher equilibrium effort, and therefore in a

higher probability that the most efficient player wins the contest. Building on our

earlier results, we immediately deduce the next lemma:

Lemma 6. If amax1 > amax2 and λ2 ≥ λ1 > 1, then a∗1 > a∗2.

This lemma reinforces the results of the previous section; we showed in Propo-

sition 1 that when players are symmetric along all dimensions but overconfidence,
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the more overconfident player exerts a lower equilibrium effort. In Lemma 5 we also

show that the most efficient player produces a higher equilibrium effort. Lemma 6

shows that the combination of overconfidence and lower efficiency will always result

in the more overconfident and less efficient player exerting less effort at equilibrium.

Extending lemma 6, we can state the following result:

Proposition 3. For any amax1 , amax2 and λ2, there always exist a value λ̃1 such that

if λ1 > λ̃1, then q1(a
∗
1) < q2(a

∗
2).

This is an important finding since it implies that for any advantage a player may

have on his contest technology or cost function, a large enough overconfidence bias

can always make that player the Nash loser in a contest.

Corollary 2. If λi → ∞, for any i ∈ {1, 2}, a∗1 → 0 and a∗2 → 0.

Very large levels of overconfidence are thus shown to push both players to contain

their contest expenditures to infinitesimally small levels at the limit. The intuition

of this result is quite straightforward: when a contestant is extremely overconfident,

then for any expected effort of his adversary he will be incentivized to exert a very

small effort. The adversary then anticipates this and best responds by providing a

very small effort as well, yet one that still guarantees him to be the Nash winner, as

shown in Proposition 3.

Last, we inspect the effect of overconfidence on the equilibrium effort levels.

Proposition 4. An increase in player 1’s overconfidence implies that
if λ1q1(a

∗
1) > q2(a

∗
2) and λ2q2(a

∗
2) > q1(a

∗
1) then ∂a

∗
1/∂λ1 < 0 and ∂a∗2/∂λ1 < 0

if λ2q2(a
∗
2) < q1(a

∗
1) then ∂a

∗
1/∂λ1 < 0 and ∂a∗2/∂λ1 > 0

otherwise, if λ1q1(a
∗
1) < q2(a

∗
2) then ∂a

∗
1/∂λ1 > 0 and ∂a∗2/∂λ1 > 0

A driving force underlying our analysis is worth exposing prior to describing the

above results. A higher degree of overconfidence—for the player whom we label the

focal player—renders, in the focal player’s mind, the outcome of the contest less
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sensitive to one’s own effort: if the expected winning probability is higher than 1/2,

a higher degree of overconfidence pushes the player to reduce his contest effort for a

given effort of the opponent since the victory is more likely than not and can now

be achieved at lower cost. On the other hand, if the expected winning probability

is lower to 1/2, the player will increase his effort with overconfidence because the

higher marginal return to investing effort in the contest allows the player to close the

gap with the opponent. This effect, which is known in the contest literature when

performing comparative statics exercises in asymmetric contests (see e.g. Malueg

and Yates 2005), is therefore shown to be equally at play when players are subject

to rationality biases.

Proposition 4 is quite instructive since it uncovers a non-trivial effect of overcon-

fidence on equilibrium efforts in a general contest with asymmetric players. When

both players are sufficiently overconfident that they both expect (at equilibrium) to

win the contest with a probability larger than 1/2, the best responses of the two

players are increasing in their adversary’s effort. This general feature of contests

has deep implications in the study of overconfidence. Indeed, the same condition

defining the slope of the players’ best responses equally determines whether overcon-

fidence expands or contracts the players’ best responses. Under the stated conditions

mapping in upward-sloping best responses, the players’ best responses will contract

following an increase in their overconfidence. Indeed, since both players believe they

have better odds to win the contest, following an increase in their degree of over-

confidence, they can afford reducing their efforts while still believing they retain

a competitive edge over their opponent. Thence, as the focal player becomes less

aggressive following an increase in his overconfidence, since the players’ efforts are

strategic complements under the stated conditions, the resulting equilibrium will

involve lower efforts by both players.

Consider next the case where player 2 instead (correctly) believes that his winning

odds are less than 1/2 so that his best response function is downward slopping. In

such an instance, an increase in player 1’s overconfidence will make him contract
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Figure 2: Asymmetric contest technologies

his effort at equilibrium, which will in turn push player 1 to reduce his equilibrium

effort, while player 2 who (correctly) believes to be the Nash loser of the contest will

increase his equilibrium effort.

Last, if player 1 (correctly) anticipates to be the Nash loser, his best response is

negatively slopped (strategic substitutes) and it expands with overconfidence. On

the other hand, player 2 (correctly) anticipates to be the Nash winner, and his best

response is thus increasing in player 1’s effort (strategic complements). As the focal

player 1 becomes more aggressive, both players will then increase their equilibrium

efforts.

In Figure 2 we depict the comparative statics exercise on player 1’s overconfidence

parameter when R
′
i(a

∗
j) > 0 for i = {1, 2} (left panel) and when R

′
1(a

∗
2) > 0 and

R
′
2(a

∗
1) < 0 (right panel). Observe that we are considering a situation where player

1 is endowed with a more efficient contest technology (i.e. a more efficient impact

and/or cost function than player 2), so that amax1 > amax2 . In Figure 2a we have drawn

a situation where both players are subject to some overconfidence, and we consider

the effect of increasing the overconfidence of player 1. Since player 1 anticipates to
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be the Nash winner, the increase in λ1 will push inwards his reaction function for

effort levels of player 2 such that q2(a2) < λ1q1(a1). Since, however, the reaction

function of player 2 remains unaffected by this shock in his adversary’s rationality

bias, we observe that the resulting equilibrium E
′
will feature lower efforts for both

players compared to the initial equilibrium E.

In Figure 2b we are considering a situation where at the initial equilibrium player

2 expects to be Nash loser, despite his overconfidence bias. The best response func-

tion of player 2 is then downward slopping at equilibrium, while the best response

function of player 1 is upward slopping. Further increasing the overconfidence of the

Nash winner, λ1, implies once more that for q2(a2) < λ1q1(a1) the best response of

player 1 moves inwards. Since the initial equilibrium, E is on the downward slop-

ping part of player 2’s best response function, this contraction in player 1’s effort

will incentivize player 2 to increase his effort thus implying that a∗1 drops while a∗2

increases.

6 Contests with n ≥ 2 Overconfident Players

We now extend the analysis to n ≥ 2 players and begin by focusing on the fully

symmetric case where players have a common overconfidence bias λ > 1. The first

order condition for any player i is then given by:

λq′(ai)
∑

j ̸=i q(aj)[
λq(ai) +

∑
j ̸=i q(aj)

]2v − c′(ai) = 0, (5)

and the second-order condition can here too easily be shown to be satisfied.

The next proposition summarizes our findings on the effect of overconfidence on

equilibrium efforts:

Proposition 5. In a contest with n ≥ 2 symmetric players, individual and aggregate

efforts decrease (increase) with overconfidence if λ > (<)n− 1.
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The intuition of this result follows the one underlying the finding of Proposition

3 and critically depends on whether players’ efforts are strategic complements or

strategic substitutes at equilibrium. Consider first a small number of competitors

and/or a high degree of overconfidence. In such instances, the players will all expect

to be highly likely to win the contest and their best response functions will then be

positively-slopped at equilibrium. Indeed a low n or a high λ both imply that (at

the symmetric equilibrium) the opponents’ sum of impact functions is relatively low,

and all players consequently expect to have a high probability of winning the contest.

Any expected increase in the opponents’ contest effort would then push players to

increase their own effort so as to avoid the winning odds from deteriorating too

much. In such instances, an increase in overconfidence will reduce players’ perceived

marginal probability of winning and this incentivizes players to reduce their effort for

a given expected (equilibrium) effort of their opponents: the high expected winning

probability can now be achieved at lower cost as in Proposition 3. The exact opposite

mechanism is at play when the number of contestants is high and/or the degree of

overconfidence is low. In such instances, the players’ best response functions will

be downward slopping because (at the symmetric equilibrium) the opponents’ sum

of impact functions is relatively high, and all players consequently expect to have a

small probability of winning the contest. In this case, an increase in overconfidence

raises the players’ perceived marginal probability of winning and this incentivizes

them to increase effort. This mechanism once more echoes the one in Proposition 3.

From the above observation, we are able to obtain the following corollary:

Corollary 3. With n ≥ 2 symmetric players, the maximal rent dissipation is always

attained when λ = n− 1. There always exists a finite nD such that over-dissipation

(i.e. the sum of players’ effort costs is greater than the value of the prize) can be

observed at equilibrium for n > nD.

It is widely known in the literature on contests that with rational agents over-

dissipation can never be observed at equilibrium if the player’s valuation of the prize
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is equal to the actual value of the prize.7 Although the dissipation ratio, defined as

the ratio of total expenditures (or sum of players’ effort costs) to the value of the

prize, D =
∑
i ci(ai)

v
, does increase in the number of players, it is bounded by unity

because individual equilibrium effort drops as the number of contestants increases.

Indeed, a larger number of contestants implies that the competitors’ aggregate effort

is expected to be higher, thence reducing the marginal return to investing in the

contest, which in turn pushes all contestants to individually contract their equilib-

rium effort. In Proposition 5 we demonstrated, however, that some overconfidence

may push players to increase their equilibrium effort compared to a setup with fully

rational players. Corollary 3 shows that there always exists a degree of overconfi-

dence such that equilibrium individual efforts of overconfident players will equal the

maximal equilibrium individual efforts that can be obtained in the game, i.e., the

individual efforts produced in setups with two fully rational players. Consequently,

with sufficiently many overconfident players the aggregate effort can be higher than

the value of the contested prize.

To visualize the last two results, in Figure 3 we depict the individual equilibrium

effort of (symmetric) contestants as a function of their overconfidence parameter in

the most simple contest where players’ payoffs are given by:

E[Ui, ai, a−i;λi] =
λiai

λiai +
∑

j ̸=i aj
− ai,

where a−i designates the vector of player i’s competitors’ efforts. With n = 2 and

λ = 1, the equilibrium efforts are equal to 1/4. If we consider contests with more

players, the individual efforts can be kept equal to 1/4 if λ = n − 1. Consequently,

under such circumstances, full dissipation can result with n = 4 and λ = 3, and

over-dissipation can therefore obtain for any n > 4.

It is important at this stage to underline that although for over-dissipation to be

observed it is necessary to have n > nD > 2 players, the required degree of overconfi-

7See Dickson et al. (2022) for instances where players’ valuation of the prize differs from the

actual value of the prize.
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Figure 3: Individual equilibrium efforts as a function of λ with q(a) = a, v = 1 and

c(a) = a.

dence may be quite low. Indeed, to visualize this we consider again the previous basic

contest setup, and we impose for the sake of the argument the parameter restriction

λ < n − 1, for n ≥ 3. Since a∗ = λ(n−1)
(λ+n−1)2

, this parameter restriction can easily be

shown to imply that ∂na∗/∂n > 0, ∂2na∗/∂n2 < 0, and ∂a∗/∂λ < 0. We then plot

the equilibrium aggregate effort, na∗, against the number of players, n, for various

levels of overconfidence in Figure 4. It is well known that as n becomes arbitrarily

large, the dissipation ratio converges to unity, without ever reaching total rent dis-

sipation. We know from Corollary 3 that for any number of players n > nD > 2,

there always exists a degree of overconfidence conducive to over-dissipation. For

example, Figure 4 shows that with n = 6 over-dissipation is already observed when

λ = 1.5, which corresponds to a perceived winning probability of 0.231 as opposed

to the actual winning probability of 1/6. Increasing the number of players to, say,

n = 8 implies that over-dissipation can be achieved with an even lower degree of

overconfidence (e.g. λ = 1.25). It is immediate to deduce that as the number of

players becomes arbitrarily large in this setup, the required degree of overconfidence

24



for observing over-dissipation will become arbitrarily small (i.e. λ close to 1).

2 5 7 20
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1

λ = 1.5

λ = 1.25

λ = 1

n

na∗

Figure 4: Equilibrium aggregate effort na∗ as a function of n.

Last, we extend the analysis to asymmetric players, by allowing both overconfi-

dence and technology (impact and cost functions) to be player-specific. The first-

order condition for player i then reads as:

λiq
′(ai)

∑
j ̸=i qj(aj)[

λiqi(ai) +
∑

j ̸=i qj(aj)
]2v − c′i(ai) = 0. (6)

Observe first that the second-order condition to this optimization problem will

always be verified. Next, by applying the implicit function theorem to the above

expression we can once more deduce that the sign of R
′
i(aj), for any j ̸= i, is given

by the sign of λiqi(ai) −
∑

j ̸=i qj(aj). Accordingly, since Ri(aj) is concave in aj,

the maximal effort player i would be willing to produce is found by replacing the

condition that R
′
i(aj) = 0 in player i’s first-order condition, and this results in amaxi

being uniquely defined identically as in (4). This in turn enables us to state the

following result:
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Proposition 6. With n ≥ 2 asymmetric players, there always exists a finite nAD

such that over-dissipation can be observed at equilibrium for n > nAD.

The proof of this statement is straightforward. Since amaxi is uniquely defined

by player i’s characteristics (except its degree of overconfidence), the vector amax =

{amax1 , amax1 , . . . amaxn } of players’ efforts, can always be implemented at equilibrium

with a vector of overconfidence parameters λ = {λ1, λ2, . . . λn} such that λi =∑
j ̸=i qj(aj)

qi(ai)
, ∀i ∈ N . Consequently, adding players implies that the aggregate ef-

forts can always be made to equal
∑

j a
max
j , and this term will necessarily be larger

than v for a large enough number of players.8

7 Entry

In this section we study the effect of overconfidence on entry in Tullock contests.

The analysis so far assumes that players’ outside option is zero. However, if the

outside option is high enough, it is possible that the perceived expected utility of

participating to the contest is too low to make entry attractive. To analyze how

confidence affects entry, we assume there exist N ≥ 2 symmetric potential entrants,

and designate by n the number of players that enter the contest. Moreover, all

potential entrants have an outside option equal to v̄ < v. This assumption guarantees

that there is an incentive for at least one player to enter the contest. Further, we

focus on pure strategy subgame perfect equilibria and on instances where at least

two players have incentives to enter the contest. To keep the analysis tractable, we

assume symmetric technologies. Player i’s perceived utility is then given by:

E[Ui(ai, a−i, λ)] =
λq(ai)

λq(ai) +
∑

j ̸=i q(aj)
v − c(ai).

8Observe that unlike setups with rational agents where heterogeneity induces some players to

be inactive in the contest, our own result holds true for any degree of heterogeneity since inefficient

players (i.e. low impact function, or high cost function) are being compensated with a higher degree

of overconfidence, which makes them willing to produce strictly positive efforts at equilibrium.
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The equilibrium effort of player i is implicitly defined by:

λq′(ai)
∑
q(aj)

[λq(ai) +
∑
q(aj)]

2v − c′(ai) = 0,

and at the symmetric equilibrium, the equilibrium effort a∗ is then defined by:

λ(n− 1)q′(a∗)

(λ+ n− 1)2q(a∗)
v − c′(a∗) = 0. (7)

The perceived equilibrium utility of player i is:

E[Ui] =
λq(a∗)

λq(a∗) + (n− 1)q(a∗)
v − c(a∗)

=
λ

λ+ n− 1
v − c(a∗).

The equilibrium number of entrants, n∗, satisfies the equation:

λ

λ+ n∗ − 1
v − c(a∗) = v̄. (8)

Our final result is contained in the next proposition.

Proposition 7. In a contest with a pool of N ≥ 2 symmetric potential entrants, the

equilibrium number of entrants n∗ increases in overconfidence λ.

An increase in overconfidence affects the incentives to enter the contest in two

ways. First, it increases the players’ perceived probability of winning for given ef-

forts, which makes entry more attractive. Second, we know from Proposition 5 that

for a fixed number of entrants, an increase in overconfidence raises (lowers) equilib-

rium individual efforts for λ < (>)n − 1, which makes entry less (more) attractive.

Consequently, for high values of λ (higher than n− 1), an increase in overconfidence

unambiguously makes entry more attractive. However, for low values of λ, the two

effects go in opposite direction. Proposition 7 shows that the former effect always

dominates the latter.
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8 Conclusion

This paper studies the impact of overconfidence on contests. We assume an overcon-

fident player overestimates the impact of his effort on the outcome of the contests

while holding a correct assessment of the winning prize and his cost of effort. We

start by showing that in two player contests where players have the same technology,

the most overconfident player exerts less effort and is therefore the Nash loser of

the contest. We also show that an increase in overconfidence of either player lowers

the efforts of both players. Next, we show that in two player contests where players

can have different technologies, for any advantage a player may have on his contest

technology or cost function, a large enough overconfidence bias can always make that

player the Nash loser in the contest. In addition, we demonstrate that in symmet-

ric n > 2 player contests where all players are equally overconfident, an increase in

overconfidence increases the efforts of all players provided that the bias is small rela-

tive to the number of players. With sufficiently high levels of overconfidence, on the

other hand, an increase in overconfidence will lead to lower equilibrium efforts. Our

paper also provides conditions under which overspending and even over-dissipation

can result from overconfidence. Finally, we show that higher overconfidence always

results in more entry at equilibrium.
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9 Appendix

Proof of Lemma 1: The best response of player i, i = {1, 2}, is defined implicitly

by (1). Hence, the slope of the best response of player i, R′
i(aj) is given by

−∂Ri/∂aj
∂Ri/∂ai

= −
∂2E[Ui]
∂ai∂aj

∂2E[Ui]

∂a2i

= −
λiq(ai)−q(aj)

[λiq(ai)+q(aj)]3
λiq

′(ai)q
′(aj)v

q′′(ai)[λiq(ai)+q(aj)]−2λi[q′(ai)]2

[λiq(ai)+q(aj)]3
λiq(aj)v − c′′(ai)

. (9)

The denominator is negative because player i’s second-order condition is satisfied.

Therefore, the sign of the slope of player i’s best response is only determined by

the sign of the numerator which only depends on λiq(ai) − q(aj). Hence, R′
i(aj) is

positive for λiq(ai) > q(aj), zero for λiq(ai) = q(aj), and negative for λiq(ai) < q(aj).

This implies that Ri(aj) increases in aj for λiq(ai) > q(aj), reaches the maximum at

λiq(ai) = q(aj), and decreases in aj for λiq(ai) < q(aj).

Proof of Lemma 2: (This proof follows Baik 1994) Player i’s best response is

defined by (1):
λiq

′(ai)q(aj)

[λiq(ai) + q(aj)]
2v − c′(ai) = 0.

Hence, we have
∂Ri(aj)

∂λi
=

q(aj)− λiq(ai)

[λiq(ai) + q(aj)]
3 q

′(ai)q(aj)v.

We see that ∂Ri(aj)/∂λi ⋛ 0 for q(aj) ⋛ λjq(ai). We also know from Lemma 1 that

sign{R′
i(aj)} = −sign

{
∂Ri(aj)

∂λi

}
.

Substituting next q(aj) = λq(ai) into the first-order condition of player i and

denoting the maximal effort he is willing to invest in the contest by amaxi we obtain

λiq
′(amaxi )λq(amaxi )

[λiq(amaxi ) + λq(amaxi )]2
v = c′(amaxi ),

or
λ2i q

′(amaxi )q(amaxi )

4λ2i [q(a
max
i )]2

v = c′(amaxi ),

or
q′(amaxi )

4q(amaxi )
v = c′(amaxi ).
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This implies that the value of ai corresponding to the maximum value of the player’s

best response, amaxi , does not depend on λi.

Proof of Lemma 3: To prove that the equilibrium is unique, observe first that when

the contestants’ best responses cross it is impossible that they are both negatively

slopped, since the best response of the overconfident player is necessarily positively

slopped. Indeed, if the two players were unbiased (λ1 = λ2 = 1), then player 1’s

best response function would be positively slopped for any a2 < amax2 , reach a max

a2 = amax2 , and be negatively slopped for a2 > amax2 . From Lemma 2 we deduce that

increasing the value of the overconfidence parameter λ1 will lead to a contraction

of player 1’s best response in the space a2 ∈ [0, amax2 ], thence implying that amax1 is

reached for values of a2 larger than amax2 , and that consequently R1(a2) is positively

slopped in the interval a2 ∈ [0, amax2 ]. Last, since R2(a1) will never reach larger values

than amax2 , we deduce that at equilibrium the best response of an overconfident player

is necessarily positively slopped.

To prove that the equilibrium is unique it is then sufficient to show that the

composite function Γ(ai) = R
′
i(aj) ◦R

′
j(ai), i = {1, 2}, has a slope smaller than 1 for

any equilibrium pair (a∗i , a
∗
j), since the function is continuous on R. If R

′
2(a

∗
1) < 0,

then since R
′
1(a

∗
2) > 0, the condition is necessarily satisfied. If, on the other hand,

R
′
2(a

∗
1) > 0, then we simply need to prove that if R

′
i(a

∗
j) > 0 for both players, then the

product of the best response functions is smaller than 1. Since R
′
i(aj) is decreasing in

c
′′
(ai), it is thus sufficient to establish the result for c

′′
(ai) = 0. Rewriting the product

of the contestants’ best responses with this restriction, and simplifying expressions,

we thus want to show that:

(λ1q(a1)− q(a2))(λ2q(a2)− q(a1))
(
q
′
(a1)q

′
(a2)

)2
[q′′(a1)[λ1q(a1) + q(a2)]− 2λ1[q

′(a1)]2] [q
′′(a2)[λ2q(a2) + q(a1)]− 2λ2[q

′(a2)]2] q(a1)q(a2)
< 1.

Since the LHS is decreasing in q
′′
(ai), i = {1, 2}, the above expression is a fortiori

true if:
(λ1q(a1)− q(a2))(λ2q(a2)− q(a1))

(
q
′
(a1)q

′
(a2)

)2
4λ1[q

′(a1)]2λ2[q
′(a2)]2q(a1)q(a2)

< 1,
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an expression that simplifies to:

(λ1q(a1)− q(a2))(λ2q(a2)− q(a1)) < 4λ1λ2q(a1)q(a2).

And this inequality is always satisfied.

Proof of Proposition 1: To prove this result we show that the best response of the

more overconfident player crosses the 45 degree line at a lower value of effort than the

best response of the less overconfident player. If player i is the more overconfident

player, then λi > λj > 1. At the 45 degree line the best response of player i takes

the value aL given by
λiq

′(aL)

(1 + λi)2q(aL)
v − c′(aL) = 0. (10)

At 45 degree line the best response of player j takes the value aH given by

λjq
′(aH)

(1 + λj)2q(aH)
v − c′(aH) = 0. (11)

Note that λi > λj implies
λi

(1 + λi)2
<

λj
(1 + λj)2

. (12)

Therefore, (10), (11), and (12) imply

q′(aH)

q(aH)c′(aH)
<

q′(aL)

q(aL)c′(aL)
.

Given that q(.) is (weakly) concave and that c(.) is (weakly) convex, this inequality

can only be satisfied provided aL < aH .

Proof of Proposition 2: To prove this result we show that if λiλj < 1, then the

best response of the overconfident player i crosses the 45 degree line at a higher value

of effort than the best response of the underconfident player j.

At the 45 degree line the best response of player i takes the value āi given by

λiq
′(āi)

(1 + λi)2q(āi)
v − c′(āi) = 0. (13)
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At 45 degree line the best response of player j takes the value āj given by

λjq
′(āj)

(1 + λj)2q(āj)
v − c′(āj) = 0. (14)

Observe that
λi

(1 + λi)2
>

λj
(1 + λj)2

,

is equivalent to:

λiλ
2
j + λi > λjλ

2
i + λj,

which is true when λiλj < 1. This implies

q′(āi)

q(āi)c′(āi)
>

q′(āj)

q(āj)c′(āj)
.

Given that q(.) is (weakly) concave and that c(.) is (weakly) convex, this inequal-

ity can only be satisfied provided āi > āj.

Likewise, if λiλj > 1, then āi < āj.

Proof of Lemma 5: Assume first that λ1 = λ2 > 1 and amax1 = amax2 , so that

a∗1 = a∗2 and the best response functions cross on the 45o line. Consider then any

change leading to an increase in amax1 , so that amax1 > amax2 . This will be the case

if c
′
i(ai) gets lower, if q

′
i(ai) gets lower, or if qi(ai) gets higher. Upon observing the

first-order condition (3) we see that any such change leads to an increase of Ri(aj)

for any effort level of the rival. Consequently, since the two best response functions

both start at the origin of the graph and are strictly concave in the rival’s effort, it

is necessarily the case that after such a change we have a∗2 < a∗1.

Proof of Lemma 6: By reproducing the steps in the proof of Lemma 2 for the

present case with asymmetric players, we deduce that ∂Ri(aj)/∂λi ⋚ 0 ⇔ qj(aj) ⋚

λiqi(ai). Fix λ1. By Lemma 5 we know that when λ1 = λ2 > 1 and amax1 > amax2

then a∗1 > a∗2, which de facto implies that if q1(a
∗
1) < λ2q2(a

∗
2), then the best response

function of player 2 shifts down with the overconfidence level of player 2 and we
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necessarily have that ∂a∗1/∂λ2 < 0, ∂a∗2/∂λ2 < 0, and, by the concavity of R1(a2) we

also have that ∂(a∗1/a
∗
2)/∂λ2 > 0 and thus for λ2 > λ1, we necessarily have a∗1 > a∗2.

Consider next the case where q1(a
∗
1) ≥ λ2q2(a

∗
2) so that R

′
2(a

∗
1) < 0. In such a case,

observe that for λ1 = λ2 = 1, the best response function of player 2 hits first the 45o

line, and for any λ2 > 1, the value of a1 for which R2(a1) is maximized is larger since

∂R2(a1)/∂λ2 < 0 for q1(a1) < λ2q(a2). It thus follows that the crossing between the

two best response functions must occur for values a∗1 > a∗2.

Proof of Proposition 3: Observe that the best response function of any player i

does not depend on λj. To establish the result, consider the equation q1(a1) = q2(a2),

or a2 = q−1
2 (q1(a1)). Define next by ã1 the effort of player 1 such that the best

response of player 2 commands him to exert an effort such that q1(a1) = q2(a2).

Replacing for this equality in R2(a1), this condition reads as:

λ2q
−1
2

′
(q1(ã1))

[1 + λ2]2q1(ã1)
v − c

′
(q−1

2 (q1(ã1)) = 0.

Observe that for any finite values λ2, the above expression is satisfied for a strictly

positive value ã1.

To establish our result, we then demonstrate that the value of α1 that commands

player 1 exert an effort such that q1(a1) = q2(a2), a value we shall denote by ǎ1, is

such that ǎ1 < ã1 for high enough values of λ1. Replacing for q1(a1) = q2(a2) in

R1(a2), we obtain:

λ1q
′
1(ǎ1)

[1 + λ1]
2 q1(ã1)

v − c
′

1(ã1) = 0.

Since the limit of the first term when λ1 goes to infinity is zero, it is immediate

to deduce that limλ1→∞ ǎ1 = 0. Consequently, because of the reaction functions’

concavity, it is necessarily the case that as λ1 → ∞, then q1(a
∗
1) < q2(a

∗
2).

Proof of Corollary 2 Recall that R1(a2) is defined by:

λ1q1(a1)q2(a2)

[λ1q1(a1) + q2(a2)]
2v − c

′

1(a1) = 0.
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It follow that for any a2 ≥ 0, limλ1→∞ a1(a2) = 0. Consider next the reaction function

of player 2:
λ2q2(a2)q1(a1)

[λ2q2(a2) + q1(a1)]
2v − c

′

2(a2) = 0.

For any finite value of λ2, if a1 → 0, the above expression tends to −c′2(a2), and since

c2(.) is convex, this implies that a∗2 → 0.

Proof of Proposition 4: Observe first that there can be only three cases, since

the fact that λ1 > 1 and λ2 > 1 precludes the possibility to have λiq(a
∗
i ) < q(a∗j),

i ̸= j ∈ {1, 2}.
If λiq(a

∗
i ) > q(a∗j), i ̸= j ∈ {1, 2}, then R′

i(a
∗
j) > 0 for both players at equilibrium,

and ∂R1(a2)/∂λ1 < 0. It then follows that ∂a∗1/∂λ1 < 0 and ∂a∗2/∂λ1 < 0.

If λ1q(a
∗
1) > q(a∗2) and λ2q(a

∗
2) < q(a∗1), then R

′
1(a

∗2) > 0, R
′
2(a

∗1) < 0, and

∂R1(a2)/∂λ1 < 0. It then follows that ∂a∗1/∂λ1 < 0 and ∂a∗2/∂λ1 > 0, since R1(a2)

will contract along the decreasing part of R2(a1).

Last if λ1q(a
∗
1) < q(a∗2) and λ2q(a

∗
2) > q(a∗1), then R

′
1(a

∗2) < 0, R
′
2(a

∗1) > 0, and

∂R1(a2)/∂λ1 > 0. It then follows that ∂a∗1/∂λ1 > 0 and ∂a∗2/∂λ1 > 0.

Proof of Proposition 5: We begin by imposing symmetry so that ai = aj = a∗,

∀i, j ∈ N . Consequently, at equilibrium the first-order condition (5) reads as:

λq′(a∗)(n− 1)q(a∗)

[λq(a∗) + (n− 1)q(a∗)]2
v − c′(a∗) = 0,

or
λ(n− 1)q′(a∗)

(λ+ n− 1)2 q(a∗)
v − c′(a∗) = 0.

To inspect the sign of ∂a∗/∂λ we apply the implicit function theorem to the above

expression to obtain:

∂a∗

∂λ
= −

(n−1)(λ+n−1)2−2(λ+n−1)λ(n−1)

(λ+n−1)4
v q

′(a∗)
q(a∗)

λ(n−1)

(λ+n−1)2
v q

′′(a∗)q(a∗)−[q′(a∗)]2

q2(a∗)
− c′′(a∗)

= −
(n−1)(n−1−λ)

(λ+n−1)3
v q

′(a∗)
q(a∗)

λ(n−1)

(λ+n−1)2
v q

′′(a∗)q(a∗)−[q′(a∗)]2

q2(a∗)
− c′′(a∗)

.
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Since the denominator of this expression is unambiguously negative, the sign of

the expression is therefore given by the sign of (n− 1− λ).

Proof of Corollary 2: Consider n symmetric rational players. Their equilibrium

effort is given by:

(n− 1)q′(a∗)

(n− 1)2 q(a∗)
v − c′(a∗) = 0.

Since it is immediate to show that da∗/dn < 0, it follows that the optimal in-

dividual effort is maximal when n = 2. Now, from Proposition 5 we know that for

any given n the maximal individual effort obtains when n = λ+1. Observe that the

equilibrium effort when n = λ+ 1 is the same as the maximal individual effort that

the game admits, i.e. it is the same as when n = 2 and λ = 1. Indeed, this will is

true since the maximal individual effort is given by:

q′(a∗)

4q(a∗)
v − c′(a∗) = 0,

and for any n > 2, the players’ equilibrium individual efforts will equal this value if
λ(n−1)

(λ+n−1)2
= 1/4, an equality that is true if n = λ+ 1.

Since a∗ > 0, and since respecting n = λ+ 1 implies that the dissipation ratio is

given by D = na∗

v
, there always exists a finite value of n above which over-dissipation

can be observed at equilibrium.

Proof of Proposition 7:

We can re-write equation (8) as:

ψ =
λ

λ+ n∗ − 1
v − c(a∗)− v̄ = 0.

Consequently, the effect of overconfidence on the number of entrants is given by:

dn∗

dλ
= −

∂ψ
∂λ
∂ψ
∂n∗

= −
(n∗−1)

(λ+n∗−1)2
v − c′(a∗)∂a

∗

∂λ

− λ
(λ+n∗−1)2

v − c′(a∗) ∂a
∗

∂n∗

.

We can separately compute the following two expressions:
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∂a∗/∂λ =

[n−1][λ−n+1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

,

and,

∂a∗/∂n = −
λ[λ−n+1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

,

where ψ = λ(n−1)q′(a∗)
(λ+n−1)2q(a∗)

v − c′(a∗) = 0 as given in equation (7).

Substituting these two expressions in dn∗/dλ, we obtain:

dn∗

dλ
= −

(n− 1)

[
1

(λ+n∗−1)2
v + c′(a∗)

[−λ+n−1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

]

λ

[
− 1

(λ+n∗−1)2
v − c′(a∗)

[−λ+n−1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

] =
n− 1

λ
.
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