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1 Introduction

Evidence from psychology and economics shows that humans tend to display biases

in confidence. For example, a majority of people believe they are better than others

in a wide variety of positive traits and skills (Myers 1996, Santos-Pinto and Sobel

2005).1 However, when tasks are perceived to be difficult, humans often display

underconfidence (Kruger 1999, Moore and Healy 2008). Gender, race, socio-economic

status differences in confidence have also been documented and shown to matter for

economic decisions in the field and in the lab (e.g. Gneezy et al. 2003, Niederle and

Vesterlund 2007, Buser et al. 2014, Guyon and Huillery 2021).

This paper inquires how confidence biases affect behavior and outcomes of com-

petitions that take the form of tournaments and contests. Some examples include

promotions in organizations, R&D races, election campaigns, rent-seeking games,

competitions for markets, litigation, wars, and sport competitions. The paper ad-

dresses the following questions. How do confidence biases affect players’ relative

efforts? Is a more confident player more or less likely to win a competition? Can

overconfidence (underconfidence) make a less (more) able player the most likely win-

ner? We provide answers to these questions in a two player setup where the players

can differ in their confidence, abilities, and cost of effort.

In our setup, players compete for a prize by exerting effort. Efforts, abilities, and

noise generate outputs that map into winning probabilities. An overconfident (un-

derconfident) player overestimates (underestimates) his ability, which translates into

a higher (lower) perceived winning probability.2 We make three main assumptions.

1Examples include car drivers (Svenson 1981), entrepreneurs (Cooper et al. 1988), judges

(Guthrie et al. 2001), CEOs (Malmendier and Tate 2005, 2008), fund managers (Brozynski et

al. 2006), currency traders (Oberlechner and Osler 2008), poker and chess players (Park and

Santos-Pinto 2010), CFOs (Ben-David et al. 2013), marathon runners (Krawczyk and Wilamowski

2017), freedivers (Lackner and Sonnabend 2020), and truck drivers (Hoffman and Burks 2020).
2Biases in confidence can be of three types. Players may have a mistaken assessment of their

absolute ability, their relative ability, or the precision of their estimates (Moore and Healy 2008).

Our focus is on the first two types of confidence biases. Observe also that in our model perceived

2



First, we impose ability and effort to be complements as is often done in the litera-

ture (Bénabou and Tirole 2002 and 2003, Gervais and Goldstein 2007, Santos-Pinto

2008 and 2010, and de la Rosa 2011). Second, we exclude the possibility for both

players to be underconfident to rule out multiple equilibria. Third, we focus on a

wide a range of noise distributions encompassing commonly used ones such as the

Normal.

In equilibrium, each player selects their effort level such that the product of the

perceived marginal probability of winning and the utility prize spread equals their

marginal cost of effort. A change in a player’s confidence can have two different

effects on equilibrium relative efforts. On the one hand, when a player believes that

his effective effort is low compared to his rival, an increase in confidence results in

a higher perceived marginal winning probability. Thence, increases in confidence

incentivize the player to increase effort relative to his rival. On the other hand, when

a player believes that his effective effort is high compared to his rival, so that there

is little room for further increases in his perceived winning probability, an increase

in his confidence will result in a lower perceived marginal winning probability. In

such instances, increases in confidence can result in a decrease in effort relative to

the rival. In summary, although improvements in a player’s confidence always push

his perceived probability of winning upwards, they may instead push his perceived

marginal probability of winning downwards when he perceives his winning probability

to be high.

Given the above mechanism, we uncover a non-monotonic effect of confidence on

the relative effort provision of players in a Lazear-Rosen tournament (Lazear and

Rosen 1981) where effort and ability are complements. For any given heterogeneity

in abilities and/or costs, a player with a low confidence perceives that for a given

confidence level of the rival, the marginal impact of his effort on output is limited.

winning probabilities are a function of the difference between one’s own perceived output and the

actual output of the rival, hence overestimating one’s own ability is tantamount to underestimat-

ing the rival’s ability. Therefore, absolute overconfidence in our setup is equivalent to relative

overconfidence.
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Consequently, at equilibrium a player with a low confidence exerts less effort than

his rival. When the confidence level of the focal player increases while the rival’s

confidence is kept fixed, the difference in efforts shrinks as a result of the increase in

the perceived marginal contribution of his effort to output. If the ability and cost

asymmetries between the two players are not too large, then when the focal player

is moderately confident, he will exert a higher effort than his rival. Finally, a highly

overconfident focal player perceives his winning probability to be high for low efforts,

thence leaving limited scope for further increasing it by raising effort. Consequently,

since effort is costly, a highly overconfident focal player saves on effort, and exerts

less effort than his rival.

Observe that in our model, without confidence biases, a player’s ability has a

monotonic effect on equilibrium relative efforts. In equilibrium, each player selects

their effort level such that the product of the marginal probability of winning and

the utility prize spread equals their marginal cost of effort. Yet, because of the

assumption that ability and effort are complements, the more able player has a higher

marginal probability of winning, leading him to exert greater equilibrium effort.

Thus, increasing a player’s ability leads to a higher relative effort, ceteris paribus.

While relative efforts vary non-monotonically with increases in a player’s confidence,

they rise monotonically with ability, highlighting the importance of examining the

impact of heterogeneity in confidence biases in tournaments.

We next explore the effect of confidence biases on Tullock contests that have been

widely used to study competition. The above results for Lazear-Rosen tournaments

are shown to also hold when competition is modelled with a generalized Tullock

contest. However, the effect of confidence biases on these two types of competitions

can differ. In setups where players have the same abilities and cost functions, in

Lazear-Rosen tournaments perceptional biases can raise both players’ equilibrium

efforts, while we show that this is never the case in a contest.
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2 Related Literature

Our paper contributes to the literature studying the effects of perceptional biases

on competition in strategic environments. Santos-Pinto (2010) shows how a firm

can take advantage of its workers’ overconfidence by adjusting the prize spread in a

Lazear-Rosen tournament where all workers have the same confidence, ability, and

cost of effort. In this study, we focus on a different research question, namely how

differences in confidence biases affect players’ relative efforts and associated winning

probabilities. Besides introducing heterogeneity in beliefs in Lazear-Rosen tour-

naments, we equally extend the analysis to Tullock contests. Unlike Santos-Pinto

(2010), we uncover a non-monotonic effect of own overconfidence on a player’s win-

ning probability. Moreover, we show that our main result is robust to asymmetries

in abilities and costs of effort. Goel and Thakor (2008) study the effect of over-

confidence defined as an underestimation of risk (i.e. overprecision) in a two-stage

elimination tournament where managers compete for promotion to CEO positions.

In our study we focus instead on the two other types of overconfidence, namely over-

estimation of one’s absolute ability and overplacement (see Moore and Healy (2008)

for more details on the distinctions).

Ludwig et al. (2011) analyze a Tullock contest where an overconfident player

underestimates his cost of effort and find that with symmetric costs an overconfident

player always exerts higher effort and is therefore more likely to win the contest. In

contrast, when modelling overconfidence as an overestimation of one’s ability, we find

that the more overconfident player has a higher winning probability for intermediate

levels of overconfidence, and a lower winning probability for low or high levels of

overconfidence.

Santos-Pinto and Sekeris (2023) focus on the effects of confidence biases on Tul-

lock contests, while the current paper encompasses both Lazear-Rosen tournaments

and Tullock contests and uncovers a non-monotonicity between overconfidence and

relative effort provision. Moreover, we consider a much more general setup where we

allow players to differ in their confidence, abilities, and cost of effort.
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Some scholars have explored how rationality biases influence behavior in con-

tests. Baharad and Nitzan (2008), and Keskin (2018) focus on Prospect Theory’s

probability weighing. Fu et al. (2021) and Fu et al. (2022) incorporate Köszegi and

Rabin’s (2006) reference-dependent preferences. Last, Yang (2020) studies the effect

of Rank-Dependent Utility probability weighing. In our paper the perception bias

is different since an overconfident (underconfident) player overestimates (underesti-

mates) the winning probability for any effort of the rival. Moreover, we consider a

generalized Tullock contest and allow for heterogeneity in players’ abilities and costs.

Finally, our paper also contributes to the literature on tournaments and contests

where players differ in their abilities and/or costs (Lazear and Rosen 1981, Schotter

and Weigelt 1992, Höffler and Sliwka 2003, Kräkel and Sliwka 2004, Garfinkel and

Skaperdas 2007, Drugov and Ryvkin 2022). We extend this literature by allowing

also for heterogeneity in players’ confidence in their abilities. We show that some

earlier results on the impact of heterogeneity in abilities and/or costs on equilibrium

efforts and winning probabilities can be overturned when players display confidence

biases. For example, the result that the most able and/or cost efficient player has

a higher winning probability both in tournaments and in contests, may not always

hold if players have biased beliefs on their abilities.

3 Set-up

Consider two players, 1 and 2, competing in a tournament. The player who produces

the highest output receives the winner’s prize yW and derives utility uW from it, while

the other receives the loser’s prize yL, and derives utility uL, with 0 ≤ uL < uW . The

players are expected utility maximizers and have utility functions that are separable

in the valuation of prizes and the cost of effort. Effort ai carries a cost ci(ai) to player

i, with c′i > 0, c′′i > 0, ci(0) = 0, c′i(0) = 0, and ci(ai) = ∞, for ai → ∞, where the

last two conditions ensure that equilibrium effort is strictly positive but finite. The

two players have an outside option ū which we normalize to 0.
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When player i exerts effort ai his output is given by

Qi = h(θiqi(ai)) + εi, (1)

where both h(.) and qi(.) are increasing functions, and θi > 0 is ability. The random

variable εi is unimodal with zero mean and represents individual noise. Moreover,

the random variables εi and εj are identically and independently distributed, and

their probability distribution are known to both players.3

Accordingly, player i’s probability of winning the tournament is

Pi(ai, aj) = Pr(Qi ≥ Qj)

= Pr(h(θiqi(ai)) + εi ≥ h(θjqj(aj)) + εj)

= Pr(εj − εi ≤ h(θiqi(ai))− h(θjqj(aj))).

The two players know their rival’s true ability but misperceive their own abil-

ity. Moreover, they can differ from one another in terms of their ability percep-

tions. Either player can be overconfident, underconfident, or unbiased. The degree

of over/underconfidence of player i is captured by the parameter λi, that affects how

player i perceives his output as follows:

Q̃i = h(λiθiqi(ai)) + εi, (2)

Accordingly, θ̃i = λiθi is player i’s perceived ability, and for an overconfident

player i, λi > 1, for an underconfident player, λi < 1, while for an unbiased player,

λi = 1. Under this specification player i perceives his marginal output is increasing

with his confidence bias λi, that is, ∂
2Q̃i/∂ai∂λi > 0.4

3Equation (1) captures situations where effort and ability are complements in generating output

since ∂2Qi/∂ai∂θi > 0. This specification for output where noise is additively separable is chosen

for its analytical simplicity and is often used in the tournament literature (see Lazear and Rosen

1981, Nalebuff and Stiglitz 1983, Akerlof and Holden 2012).
4This describes situations where effort, ability and confidence are complements in generating

output. This way of modeling overconfidence is often used in the literature that analyzes its impact
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Hence, player i’s perceived probability of winning the tournament is

P̃i(ai, aj, λi) = Pr(Q̃i ≥ Qj)

= Pr(h(λiθiqi(ai)) + εi ≥ h(θjqj(aj)) + εj)

= Pr(εj − εi ≤ h(λiθiqi(ai))− h(θjqj(aj))).

Player i chooses the optimal level of effort that maximizes his perceived expected

utility:

E[Ũi(ai, aj, λi)] = uL + P̃i(ai, aj, λi)∆u− ci(ai), (3)

where ∆u = uW − uL captures the utility prize spread.

Following Heifetz et al. (2007a,2007b) for games with complete information, and

Squintani (2006) for games with incomplete information, we assume: (1) a player

who faces a biased rival is aware that the latter’s perception of his own ability is

mistaken, (2) each player thinks that his own perception of his ability is correct, and

(3) both players have a common understanding of each other’s beliefs, despite their

disagreement on the accuracy of their rival’s beliefs. Hence, players agree to disagree

about their abilities.5

To ensure that the problem has a unique pure strategy equilibrium, we impose

the following restriction on confidence parameters:

Assumption 1. λ1λ2 ≥ 1.

This assumption implies that although both players can be overconfident, it is

forbidden by assumption that they are both underconfident.6

on labor contracts (Bénabou and Tirole 2002 and 2003, Gervais and Goldstein 2007, Krähmer 2007,

Santos-Pinto 2008 and 2010, and de la Rosa 2011). This assumption applies to tasks where time

(effort) and cognitive skills (ability) determine the output and where a more able employee produces

higher output in the same time than a less able one (Sautmann, 2013). Chen and Schilberg-Hörisch

(2019) find experimental support for this assumption.
5These assumptions are consistent with the psychology literature on the “Blind Spot Bias”

according to which individuals believe that others are more susceptible to behavioral biases than

themselves (Pronin and Ross, 2002; Pronin and Kugler, 2007).
6This assumption can be relaxed when considering specific functional forms in what follows, but
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We shall sequentially consider Lazear-Rosen tournaments in Section 4 and Tullock

contests in Section 5, which are both nested in our general setup.

4 Lazear-Rosen tournaments

In this section we analyze the effect of overconfidence on players’ effort in the canon-

ical Lazear and Rosen (1981) rank-order tournament. In this case, equations (1) and

(2) become, respectively,

Qi = θiai + εi, (4)

and

Q̃i = λiθiai + εi. (5)

Accordingly, player i’s perceived probability of winning the tournament is

P̃i(ai, aj, λi) = Pr(Q̃i ≥ Qj)

= Pr(λiθiai + εi ≥ θjaj + εj)

= Pr(εj − εi ≤ λiθiai − θjaj)

= G(λiθiai − θjaj).

Since the difference between the random shocks εi and εj will be crucial, we

define the random variable x = εj − εi with cumulative distribution function G(x)

and density g(x). Recall that the random shocks εi and εj are i.i.d.. A sufficient

condition for the unimodality of g(x) is then that the pdf of εi and εj are unimodal

(Hodges and Lehmann 1954), which we have assumed. Since εi and εj are i.i.d.,

it follows that g(x) is symmetric around zero. Moreover, we impose the following

additional assumptions on g(x):

Assumption 2.

(a) g(x) is continuously differentiable on R,

given the degree of generality we wish to preserve we need to restrict the parameter space to ensure

the equilibrium is unique and well behaved.
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(b) g′(x) > 0 for x < 0, and g′(x) < 0 for x > 0,

(c) over [0, x̂[, g′′(x) < 0, and over [x̂,∞[, g′′(x) ≥ 0, with x̂ ∈ [0,∞[.

Observe that unimodality alongside continuity imply g′(0) = 0. The above as-

sumptions are flexible enough to accommodate a host of density functions, including

e.g. the Normal or the Logistic distribution.7

Player i chooses the optimal level of effort that maximizes his perceived expected

utility:

E[Ũi(ai, aj, λi)] = uL +G(λiθiai − θjaj)∆u− ci(ai), (6)

where ∆u = uW − uL.

The first-order condition of player i is

∂E[Ũi(ai, aj, λi)]

∂ai
= λiθig(λiθiai − θjaj)∆u− c′i(ai) = 0. (7)

Hence, the second-order condition of player i is

∂2E[Ũi(ai, aj, λi)]

∂a2i
= λ2

i θ
2
i g

′(λiθiai − θjaj)∆u− c′′i (ai) < 0. (8)

A sufficient condition for existence of a pure-strategy Nash equilibrium to exist

is that

λ2
i θ

2
i g

′(λiθiai − θjaj)∆u < c′′i (ai),∀ai, aj, λi. (9)

As it is known in the tournament literature, a pure-strategy Nash equilibrium will

only exist if there is sufficient noise in the tournament and the cost function ci(a)

is sufficiently convex (Lazear and Rosen, 1981). Hence, existence of a pure-strategy

Nash equilibrium is assured when the following assumption holds

Assumption 3.

λ2
i θ

2
i∆u sup

x
g′(x) < inf

a>0
c′′i (a), i = {1, 2}.

7Note that g(x) follows a Normal distribution when the noise terms are normally distributed,

and g(x) follows a Logistic distribution when the noise terms follow a Gumbel distribution.
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Assumption 3 ensures (9) is satisfied. Note that 0 < c0 = infa>0 c
′′(a) defines

a class of cost functions with a second derivative bounded away from zero.8 Let

ai = Ri(aj) denote player i’s best response obtained from (7). Lemma 1 describes

the shape of the player i’s best response.

Lemma 1. Ri(aj) is quasi-concave in aj and reaches a maximum for θjaj = λiθiai.

Lemma 1 tells us that the players’ best responses are non-monotonic. Given high

effort of the rival, θjaj > λiθiai, player i reacts to an increase in effort of the rival

by decreasing effort; given low effort of the rival, θjaj < λiθiai, player i reacts to an

increase in effort of the rival by increasing effort.

Lemma 2 describes how player i’s best response changes with his confidence bias

λi.

Lemma 2. An increase in player i’s confidence λi leads to an expansion of his best

response function, ∂Ri(aj)/∂λi > 0 for ∂2Pi(ai, aj, λi)/∂ai∂λi > 0, and to a contrac-

tion of his best response function, ∂Ri(aj)/∂λi < 0, for ∂2Pi(ai, aj, λi)/∂ai∂λi < 0.

Moreover, the maximal effort player i is willing to exert in the tournament, amax
i ,

increases in player i’s confidence λi.

Lemma 2 characterizes how player i’s confidence shifts his best response. This

is determined by how the bias changes player 1’s perceived marginal probability of

winning the tournament:

∂2P̃i(ai, aj, λi)

∂ai∂λi

= θig(λiθiai − θjaj) + θ2i λiaig
′(λiθiai − θjaj). (10)

We see from (10) that player i’s perceived marginal probability of winning is

composed of two terms. The first term is positive since g(x) is a density function.

The second term is positive when θjaj > λiθiai and negative when θjaj < λiθiai. In

sum, overconfidence can shift player i’s best response in two ways. To understand

8Quadratic costs are, obviously, in this class since for c(a) = c0a
2/2 with c0 > 0 we have

c′′(a) = c0 > 0.

11



the economic intuition behind this equation, consider first the perceived marginal

probability of winning the tournament in equation (7): λiθig(λiθiai − θjaj). The

perceived marginal probability of winning is given by the product of one’s perceived

ability and the probability density for given efforts of the players. Therefore, in-

creasing player i’s confidence has two effects on his perceived marginal probability

of winning. On the one hand, the weight allocated to the probability density in-

creases, which thus increases the perceived marginal probability of winning. On

the other hand, however, the probability density is itself affected by the confidence

level. For low enough perceived effective effort (λiθiai < θjaj) the probability den-

sity rises with confidence levels, thence implying that both effects push upwards the

perceived marginal probability of winning. For high enough perceived effective ef-

fort, however, the probability density drops, thus implying that the two effects go

in opposite directions. In summary, although improvements in a player’s confidence

always push his perceived probability of winning upwards, they may instead push his

perceived marginal probability of winning downwards when he perceives his winning

probability to be high.

A pure-strategy Nash equilibrium (a∗1, a
∗
2) satisfies the first-order conditions of

the two players simultaneously and is given by

λ1θ1g(λ1θ1a
∗
1 − θ2a

∗
2)∆u = c′1(a

∗
1), (11)

and

λ2θ2g(θ1a
∗
1 − λ2θ2a

∗
2)∆u = c′2(a

∗
2). (12)

A third useful lemma establishes the uniqueness of the equilibrium.

Lemma 3. The tournament has a unique pure-strategy Nash equilibrium.

We now focus on players endowed with symmetric abilities and cost functions so

that θ1 = θ2 = θ and c1(a) = c2(a) = c(a), and we extend the analysis to players

with asymmetric abilities and cost functions in Appendix B. Proposition 1 uncovers

the effect of player 1’s confidence on equilibrium efforts and winning probabilities.
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Proposition 1. For any confidence level of player 2, there exist two thresholds for

the confidence level of player 1, λ1(λ2) and λ̄1(λ2), with λ1(λ2) < λ̄1(λ2), λ2 =

{λ1(λ2), λ̄1(λ2)}, and such that

(i) a∗1 > a∗2 and therefore P1(a
∗
1, a

∗
2) > 1/2 if λ1(λ2) < λ1 < λ̄1(λ2)

(ii) a∗1 = a∗2 and therefore P1(a
∗
1, a

∗
2) = 1/2 if λ1 = λ1(λ2) or λ1 = λ̄1(λ2)

(iii) a∗1 < a∗2 and therefore P1(a
∗
1, a

∗
2) < 1/2 if λ1 < λ1(λ2) or λ1 > λ̄1(λ2)

Proposition 1 uncovers that for any confidence level of player 2, there exist two

confidence levels of player 1, λ1 = λ1(λ2), and λ̄1 = λ̄1(λ2), such that both players

exert the same efforts at equilibrium. Moreover, since players have the same abilities

(θ1 = θ2) and cost of effort (c1(a) = c2(a)), it is necessarily the case that either

λ1 = λ2, or λ̄1 = λ2, and either situation may be observed depending on the value

of λ2.

Case (i) tells us that player 1 exerts a higher effort at equilibrium when his

confidence level lies between these two thresholds, thence for values of λ1 that may

be higher (when λ1 = λ2) or lower (when λ̄1 = λ2) than λ2. Hence, for players with

the same abilities and cost of effort, the most confident player exerts higher effort

at equilibrium when (a) he is moderately more confident than the rival, and (b) the

rival is not too overconfident. Case (iii) tells us that if either or both conditions are

not satisfied, then the more overconfident player exerts lower effort at equilibrium.

Figure 1 illustrates Proposition 1 when θ1 = θ2 = 1. The x-axis depicts the

confidence level of player 1. The bell-shaped curve depicts the density of G(.) when

noise is normally distributed and when both players exert the same effort a∗. The

downward slopping curve depicts the ratio of the marginal cost of effort at a∗ to the

product of player 1’s confidence level λ1 and the utility prize spread ∆u. Note that

when the two curves intersect, the first-order condition of player 1 is satisfied and

both players exert the same effort. For this to be an equilibrium, it is necessary that

λ1 = λ2, hence implying that the only values of the players’ confidence parameters

compatible with an equilibrium are λ1 = λ2 = λ1 or λ1 = λ2 = λ̄1.
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Consider the left panel of Figure 1. Assume the equilibrium compatible with

players’ efforts a∗1 = a∗2 = a∗ is such that λ1 = λ2 = λ1, so that the upper crossing of

the two curves describes that equilibrium. If player 1 is marginally more confident

than player 2, the marginal benefit of exerting effort will be larger than its marginal

cost for fixed efforts of both players. In this case the bell-shaped curve will lie above

the downward slopping curve. Accordingly, player 1’s best response to a2 = a∗ is to

exert an effort a1 > a∗. Since the best response functions have been shown in Lemma

1 to be quasi-concave, this necessarily implies that when player 1 is marginally more

confident than player 2, a∗1 > a∗2.

The intuition behind this result lies in the following trade-off: player 1 aims at

exploiting the complementarities between confidence and effort while attempting to

save on cost of effort. An increase in player 1’s confidence raises his effort because

the increase in the perceived probability of winning times the utility prize spread is

greater than the associated marginal cost of effort.

Further increases in player 1’s confidence will gradually reduce the effectiveness

of effort in raising the perceived probability of winning. Graphically, this is rep-

resented by the wedge between the two curves shrinking, and eventually flipping.

Consequently, there is a second intersection of the two curves that takes place for

λ1 = λ̄1 > λ1 = λ2.

Now assume that the equilibrium compatible with players’ efforts a∗1 = a∗2 = a∗

is such that λ1 = λ2 = λ̄1 so that the lower crossing of the two curves describes that

equilibrium. Now both players have a high confidence level, and player 1 therefore has

a high perceived probability of winning the tournament. Accordingly, any marginal

increase in the confidence of player 1 has a limited scope for further increasing his

perceived probability of winning. Hence, increasing the confidence of player 1 will

lead his marginal perceived benefit of exerting effort to drop below the marginal

cost. Since the best response functions are quasi-concave, this necessarily implies

that when both players are highly confident and player 1 is more confident than

player 2, then a∗1 < a∗2.
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g(.)

λ1

g((λ1 −1)a∗)

1

c′(a∗)
λ1∆u

λ̄1λ 1

a∗1 < a∗2 a∗1 > a∗2 a∗1 < a∗2

g(.)

λ1

g((λ1 −1)a∗)

c′(a∗)
λ1∆u

1 λ̄1λ 1

a∗1 < a∗2 a∗1 > a∗2 a∗1 < a∗2

Figure 1: Equilibrium efforts in a tournament with normally distributed noise

The left panel in Figure 1 depicts Proposition 1 when player 2 is overconfident

since λ̄1 > λ1 > 1. The right panel in Figure 1 shows that the results of Proposition

1 are qualitatively the same when λ1 < 1.

For real life tournaments it is equally important to consider the effect of confidence

biases on the players’ equilibrium winning probabilities, P1(a
∗
1, a

∗
2) and P2(a

∗
1, a

∗
2).

Given the assumed symmetry in abilities, the player who exerts a higher effort is

the one with the higher winning probability. Hence, Proposition 1 also allows us

to determine which player has the higher probability of winning the tournament.

To better grasp the effect of heterogeneity in confidence on equilibrium winning

probabilities we introduce Figure 2. The confidence level of player 1 is depicted

on the y-axis and that of player 2 on the x-axis. In the striped areas B and D

player 1 has the higher equilibrium probability of winning the tournament, while in

the shaded areas A and C player 2 has the higher winning probability. Along the

borders separating these areas, both players have an equal winning probability.9

If λ1 = λ2 = 1, then we know from the analysis above that λ1(λ2) = λ1. Consider

then a confidence level of player 2, λ′
2, that is slightly larger than 1, as depicted on the

x−axis of Figure 2. It follows that if λ1 = λ′
2, then λ1(λ

′
2) = λ′

2, as depicted on the

9Figure 2 is obtained using a standardized Normal distribution and a quadratic cost function.
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λ̄1(λ2) λ̄1(λ2)

λ1(λ2) λ1(λ2)

A

P ∗
1 < 1/2

B

P ∗
1 > 1/2

C

P ∗
1 < 1/2

D

P ∗
1 > 1/2

λ′
2

λ1(λ
′
2)

λ̄1(λ
′
2)

1

1

λ1

λ2

Figure 2: Equilibrium winning probabilities in a tournament with normally dis-

tributed noise
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y−axis on Figure 2. Accordingly, there exists a value λ̄1(λ
′
2) > λ1(λ

′
2), that we also

depict on the y−axis of the figure. Consider then the dotted vertical line graphed on

Figure 2. In line with Proposition 1 (iii), if λ1 < λ′
2 (area A), then player 1 exerts

less effort than player 2 at equilibrium, thereby having a lower winning probability.

If we then increase player 1’s confidence level such that λ1 lies in between λ1(λ
′
2) and

λ̄1(λ
′
2) (area B), then as stated in Proposition 1 (i), player 1 exerts more effort and

has a higher winning probability than player 2 at equilibrium. Further increasing λ1

above the threshold λ̄1(λ
′
2) (area C), we are once again in case (iii) of Proposition 1

where P ∗
1 < 1/2.

Having described how the players’ winning probabilities change with the confi-

dence of player 1 for a fixed value of player 2’s confidence, we next explain how the

winning probabilities are affected by variations in λ2. Observe that along the 45o line,

confidence levels are the same across players, and so are their efforts and winning

probabilities. This defines the border separating regions A and B. We turn next to

the border separating regions B and C. Observe that for any point on this (upper)

border, players’ efforts and winning probabilities are equal, and are also equal to the

ones on the lower border for given values of λ2. By symmetrically increasing players’

confidence starting from λ1 = λ′
2, both players initially increase their equilibrium

efforts. Yet, if we take any point on the upper border, and increase players’ efforts

while leaving player 1’s confidence level fixed, then the marginal cost c′(a∗) will rise,

while the marginal benefit λ1g((λ1 − 1)a∗)∆u will drop. Consequently, player 1 is

now willing to invest less effort than his rival, thence implying a lower winning proba-

bility. Accordingly, when increasing player 2’s confidence level, player 1’s confidence

level has to be adjusted downwards to restore player 1’s incentives to exert the same

effort as player 2. This explains the downward slopping curve of λ̄1(λ2) before the

crossing point.

Observe that given the assumed symmetry in abilities and costs, along the 45o

line, the players have an equal probability of winning. This situation depicts the

equilibrium in Santos-Pinto (2010) where confidence levels, abilities, and costs are
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symmetric across players. Figure 2 reveals the added value of analyzing the role that

heterogeneity in confidence levels plays in determining equilibrium winning proba-

bilities.

In Appendix B we show that our results extend to Lazear-Rosen tournaments

where the players are endowed with asymmetric abilities and costs. In other words,

we demonstrate that a change in a player’s confidence level continues to have a non-

monotonic effect on relative efforts. Interestingly, we also demonstrate that the least

able player may still choose a higher equilibrium effort. We also show this to be true

for the least cost efficient player. Furthermore, we demonstrate that in instances

where a more able player is overly confident, his equilibrium relative effort can be so

low that the least able player has a higher equilibrium winning probability.

5 Tullock Contests

We now turn our attention to Tullock contests, which have been shown to be nested

in the general tournament introduced in Section 3 (Hirshleifer and Riley 1992, Jia

et al. 2013, Ryvkin and Drugov 2020, Santos-Pinto and Sekeris 2023). Indeed, this

will be the case when h(.) = ln(.) and εi follows a standard Gumbel distribution, as

we assume in this section. Hence, equations (1) and (2) become, respectively,

Qi = ln(qi(ai)) + εi, (13)

and,

Q̃i = ln(λiqi(ai)) + εi. (14)

In this section we use qi(.) to model heterogeneity in abilities in the contest as in

Baik (1994), Singh and Wittman (2001), Stein (2002), or Fonseca (2009). Observe

that although we assume θ1 = θ2 = 1, this is without any loss of generality since we

could instead done the entire reasoning with a function q̌i(.) = θiqi(.).
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In this case, player i’s perceived probability of winning is given by:

P̃i(ai, aj, λi) =


λiqi(ai)

λiqi(ai)+qj(aj)
if qi(ai) + qj(aj) > 0

1/2 otherwise

where qi(0) ≥ 0, q′i(ai) > 0 and q′′i (ai) ≤ 0.10

Any player i, i = {1, 2}, chooses the optimal effort level that maximizes his

perceived expected utility:

E[Ui(ai, aj;λi)] =
λiqi(ai)

λiqi(ai) + qj(aj)
∆u− ci(ai).

The first-order condition is

∂E[Ui(ai, aj;λi)]

∂ai
=

λiq
′
i(ai)qj(aj)

[λiqi(ai) + qj(aj)]
2∆u− c′i(ai) = 0. (15)

The second-order condition is

∂2E[Ui(ai, aj;λi)]

∂a2i
=

q′′i (ai)[λiqi(ai) + qj(aj)]− 2λi[q
′
i(ai)]

2

[λiqi(ai) + qj(aj)]3
λiqj(aj)∆u− c′′i (ai) < 0,

(16)

and the above inequality is satisfied since q′′i (ai) ≤ 0 and c′′i (ai) > 0.11

Let ai = Ri(aj) denote player i’s best response obtained from (15). Along player

i’s best response we have

λiq
′
i(ai)qj(aj)∆u = c′i(ai) [λiqi(ai) + qj(aj)]

2 .

Lemma 4 extends Lemma 1 in Baik (1994) to Tullock contests where players

display confidence biases, and it describes the shapes of the players’ best responses.

Lemma 4. Ri(aj) is quasi-concave in aj and reaches a maximum for qj(aj) =

λiqi(ai).

10The function qi(.), typically known as the impact function, can capture differences in players’

abilities in a contest.
11Note that the inequality in equation (16) is also satisfied for linear cost functions.
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Lemma 4 tells us that the players’ best responses are non-monotonic. Given high

effort of the rival, a player reacts to an increase in effort of the rival by decreasing

effort; given low effort of the rival, a player reacts to an increase in effort of the rival

by increasing effort.

A second useful lemma establishes the uniqueness of the equilibrium:

Lemma 5. The contest has a unique pure-strategy Nash equilibrium.

Another useful lemma describes how a player’s best response changes with his

confidence parameter λi.

Lemma 6. An increase in player i’s confidence λi leads to a contraction of his best

response,
∂Ri(aj)

∂λi
< 0, for qj(aj) < λiqi(ai) and to an expansion of his best response,

∂Ri(aj)

∂λi
> 0, for qj(aj) > λiqi(ai). Moreover, the maximal effort player i is willing to

exert in the contest, amax
i , is independent of his degree of confidence λi.

Lemma 6 characterizes the best response function of a player who is subject to a

confidence bias. For a high effort of the rival, an increase in confidence raises player

i’s effort, while for low effort of the rival, an increase in confidence lowers player i’s

effort. Moreover, the maximal value taken by player i’s best response is independent

of his confidence bias.

We next present a proposition that uncovers the effect of heterogeneity in con-

fidence on players’ equilibrium relative efforts in a Tullock contest where play-

ers display identical impact functions (qi(a) = qj(a) = q(a)) and cost functions

(ci(a) = cj(a) = c(a)). In Appendix B we extend our analysis to asymmetric impact

and cost functions.

Proposition 2. For any confidence level of player 2, there exist two thresholds for

the confidence level of player 1, λc
1(λ2) and λ̄c

1(λ2), with λc
1(λ2) < λ̄c

1(λ2), λ2 =

{λc
1(λ2), λ̄

c
1(λ2)}, and such that

(i) a∗1 > a∗2 and therefore P1(a
∗
1, a

∗
2) > 1/2 if λc

1(λ2) < λ1 < λ̄c
1(λ2)
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(ii) a∗1 = a∗2 and therefore P1(a
∗
1, a

∗
2) = 1/2 if λ1 = λc

1(λ2) or λ1 = λ̄c
1(λ2)

(iii) a∗1 < a∗2 and therefore P1(a
∗
1, a

∗
2) < 1/2 if λ1 < λc

1(λ2) or λ1 > λ̄c
1(λ2)

Observe that although the contest game differs from the tournament, the results

uncovered in Propositions 1 and 2 are qualitatively similar.

The particular structure of the contest implies that the maximal effort a player

will ever exert does not depend on his confidence bias (Lemma 6). This in turn

enables us to compare the equilibrium efforts with and without confidence biases.

Corollary 1. For any confidence levels with λi ̸= 1 for at least one player, both

players exert less effort than if both were rational.

This result is driven by the fact that in a contest with symmetric impact and cost

functions, the maximal effort level of a player, amax
i , is attained at equilibrium when

both players are rational. Observe that this result does not hold in a Lazear-Rosen

tournament since the maximal effort a player will ever exert in such instances has

been shown to depend on his confidence bias (Lemma 2).

In Appendix B we show that our results extend to Tullock contests where the

players have different impact and cost functions. As in Lazear-Rosen tournaments,

here too we demonstrate that an increase in a player’s confidence level has a non-

monotonic effect on equilibrium relative efforts. Our results thus contrast with ear-

lier work by Ludwig et al. (2011) that find a monotonic effect of overconfidence—

conceptualized as an underestimation of the cost of effort—on equilibrium effort

provision. Moreover, we also show that a cost disadvantaged player can exert higher

equilibrium effort and therefore have a higher equilibrium winning probability.

6 Conclusion

In this paper we investigate the role of confidence heterogeneity in tournaments and

contests where players can differ in their ability and cost functions. We uncover a
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non-monotonic effect of confidence on the relative effort provision and winning prob-

abilities of players in a tournament, for any given heterogeneity in abilities and/or

costs. A player with either a low or a high confidence exerts less effort than his rival

at equilibrium. However, for intermediate confidence levels, the player exerts more

effort than his rival.

Next, we show that the results extend to a generalized Tullock contest. In ad-

dition, the effects of confidence biases on players’ equilibrium relative efforts and

winning probabilities may differ across these two types of competitive environments.

In setups where players have the same abilities and costs, in Lazear-Rosen tourna-

ments confidence biases can raise both players’ equilibrium efforts, while this is never

the case in a generalized Tullock contest.

We also show that a less able or a higher cost player may nevertheless outcompete

his rival because of confidence biases. Indeed, provided the disadvantaged player

does not feature a too high ability or cost disadvantage, for a fixed confidence level

of the rival, there exist an intermediate range of confidence levels that lead the

disadvantaged player to exert more effort than the rival at equilibrium. Moreover,

a more able or a lower cost player may, nevertheless, be outcompeted by his rival.

For any fixed level of confidence of his rival, the advantaged player will exert a lower

effort at equilibrium if his confidence is either low enough, or high enough. Indeed,

an advantaged player with a low confidence expects his effort to map into a low

winning probability, thus inducing him to restrain effort provision. Moreover, an

advantaged player with a high confidence expects his winning probability to be high

with low effort thence inducing him to save on effort while securing a high perceived

equilibrium probability.

This article highlights the importance of examining confidence heterogeneity in

competitive settings. Our analysis focuses on how confidence biases affect equilib-

rium relative efforts and winning probabilities in both contests and tournaments.

However, players’ misperceptions also influence their equilibrium utilities. Due to

the generality of our framework, deriving precise welfare predictions is challenging,
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as equilibrium utilities depend on absolute effort levels, which exhibit non-monotonic

behavior. Since our findings primarily address equilibrium relative efforts, they do

not directly inform us on equilibrium utilities. One clear result we do obtain is

that, at very high confidence levels, a player is incentivized to exert minimal effort,

approaching zero in the limit. Consequently, as the opponent continues to exert a

strictly positive effort, the overly confident player’s equilibrium utility tends toward

zero.
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A Appendix - Proofs of Main Results

Proof of Lemma 1

The best response of player i is defined implicitly by (7). Hence, the slope of the

best response of player i, R′
i(aj), is given by

−∂Ri/∂aj
∂Ri/∂ai

= −
∂2E[Ũi(ai,aj ,λi)]

∂ai∂aj

∂2E[Ũi(ai,aj ,λi)]

∂a2i

=
λiθ

2
i g

′(λiθiai − θjaj)∆u

λ2
i θ

2
i g

′(λiθiai − θjaj)∆u− c′′i (ai)
.

The denominator is the second derivative of player i’s perceived expected utility

and so it is negative. Therefore, the sign of the slope of player i’s best response is

only determined by the (inverse of the) sign of the numerator which only depends on

g′(λiθiai−θjaj). Hence, R
′
i(aj) is positive for λiθiai > θjaj, zero for λiθiai = θjaj, and

negative for λiθiai < θjaj. This implies that Ri(aj) increases in aj for λiθiai > θjaj,

reaches the maximum at λiθiai = θjaj, and decreases in aj for λiθiai < θjaj.

Proof of Lemma 2

Player i’s best response is defined by (7):

λiθig(λiθiai − θjaj)∆u− c′i(ai) = 0.

Hence, we have

∂Ri(aj)

∂λi

=
∂2G(λiθiai − θjaj)

∂ai∂λi

∆u = [g(λiθiai − θjaj) + λiθiaig
′(λiθiai − θjaj)] θi∆u.

Since ∆u > 0, we see that ∂Ri(aj)/∂λi ⪋ 0 for

∂2G(λiθiai − θjaj)

∂ai∂λi

= g(λiθiai − θjaj) + λiθiaig
′(λiθiai − θjaj) ⪋ 0.

Substituting next θjaj = λiθiai into the first-order condition of player i and denoting

the maximal effort he is willing to exert in the tournament by amax
i we obtain

λiθig(0)∆u = c′(amax
i ).
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This implies that amax
i increases in λi.

Proof of Lemma 3

To prove that the equilibrium is unique, we first observe that when the players’

best responses cross it is impossible that they are both negatively slopped. Indeed,

for the two players’ best responses to be negatively slopped at equilibrium, we require

that λiθia
∗
i < θja

∗
j and θia

∗
i > λjθja

∗
j , which combined imply that λj <

θia
∗
i

θja∗j
< 1

λi
.

Yet, this is impossible since by assumption 1 we require λi ≥ 1
λj
.

To prove that the equilibrium is unique it is then sufficient to show that the

composite function Γ(ai) = R′
i(aj) ◦ R′

j(ai) has a slope smaller than 1 for any equi-

librium pair (a∗i , a
∗
j), since the function is continuous on R. If R′

i(a
∗
i ) < 0, then since

R′
i(a

∗
j) > 0, the condition is necessarily satisfied. If, on the other hand, R′

j(a
∗
i ) > 0,

then we simply need to prove that if R′
i(a

∗
j) > 0 for both players, then the product

of the best responses is smaller than 1. Since R′
i(aj) is decreasing in c′′i (ai), it is thus

sufficient to establish the result for c′′i (ai) = 0. Rewriting the product of the players’

best responses with this restriction, and simplifying expressions, we thus want to

show that:

λiθ
2
i g

′(λiθia
∗
i − θja

∗
j)∆u

λ2
i θ

2
i g

′(λiθia∗i − θja∗j)∆u− c′′i (a
∗
i )

· λjθ
2
jg

′(θia
∗
i − λjθja

∗
j)∆u

λ2
jθ

2
jg

′(θia∗i − λjθja∗j)∆u− c′′j (a
∗
j)

< 1

Since we want to show that the above condition is true when R′
i(a

∗
j) > 0 and

R′
j(a

∗
i ) > 0, if the above condition is true for c′′i (ai) = c′′j (aj) = 0, then it is also true

for any values c′′i (ai) > 0 and c′′j (aj) > 0. Consequently, the above condition is true

if λiλj ≥ 1, which is true by Assumption 1.

Proof of Proposition 1

Since the abilities and cost functions of the two players are symmetric, if λ1 = λ2,

then we necessarily have that at the unique equilibrium a∗1 = a∗2 = a∗. The first-order

condition for player 1 at any such symmetric equilibrium can be written as:

ϕ(λ1) = λ1θg(θ(λ1 − 1)a∗)∆u− c′(a∗) = 0.

30



To prove the result, we use the fact that a∗1 = a∗2 = a∗ when λ1 = λ2, and we

then explore the effect of a change in λ1 on the best response of player 1. If, for

these effort values the first-order condition of player 1 is not satisfied, then two cases

need to be considered. First, if ϕ(λ1) = ∂E[U1(a
∗
1, a

∗
2, λ1)]/∂a1 < 0, then for this

level of λ1, R1(a
∗
2) < a∗1. Given the quasi-concavity of R2(a1) and the fact that λ1

does not impact R2(a1), this implies that at the equilibrium associated with this

value of λ1, a
∗
1 < a∗2. Second, if ϕ(λ1) = ∂E[U1(a

∗
1, a

∗
2, λ1)]/∂a1 > 0, then at the

equilibrium associated with this value of λ1, a
∗
1 > a∗2. In what follows, we shall prove

that function ϕ(λ1) crosses twice the x-axis, and is negatively-valued for λ1 = 0 and

for λ1 tending to infinity. We shall denote the two threshold values of λ1 satisfying

ϕ(λ1) = 0 by λ1(λ2) and λ̄1(λ2), with λ1(λ2) < λ̄1(λ2).

Consider first ϕ(0). Since g(−θa∗) > 0, it follows that for λ1 = 0, λ1g(θ[λ1 −
1]a∗) = 0, and thus that ϕ(0) < 0. Second, consider limλ1→∞ ϕ(λ1). To show that

ϕ(λ1) is negative as λ1 tends to infinity, it is sufficient to show that λ1θg(θ[λ1−1]a∗)

converges to zero as λ1 → ∞. To prove this we proceed in several steps. First,

we observe that
∫∞
λ1

θg(θ[λ1 − 1]a∗) ≤ θ for any λ1, since
∫ +∞
−∞ θg(θ[λ1 − 1]a∗) =

θ. Moreover, the value of this expression is monotonically decreasing in λ1 since

g(θ[λ1 − 1]a∗) is monotonically decreasing in λ1. Assume then that, contrary to

what we want to prove, limλ→∞ λ1θg(θ[λ1− 1]a∗) > 0. Accordingly, there must exist

some arbitrarily large λ1 that we designate by λL and some value k ∈ R+ such that

λLθg(θ[λL−1]a∗) > k. Moreover, we also have
∫ +∞
λL

θg(θ[λ1−1]a∗) < d < θ. Consider

next a value λL̂ > λL that is close enough to λL and is such that λL̂θg(θ[λL̂−1]a∗) > k.

We know that g(θ[λ1 − 1]a∗) is a monotone decreasing function, and we thus deduce

that:∫ λL̄

λL

θg(θ[λ1 − 1]a∗) > [λL̄ − λL]θg(θ[λL̄ − 1]a∗) > [λL̄ − λL]
k

λL̄

=

[
1− λL

λL̄

]
k.

We can then choose a value λL̄ > 2λL so that [1 − λL/λL̄] > 1/2, and then

deduce
∫ λL̄

λL
θg(θ[λ1−1]a∗) > k

2
. Since d >

∫∞
λL

θg(θ[λ1−1]a∗), we deduce that d > k
2
.

But since g(θ[λ1 − 1]a∗) is monotonically decreasing in λ1, we can always choose a
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λ1 that is large enough so that d < k/2, thence contradicting the initial assertion.

Consequently we obtain that limλ1→∞ ϕ(λ1) = −c′(a∗) < 0.

Since an equilibrium exists and that ϕ(0) < 0, it is necessarily the case that there

exists a λ1 such that ϕ(λ1) = 0, with ϕ(λ) < 0, ∀λ < λ1. To complete the proof, we

need to demonstrate therefore that there exists a λ̄1 > λ1, with ϕ(λ̄1) = 0, and that

there is no other confidence value λ̂ with ϕ(λ̂) = 0. We consider all possible cases.

(i) If λ1 < 1, so that g′(θ[λ1 − 1]a∗) > 0, then ϕ′(λ1) = [θg(θ[λ1 − 1]a∗) +

θ2a∗λ1g
′(θ[λ1 − 1]a∗)]∆u > 0. Since we know that limλ1→∞ ϕ(λ1) < 0, there must

exist a second value λ̄1 such that ϕ(λ̄1) = 0. To reach that value we must have

that ϕ′(λ1) < 0 for values in ]λ1, λ̄1[, since otherwise ϕ(λ1) would be monotonically

increasing. Take any value in that interval and denote it by λ̌. Thence, it is necessary

that g′(θ[λ̌− 1]a∗) < 0, which implies that g′(θ[λ̄1 − 1]a∗) < 0 since λ̄1 > λ̌. We next

evaluate ϕ′(λ1) when λ1 = λ̄1,

ϕ′(λ̄1) = [g(θ[λ̄1 − 1)a∗] + θa∗λ̄1g
′(θ[λ̄1 − 1]a∗)]θ∆u.

In λ1 = λ̄1 we cannot have ϕ
′(λ̄1) > 0, since the function is smooth and decreasing

in the left neigbourhood of λ̄1. If ϕ′(λ̄1) = 0, then since limλ1→∞ ϕ(λ1) = −c′(a∗),

then there must exist another value λ̂ > λ̄1 such that ϕ(λ̂) = 0. Yet, to have

ϕ′(λ̄1) = 0, we then need to have:

ϕ′′(λ̄1) = [2g′([λ̄1 − 1]a∗) + θa∗g′′([λ̄1 − 1]a∗)]θ2a∗∆u > 0,

which necessitates that g′′(θ[λ̄1 − 1]a∗) > 0. Following assumption A.4, this implies

that g′′(θ[λ̄1 − 1]a∗) > 0 for any λ1 > λ̄1. But then we can rewrite ϕ(λ1) = 0 as:

λ1 =
c′(a∗)

g′(θ[λ1 − 1]a∗)θ∆u
, (17)

and since the LHS is linearly increasing in λ1 and the RHS is a concave function of

λ1, there can be but a single solution to the above problem, which would then be

the value previously identified, λ̄1, therefore excluding the existence of a value λ̂ s.t.

ϕ(λ̂) = 0. This in turn would imply that limλ1→∞ ϕ(λ1) > 0, which would contradict

our earlier finding that limλ1→∞ ϕ(λ1) < 0.
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Consequently, we must have that ϕ′(λ̄1) < 0. Then, if g′′(θ[λ̄1 − 1]a∗) > 0, there

can be no other value λ̂ > λ̄1 such that ϕ(λ̄1) = 0 because we would reach the same

contradiction as above. If on the contrary g′′(θ[λ̄1 − 1]a∗) ≤ 0, then to have a value

λ̂ > λ̄ such that ϕ(λ̂) = 0, it must be the case that for some λ ∈]λ̂, λ̄[, g′′(θ[λ−1]a∗) >

0. By Assumption 2, this implies that for λ = λ̂ we have g′′(θ[λ̂− 1]a∗) > 0. Yet, if

the function g(θ[λ− 1]a∗) is strictly convex on an interval [λ̌,∞[ with λ̂ belonging to

this interval, then for any value of λ in this interval such that λ < λ̂, we deduce from

equation (17) that ϕ(λ) > 0, which is a contradiction since for λ ∈]λ̄, λ̂[, ϕ(λ) < 0.

(ii) The second scenario is such that λ1 > 1, so that g′(θ[λ1 − 1]a∗) < 0. The

rest of the reasoning to prove that there cannot be another value of λ̄1 such that

ϕ(λ̄) = 0 follows the lines above.

Proof of Lemma 4

The best response of player i, i = {1, 2}, is defined implicitly by (15). Hence, the

slope of the best response of player i, R′
i(aj) is given by

−∂Ri/∂aj
∂Ri/∂ai

= −
∂2E[Ũi]
∂ai∂aj

∂2E[Ũi]

∂a2i

= −
λiqi(ai)−qj(aj)

[λiqi(ai)+qj(aj)]3
λiq

′
i(ai)q

′
j(aj)∆u

q′′i (ai)[λiqi(ai)+qj(aj)]−2λi[q′i(ai)]
2

[λiqi(ai)+qj(aj)]3
λiqj(aj)∆u− c′′i (ai)

. (18)

The denominator is negative because player i’s second-order condition is satisfied.

Therefore, the sign of the slope of player i’s best response is only determined by

the sign of the numerator which only depends on λiqi(ai)− qj(aj). Hence, R
′
i(aj) is

positive for λiqi(ai) > qj(aj), zero for λiqi(ai) = qj(aj), and negative for λiqi(ai) <

qj(aj). This implies that Ri(aj) increases in aj for λiqi(ai) > qj(aj), reaches the

maximum at λiqi(ai) = qj(aj), and decreases in aj for λiqi(ai) < qj(aj).

Proof of Lemma 5

To prove that the equilibrium is unique, we first show that when the players’ best

responses cross it is impossible that they are both negatively slopped. We proceed by

contradiction here too and suppose that there is an equilibrium such that R′
1(a

∗
2) <

0 ⇔ q2(a
∗
2) > λ1q1(a

∗
1) and R′

2(a
∗
1) < 0 ⇔ q1(a

∗
1) > λ2q2(a

∗
2). Assume, without loss of

generality, λ1 > λ2, so that λ1 > 1. Then q2(a
∗
2) > λ1q1(a

∗
1) ⇒ q2(a

∗
2) > q1(a

∗
1).
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To show that an equilibrium such that R′
1(a

∗
2) < 0 and R′

2(a
∗
1) < 0 cannot ad-

mit q2(a
∗
2) > q1(a

∗
1), consider any pair q1(a1) = q2(a2) = q. Since λ1 > λ2, then

∂E[U1(a1,a2;λ1)]
∂a1

> ∂E[U2(a2,a1;λ2)]
∂a2

for q1(a1) = q2(a2). This in turn would imply that if

player 2’s first-order condition is satisfied then player 1 has incentives to increase his

effort, and if player 1’s first-order condition is satisfied, then player 2 has incentives

to reduce his effort. Consequently, the best response of player 2 needs to cross the

45-degrees line for efforts a1 and a2 such that q2(a2) < q1(a1). The quasi-concavity

of the players’ best responses allows us to conclude that q1(a
∗
1) > q2(a

∗
2), thence the

contradiction.

To prove that the equilibrium is unique it is then sufficient to show that the

composite function Γ(a1) = R′
1(a2) ◦ R′

2(a1) has a slope smaller than 1 for any

equilibrium pair (a∗1, a
∗
2), since the function is continuous on R. Having shown that

at equilibrium we cannot have R′
1(a2) < 0 and R′

2(a1) < 0, we simply need to prove

that when both best responses are positively slopped at equilibrium, the product of

the best responses is smaller than 1. Since R′
1(a2) is decreasing in c′′1(a1), it is thus

sufficient to establish the result for c′′1(a1) = 0. Rewriting the product of the players’

best responses with this restriction, and simplifying expressions, we thus want to

show that:

(λ1q1(a1)− q2(a2))(λ2q2(a2)− q1(a1)) (q
′
1(a1)q

′
2(a2))

2

[q′′1(a1)[λ1q1(a1) + q2(a2)]− 2λ1[q′1(a1)]
2] [q′′2(a2)[λ2q2(a2) + q1(a1)]− 2λ2[q′2(a2)]

2] q1(a1)q2(a2)
< 1.

Since the LHS is decreasing in both q′′1(a1) and q′′2(a2) the above expression is a

fortiori true when setting q′′1(a1) = q′′2(a2) = 0, thence implying the above inequality

is verified if:

(λ1q1(a1)− q2(a2))(λ2q2(a2)− q1(a1)) (q
′
1(a1)q

′
2(a2))

2

4λ1[q′1(a1)]
2λ2[q

′
2(a2)]

2q1(a1)q2(a2)
< 1,

an expression that simplifies to:

(λ1q1(a1)− q2(a2))(λ2q2(a2)− q1(a1)) < 4λ1λ2q1(a1)q2(a2).
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And this inequality is always satisfied since λ1λ2 ≥ 1.

Proof of Lemma 6

(This proof follows Baik 1994) Player i’s best response is defined by (15):

λiq
′
i(ai)qj(aj)

[λiqi(ai) + qj(aj)]
2∆u− c′i(ai) = 0.

Hence, we have

∂Ri(aj)

∂λi

=
qj(aj)− λiqi(ai)

[λiqi(ai) + qj(aj)]
3 q

′
i(ai)qj(aj)∆u.

We see that ∂Ri(aj)/∂λi ⋛ 0 for qj(aj) ⋛ λjqi(ai). We also know from Lemma 1

that sign{R′
i(aj)} = −sign

{
∂Ri(aj)

∂λi

}
.

Substituting next qj(aj) = λiqi(ai) into the first-order condition of player i and

denoting the maximal effort he is willing to invest in the contest by amax
i we obtain

λiq
′
i(a

max
i )λiqi(a

max
i )

[λiqi(amax
i ) + λiqi(amax

i )]2
∆u = c′i(a

max
i ),

or
λ2
i q

′
i(a

max
i )qi(a

max
i )

4λ2
i [qi(a

max
i )]2

∆u = c′i(a
max
i ),

or
q′i(a

max
i )

4qi(amax
i )

∆u = c′i(a
max
i ).

This implies that the value of ai corresponding to the maximum value of the player’s

best response, amax
i , does not depend on λi.

Proof of Proposition 2

To prove this result we follow the same reasoning as in the proof of Proposition 1,

and therefore consider the unique equilibrium when λ1 = λ2 such that a∗1 = a∗2 = a∗.

The first-order condition for player 1 at any such symmetric equilibrium can be

written as:

ξ(λ1) =
λ1q

′(a∗)

q(a∗)
∆u− (1 + λ1)

2c′(a∗) = 0
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For λ1 = 0, ξ(0) < 0. Next, limλ1→∞ ξ(λ1) < 0. Last, since the function is a inverted

parabola, and given the fact that an equilibrium exists, then there are exactly two

values of λ1 satisfying ξ(λ1) = 0. We denote the smaller value by λc
1 and the larger

value by λ̄c
1. The rest of the reasoning replicates the one in the proof of Proposition

1.

Proof of Corollary 1

The first-order condition of player i when λi = 1 is given by:

q′i(ai)qj(aj)

[qi(ai) + qj(aj)]
2∆u− c′i(ai) = 0.

If players have identical impact and cost functions, and consequently produce the

same equilibrium effort a∗, this expression becomes:

q′(a∗)

4q(a∗)
∆u = c′(a∗),

and this value coincides with amax
i .

B Appendix - Asymmetries in Abilities and Costs

In this Appendix we extend the analysis to both Lazear-Rosen tournaments and

Tullock contests where players can display asymmetric abilities and costs.

B.1 Asymmetric Cost Functions in Lazear-Rosen Tourna-

ments

We now consider asymmetries in costs across players for any confidence levels and

for equal abilities.

To inquire the effect of cost asymmetries on the game’s equilibrium, we build

our reasoning starting from the fully symmetric benchmark, and by then gradually

modifying the players’ cost functions. We therefore take the previous setup, and
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redefine the cost function of player i as ci(ai) = c(ai; ki), with ki capturing the player’s

cost-efficiency. As such we assume that c(ai; ki) < c(ai; k
′
i) and that c′(ai, ki) <

c′(ai, k
′
i), for any ki < k′

i. The analysis in the previous section therefore assumed

that k1 = k2, and we now inspect the effect of an increase in ki on the game’s

equilibrium efforts. Proposition B 1 uncovers the effect of player 1’s confidence on

equilibrium efforts when players can differ in their cost functions.

Proposition B 1. For any confidence level of player 2, if players have the same

ability and player 1 is more cost efficient (k1 < k2), there exist two thresholds λ′
1(λ2)

and λ̄′
1(λ2), such that λ′

1(λ2) < λ1(λ2), λ̄
′
1(λ2) > λ̄1(λ2) and λ2 = {λ1(λ2), λ̄1(λ2)},

and such that

(i) a∗1 > a∗2 if λ′
1(λ2) < λ1 < λ̄′

1(λ2)

(ii) a∗1 = a∗2 if λ1 = λ′
1(λ2) or λ1 = λ̄′

1(λ2)

(iii) a∗1 < a∗2 if λ1 < λ′
1(λ2) or λ1 > λ̄′

1(λ2)

If, on the other hand, player 1 is the least cost efficient (k1 > k2), these two thresholds

are such that λ′
1(λ2) > λ1(λ2), λ̄

′
1(λ2) < λ̄1(λ2). Last, there exists a threshold k̄1 such

that ∀k1 > k̄1 and for all λ1, a
∗
1 < a∗2.

Case (i) tells us that for players with the same confidence level, if player 1 is the

most cost efficient, then he chooses a higher equilibrium effort in the tournament.

Indeed, having proven that we either have λ1 = λ2 or λ̄1 = λ2, and that λ′
1 < λ1 <

λ̄1 < λ̄′
1, if follows that when λ1 = λ2, then λ1 ∈]λ′

1, λ̄
′
1[, and thus that a∗1 > a∗2. In

addition, for players with different confidence levels, the most cost-efficient player 1

still exerts a higher equilibrium effort if his confidence is in the range [λ′
1, λ̄

′
1].

Case (iii) reveals that if player 1 is the most cost efficient, then he may exert a

lower equilibrium effort than his rival if his confidence is sufficiently low (λ1 < λ′
1),

or high (λ1 > λ̄′
1).

Proposition B 1 equally uncovers that if player 1 is the least cost efficient, he may

choose a higher equilibrium effort in the tournament. This may happen if the rival
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Figure 3: Equilibrium efforts in a tournament with cost asymmetries

player 2 is less confident than player 1 (λ2 = λ1 < λ′
1 < λ1 < λ̄′

1) but also in cases

where player 2 is more confident than player 1 (λ2 = λ̄1 > λ̄′
1 > λ1 > λ′

1). In the

latter case, if player 2 is highly overconfident, there can be instances where player 1

has a cost disadvantage, is underconfident, and yet exerts more effort at equilibrium

(if λ1 < λ′
1 < λ1 < 1). This result is a consequence of the highly overconfident player

2 exerting a low effort at equilibrium.

Figure 3 illustrates Proposition B 1 by depicting the effect of a decrease in player

1’s marginal cost of effort on the equilibrium relative efforts. Figure 3 reveals that

there is a wider range of confidence levels of player 1 for which he exerts more effort

than the rival when player 1’s marginal cost of effort is lower. The decrease in the

marginal cost of effort of player 1 (decrease in k1) shifts the downward slopping curve

to the left, while leaving the bell-shaped curve unaffected. This places the threshold

λ′
1 to the left of λ1 and the threshold λ̄′

1 to the right of λ̄1. This result is highly

intuitive and reflecting the fact that following a reduction in a player’s marginal

cost, he is incentivized to increase his effort for any expected effort of the rival.
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B.2 Asymmetric Abilities and Cost Functions in Lazear-

Rosen Tournaments

We now consider asymmetries in abilities across players for any confidence levels

and cost functions. Proposition B 2 uncovers the effect of player 1’s confidence on

equilibrium efforts when players can differ in their abilities (θ1 ̸= θ2).

Proposition B 2. For any confidence level of player 2, and for any potential cost

asymmetries among players, there exist two thresholds λ′′
1(λ2) and λ̄′′

1(λ2), such that

(i) a∗1 > a∗2 if λ′′
1(λ2) < λ1 < λ̄′′

1(λ2)

(ii) a∗1 = a∗2 if λ1 = λ′′
1(λ2) or λ1 = λ̄′′

1(λ2)

(iii) a∗1 < a∗2 if λ1 < λ′′
1(λ2) or λ1 > λ̄′′

1(λ2)

Moreover, if θ1 > θ2, then λ′′
1(λ2) < λ′

1(λ2) and λ̄′′
1(λ2) > λ̄′

1(λ2), whereas if θ1 < θ2,

then λ′′
1(λ2) > λ′

1(λ2) and λ̄′′
1(λ2) < λ̄′

1(λ2). Last, there exists a threshold θ̄1 such that

∀θ1 < θ̄1 and for all λ1, a
∗
1 < a∗2.

Case (i) tells us that for players with the same confidence level and cost func-

tions, if player 1 is the most able, then he exerts a higher equilibrium effort in the

tournament. In addition, for players with different confidence levels and the same

cost function, the most able player 1 still exerts a higher equilibrium effort if his

confidence is in the range [λ′′
1(λ2), λ̄

′′
1(λ2)]. Case (iii) reveals that if player 1 is the

most able, then he may exert a lower equilibrium effort than his rival if his confidence

is sufficiently low (λ1 < λ′′
1) or high (λ1 > λ̄′′

1).

Proposition B 2 equally uncovers that if players have the same cost function

and player 1 is the least able, he may choose a higher equilibrium effort in the

tournament (λ′′
1 < λ1 < λ̄′′

1). Here too, as in the context of Proposition B 1, if player

2 is highly overconfident, there can be instances where player 1 is the least able, is

underconfident, and yet exerts more effort at equilibrium (if λ1 < λ′′
1 < λ1 < 1).
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This result is a consequence of the highly overconfident player 2 exerting a low effort

at equilibrium.

We thus deduce that for players with the same confidence level, if a player is

(weakly) more cost efficient (k1 ≤ k2), and has a higher ability (θ1 > θ2), then the

most able player produces a higher equilibrium effort in the tournament. Yet, the

most able player could always produce a smaller effort than his rival if the confidence

gap is large enough.

Figure 4 illustrates Proposition B 2 by depicting the effect of an increase in player

1’s ability from θ1 to θ′1, on the equilibrium relative efforts. Figure 4 reveals that

there is a wider range of confidence levels of player 1 for which he exerts more effort

than the rival when player 1’s ability is higher. The increase in player 1’s ability

shifts both the bell-shaped curve and the downward slopping curve to the left. The

combined shift of the curves unambiguously moves the smaller threshold λ′′
1 to the

left since the upper crossing of the two curves will necessarily occur more leftwards.

In the Appendix we demonstrate that the larger threshold λ̄′′
1 moves the right even

though its position is determined by the shift of the two curves, each one pushing it

in an opposite direction.

We now consider the effect of confidence biases on the players’ equilibrium win-

ning probabilities. Recall that player 1’s equilibrium winning probability is P1(a
∗
1, a

∗
2) =

G(θ1a
∗
1 − θ2a

∗
2). Accordingly, P1(a

∗
1, a

∗
2) > P2(a

∗
1, a

∗
2) is true if and only if

a∗1
a∗2

> θ2
θ1
. It

then follows that for symmetric ability players, θ1 = θ2, the player with the highest

equilibrium effort also has the highest equilibrium winning probability, and by con-

tinuity, a (slightly) less able player can therefore have a higher equilibrium winning

probability. A further observation, is that an overly confident player could have a

lower winning probability even if he is extremely able compared to his rival. To see

that, consider the first-order condition (11) of player 1:

λ1θ1g(λ1θ1a
∗
1 − θ2a

∗
2)∆u = c′1(a

∗
1).

If λ1 tends to infinity, then g(.) tends to zero, yet as shown in the proof of Proposition

1, the product λ1g(λ1θ1a
∗
1−θ2a

∗
2) tends to zero. We therefore deduce that as λ1 tends
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Figure 4: Equilibrium efforts in a tournament with asymmetries in ability

to infinity, a∗1 tends to zero.

Turning next to the first-order condition (12) of player 2:

λ2θ2g(θ1a
∗
1 − λ2θ2a

∗
2)∆u = c′2(a

∗
2),

we immediately observe that as a∗1 tends to zero, a∗2 will be strictly positive. Com-

bined, these results imply that as λ1 tends to infinity, a∗1/a
∗
2 tends to zero, thereby

implying that for any ratio of θ2/θ1 player 2 has a strictly higher equilibrium proba-

bility. Although the reasoning is done for a limit case, by a continuity argument, for

any asymmetry in abilities, there are finite confidence levels of player 1 above which

player 2 has a higher equilibrium winning probability.

B.3 Asymmetric Impact and Cost Functions in Tullock Con-

tests

We now consider the effect of asymmetries in the players’ impact functions, qi(ai),

and cost functions, ci(ai), in a Tullock contest.
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Proposition B 3. For any confidence level of player 2, and for any potential cost

asymmetries among players, there exist two thresholds λcc
1 (λ2) and λ̄cc

1 (λ2), such that

(i) a∗1 > a∗2 if λcc
1 (λ2) < λ1 < λ̄cc

1 (λ2)

(ii) a∗1 = a∗2 if λ1 = λcc
1 (λ2) or λ1 = λ̄cc

1 (λ2)

(iii) a∗1 < a∗2 if λ1 < λcc
1 (λ2) or λ1 > λ̄cc

1 (λ2)

Last, there always exist cost and impact functions such that for all λ1, a
∗
1 < a∗2.

Proposition B 3 tells us that for any possible asymmetries between the players’

impact and/or cost functions, there always exists confidence parameters such that

a player produces higher or lower effort than his rival. As in the Lazear-Rosen

tournament, when a player is either very overconfident or very underconfident, for a

given confidence level of the rival, the player will exert less effort in equilibrium than

the rival.

For instance, suppose player 1 has a cost advantage and both players have iden-

tical impact functions. There exist confidence levels of player 1 that will lead him to

exert lower effort than player 2 in equilibrium. Alternatively, suppose player 1 has

a cost disadvantage and both players have identical impact functions. There exist

confidence levels of player 2 that lead player 1 to exert higher effort than player 2.

Observe that the thresholds identified in Proposition B 3 may not exist if players

have sufficiently asymmetric impact and cost functions. Indeed, if one player has a

highly inefficient impact or cost function, then for a fixed confidence of the rival, the

player will always exert less effort at equilibrium.

B.4 Proofs of Appendix B

Proof of Proposition B 1

Since the best response function of player i is described by his first-order condi-

tion, and observing that the cost parameter ki only affects the best response function
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of player i, we can inspect the effect of a change in ki on Ri(aj). Applying the im-

plicit function theorem on player i’s best response function, this effect is given by

the next expression:

∂Ri(aj)

∂ki
= −

∂2E[Ui]
∂ai∂ki
∂2E[Ui]

∂a2i

.

Since the second-order condition is satisfied, it follows that the sign of
∂Ri(aj)

∂ki
is

then given by the sign of ∂2E[Ui]
∂ai∂ki

, or:

sign

{
∂2E[Ui]

∂ai∂ki

}
= sign

{
∂c′(ai, ki)

∂ki

}
< 0.

Any increase in ki then unambiguously leads to contractions of player i’s best re-

sponse, which, given the quasi-concavity of the rival player’s best response function,

necessarily implies a reduction of a∗i /a
∗
j , and thence a drop in the (actual and per-

ceived) probability that player i wins the tournament. Therefore, the new thresholds

on λ1 guaranteeing that a∗1 = a∗2 are now λ = {λ′
1, λ̄

′
1} and are such that λ′

1 < λ1 and

λ̄′
1 > λ̄1.

Proof of Proposition B 2

Allowing for confidence, ability, and cost asymmetries, the first-order condition

of player 1 can be written as:

∂E[U1(a1, a2, λ1)]

∂a1
= λ1θ1g(λ1θ1a1 − θ2a2)∆u− c′(a1; k1) = 0. (19)

If θ1 = θ2, then we know that the equilibrium relative efforts of players is deter-

mined by the value of λ1 as compared to the thresholds λ′
1 and λ̄′

1. We are therefore

interested in the effect of changes in θ1 on these thresholds, which completely charac-

terize the sign of (a∗1−a∗2). To deduce how these thresholds are affected, we consider

an initial situation such that the model’s parameters induce a∗1 = a∗2 and we inspect

the effect of θ1 on R1(a2) at this equal effort equilibrium (i.e. for a∗2 = a∗1) and we
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then have:

sign

{
∂R1(a

∗
2)

∂θ1

}
= sign

{
∂E[U1(a

∗
1, a

∗
2, λ1)]

∂a1∂θ1

}
= sign {g(λ1θ1a

∗
1 − θ2a

∗
2) + λ1θ1a

∗
1g

′(λ1θ1a
∗
1 − θ2a

∗
2)}

= sign{ϕ′(λ1)},

where ϕ(λ1) is given by:

ϕ(λ1) = λ1θ1g([λ1θ1 − θ2]a
∗)∆u− c′(a∗) = 0.

Note that ϕ′(λ1) satisfies the properties derived in the proof of Proposition 1,

so that ϕ′(λ1) < 0 for λ1 = λ1(λ2). We can extend the reasoning to deduce that

ϕ′(λ′
1) < 0, thence implying that if we define the new lower threshold below which

a∗1 < a∗2 by λ′′
1, we necessarily have λ′′

1 < λ′
1. Likewise, having demonstrated that

ϕ′(λ̄1) > 0, we can here too extend the reasoning to deduce that ϕ′(λ̄′
1) > 0. If we

define the new upper threshold above which a∗1 < a∗2 by λ̄′′
1, we then have λ̄′′

1 > λ̄′
1.

Proof of Proposition B 3

Consider any impact functions qi(.) and qj(.), as well as any cost functions ci(.)

and cj(.). We begin by showing that there always exist a pair (λi, λj) producing

equilibrium efforts a∗1 = a∗2 = a∗. To see that, take any pair (λ1, λ2) such that,

without loss of generality, a∗1 > a∗2. observe first that the best response function of

any player 2 does not depend on λ1. Consider then the expected effort of player 1

such that R2(a1) = a1, and denote this effort value of player 2 by ǎ2. Take next the

best response of player 1 which is defined by:

λ1q
′
1(a1)q2(a2)

[λ1q1(a1) + q2(a2)]
2∆u− c′1(a1) = 0.

Recalling the assumption that c′1(0) = 0, we thus have that limλ1→∞R1(a2) = 0.

Last, since the best response of player 1 shifts continuously with λ1, there must exist

a value of λ1 such that R1(ǎ2) = ǎ2.
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Consider then a pair of confidence parameters such that a∗1 = a∗2. The first-order

condition for player 1 at this equilibrium can be written as:

ξ(λ1) =
λ1q

′
1(a

∗)

q1(a∗)
∆u− (1 + λ1)

2c′1(a
∗) = 0.

For λ1 = 0, ξ(0) < 0. Next, limλ1→∞ ξ(λ1) < 0. Last, since the function is a inverted

parabola, and given the fact that an equilibrium exists, then there are exactly two

values of λ1 satisfying ξ(λ1) = 0. We denote the smaller value by λcc
1 and the larger

value by λ̄cc
1 . The rest of the reasoning replicates the one in the proof of Proposition

1.
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