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1 Two-Stage Elimination Contest with Two Overconfident and
Two Rational Players

This section studies the equilibrium of an elimination contest with two overconfident and
two rational players. We assume the two overconfident players differ in their confidence
levels. This extension enables us to assess if our findings still hold when two overconfident
players encounter each other, either in the final or the semifinal.

There are two possible seedings that we need to consider: (i) the overconfident players
are seeded in the same semifinal, and (ii) the overconfident players are seeded in different
semifinals. These two types of seeding induce different results and hence we study them
separately.
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1.1 Final

When the overconfident players are seeded in the same semifinal, the final will be played
between an overconfident and a rational player and we can apply Proposition 3. In con-
trast, when the overconfident players are seeded in different semifinals, the final can have
two overconfident players. Hence, we start by characterizing the equilibrium of a final
with two overconfident players. Without loss of generality we consider a final between
players 1 and 3 with A\ > A3 > 1.

Proposition A1l In a final between two overconfident players, the equilibrium effort
of the more overconfident player is
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Proposition Al shows that in a final between two overconfident players, the more
overconfident player exerts lower effort at equilibrium. As we have seen, the bias lowers
an overconfident player’s perceived marginal probability of winning the final. The more
overconfident a player is, the higher is the drop in his perceived marginal probability of
winning the final. Hence, the more overconfident player exerts lower effort at equilibrium.
Both players exert lower effort than if both were rational. Each player perceives he has a
winning probability greater than 1/2 but, in fact, only the less overconfident player has a
true winning probability greater than 1/2. The perceived expected utility of each player
is increasing in his own bias as well as in the rival’s bias.



Proof of Proposition Al

The perceived winning probabilities of the players are:
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There are 4 cases.
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Since A\; > A3 > 1, the fourth case is impossible.
1. Equilibrium efforts

(1) case 1: Ajeff > e§ and Aze§ > ef
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Solve F.O.C | we get
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Thus the unique equilibrium is
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Since A\ > A3 > 1, we can get e{ < eg <el

. Winning probabilities

The true winning probabilities are
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Since @ < 1 and A > Ay > 1, E/(Uy3) > Ef(Us,) > E'(U). The participation
constraints are also satisfied.



1.2 Overconfident players seeded in the same semifinal

Assume players 1 and 2, seeded in one semifinal, are overconfident with \; > Ay > 1
and players 3 and 4, seeded in the other semifinal, are rational with A3 = A\; = 1. Note
that, under this seeding, the final will involve an overconfident and a rational player and
hence we can apply Proposition 2. Note also that since the two rational players are iden-
tical, they exert equal efforts in the semifinal and hence, each has an equal probability of
winning it. This means that the identity of winner of the semifinal between two rational
players does not affect the overconfident players’ behavior in their semifinal. However,
since the overconfident players’ biases differ, the identity of winner of the semifinal be-
tween two overconfident players matters for the effort choices of the rational players in
their semifinal. Taking this into account, we start by solving the equilibrium of the semi-
final with two rational players and then we solve for the equilibrium of the semifinal with
two overconfident players.

Proposition A2
In the semifinal between two rational players of a two-stage elimination contest where the
overconfident players 1 and 2 are seeded in one semifinal, the rational players 3 and 4

are seeded in the other semifinal, and \y > Ao > 1 = A3 = Ay, the equilibrium efforts and
winning probabilities satisfy e = e > €° and p5, = pj3 = 1/2.

Proof of Proposition A2

1. Expected utilities of reaching the final
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v3 = pio B (Us1) + pi, B (Usy)
S U/w) 1_'_& 2a+1 S u(w 1+Oé 2a+1
g o ()

wy) —u(wy) 2 wy) —u(wy) 2
u{wy Lta/i—wtm | s (v o=m _ =
= [u(wl)(— zi(wQ) g (T e (T ))} Au

> 7,
where p7, is as derived in the proof of Proposition A3.
Rational player 4:
Since player 3 and player 4 are identical,
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2. The equilibrium
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Since vz = vy > U, €5 = ej > €° is always satisfied.



3. Participation constraints
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Proposition A3 Consider the semifinal between two overconfident players of a two-stage
elimination contest where the overconfident players 1 and 2 are seeded in one semifinal,
the rational players 3 and 4 are seeded in the other semifinal, and Ay > Ay > 1 = A3 = \4.
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and winning probabilities satisfy e < e5 and piy > D5y > pyy = 1/2 > pi,.

Proposition A3 reveals that in a semifinal with two overconfident players, both players
can exert higher efforts than if both were rational. It also shows that the identity of the
player who exerts the highest effort depends on the prize spread, on the confidence gap,
A1 — A9, and the bias of the less overconfident player 2.

Part (i) tells us that the more overconfident player 1 exerts higher effort at equilibrium
when the prize spread is large and the confidence gap is moderate.! Part (ii) tells us that
the more overconfident player 1 exerts higher effort at equilibrium when the prize spread
is moderate, the confidence gap is small, and the bias of the less overconfident player 2
is low. In this case both players exert higher effort than if both were rational.? Finally,
part (iii) tells us that the less overconfident player 2 exerts higher effort at equilibrium
when either the prize spread is small, or the confidence gap is large, or the confidence
gap is small and the bias of the less overconfident player 2 is large.

Figure 1 illustrates result (ii) in Proposition A3. It depicts the best responses and
equilibrium efforts in a semifinal of an elimination contest where u(w;) = 11, u(wy) = 1,
c =1, and a = 0.9. Point E depicts the equilibrium when both players are rational.
Point E’ below the 45 degree line depicts the equilibrium when player 1 is overconfident
with A\; = 1.18, and player 2 is overconfident with Ay = 1.07. These parameter values
satisfy the two inequalities in (ii) and hence the more overconfident player 1 exerts higher
effort at equuilibrium than the less overconfident player 2.

1When the confidence gap becomes increasingly large, i.e., A\ — 0o, the right hand side of the inequality in part (i)
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converges to )\; < 1. When the confidence gap becomes increasingly small, i.e., A1 — A2, the right hand side of the
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inequality in part (i) also converges to A, 2a+1 which is less than 1. Hence, since the left hand side of the inequality in
part (i) is greater than 1, the inequality cannot be satisfied when the confidence gap is either too large or too small. These
two limits are computed at the end of the proof of the proposition.
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2When A1 — oo, the right hand side of the second inequality in part (ii) converges to Ay 221 which is less than 1.
Hence, since the left hand side of the second inequality in part (ii) is greater than 1, the second inequality in part (ii) cannot
be satisfied when the confidence gap is large. When A1 — A2, the left hand side of the first inequality in (ii) converges
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to A, . 2°FT which is less than 1 and the right hand side of the second inequality converges to 221%)\ 2o+l " Hence, the

two lnequahties in (ii) can be satisfied when the confidence gap becomes increasingly small as long as the bias of the less
overconfident player 2 is low. These two limits are computed at the end of the proof of the proposition.
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Figure 1: Best Responses and Equilibrium Efforts in a Semifinal with Two Overconfident Players

The equilibrium of the semifinal with two rational players is similar to that derived in
Proposition 4. The main difference is that now the expected utility of reaching the final
of the rational players takes into account the fact that the overconfident players exert
different efforts and hence have different winning probabilities. Still, regardless of the
identity of the winner of the semifinal between the two overconfident players, the rational
players will have a higher expected utility of reaching the final than if all players were
rational. Each rational player knows she will meet an overconfident player in the final
which makes reaching the final more attractive. Hence, in the semifinal with two rational
players, the equilibrium effort is higher than if all players were rational.

Proposition A3 also shows that, except for a knife-hedge parameter configuration, one
of the two overconfident players has a probability of winning his semifinal that is greater
than 1/2. Moreover, some confidence gaps will generate quite large gaps between p3, and
p5;- We also know that given the equal equilibrium effort, each rational player has an
equal probability of winning his semifinal. This means that there will exist parameter
configurations where an overconfident player is the one with the highest equilibrium
probability of winning the elimination contest.

Hence, the findings obtained for an elimination contest with one overconfident and
three rational players extend to an elimination contest where two overconfident players
are seeded in one semifinal and two rational players are seeded in the other semifinal.

Proof of Proposition A3

1. Perceived expected utilities of reaching the final



Using Proposition 2, we can get the perceived expected utility of reaching the fi-
nal of each player.
Overconfident player 1:
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Since A\ > Ay > 1, the fourth case is impossible.
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1

2 e1
F.o.c

[61] ﬁ%’b& —c=0
[62] aT)Q%/ﬁQ — C=
S.o.c

[62] O{T)Q(a - 1)61111 v.

Solve the two F.O.C , we get

a a— o — (T [0
= 2_(:)\1 A3 (01) 7 (02)

€y = g)\?)\gﬁ-l (’61)—01 (52)01-1-1

2c

€2

€1

Check the conditions Ajef > e§ and Age§ <

@D et > ef
When )\262 e is satisfied, \jef >

— /\a/\oz—i-l(vQ)a < (51>a
a1
<~ )\1)\2 ?JQ < ’Ul

AgU2

A1

ey

e is satisfied.

— )\1)\;+1 14—04)\2—2a+1 < u(wy) 14+a -
uw(wy) —u wg) 2 w(wr) —ulwy) 2
atl 1 atl_ afl  at1
<~ ()\1)\2& _ 1) U(U)l) g + )\1)\2 2a+1 )\1 2a+1
u(wy) — u(ws) 2
L — St
— u(wl) 2 < )\2 _ )\1 a+

11

a+1

u(wy) —u(wy) 1 +a Ay™ — AL

2a+1
At

)



Therefore the solution
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where the first line corresponds to (ii) and the second line corresponds to (iii).
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97172 (u(wl) — u(wy) 2 1 ) (u(wl) — u(wg) 2

15



. 1 . o' [’ ~ 1
Since ef > e3, we get pj, > 5 > p3;. Since Ao (e3)" < (€7)”, we get p3; < 5 .
Thus in Proposition A3 (i) we have

=S > S > 1 > ~s > S
D12 = P12 5 = Po1 = Py
(a+1)? _ 3a+2
(2) Proposition A3 (i) and (iii): when ——t)___2_ > 377 -A *7
P ) u(wr)—u(wz) 1+a = )\O‘T'*‘l N1
2 M
The equilibrium efforts are
a+1
a+1 o a+1
oS — g)\* 2041 )\ " 2a+1 u(wl) i 1+ O‘)\f sart | o
1= 1 2 1
2¢ u(wy) — u(wy) 2
u(wl) I+« 720;111 ot
uw(wy) — u(wy) 2
a+1 a+1 ST
oS — EA* RS )\, 2o+l u(wl) _ L+ O‘)\f sarr | o
2= 5.0 2 5 M
c u(wy) — u(wy)
a+1
u(w)  l4a g
w(wy) — u(wy) 2
and the efforts satisfy
( (Ex;r:ﬁ) _3a42
_ ASBatl) ) “2aTT u(wy) 2 1 A A
> e5 >e® when =2 L < L= < - — 2
2 )\:%1 gt = u(wr)—u(wz) I+a T A=Az )\22‘2%11 )\12‘2%11
S
€1 ;\71“_(172“ ((a;rlﬁ) _ Bat2
)\2a+1 )\2a+1 )\06 @ - 2a+1
< o8 u(w1) 2 > 2 1 2 1
S €2 when w(wr)—u(ws) 1+a = max A1—A2 ’ )\QT_Hi)\fl
\ 2 1
(3;2?) _3a+42
L. N Ag T X 2ol u(wi) 2 1 A1
(D Proposition A3 (ii): when o S S uen T <30 -
2 M 2

We first show that e > e > ° is satisfied under (D).
RO A o\ atl . 1~ _
Since e§ = & ()\flvl)m“ (A;lvg) 2290 and ef > e, if both A\'9; > ¥ and

Ay 10, > U are satisfied then we can get e > e§ > €°.

We show that under the condition of —“&1)_ 2~ _1 L —
u(wi)—u(w2) 1+« A1—A2 \JaFT \Fat
2 1

both A\;'0; > ¥ and A\, ¥, > © are satisfied:

Let

f(/\l) = )\1_1 < U(wl) _ 1+ a)\lzo;t:l)

uw(wy) — u(wy) 2
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14+ a —otl l+4aa+1  —2tl g
"(\) = _)\—2 u<w1) )\ 2a+1 )\71 )\, 2oFt
f( 1) 1 (u<w1)_u(w2) ) + 1 2 2a4+1 1
Ll u(wy) l+a —pat l+aa+1 -t
=\ 2( )\ 2a+1 A 2a+1
! (u(wl) —u(wsy) 2 ) * 2 2a+1"" ]
Lltrafat — oL u(wy)
— )\ 2 1 )\ 2a+1
! 2 (2a +1 * ) ! u(wy) — u(wg)]

_ oatl
Let g(\) = 132 (2‘2111 + 1) A " —m, we can easily get ¢'(A1) < 0.

g<A1:1>:”O‘(““ +1)_u( u(wn)

2 2a0+1 wy) — u(ws)

g(A — 0) = —

u(wi)—u(ws2) 2(2a+1)
(a) When :L(wg) =< a(3a+1)

If “(w;);;‘)(w) < (ézﬁ) then g(A\ =1) <0, g(A\1) < 0 is always satisfied

and thus /(A1) < 0 always holds. Therefore f(\) < f(X2) < f(1) =

X . .. u(wi) 2 1 A1 A
This contradicts the condition O SR Ev N v w : 22(%11 ) 12%%
since we showed earlier that this condition is equivalent to f(A1) > f(A2)
and ef > e3.

(b) When u(wy)—u(ws) = 2(2a+1)

w(ws) a(3a+1)
If u(w;)(;;l«)(wz) > i((?;;ill)), then g()\l = 1) > (0 and thus
1+a(a+1 1 20?::1
>0 wheny < ()
g(/\1> and f/(Al) u(wy)—u(wg) 2adl
e () ) ¥
<0 whenAy > [ ———
u(wy)—u(wz)
>7T when)\; < A
FfO) =7 when); =)
<T when)\; >\

where ) is as derived in the Proposition 3.

~

When f(A1) > f(\2) is satisfied, f(A) > f(A2) > f(1) = f(N) =
must be true. R .
If f(A2) < @, then Ay > A. And since f'(A\;) < 0 for V A\ > A\
f(A1) < f(A2) when f(A2) < . This contradicts f(A1) > f(A2). Thus

<

s U(wl) 2 1 A o Ao : :
when the condition oD@y Tra < % N2 =2 is satisfied,
2 1

e1 > ey > €° is always true.
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The true equilibrium winning probabilities under (I) are
s _ 1 fes\”
p”_2<@)
IRNAYrAE
S 2\\ '

— l)\ﬁ)\fﬁ u(wl) . )\ ol
! 2 u(wy) — u(ws) 2
+

2
u(w) B 1+O‘)\—271+11 Tatl
u(wy) — u(ws) 2 2
pip =1—py
=1- —/\2‘”1)\ i (__ulw)  Lrag g e
u(wy) — u(ws) 2

u(wy) — u(wz) 2

( u(wl) 1 +a)\_2a+11)2a11

Since e] > e3, we can get p12 > 1> ps).
Thus we have p§, > pj, > 5 > ps,.

22}:-11 a % <?2+{F)f) ’%Lﬁ
a aF a(2a _ o
(2 Proposition A3 (iii): when #%H% > max | 2 /\1_;21 RS R— -
Ay © —A]
The true equilibrium winning probabilities are
s L /ef\"
p”_2(@)
)\ U 2a+1
(% >
— lkfﬁ)\ﬁﬁl u(wl) 1 + a>\72a+1 2oL
271 ? u(w) —u(wy) 2
( u(wl) 1 +aA_2a-:—1>2(fH
u(wy) — u(wg) 2
Py =1-pi,
_ - Ly wlw)  1+ay o
271 2 u(wy) — u(wg) 2 !
< u(wy) 1+a )
)‘2
w(wy) —u(wy) 2

; s s s 1 s
Since e] < €5, we can get py; > 5 = ply-

18



The perceived equilibrium winning probabilities under (2) are:

1 (ep)”
Pr2 = 20 (1)
1 1 1 1 B 7ﬁ
=1 — AT AT, B u(w) foy- g
2 w(wy) —u(wy) 2
< u(wy) B 1—|—a}\20;++11)2a1+1 a
u(wy) — u(wy) 9 2
=1— 1)\’%)\*#?1 u(ws) 1+ a/\,mﬂ %l
27 Nu(w) —ufws) 2
( u(w) 1+« _,;;11) sy
)\2
u(wy) — U(w2) 2
e
. 2% (e5)°

_1
= ]_ — 1)\_1 A_TLAﬁ u(wl) B )\ 20;—:—11 Sat1
2\ ’ u(wy) — u(wy) 9 1

(u(w:;(iulfj(%) 1 —|2— a)\z_ oty > —ls )a

—1— 1)\;%/\;% u(wn) 1+ a}\,hﬂ ZatT
2 w(wy) —u(wy) 2
( u(w,) 1+a _2a+1>za11
A
u(w;) — U(wz) 2

We show that pf, > p3;:

— s
D12 > Doy
a+l a N o

- 5L s~ N ——% & ]. — ~ = e =
— 1 _ 5)\1 2a+1 )\2 2a+1 (,Ul) 2at1 <v2)2&+1 > 1 _ _)\1 2a+1 )\2 2a+1 <U1)2&+1 (,U2> Sat1

a1

__a  _  otl o a N .
— Al 2a+1 A2 2a+1 (/Ul)2a+1 (UQ) 2a+1 > )\ 2a+1A 2a+1 (Ul) SoT (U2)2u+1

B E T T T
P )\2a+1)\ 2a+1 (U1)2a+1 (U2) 2a+1 > 1
)\2°‘+1 (~ )2211
<~ 1—2a >1
AP ()
Thus in Proposition A3 (ii) we have pj, > pj, > 1 > p$; and in Proposition A3
(iii) we have P}, > P5; > p5; = 5 = Pl

3. Participation constraints
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(a+1)? 3042
a(2a+1) )\ T 2a+1

(1) When "0 2o < 22—y
P

E*(Urz) = P01 — ce
> plyv; — cej
1aa~—a~a~ X a-1ya (~ \l—a ~\a
=|1- 5)\1 Ay (01) (02)" ) 01 — 62—/\1 A3 (01) (2)
c
~ 1 a\o (77 —Q [~ O a a— o (7 —Q [~ O
=1 — 5)\1 A5 (Ul)l (02)" — 5)‘1 1>‘2 (Ul)l (02)
~ 1 ~ —Q [~ QX (6% a\o [~ —Q [~ X
> U — —)\a)\a (?)1)1 (02)" — 5)\1 A (Ul)l (v2)
1 + «

=T = A ()7 (1)
~ [ l+a ayo (7 ~\«

= U1 1— 5 )\ )\ (’01) (Ug) ]
~ [ 1+a e\

=71 - 2
" 2 <) ]

>0

E*(Unt) = P30 — ce

1 ~ \N—Q [~ N~ aocoz ~ O\ T\
= S MATL(T) T (T) Ty — e APASTE (1) (To) 0

2 2c
1 ~ «@ ayo N\«
= AN @) @) - AT @) @)
-« ~\N—Q [~ a
= TS (0) 7 ()
=0

(?2“42?) 3a+2

u(wl) 9 04 e )\ T 2a+1
(2) When u(wi)—u(wz) 1+« 2 )\QT“ A1
2 M

E*(Uss) = Pty — ce;

= (1= BT G @) ) - e BT ) 8
C

~ 1+O€ Q at1

=0 — )\ 2"“‘1 )\ 2o+l (Ul) 2a+1 (?}2) 5a Tl
— ('171) 2‘1;;11 [('61)20511 _ 1+ CE/\ 2a+1 )\ “5atl (1}2)2aa+1]
>0
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E*(Usy)

~s -7 s

e N e R P e~

= (1= 30 A (@) T (3) ) B — e,

" 1 __a  _ atl — @ ~ (o3
_ 5, —|2— Oz)\l Sa+1 A 20+1 (Ul)m(w)z[ﬂll

_ i 1 o __ ol a ~N——a
— % 1_ —|2—Oé>\1 2a+1)\2 2a+1(vl)m (U2> 2a+1
3 1_1+a (6?):‘

2 Ag(es)”

>0

To complete the

proof we derive the following four limits:

_ o+l . o .
Ag H (01) 2251 (02)

(a+1)? 342 (a+1)2
. )\5(2044»1) . )\1 2a+1 )\5(2o¢+1) _ atl
lim = Ay 2ot
A1 —00 otl 1 N otl 2
[e% - «@
)\2 - )\1 )‘2
2.
2 2 - ggi% ;?2221) + 331?
(a+1) _ 3a+2 (at+1) _ 3a+2 A A —1
2 2
>\2a(2a+1) )\1 2a+1 )\20¢(2a+1) )\2 2a+1 _ a+tl
llm a+1 = a+1 = a-+1 = )\2 Zatt
A=Az S -1 o —1 —1(y o Tt
A1 Ao 1 Ao o
_ a4l
20&111 2%111 % 20;tr11 +1 A 20+1 0 o+l
lim A A lim A A _ 72 -\ 20+1
= 5 = = Ay
A1—00 /\1 — /\2 A1—00 — )\—2 1-0
1
Let t = A1 — Ay
)
Al X Ao+t A2
a+1 a1 a1 a+1
) )\22a+1 )\12a+1 . >\22T+1 (Ag+t)2aFT
lim = lim
A1— A9 Al — )\2 t—0 t
Ao+t A
0 §+1 - 2a+1
)\22a+1 ()\2+t) 2a+1
= lim ot
t—0 ot
ot
_ o+l 41
20+1 o+l —2(17“—1
— lim Ag A2 ( 2a+1) (A2 +1¢) 2
t—0 1
+1
B <3a + 2 — ol
- 2
20+ 1

1.3 Overconfident players seeded in different semifinals

We continue to assume players 1 and 2 are seeded in one semifinal and players 3 and 4 are
seeded in the other semifinal. However, we now assume players 1 and 3 are overconfident
with A\; > A3 > 1, and players 2 and 4 are rational with Ay = Ay = 1.
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In the semifinal between players 1 and 2, the perceived expected utilities of reaching
the final are

U = P B (Uis) + (1 — pi) BV (Una)
1+«
2

a+1

(1= P A ™) A () — w(uws),

= u(w) —

and
vy = P B! (Uss) + (1 — piy) EY (Uns)

1+ s s \ " Zafl
(1= pha  phA ) [u(wn) — u(uws)

In the semifinal between players 3 and 4, the perceived expected utilities of reaching the
final are

= u(w;) —

Uy = Pl BT (Us) + (1 — piy) B (Usa)
1+«
2

a+1

(1= P+ P ™) A [u(wn) — u(uws),

= u(w) —

and
vy = P} BN (Un) + (1 — piy) BV (Uso)

1 —|—O[ s S _%
5 (1 — Py + PlaA; +1) [u(wl) - U(w2]'

The four expressions above shows us that the perceived expected utilities of reaching
the final of players seeded in one semifinal depend on the equilibrium winning probabilities
of players seeded in the other semifinal. As the equilibrium efforts of one semifinal
cannot be solved separately from those of the other semifinal, the equilibrium efforts
in the semifinals are jointly determined by the four first-order conditions mgpi,v; = c,
mgp3 Vs = ¢, Mgp3 Vs = ¢, and mgpizvs = c.

Still, the findings in Proposition 3 can be applied to both semifinals. In other words,
we know that in both semifinals there exist parameter configurations where the overcon-
fident player exerts higher effort than the rational player. Our next result shows that this
is indeed the case.

= u(w;) —

Proposition A4 Consider the semifinals of a two-stage elimination contest where over-
confident player 1 and rational player 2 are seeded in one semifinal, overconfident player
3 and rational player 4 are seeded in the other semifinal, and Ay > A3 > 1 = Xy = \y. If

_afl __a
u(wi)—u(ws2) > 2(142a) and u(wi) 2 < ﬁ ()\1 . )\1 2a+1> )\3 +T and _ou(w) 2 <

u(wsz) a(143a) w(wi)—u(ws) 1+a w(wi)—u(w2) 1+«
—o+l __a_
ﬁ ()\3 — Ay 2T A 0t then the equilibrium efforts and winning probabilities satisfy

€1 > €5, € > ef, piy > 1/2 > piy, and py > 1/2 > pi.

Proposition A4 shows that in an elimination contest where two overconfident players
are seeded in different semifinals, the overconfident players can exert higher effort at
equilibrium than their rational rivals. This happens when the prize spread is sufficiently
large and the overconfident players are not too confident. In this case, each overconfident
player has a higher probability of winning his semifinal than his rational rival.

Hence, the results found for an elimination contest with one overconfident player and
three rational players also extend to an elimination contest where one overconfident and
one rational player are seeded in each semifinal.
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Proof of Proposition A4

1. Perceived expected utilities of reaching the final

Overconfident player 1:

U = P B (Uss) + pis BY (Ua)

u(wl) 1 + Q a+1 o )
— S )\ 20<+1>\ 2a+1 Au
Paa <u<w1> “u(wy) 2 !
u(wy) 1+ —otb
S )\ 2a+1 A
TP\ Ulwy) — u(wg) 2 ) v

a+1

- <1 — P34 +p§4)\;m> A QQH] Au

u(wn) 14+« —a)
— S _ )\ 2a+1 AU
Pas <u<w1>—u<w2> 2

C(ulw) 1o\,

u(wy) — u(wsy) 2 ) A

_ [ u(w) l+a
u(wy) — u(ws) 2

(1 ph+piuds )} Au
Overconfident player 3:

Uy = Pio B (Ust) + 3y BY (Uso)

u(wy) 1+« — oL
— s )\ 20<+1>\ 2a+1 A
p”<u<w1>—u<w2> 2 1 ) !
u(wy) l+a —atL
S )\ 2a+1 A
TP ) —ufws) 2 ) !

a+1

- (1t A ) B

Rational player 4:
ve = L BN (Un) + p5, B (Us)
1 _a
-t () L) A
u(w

(wy —U(w2) 2
1+t
A
e (u(w1 ) — u(wy) 2 ) "

_ [ u(wr) 1+«
u(wy) — u(wg) 2

(1-pt, +pi2A12a“)] Au
2. The equilibrium of the semifinal between player 1 and player 2

Player 1 maz  E*(Uyy) = Plylh — cey
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& ~ .
(1 1 ) T —cer if At > eg
=931
i 1261 vy — ceq if  Ae? <ef
Player 2 maxz E*(Us) = p3,v2 — ces

(1 — %—i) Uy — cey ey

le
26

?JQ — C€y

There are 4 cases.

>\1€?
)\16(11
a

/\16?

NNV WV

es and
es and
eS and
es and

€2
€2
€2

€9

Z e

ifeg < €1
<e
Z e
= e
< e

Since \; > 1, the fourth case is impossible.

(1) case 1: Ajef > €§

Player 1 max

Player 2 max

[e1]

[ea]

and ey < e

_le Yoo
(1 2/\16?)1}1 cey

%(2—?)%2 — ces

21

5(a— 1)

a

1)2<O

Solve the two F.O.C | we get

e = 2_0)\a 1(,01)1 Oé('Ug)
a -~ —Q «
ez = 5 AT (1) (v2) i
2oz
€1 U1

Check the conditions Ajef > €5 and e; > ey:
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As long as e; > ey is satisfied, el > eJ is satisfied. So we only have to
check e; > e,.

€2
€2<61<:>6—<1
1

1 €9 a<1
2\e; ) T2
€2
— — <1
€1
V2

)\Il’Ul =

u(w?)(f;)(wz) o HTQ <1 — D +p§4)\;m>

o _ a1l
A [Wzl}(wz) — 4= (1 — P34+ DiuAg 2a+1> M QQH]

<1

Let
f(ps ) _ )\—1 |: U(’LUI) _ 1+« <1 _ps +ps )\_%-H> )\_2(2111:|
34 1 u(wl) - U(U)Q) 9 34 3473 1
u(wy) 1+« S
_ _ 1 _ S S )\ 2a+1
[u(wl) _ U(wg) D) ( P3y + P3gAg ) ]

Rearrange the terms we can get

fw30) = A0 ( w(w) 14 O‘)\l—zﬁﬂ) B ( ww)) 14 a)

u(wy) — u(ws) 2 u(wy) — u(ws) 2
lta/ - “1-gE Y s
P (g ) (Hl )p

__a 4 a1l
Since <)\3 ekl — 1) (1 -\ ' 2‘1“) < 0 and p3, € [0,1], f(p5,) reaches mini-

mum at pj, = 1. Thus, e; < e; is always satisfied as long as f(p5, = 1) > 0.

Fs=1) =" <u< u(wn) 1 +O‘)\12?+11) _ <u< u(wi) 1 +a)

wy) — u(ws) 2 wy) — u(ws) 2

1 __a _1_ atl
4 —|2—OZ (}\3 2a+1 1) (1_>\11 2a+1>
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5 () - (o

_1_ a+l
; <)\3 ZatT _1) (1_)\11 2a+1> >0

u(wy) B 1+a>

wy) — u(ws) 2

— (u( uw) _1+a- ;ﬁl) ., <u(wu(w1) - 1—|—a>

wy) — u(ws) 2

1 - 11—
Y J;O‘(Agz““ —1) (1—)\ ! Ml)

1+« —1— ol atl u(wy)
A 1+()\ 2““—1)(1—)\ 2“+)>—)\2“+1 > (A — 1
( 1 P ) — )
_1_otl __a o _q_atl otl u(’u)l) 2

— A A 2a+1 N\, ZoFT _ \ T ZadT ) 2a+1 . )\ 2a+1 2

)\1—1[1(1 s 3 ! > ! ] u(wy) —u(wy) 1+

1 __a —atl U(w1> 2

— Ao 2270 [\, — )\ ZoFT >

A —177 ( b ) u(wy) —u(wy) 1 + «

u(w2) 1+« A1—1

- T _otl
To ensure e; > e; and p, > p;, we need #L < g T ()\1 -\ 2"“).

o+l
)\1 )\ T 2a+1

Since =1

_ a+1
we can get Ay e ()\1 -\ 2“‘“) < 3

2041"

- u(w) Bt
1ty w(wi)—u(ws2) l+a

3a+2

(83
3 T 2a+1 ()\1 )\ 2a+1

decreasing in A\; for A\ > 1 and its limit when A\; — 1 is

+2

1

3a+2
2a417

Hence, to satisfy the inequal-

>, we also need u(w“&L <

1)—u(wz) 1+«

Sat1> Which is equivalent to

case 2: A\ief = ef and ez = e

Player 1 max (1 1 e%&) v — cep
1

2 Xie
Player 2 max (1 - %%) Uy — CE9
F.o.c
le1] 2?\41 aﬂvl c=0
[es] %egﬁvz —c=0
S.o.c
le1] %( a—1)—= a+201 <0

[es]  S(—a—1) a+21}2<0

Solve F.O.C , we get
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u(wi)—u(ws2) 2(2a+1)
) alGarl)



«

a+1

ey = _)\ Za+T (Ul) Zatl (02) 2a-+1

2c

€9 L

= AT (@) ()

€1
Check the conditions A\jef >

@ /\161 =

)\16(11

a
2

o+l

o «
Ae] = e

es and ey > eg:

>1

1

= AT (7)) T (1) TR > 1

Since A\; > 1 and v; > v9, Aef > ef is always satisfied.

@) ex>e
ey > e is always satisfied as long as f(p3, = 0) < 0.
7 1+ —atl u(wy) 1+«

S :O :)\ 1( u(wl) . )\ 2a+1>_( - )

1P ) o\ u(wy) — u(ws) 2 u(wy) — u(ws) 2
u(wy) . 1+« ( —1-2 )

5.=0) <0< A1)+ 1) <0

f<p34 ) u(wl) . U(U)Q) ( ) 9 1

1 _1_oafl
= ;a <1—)\11 okt

-1-2

1—X o u(wy) 2
< -
1— A u(wy) —u(wy) 1 +
(3) case 3: \ief < ey and ey > e
Player 1 max %)‘ V] — ceq
2
Player 2 max ( —% a )vz — cés
F.o.c
al 5?71’“

[61] 5 g —c=0
€] %egﬁvg —c=0
divide the two F.O.C |, we get

€9 V2

—=—x1

€1 /\1U1

which contradicts the condition that ey > ¢;
3. The equilibrium between player 3 and player 4
E5(Usy)

Player 3 max = D5,U3 — Ce3
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1 ¢4 ~ fo a

B 1-— §A36g> vz —ceg if  Age§ > ef
- Ase

% 273 Vs — ces if Asze§ < ef

Player 4 maz E*(Uss) = pigvs — ceq

114 if
5 Vg — CEy 1I€4

€4
e .
%—im — cey ifey
€3

There are 4 cases.

Aze§ = e} and ey < eg
Azes = ef and eq > e3
Ase§ < ef and ey > e3
Aseg < el and ey < eg

Since A3 > 1, the fourth case is impossible.
(1) case 1: A\3e§ > e and ey < e

[e%
€4

Player 1 max (1 - %)\Sea> U3 — Ces
3

1/es\a
Player 2 max  5(£)%; — ceq

a ey ~ —
[63] megﬁ’l@ —c=0
-1

«
[64] %ei? Vg —C= 0

les]  5=(—a— 1)65%53 <0

-2

e 8la—1)%

vy <0

Solve the two F.O.C | we get

e3 = 2—0)\?_1(53)1_“(@4)0‘
[0
€4 = %)\g(vrﬂ)_a(m)a“
G
€3 U3

Check the conditions A\ze§ > e and eg > ey:
As long as e3 > ey is satisfied, \ze§ > ef is satisfied. So we only have to check
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€4
eq Leg<— — <1
€3
1 €4 @ 1
2 \ez) 2
s 1
= Pyz S B
— <1
_ouw(wy) 1+a (1 _ SorT
u(wr)—u(w p12+p12)‘3 >
(w1)—u(ws) - — <1
)\?:1 |:u(w?)(l_ui)(w2) 1+04 <]' - p12 +p12)\ 2a+1> >\3 2a+1:|
Let
_ u(wy) 1+« —g o\ L
s :>\1 _ <1_ s S\ 2a+1>)\ 2a+1
f(pia) = A3 [u(wl) ~u(ws) 5 P12 T P12 3
u(wy) 1+« ( S
_ _ 1 _ S S )\ 2a+l)
[u(wl) _'U/(?,UQ) 9 p12+p12 1

Rearrange the terms we can get

) =" () ) () L)

1 __a 1 a+1
n —iz-Oé <>\1 Zafl 1) (1_)\31 2a+1)p§2

a+1

Since (A;ﬁ“ - 1) (1 - )\_1 2”“) < 0 and p3, € [0,1], f(pj,) reaches mini-

mum at pj, = 1. Thus, e, < e3 is always satisfied as long as f(pj, = 1) > 0.

P AT ES I W R £

wy) — u(ws) wi) — u(ws)

P () (1)
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1—|—oz)\—2a+1 B u(w) 14
—u w2) 2 3 u(wy) — u(ws) 2
_1_ a+l
_; <)\ 2a+1_1) (1_)\31 20;:»1) >0

= (U(w:;(t—ui(w) 1J2ra/\ éﬁll) o <U(w3(3}2(w2) - ; a)

1 - 11—
+)\3 ;Q(A12a+1_1> (1_)\12a+1)>0

1 _1_ a+l _ o+l
+ /\3 (1 B (1 . )\ 2a+1> (1 o /\31 2a+1)) . )\3 2a+1] > ()\3 . 1) u(wl'l;(l_Ul)

__otl __a __a  _q_afl atl U(’Ll)l)
)\ A 2a+1 )\ 20+1 )\ 2a+1A 2a+1 _ )\ 2a+1 >
1 __a —atl U(w1> 2
é : )\ 2a+1 )\ _ )\ 2a+1 >
Ay =171 (3 ’ )/U(wl)—u(w2)1+a
__a _ o+l
To ensure e > e4 and pj, > pj3, we need %1% < A31_1)\1 L Ay — Ay T

Similar to the equilibrium in the semifinal between player 1 and player 2, we

oo 2 B

(2) case 2: A\3e§ > e} and e4 > e3

S S B
Player 1 max (1 2>\3eg> U3 — ces

«
Player 2 max (1 — %Z%) Vg — Cey
F.o.c
o eF ~ _
[63] megﬁ’l}g —c=0

e4] %eeglm —c=0

S.o.c

les] s (—a—1)-2503 <0
les]  §(=a—1) a+zv4<0

Solve F.O.C , we get

a+1
e3 = 220)\3 2a+1 (Ug) 204-:1 (U4) a1

ey = g)\ Tatl (,03) ol (’U4) 203—_0-11

/\2a+1( ) ﬁ(”Dﬁ
63

Check the conditions Asze§ > e and e4 > ej:
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D Aze§ = ef

)\3 6? ot o e

Aseg 2 ef < > 1 <= A\ (03) 74T (vy) 22T > 1

€4
Since A3 > 1 and v3 > vy, Aze§ > e is always satisfied.

@) e4 > e3

e4 > e3 is always satisfied as long as f(pj, = 0) < 0.

f(p‘izzo):Agl( : u(w) 1*%32«”1)_( ( uw))  1+a

u 'LUI) — U(’U)Q) 2 u 'LUl) — U(’UJQ)

u(wl) -1 1+ ( _1_2a+11)
$,=0) <0 <= A —1) + 1—A a1 <0
f(p12 ) u(w1> . u(wg) ( 3 ) 3

1 a+1
= 1;“ (1—)\31 t) < ——ulw) F(1-x0)
11— a+1
1—2A; % o u(wy) 2
L= T u(w) —u(we) 1+ a

(3) case 3: A\3e§ < e} and ey > e3

—

1
Player 1 max 5 64 1)3 — ces
Player 2 max ( —% & >U4 — cey
F.o.c
-1
a3 ey~ _
e B3 _u3—c=10
[ 3] 2 eq 3

[64] %%U;; —c=0

divide the two F.O.C , we get

€4 Uy
—=—x1
€3 A3Us3

which contradicts the condition that e4 > es.

2 Two-Stage Elimination Contest with Unobservable Overconfi-
dence

This section shows that our results also hold when the overconfident player’s rivals cannot
observe his bias. As in the paper, we assume player 1 is overconfident and players 2, 3,
and 4 are rational with Ay > 1 = Ay = A3 = A\4. Players 1 and 2 are paired in one semlﬁnal
and players 3 and 4 are paired in the other semifinal. The overconfident player’s bias is
not observable by the rational players.

2.1 Final

Proposition A5 In a final between an overconfident player and a rational player where
the overconfident player’s bias is not observable by the rational player, the equilibrium
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effort of the overconfident player is
o -1
ef = 2—6)\1 T Au,
and the equilibrium effort of the rational player is
g = —Au

with e{ < eg =¢/. The perceived equilibrium winning probabilities are

p13— 1__)‘ a“

- 1
p§1:§

and the true equilibrium winning probabilities are
1 -«
p{3 = §>‘1 o
1 -
L=1— 2
D3y oM

with 'ﬁ{?) > p§1 >1/2 = ﬁ§1 > p{s. The perceived equilibrium expected utilities are

Ef(Uy) = (1 + u(w:;(fi(wﬂ ! J; N a“) Au,
B = (1+ oy S ) &

Proof of Proposition A5

Since the rational player 3 is unaware that player 1 is overconfident, she chooses the
benchmark effort eg,: = ¢/. The overconfident player 1 chooses a best response to eg =el.
Assume the equilibrium satisfies A (ef)* > (ef)®. In this case, the best response to
eg = ¢/ is the solution to

« (Ef )

2)\1( )a-i—l

Substituting &/ by 7-Au and solving for e{ we have

1
el = %)\1 T A

Note that this solution satisfies Aj(e])® > (e])* since

_%H a a(a1+1) (07 _f
AL TP AU = — ) Au> —Au==¢.

(w)ee] = (u)s > >

Nle
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Now, assume the equilibrium satisfies )\1(6{ )* < (eg )*. In this case, the best response to

e] =&/ is the solution to

ak; (ef)*!

2 (&)

Substituting &' by - Awu and solving for e{ we have

Au = c.

Nf _ Q 17104
el = —\ “Au.
1= 5.

This is not a feasible solution since it fails to satisfy A;(el)® < (ef)®. Hence, player 1’
equilibrium effort is
. o -1
el = =\ T A
2c

Therefore, player 1’s perceived winning probability is

_ 1 (&) 1 A “ 1 -+ 1
2)\1(61)a 2)\ (%)\ a+1AU) 2 2

Player 3’s perceived winning probability is 1’551 = 1/2 since she thinks, mistakenly, player
1 is rational. Player 1’s true winning probability is

( o = Au)
1, - 1
= )\1 atl < =

po_ 1) 1
Ps=o@e "2 (2aw)” 2

\)

Player 3’s true winning probability is

1 — o 1
f — 1 _ f — 1 _ _)\ a+1 > _
P31 Pis 91 B

The perceived expected utility of player 1 is

~ u(ws) l+a -+
ENU Au — =1 - A ) A
(Uz) = p13 u— & + u(w,) ( + o — 5N ) u
The perceived expected utility of player 3 is
= ~ 14+
B (Us) = pl,Au — c&! = (1 ulws) Au.
(Us1) = pyyAu — e’ + u(ws) + w(wr) — u(wy) 5 u

2.2 Semifinals

Proposition A6 Consider a semifinal between an overconfident player and a rational
player of a two-stage elimination contest where player 1 is overconfident, players 2, 3
and 4 are rational, and the overconfident player’s bias is not observable by the rational
players.

(4) If wlon)—ulwa) 2 and Ay < X\ where X solves

u(w3)

<1 + (“# - H—a)\_7> = A (1 4o uwa) H—“), then the equilibrium efforts

)—u(w2) u(w1)—u(w2) 2
and winning probabilities satisfy €] > €5 =€ and pj, > piy > 1/2 =p5; > ps;.
(i) If either “(;wu)(“”) < % or \1 = A, then the equilibrium efforts and winning proba-
bilities satisfy ¢ < €5 =¢€° and P, > p3 = 3 = Dy = Dis.
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Proof of Proposition A6

The perceived expected utility of reaching the final of the overconfident player 1 is

u(wy) 1+«
wy) — U(U)g) 2

a:=p&Efahg-+p£EfaA@::Efaag::(1+—u( A1M1>zni>@

The expected utility of reaching the final of the rational player 2 is

_ I pf B (Un) = B (U — u(w,) Lt \uw
vy = py, B (Usz) + pys B (Uay) = EY (U —<1+ — Au=7
2 34 ( 23) 43 ( 24) ( 23) u(w1> — U(wg) 92
Since the rational player 2 is unaware that player 1 is overconfident, she chooses the
benchmark effort e5 = €°. The overconfident player 1 chooses a best response to ej = €°.
Assume the equilibrium (e3, €5) satisfies A1(e])® > (e5)®. In this case, the best response
to ej =€’ is the solution to

a (e5)* _

2)\1 (6i>o¢+1

Substituting e* by 5-v and solving for e] we have

= C.

A T (7)) F (o)

1:20

Note that this solution satisfies A (e])* > (e5)* since

~ 1 - 1, o aﬁNL_L o _ s
(A)=el = () g 7 (@) T ()T = AT () T (0) T > 0 = e
e > g 1~
Lz =AU
Al (1 N u(ws) 1 +oz)\1—a}H) B (1 N u(ws) 1+ a) >
u(wy) — u(ws) 2 u(wy) — u(wsy) 2 <
Thus
> i A <A and o) s 2
e
<e* if either A\ >\ or % <2
_ulwa)  _ lday—gaiy ) — _ulwz)  lta
where ) solves (1 + u(wl)_i(w) 5EA +1) =)\ (1 + u(wl)_i(w) 5 ) )

Now, assume the equilibrium (ef,e5) satisfies A\(ef)® < (e5)*. In this case, the best
response to e = €° is the solution to
al (e cx—lN
g ( 1_> U1 = C.
2 (ef)~

Substituting e* by 5-v and solving for e] we have

o L1 1 a
€] =—\ " (0)T= (D) T-=.
L= ST @) ()
This is not a feasible solution since it fails to satisfy A;(ef)® < (e5)®. Hence, player 1’s
equilibrium effort is

e

7= oA T (@) (@)
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Therefore, player 1’s perceived winning probability is
N 1 (és)a
Pa=1-51v=

2 2 M (eq)”

—_

1 -2 ~ N _o
=1 5)\1 a+1 (Ul) T+a (@) THa > —,

\)

Player 2’s perceived winning probability is p§; = 1/2 since she thinks, mistakenly, player
1 is rational. Player 1’s winning probability is

—§<:—> =17 @) T (@) > L i A <) and dewuen) 2
Pla = N .
3 (2—1) =1\ 7 (T)) e (7) T < : if either A\ >\ or % <
Player 2’s winning probability is
AT () e ()T < L if A <) and dledouvs) s 2

1= I\ @)™ (0) e > L i either A 2 A or Mwulwa) 2

N[

The perceived expected utility of player 1 is

s ~5 ~ ~3 ~ 1+Oé _%Ni—f
E*(Urz) = pipv1 — c€] =0 — 5 Ay (0r) e (D) THa

The perceived expected utility of player 2 is

- ~5 — —s -«
E*(Uyy) = poy,v — ce® = 5

0.

2.3 Equilibrium Winning Probabilities

Proposition A7 In a two-stage elimination contest where player 1 is overconfident,

players 2, 3, and 4 are rational, and the overconfident player’s bias is not observable
by the rational players, if o« > 2 and “(w;)(;z)(m) > A0 then there exist Ay € (1,))
for which the overconfident player has the highest equilibrium winning probability, i.e.,

P1>P3:P4>1/4>P2.

Proof of Proposition A7

P, = p{:spiz

1 S
P; = 51?21

s s S 1 1 1 L
P; =P, = p12p§1p34 +p§1p§2p§4 = P2 <p§1§ B 1) + 4 ~ 4

Since p{3 < %, a necessary condition for P, > P3 is pj, > L. Thus, from Proposition

3-

A6, for pj, > % we must have that % > 2 and \; < \. The restrictions on the
2) o

parameters in the statement of Proposition A6 satisfy these conditions since % > %

3 s 1. 1
P, —-P3= 5]9{31912 - Zpl? - Z_l
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The sign of Py — Py is the same as the sign of 6pf,p5, —pi,—1. Let f(A) = 6plapsy—piy—1

1, - 1. = o _a 1 = o o
F) = 6337 [1—§Af+l (51) T (v)m] - [1—§Af+l @) T (@)Ha] -1

- e 1 o a o
= 3)\1 ol g (1}1) T+a ( )1+a + = )\O‘“ ( ) T+a (@) Ita — 9
~a 3 u(ws) 1+« )_ucfa( w(ws) 1_’_&)1_?_‘()
=3\ T —=(1+ )\““ 1+ —

1 2 ( u(wi) —u(wy) 2 u(wy) — u(ws) 2
R u(wy) 1+« “Tha u(ws) 1+a\™e
A A wH 1 -

P () (e

-2

We can get that
f=1)=0
! )\ — (07 )\—%ﬂ—l
f') 3a—|— 17t

3 " u(ws) 14 Ta o«
2 u(wy) — u(ws) 2 1+«
Ly ulws) 4oz e 4 1 (e

u(wy) — u(ws) 2 1 2 a+1""!
u(ws) 1+a)\ e

~ (1 _

T3 ( * u(wy) — u(ws) 2 )

u(ws) l+a -\ T
)\a+1 1 _ )\ a+1
a+ 1 ( N u(wy) — u(ws) 2 ! )

a u(ws) l+a -2\ ™ "14a 1 1
)\oc+1 _ 1 _ )\ a+1 )\ a+1
i ( 1+a> ( +u(w1)—u(w2) 2 1 ) 2 1+a’!

3 « u(ws) 1+a\" 1 a
Ny =1)=-3-2 472 1 _ -
fu=1) a+1+41+a< +u(w1)—u(w2) 2 ) +2044—1
1 « L+ u(wy) 1+a\ "
da+1 u(wy) — u(ws) 2
-1
_ 5 «a +1 o (14 u(ws) 1+a
2a0+1 2a+1 u(wy) — u(ws) 2

f'(A1 =1) >0 when a > £ and u(w;)(;u)(wz) > 0= Thus there exist A; € (1, A) for which
w(w)— u(wz)

P, > Pj is satisfied when o > % and ) 5a 5

3 Three-Stage Elimination Contest

This section shows that our main results extend to a three-stage elimination contest. To
do that we consider an elimination contest where eight players compete in four quarterfi-
nals in the first stage, the four first-stage winners compete in two semifinals in the second
stage, and the two second-stage winners compete in the final. The winner gets w,, the
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runner-up ws, the two second-stage losers w3, and the four third-stage losers w,, where
w; > we > wz = wy = 0. In addition, we assume an increasing utility spread as the
players move up in the elimination contest, that is, u(w;) — u(wy) > u(wy) — u(ws) >
u(wsz) — u(wy). Furthermore, we assume that in the top half of the contest, players 1 and
2 are seeded in one quarterfinal, and players 3 and 4 are seeded in the other quarterfinal.
Finally, we assume that in the bottom half of the contest, players 5 and 6 are seeded in
one quarterfinal, and players 7 and 8 are seeded in the other quarterfinal.

We start by analyzing a three-stage elimination contest with eight rational players.
Next, we analyze a three-stage elimination contest with one overconfident player and
seven rational players. In both cases we do not analyze the final since it is identical to a
final of a two-stage contest. Hence, we solve the three-stage contest backwards, starting
with the semifinals and ending with the quarterfinals.

3.1 Eight rational players

Lemma A1 In a semifinal of a three-stage elimination contest with eight rational players,
the equilibrium effort is

- « (1 —« N u(ws) — u(w3)>Au

T 2e\ 2 u(wy) — u(ws)

and the equilibrium expected utility is

Py =[50 (50 e ol ) ) - )

Proof of Lemma Al

Since players are identical, we assume players 1 and 3 meet in the top half semifinal and
players 5 and 7 meet in the bottom half semifinal. Moreover, we also assume, without
loss of generality, player 5 beats 7. E*(U3) can be written as:

E*(Uss) = piavi + (1 — pia) u(ws) — cel = piy (v — u(ws)) + u(ws) — cej

Player 1’s expected utility of reaching the final of a three-stage elimination contest is the
same as that in two-stage:

v} = plsfu(wn) = u(ws)] + uws) — cef
iy f_of _ o _ fo_1
From Proposition 1 we know that ej =&’ = &[u(w1) —u(ws)], p15 = 5. Plug these values
into the equation above we get

S__S_l—&
of =7 = 5 fu(w) — u(ws)] + u(w)

Similar to the proof of Proposition 1, we get that the equilibrium effort is
Q S
% (v — u(ws))
a (l1-«
~ 5 (5 ) ]+ u(u) — u(u))

2¢
Lo (e e

T2 2 u(wy) — u(ws)

S _ =8 __
el =¢" =

37



Due to symmetry, all the rational players exert effort €® at equilibrium.
The equilibrium winning probabilities are

=S S S S S 1
P =Pi3 = Pa1 = P51 = P15 = 5
The equilibrium expected utility is

=son | 1—a (1—a u(wy)—u(ws) u(ws) u(wy) — u(w
E(U)‘{ > ( 2 +u<w1>—u<w2>)+u< = ) = ulez)

Now we move on to the quarterfinals.

Proposition A8 In a quarterfinal of a three-stage elimination contest with eight rational
players, the equilibrium effort is

L_a,_a [1-«a (1 | ulwn) —u(ws) 1+ a) . u(w:;(wg) A

2c 2| 2 u(wy) — u(ws) 2 — U(w2)_

and the equilibrium expected utility is

S ' 1-a u(ws) —u(ws) 1+« u(ws)
EU) = 2 2 (1 + u(wy) — u(ws) 2 ) + u(wy) — u(wy) Au.

Proof of Proposition A8

1. Expected utility of reaching the semifinal

E1(U,5) denotes player 1’s expected utility in the quarterfinal when he plays against
player 2, and v{ denotes his expected utility of reaching the semifinal. We can get

E%(Ur) = pigvi + (1 = pla) x 0 — cef

where

= E*(Uy3) = 0% = {1 — (1 O u(w3)) t ulws) ] [u(w) — u(w,)]

2 2 u(wy) — u(ws) wy) — u(ws)

2. The equilibrium efforts and winning probabilities

Similar to the proof of Proposition 1

o a_ all—afl—-—a u(wy)—u(ws)
¢ — D g — _
“ T2 T l 2 ( 2 - u(wy) — u(ws) + u(w)]
1
P =Py = P = Dy = Pis = Pi6 = D5 = D1s = Py = B

3. Expected utility of the quarterfinal

Eq(U) _ 1@(1 _ cggq o -« [1 -« (1 — u(wQ) — U(wg) U(wg) A,

2 2c 2 2 u(wy) — u(w2)> o u(wy) — u(ws)

Since 0 < a < 1 and % > 1, we have E'(U) > 0. The participation
constraints are satisfied.
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3.2 One Overconfident Player and Seven Rational Players

We now show that the results for a two-stage elimination contest with one overconfident
player and three rational players generalize to a three-stage elimination contest with one
overconfident player and seven rational players. We set player 1 as the overconfident
player with \{ > Ay = A3 = Ay = A5 = \g = Ay = Ay = 1. We first characterize the
equilibrium in the semifinal between the overconfident player 1 and rational player 3.

Lemma A2 Consider the semifinal between an overconfident player and a rational player
of a three-stage elimination contest with eight players where player 1 is overconfident and
the other seven players are rational.

. u(wi)—u(w 14+2a) «Q u(wy)—u(w
(i) If ugw;;_ugwig > oz((li?)a) and A < \ where A > 1 is given by 1+ (1 + m> =
A1

A;\Tﬂ’ then the equilibrium efforts and winning probabilities satisfy e > €° > e and
Pis > pis > 1/2 > p3;.

(i) If either ZEZS:ZEZ?% < 2((1122)) or \i = A, then the equilibrium efforts and winning

«
probabilities satisfy e5 < e <€ and pjy > piy = 1/2 = pi,.

Proof of Lemma A2

Since the seven rational players are identical, we assume that player 1 meets 3 in the
semifinal and that player 5 enters the final.

1. Perceived expected utilities of reaching the final
Overconfident player 1:

Player 1’s perceived expected utility of reaching the final of a three-stage elimination

contest is the same as that of a two-stage

14+«
2

= Pl Au+ u(wy) — cel = (1 — A 2‘**1) Au + u(ws)

Rational player 3:

Since player 3 will meet a rational player in the final, her expected utility of reaching
the final is the benchmark

1—
vy =7 = 5 &Au%—u(wg)

We can easily get
U] > U5

2. Equilibrium efforts
Overconfident player 1  max

ES(Um):ﬁig'ﬁH(l 7 ) ( 3>—ce1
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Rational player 3 max

E*(Usy) = p3,v3 + (1 — p3;)u(ws) — ces
= p3; (v — u(ws)) + u(ws) — ces

(1 %—g) v —u(ws)) + u(ws) —ceg if e
o 1¢e s
2 3

—g( —u(ws)) + u(ws) — ces if e

There are 4 cases.

Aed = ef and e3> e
Aef > e5 and e3 < e
Aef <eg and ez > e
Aef <eg and ez < e

Since Ay > 1, the fourth case is impossible.

(1) case 1: \jef > €3 and ez < ey, which corresponds to (i).

Player 1 max (1 -3 ° ) (05 — u(ws)) + u(ws) — ceq

Player 3 max

F.o.c
e g (0 — u(uwy) — e = 0
ea] 5% (05 —u(ws)) —e =0
S.o.c

le1] (o — 1)6?12 (U1 — u(ws)) <0

es] (0= 1) (0§ — u(wy)) <0
Solve the two F.O.C | we get
= —X" (@ = u(ws)) T (05 — u(ws))"”
>\°‘ (T} — u(ws)) ™ (05 — u(ws))*"
_ >\1~ — u(ws)
e U5 — u(w3)

Check the conditions Ajef > e5 and e3 <

@ /\161 =

As long as ey > eg is satisfied, A\jef > ef is satisfied.
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@) e3<e

e
61263<:>6—1>1
3
v — u(w
)

A1 (03— u(ws)) ~
a+1
(1 _ 1+a)\1 2a+l | u(w2)—u(w3)> Au
1

u(wi)—u(ws2)
>
A\ ( _ Lo u(wg)—u(w3)> Au

2 u(wi)—u(wz)

s

1+ Oé>\_2a+l + U(UJQ) — u<w3)

—=1-

2 uWﬁ—Mw>>M(L_

Let

w(wy) —u(ws) 14, —pdn u(ws) —u(ws) 1+«
FOn) = (1+u(w1)—u(w2) U >—>\1 (1+u -

We can easily get that f(A\ =1) =0 and f(A\ — o0) < 0.

/ _ (1 + Oé)Q _20(;-:11_1 u(wQ) - U<w3) 14+«
f) = 22a+1) M B (1 + u(wy) — u(ws) 2 )
() = (1+a)? —gh-1 < u(we) —u(ws) 1+
fds0= m)\l =1 u(wy) —u(wy) 2
(1+ )2 u(wy) —u(ws)  T+a\ T < g
<y (U ey~ 5) EN

(1+ a)? n u(wse) —u(ws) 14« B EC <
220+ 1) =

_ | a2 u(ws)—u(ws) _ 14a) | Zarrtl
Let g(a) = [2(2a+1) (1 + o) —u(ws) %) ]
a) gla) <1

if g(a) < 1, then f'(A\;) < 0 always holds and thus f(A;) < 0 always
holds. Therefore e; < e3 when g(a) < 1.

that /\1 > 1.
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b) g(a) > 1

if g(a) > 1, then

> (0 when)\; <

1
(1+a)? (1 4+ ulwa)—u(ws) lJr_a) _1] TarTtl

2(2a+1) u(wi)—u(ws2) 2
f/()‘l) 1 ‘a+11 1
(14a)? u(w2)—u(ws) 1+a\ | ZaFr ™t
<0 when)\; > 50t T) (1 + —u(wi)iu(wz) _ _J; ) ]

o u(wi)—u(ws) 2(142a)
We now show that if Jrs="m8 > So-2r,

threshold A > 1 where f(\;) = 0, that is,

u(wz) —u(ws) 1+ Qi (

w(wy) — u(wy) 2 =

then there exists a unique

m 1+u(w2)—u(w3)_1—l—a)'

u(wy) — u(wy) 2
To see this is the case, we rearrange the equality as

LTa (A-A%5) = (A-1) (1 y lwn) = “(w3)> :

2 u(wy) — u(wy)

or

~

(w3))1 A1

(w2) = (1)

A — )\ 2at1
Since a € (0,1] and % > 0, the left-hand side of (1) takes a

value in the interval (0,1). The right-hand side of (1) is increasing in A

for Ay > 1, its limit when A= 1is ggi;,

Hence, the threshold \ exists and is unique provided that

1+a w(wy) —u(ws)\ " 2a+1
2 (1 u(wy) — u(wg)) 3a+2°

1+« (1+u(w2)
1

2 u(wy) —u

and its limit when \ — oo is 1.

It is easy to show that this inequality is equivalent to

w(wy) —u(wy)  2(1+ 2a)
w(ws) —u(ws) ~ a(l+3a)

o u(wr)—u(ws) _ 2(1+2a)
Therefore, if w(ws)—u(ws) > a(113a)

greater than 1, that satisfies (1). This, in turn, implies:

, then there exists a unique value for 5\,

~

>0 whenX; <\
fOO){=0 when); =\
<0 when)\; > A

>0 when)\; < A
€1 — €3 =0 when )\1 = 5\
<0 when)\; > A

The condition e; > ez is only satisfied when ZE%;:ZE%; > i((lli?,’z)) d
N . . u(wi)—u(ws) 2(142a)
A < A)\. And e; > e3 is only satisfied when u(w;)fu(wi) > S(f3a) d

)\1<>\.
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Therefore the solution

= —A“ @}~ u(ws)) " (03— u(wy))®

a ~s —Q S (e}
e3 = %A? (@ — u(ws)) ™ (v — u(ws))* "

only applies when ZEZI;_ZEﬁ; > a((lliéz) and \; < \.

e1, which corresponds to (ii).

case 2: \jef > ef and e3

N:I»—l

Z
Player 1 max ( ) —u(ws)) + u(ws) — cey

Player 3 maz ( - %%) (v — u(ws)) + u(ws) — ces
F.o.c

ler] gy et (B —u(wy)) —c =0

[es] %egil (v3 —u(ws)) —c=0

1] i (—a = 1) 2 (0 — u(ws)) <0
fes]  §(—a = 1) (v5 — u(ws)) <0

Solve F.O.C | we get

(8% atl a+1

er =g M T (B — u(wy)) B (0 — ) T
_ )\ TaFT (s . ot (0S5 _ 20‘;;11
€3 = o (07 — u(ws)) (v5 — u(ws))

€ 1 1

O @ — () (0 — ()
€3

Check the conditions Ajef > e and e3 >

@ )\161 =

16(1 a+1
A€ = ef =

L > 1= AR (35 — u(ws)) % (v — u(ws)) 5 > 1

«a
3

Since A; > 1 and v] > wvj, the inequality is always satisfied. Therefore
Aref > eg always holds when A\; > 1.

@ e3>e
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€1
e1 <e3 <= — <1
€3
1

—u(ws)) 2211 < 1

— A 20‘“( w3))2

05 — u(ws)
—
A1 (0§ — u(wsy))

08— u(ws)
A1 (05 — u(ws))

We have already seen in case (1) that e3 > e; is satisfied when either

u(wi)—u(ws2) 2(14+2a)
w(wy)—u(ws) S a(i¥3a) OF A1 2 A

Therefore the solution

atl a+1

e1 = 3 A T (B — u(wg) S (v — ()
_ TaFT (s 5T (S ol
e = 3 A T (B — u(wg)) T (v — ()

only applies when either Za;):zgzig < 3(111?32)) or A\ > A

)
(3) case 3: \jef < e§f and e3> e

Player 1 max %)‘izl (0% — u(ws)) + u(ws) — ceq
3
Player 3 max ( %—g) — u(ws)) + u(ws) — ces

F.o.c

1] 99 (3 — u(ws)) —c =0
les] 5 (v3 —u(ws)) —c=0

divide the two F.O.C | we get

es _ vj— u(w;)

= —~ <1
er A (05— u(ws))

which contradicts the condition that e3 > e

Therefore, the equilibrium in this semifinal:

(1) When zgz;;:zgzg > z((iizz)) and A\; < A, which corresponds to Lemma A2 (i)
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where e > e3.

a3 (5)

-5 (%)

1 u(wy) —u(ws) 14 a —pEt\ 70 ulwp) — uws) 1+a

=M (1_+/uzﬂli—-ugubg _; M ) (1_+/“é”1;_'“§“b; _g >
Py = 1 —p5;

-1 (e S - ) (i - )
5= _%A(e(é))

S- o (1 Mot L ) (o et Ly’

We can get pi; > pis > 5 > pj

(2) When either “EZS_Z%E% < a(éﬁg) or A; > ), which corresponds to Lemma A2
(ii).

a+1
ei — 2}\1 20;111 1+ U(w2) - U(w3) 1 + aA72a+1 Za+1
2¢ u(wy) — U(w2) 2
(1 + u(ws) —u(ws) 1+ a) 2af1 Au
u(wy) — u(wy) 2

2¢ ! w(wr) —u(wy) 2
u(wz) —u(wz)  l+a ot "
(e ) A




Py =1-—Dpi;

@y
o 2 A1 (ef)
1 —otl u(ws) u(wg) l+a - Zatl
=1—-=)\ R I | Y 2a+l
271 ( * w(wy) —u(wy) 2 1

We can get pj; > p3; > % Z Di3
3. Participation constraints

u(w u(w 2(1+42 N
(1) When uw;) ugwig > a((li?z)) and A\; < A

E*(Urs) = B3 (V5 — u(ws)) — cei + u(ws)
> pis (0 (~$ — u(ws)) — cej + u(w;)

= (1 5 @ = )™ (0~ u(u))”) 5 = aa)

- CQ—CXI L@ — w(ws)' T (v5 — u(ws)® + u(ws)

=07 — u(ws) — —Ai" (05 — ulws)) '™ (03 — u(wy))”
- —/\a @ = u(wy)) " (05 — u(ws))® + ulws)
> 07— u(ws) — 5” (T — ulws))' ™ (5 — u(wy))”

— N~ u(as)' ™ (05 — ()" + (o)

= 0} — u(ws) — AT (05 — u(ws))' ™" (v — u(ws))™ + u(ws)
= (07 — w(ws)) ™ | (0] — ulws))® = AF (05 — u(ws))™ | + ulws)
>0

E*(Us1) = p3; (v3 — u(ws)) — cez + u(ws)
1

= SAT (01 — ul(ws)) ™" (v5 — w(ws))" (05 — u(wy))

— eg AR (7 — ()™ (0 — ()™ 4 uluwy)

= 20N (3 us)) ™ (05 — uluws) '+ ()

=0
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. u(wy)—u(w 2(14+2« N
(2) When either uEwaugwig < a((li?)a)) or A\ = A

E*(Urs) = Pis (B — u(ws)) — cef + u(ws)
Since pjy > 1, U; > 7° and e} < €°, we can get that ES(Ulg) >FE (U) > 0.
E*(Us1) = p5; (v5 — u(ws)) — ce§ + u(ws)

= (1 5 0 ) (05— ) ) (05— ()

2
O\ =55 o~ - TP atl
— e N T (B ) (05 — () B 4 u(wy)
1 e _a o
= — u(ws) = ZA 7 (3 = w(ws)) T (0] = ulwy)) B
= ST (@ — u(wg)) T (v — ) B+ ()
1 — 5T~ _a otl
= 5 — ufuey) — 2N (B — u(a00)) T (05— () B ()
atl o 14 a -2

O (@ — ) 7| + u(wy)

Next we characterize the quarterfinal between the overconfident player 1 and rational
player 2. Due to a lack of full characterization of the equilibrium in the quarterfinal be-
tween an overconfident player and a rational player, we show that there exist parameter
configurations where in equilibrium the overconfident player exerts higher effort than the
rational player.

Proposition A9 Consider a quarterfinal between the overconfident player 1 and the
rational player 2 of a three-stage elimination contest where player 1 is overconfident and
the other seven players are rational.

(¢) If who—ulwe) o 200%D) “ypop there exist Ay € (1, )], where X solves 1 4 “e2—ulws) _

u(wz)—u(ws) a(3a+1)’ u(wi)—u(w2)

H'TQ;V% = 5\(1 + % — HTQ), for which the equilibrium efforts and winning prob-
abilities satisfy el > €1 > el and piy > piy > 1/2 > pd;.

. u(wi) —u(wsz) 2(2a+1) u(ws) a(3a+1) u(wz)—u(ws) —7at+a3+8a2+5a+1
() If (w2)—u(ws) S aGatD) ‘”?d u(wl)fu(w?)’<'2(2a+1) w(w)—u(wz) T A@atl)? tﬁen
there exist Ay close to 1 for which the equilibrium efforts and winning probabilities satisfy

el > el > el and ply, > piy > 1/2 > pi,.

Proposition A9 shows that the results in the semifinal between an overconfident player
and a rational player of a two-stage elimination contest generalize to the quarterfinal
between an overconfident player and a rational player of a three-stage elimination contest.
In the quarterfinal between an overconfident player and a rational player, the equilibrium
efforts and winning probabilities depend on the utility spread and the overconfidence level.
The equilibrium where the overconfident player exerts higher effort than the rational
player exists with certainty under either of the two conditions: (i) if the utility spread
between the winner and runner-up compared to that between the runner-up and the

second stage loser is large (ZEZ;;:ZEZ?% > i(ézfl))) and overconfidence level is close to

either 1 or A, (ii) if the utility spread between the winner and runner-up compared to

u(wi)—u(wsz) 2(2a+1) ) the
u(we)—u(ws) > a3a+1)/’
utility spread between the winner and runner-up compared to that between the second

that between the runner-up and the second stage loser is small (
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u(ws) o(3a+1) u(wz)—u(ws) +
u(wi)—u(ws2) 2(2a+1) u(wi)—u(ws)

stage loser and third stage loser is sufficiently large (

—7Ta*+a2 4802 +5a+1

10at1)? ), and A; is close to 1.

Proof of Proposition A9

1. Perceived expected utilities of reaching the semifinal

Overconfident player 1:

E9(Urz) = plav] — cef
where

~ s ~s ]_—f—O./ ot
Ui = E*(U1s) = Pis {(1_

A 2““) Au~+ u(wy) — u(ws) | + u(ws) — cej

Rational player 2:

Since the rational player 2 will only meet rational rivals in the semifinal and final,
her expected utility of reaching the semifinal is the benchmark.

q__
Uy =T

u(wy)—u(w 2(2a+1 N
(1) When sten-tie) o 22003 and Ay < A

T
=]
(1 e — )
o (1 S - )
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_ a4l
(1 + u(wfg—u(w:s) _ HTa)\l 2a+l>

u(waz)—u(ws) 1+_a>

u(wr)—u(wz) 2

1—
1 a)\afl (1 + u(wa)—u(ws) 1+a)\20f;+11>
2 M1 ) —u( 2 1

@
(1 + u(wa)—u(ws

(e

u(wg) u(ws)
u(wi)—u(ws2)

(1 - g2 (1+ tegouie)

3) _ Ita
2) 2

.  atl -«
+a 2a+1
2 )\1

(1+

(1+2

u 3)

w(wn)—u(wz)

u(wz) —u(ws) 1+_a> 1
u(wy)—u(ws) 2

a1 a
o 1+a)\ 2a+1 o 1+a/\a

1 (1 + u(wz)—u(ws)

u(wi)—u(ws2)

1+

u(w2) u(ws)
u(wl) u(wa)

(=) (1

1 _at1 \ ¢ 1
1+a 2a+1 +ayo—
2 M - A

u(wz)—u(wsz) 1+_Oé) @
u(wr)—u(w2) 2

1 (1 + ugwg
u(w1

)—u(ws
)—u(ws

(1+

w(wz)—u(ws)
u(wl) u(wa)

Lia u(wy)—u(ws) _ 14a)”
(1 o ) (1 + u(wi)—u(wi) 2 >

) _ liaja-l (1 +

u(wa)—u(ws)

u(wi)—u(ws2)

14+«

2

(1

1 — Laya-l

1—

> 1

Thus we get

14+«
2

T) ( + u(wa)—u(ws) o

u(wi)—u(ws2)

v > v
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2(2a+1)

<

u(wz)—u(ws) > a(3a+l)

u(wr)—u(wsa)

(2) When either A\; > A or

2a+1

a+1)

T 2a+F1
A

1+«
2

u(we) — u(ws)
u(wy) — u(ws)

s (1 +
u(wz) — u(ws)

T 2a+f1
Ay

2a+1

)

1+«

a+1
) Au

1+«

T 2a+1
A

u(wy) — u(ws)

a+1
20+1

a+1 )

T 2a+1
A

1+«
2

u(wy) — u(ws)

a+1
(1 +

T 2a+1
AL

a+1
2a+1

a+1 )

A;2a+1

1+«

u(ws) — u(ws)

Au

a
2a+1

1+«

u(ws) — u(ws)

50



0] — u(ws)
79 — u(ws)

u(wz)—u(ws)

1+

1 _ o4l
+a 2a+1
2 )\1

u(wi) —u(ws)

(=) (1

u(wz)—u(wsz) H_a)
u(wi)—u(w2) 2

Player 2 max

1ef q
< —5%)’112—662
1¢€3,4
5-2U, — CE€
2eg 72 2

Player 1 max E%U) = piy0] — ceq
& ~ .
1-— %AT_QE?‘) 0F —cer if el > ef
A€ ~
%;—glvi’ — ceq if e} <es

E1(Uy) = pdivd — cey

There are 4 cases.

51

afl
atl a+1 2a+1 PR
1+a ) 201 u(wz2)—u(wz) _ 1+a )~ 2a+1 u(wa)—u(ws) _ 14a | 2t?
2 )\1 (1 T u(wi)—u(ws2) 2 >\1 ) (1 + u(wi)—u(ws) 2 )
(=) (1 st - 59)
a+1
u(wz) —u(ws3) 1+a _2%::-11 okt
(1 + wlw))—u(wa) 2 )\1 )
= a+1
<1 + u(wa)—u(wsz) 1+_a> 2a+1
u(wi)—u(ws) 2
w(wz)—u(wz) _ 14a sl R _ 1ta —gety uw(wa)—u(ws)  14a RS
(1 t e 2 M ) =M T+ St —ute) ~ 2
l+a u(wa)—u(ws) 1+a a1
(1 B T) <1 + u(w?)fu(wz) T2
u( )—u(ws) 1+ay (ZH zett 1+a\ Ojl u( )—u(ws) 14+a 20¢a+1
<1 + u(ﬁ)_u(lwuz) - T)‘l ’ +1) 2 M 1+ u(iif)_u(i’i) 2
> «
1+a u(ws)—u(ws) 1aq \ 20+1
(]‘ 2 ) (]‘ + u(w?)fu(wz) T2
u(wa)—u(ws) 1+a ) 22t 14a 2%111 u(ws)—u(ws)  14a) 201
S (1 + u(wy)—u(w2) T2 > 2 )\1 (1 + u(wr)—u(w2) 2 >
_ 14o u(wg)—u(w3) _ l4a 2aa+1
(1 2 ) <]' + u(wi)—u(ws2) 2 )
1— H_a)\*%
— 2 71
- 1+a
-
> 1
Thus we get
v > v
2. The equilibrium when ZEZJ’;;:Z&;; > i(é‘:;?) and \; < A, , which corresponds to (i)



Aed = e and ey < ey

1 2

Aed = ey and ey = e
1 2

Aef <ey and ey > e
1 2

Aed <ey and ey < e
1 2

Since \; > 1, the fourth case is impossible.

(1) case 1: \jef > €S and ey < e

Player 1 max (1 —-14 ) v} — cey

Meq
Player 2 max 205 — cep
F.o.c
0] o da]e=0
o] §%—vd—c=
S.o.c
o] gl—a— 1)t <0
e]  Gla—1)%Evf <0

Solve the two F.O.C | we get

Q|1 ~q1—
R GRS
Q ~q\—
2 = S AT ()
q
@y u
€1 (%1

Check the conditions Ajef > e§ and ey < e;:
D Aief > €5

As long as e; > ey is satisfied, \jef > €5 is satisfied.

@) ex < e
e vg 4
o =M= i
1 Uq 1 U1
Let -
f()‘l) =

—u(wy) — u(ws)
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We can easily get

Recall A~! (1 + L) ulws) _ u;—;&ﬁ) _ (1 4 ww)u(ws) 1+_a> — 0, we

u(wi)—u(ws2) 2
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can get
S

].—f—OéA a+
)\_2a
2

u(wy) — u(ws)

u(ws) — u(ws)

3= At (1+

-«
L lta
A 2a+1)

3
+ |
i
_
B
S|E
S| S
L
|
N —
S|E
SRS
I_I
—
N—
T
=<
¢
=<
3
=+ |
—
_

1+a)a

u(ws) — u(ws)

3 14+«

1+a\”-
3 1+Oé N

u(ws 1+«

u(we) — u(ws)

u(wy) — u(wsy)




—
(i~ ) (1557 ) S B
(1 - 12&) (1 e 12&) T

T (1 i ZE% - ZEZE; -3 a) u(wf;(fszz(wa”l =
5 (1 e e ™ ) )
o[ (st e el ]
- (e )

)
)
I e (1+ SIS - 50) + fifiy < 0 alvays holds then £ =

~

A) > 0 always holds.

u(wz) < 0 always holds:

u(wr)—u(ws)

u(ws) 1+« u(wz) —u(wz)  1+a
— w(wy) — u(wy) < (1 i u(wy) — u(wy) 2 )

1+ au(wy) — u(ws) u(wz) —u(wz) l+a
! u(ws) (1 (w,) 2 >
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. u(wi)—u(ws2) 2(2a+1)
Since u(ws)—u(ws) > a(3a+1)?

l+a|l—a22a+1)
2 2 aBa+1)
:1+&(1—a2(2a+1)+1)
2 2 a(3a+1)
_1+a(1—a2a+1 1)
2 a 3a-+1
l+a—-202+a+1+3a*+a
2 a(Ba+1)
l+aa?+2a+1
2 aBa+1l)
a®+3a% +3a+1
2a (3a + 1)

l+a|l—aulw)—u(ws)

2 2 u(wy) — u(ws) 1

+1

If —asgsngf‘;“ > 1 is satisfied, then £ 1_7"‘2((?,2111)) + 1| > 1 is satisfied.

a®+3a%2+3a+1

>l a’+3a’+3a+1—-2a(3a+1)>0
20 (3a + 1) o’ +307+3a+1-2a(Bat1)

Let t(a) = a® +3a? +3a+ 1 —2a(3a+1)
tla)=a® -3a*+a+1
tla=0)=1, tla=1)=0
t'(a) = 3a* — 6a + 1
Wecangett’(a)>01f0<a<%gandt’(a)<01f%é<a<l. Thus
t(a) > 0 when «a € (0,1).

Therefore £« [%% - 1] > 1 always holds. Since we assume

u(wa)—ulws) - —Lta (1 + U(Zi)_U(m) — 1+_a> +—u(w“(fi) 7 < 0 always holds.

u(ws) R u(w)—u(ws) 2 1)—u(w2

Thus f(A\ = A) > 0 always holds.
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1+oa it l+aa+1 —otl
") = -2\72(1 ) u(w?)) _ \, 2ol AL )\, 2o+l
F') ! ( +u(w1)—u(w2) 2 1 M 2 2a+17"
l4a 1+u(w2)—u(w3)_1+a “
2 u(wy) — u(wsy) 2
— l+a i\
2 )\a—?) 1 U(’LUQ) U’(w?’) _ A 2041
N O TR
— 14+o —2ra\ "7
A2 (] — 1 ’LL(U]Q) u(w3) N \, 2ot
A e (1 -
l+aa+l gl u(ws) \-2
2 2a+1"" u(wy) — u(wy)
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e e il ) A e
)
o= (b= - 55) o
O+5$3:Z$3_1;a>ﬂlga;ﬂi _uwg@iwg
(i )
1

2 u(wy) — u(ws
14+« l+aa+1 u(ws)
2 (1-a) 2 20+1  u(w) —u(w)
B u(wz) —u(ws)  l4+a) | _1—|—oza_
B <1+u(w1)—u(w2) 2 > ! 2 ( 2)]

—1+1;a(2—a)]

l+aatl (1 - _2a2) - u(w:;(iugl)b(wﬁ

(
"
_ <1+U(w2)—U(w3) ~ 14;@) 2+ (~a? +a+2)
., 2
(
n

2
l+aa+12—(1-a) u(ws)

2 2a+1 2 u(wy) — u(ws)
1+uWﬁ—uwg_1+a>—M+a
u(wy) — u(wsy) 2
l+aa+1la®+1 u(ws)
2 20+1 2 wu(w) —u(w)

2

Fha=1)Z0
(:)<1—a u(wg)—u(w3)> —Oz2+04+1+0z a+1la®+1 < u(ws)

2 u(wy) — u(ws)

We can easily get that <1_TO‘ + ZEZ?%:ZEZ;;) _O‘;+O‘ + HTO‘%# > 0 always
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Fu=1)Z0
<~
1—a  ulwy) —u(ws) —a?+a 14+aa+1a®+1|u(w)— ulws)
[ ( 2 - u(wy) — u(w2)> 2 * 2 2a+1 2 u(wsy) — u(ws)
< u(ws)
= u(wz) — u(ws)
<~
l—a—a?+au(w) —ulwy) 1+aa+la®+lu(w)— u(ws) n —a?+a
2 2 u(ws) — u(ws) 2 2a+1 2 wu(wy)—u(ws) 2
< u(ws)

u(wg) — u(ws)

1—a —a24a u(wi)—u(w2) | 1+a at+l a?+1 u(wi)—u(w2) | —a+a u(ws)
We show that 2T 2 u(w;)—u(w§)+T 20+1 2 u(w;)—u(wz)_{_ 2 > —'Z(

always holds:
u(wi)—u 2(2a+1)

: (w2)
Since u(wz)—u(ws) > a(3a+1)’

l—a—-a®+au(w) —u(wy) 1+aa+la®+lu(w)—ulw) —a?+a
2 2 u(wy) — u(ws) 2 2a+1 2 wu(wse)— u(ws) 2
1—a—a2+a2(2a+1)+1—|—aa—|—1a2+12(2a+1) —a? +a

2 2 aBatl) | 2 2a+1 2 aBatl) 2

— l-a—a’+ta 2Qa+]) 1+o o+l o?41 2(20+1) —a?+a
Let tla) = 575 a@GatD) T 2 2atl 2 a(Gatl) T 2

l-—a—a®+a22a+1) —o*+a l4+aa+1la?+122a+1)

ta) == 2 aBa+l) 2 2 2a+1 2 a(Batl)
:1—a(_a)2a+1+—a2—|—oz+(1—|—oz)(1—|—oz)(1—|—oz2)
2 3a+1 2 2a(3a+ 1)
(-l -a)a(l+2a)+ (—a® + a)aBa+1) + (1 +2a + o?)(1+ a?)
B 2a(3cc + 1)
20" =30 +a—3a"+20° + P +a' +20° +20° + 20+ 1
B 20(3a + 1)

_Oz3+3a2+3a~|—1
 2a(3a+1)

We have shown before that % > 1 always holds when « € (0, 1).

Thus we have proved that f'(A\; = 1) > 0 always holds.

u(wi)—u(wsz) 2(2a+1)

) u(wsz)—u(ws) a(3a+1) nd
A1 < A, there must exist some parameter configurations where e{ > el is
satisfied.

Therefore, it is certain that under the conditions
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When ef > €29 is satisfied, A 'o? > 7. Thus

ol = 3 M@ )
= ) g
> 2%@‘1 =e!

e = ZX(E) () +
= 5 T )
< 2%@‘1 =e!

where ef > e > el

The equilibrium winning probabilities are

/et 1/ NI\ 1 . o, ga
=3 (2) =5 (%) -y

2 \ el 2

1
|
Pz 2 M ()" 2

where piy > ply > % > pi,.

(2) case 2: \ief > €Y and ey > e

ey ~
Player 1 max (1 - %)\126%> U] — ceq

Player 2 max (1 - %%) Ve — ceq
F.o.c

[e1] ﬁegilvl —Cc=

[62] %egil Ug —C=

S.o.c

o] (—a— 1)t <0

2] §(—a— 1) <0

Solve F.O.C | we get
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R GIE e
£ AP () (o)
€1

Check the conditions Ajef > e§ and e; > e5:

D el > €S

always holds.

@) ex = e
€2 5atT (~a q\ 5=t
€—>1<‘:>>\1 (U) 2a+1(/U )2oc+1>]_
1
q
U
< — 1
A 1o? -

According to the results we got from (1), we do not know if there exist some
parameter configurations where ey > e; is satisfied.

(3) case 3: \ief <€y and es > e

Aref
Player 1 max % = L] — cey
Leg ),
Player 2 max —gu5 ) U~ ce
F.o.c
-1
a\ €7 ~q _ . _
lel] L0 —c=
a e 4
€2 5 aftUy — C=
[ ] 2 ey 2

divide the two F.O.C |, we get

e va

=— <1 (1>
6]_ )\]_/U? (1 2)

which contradicts the condition that ey > e

5833&”3 i(ézill)) and \; < \, we know that case 1 equilibrium,

where e} > €7 > el  certainly exists but we are not sure about case 2 equilibrium.
It could be the case that when the overconfident player exerts higher effort than
the rational opponent in the semifinal, his perceived expected utility of reaching the
semifinal is so high that the encouraging effect always prevails in the quarterfinal
and he always exerts higher effort than the rational opponent in the quarterfinal.

To conclude, when
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u(wi)—u(ws2) = 2(2a+1)

3. The equilibrium when wwy)—u(ws) > a(atD) and A\; > )\, which corresponds to (i)

Player 1 maz E9(Uy) = pLd? — cey

2 )\16‘1"

LAef ~q :
ﬁ?vl — C€1 if )\16

(1—l c )?]f—cel if Aef>e
1<
Player 2 max E%(Usy) = p3,vs — ces

1— L9 ) 0 — e, ifey > e
. 2 eg 2 2 2 = C1
<

1e3,.4 :
=294 — ce ife e
29 2 2 2 1

There are 4 cases.

Aed = e and ey < e
Aed = e and ey > e
el <ef and ey > e
Aed <ef and ey < e

Since \; > 1, the fourth case is impossible.

(1) case 1: \jef > €y and ey < e

Aref
Player 2 max 1209 —ce
Y 2e V2 2
F.o.c
a €5 ~q _
[61] ﬁe“il vy —C= 0

o] g —c=0

S.o.c

e (o - 12T <0

] 2(a— 1208 <0

(%
€1

Solve the two F.O.C | we get

er = 5 AT (1) ()"
o o\ —a «
€2 = 5o AT(0]) " (vg)""



_)\1

€1 Ul
Check the conditions Ajef > e§ and ey < e;:

@ /\161 >

As long as ey > e is satisfied, Ajef > e is satisfied.

@ es < ey
e va 4
2 )2
€1 11)(11 )\_1
Let o1
_ 7
) = LU~
T = ) = ulws)
u(wz) —u(ws)  l4+a, -
M) = A A
o= | (s e )

Similar to before, we can get that f(A; = \) > 0.

We can easily get that f(A\ — o0) < 0.

Therefore there must exist some parameter configurations and domains of
overconfidence level where ef > e? is satisfied. When e > e is satisfied, we

have e > 7 > ef.

The equilibrium winning probabilities are
L /ed\N® 1/ Aod\* 1., - o
Py = 2 (e_‘{) D) ( o = 5)\1 (@)™ (v3)

1 o [ —Q (0%
P?Q =1 _pg1 =1- 5)‘1 (Ug) (Ug)

_ e «@ 1 a—1 /~q\—o o
= 1= (M@ @) =1 ED) )

1
where p{y > ply > 5 > p3,.

(2) case 2: \ief = €§ and ey > e
Player 1 max (1 - 55—1) v — cey
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[er] (o= )= a+2U1 <0
lea]  S(—a—1)= QHUQ <0

Solve F.O.C , we get

er =g A () B (v
2c
€2 = oo A (T T (o
C
& AP @) (o)
€1

Check the conditions A\jef > e§ and ey > e;:

D el > €5
)\161
Are] = ey - >1
2
3ot [~ q
= A\ (%)2‘”+1 (vg) 241 >1
always holds.
@) ex>e
€ ST g\ — oL gyl
e 1 e )\ ( 1) 2a+l (/02)20""1 2 1
1
q
)
= - >1
AL Uy

=01 > \['0]

According to the results in (1), there must exist some parameter configura-
tions where ed > ef is satisfied.

When ef > ef is satisfied, v¢ > A '9?. The equilibrium efforts are
o -2l atl a
q _ 2a+1 (N9 q
el = 2—0)\ (0]) 2071 (v] ) 2041
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= gk T A
a+1

— 5 ()\ 1'{;’?)2044-1 (/Ug)QcH—l
&
o _ _

< —201}‘1 = ¢!

where ef < el <€

The equilibrium winning probabilities are

[0}

1
q\ @ —1759) 2a+1 o N N
p‘{Q — 1 <ﬁ> — 1 M — 1)\1_2&4'1 (’6‘{) Za+1 (Ug)im

2 \ el 2 (U3>T1+1 2

1 -« o __o
po =1 —ply=1— A " (0]) %7 (v3) 2051

2
1 (e3)" O~ P S,
Pa=1- g3 o = L gh @) e
Thus we have pf, > py > 1 > pl,.
(3) case 3: \jef < e€§ and ey > e
Player 1 max 1y L] — cey
2 es
Player 2 max ( %—Z) — cey
€3
F.o.c
ar et ~q _
el o5t Ul —c=
eot
[e2] %egﬁvg —c=

divide the two F.O.C |, we get

€9 vg

€1 /\1

<1 (v >

which contradicts the condition that ey > e

To conclude, under the condition that ZEM;:ZEﬁ; > igi:ll)) and A\ > A\, depend-
ing on the utility spread and overconfidence level, in equilibrium the overconfident
player can exert either lower or higher effort than the rational player. Both situations

exist with certainty. We know for sure that e? > &% > ef is satisfied at A, = A.

. The equilibrium when ZEES:ZEEE; < 2((33111

which corresponds to (ii)

Player 1 maz EY(Upy) = pld? — ce;

es ~4q 3 « for

B (1 — 5}\126 ) v] —cep if ey > ef
- 1A1€e? ~q . e «a
3 eg U1 —Ce1 it el <ef



Player 2 maxz E9(Uy) = plvd — ceq
_ ( — %Z—é) vg —ceq ifey > e
<

es .
%évg — cey ifey

There are 4 cases.

Aed = e and ex < e
Aed = ey and ey > e
)\16(11 < 63 and €9 2 €1
Aed <ef and ey < e

Since \; > 1, the fourth case is impossible.

(1) case 1: \jef > €§ and ey < e

Q|1 ~qr1—
r = S D)
Q ~q\—
2 = SN ) ()
q
& _ 4

Check the conditions Ajef > e§ and e; < e5:
@D Aef > €5

As long as ey > ey is satisfied, \jef > ef is satisfied.

@) ex< e
e _ vy 01
€1 - 15% N )\1_1?}411
Let g
Aol —
)\ — 1 1
T = ) = ulws)
_ u(wg) —u(ws) 14+ a -2t
M) = At (1 - A
J) ! ( * u(wy) — u(wsy) 2 !
atl
oy ogh () uley) —ulw) | 1ta,oge)
2 u(wy) — u(ws) 2




We can easily get

+ «
1 2a+1
T (2a ny A
1+« 1+u(w2)—u(w3) 1+a) =
2 u(wr) — u(ws) 2
a+1
(a+l 1) Sl |+ u(wz) —u(wz) 1+ Oé)\f;jfl 2ot
200+ 1 ! u(wy) — u(wy) 2 !
+ A1_2O;-:-11 -+ 1 1 + U,(QUQ) _ U(UJ3) o 1 + Oé)\l_;(jfl - 2oFL
200+ 1 u(wy) — u(ws) 2
I+aa+l -ptha
Al
2 2a+1
|- (1 N u(wy) — u(ws) u(ws) )
u(wy) —u(wy) — w(wr) — u(wy)
l+a/f a+1 —atl
1 2a+1
2 (2a e ) M
I1+a . w(ws) — u(ws) 1+ a2+
2 u(wr) — u(ws) 2
a + 1 4 1 )\7 202111 1 4 U’(w2> B U(wg) 1 + Oé)\72lojr+a1 %
2a0+1 ! u(wy) — u(ws) 2 !
L cEglta (@)’ <1 L ulws) —u(ws) 1+ a“l;fl)‘ﬁl
! 2 (2a+1) w(w) —u(wy) 2 7
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+a u(wy) —u(ws) 14 a)2F
— 1+ —
2 u(wy) — u(ws) 2
a+1 u — 1+ Zat1
. 4 14 (w2) — u(ws) _ o
200+ 1 u(wy) — u(wy) 2
+04+1 1+u(w2)—u(w3)_1+a TR 4 q a4l
200+ 1 u(wy) — u(ws) 2 2 2a+1

- (1 - ZEZji :ZEZ? - u(ws(iui(wz)) = ; - (20;:11 ' 1>

Sl (1 el L) (L (22 10))
( 1

)
S ()
(14t ) _11e) = lraatl
— - (1 sty S ) e ()

+1+a(1+u(w2)—u(w3)_1+o‘) (O‘+1 +1)

2 u(wy) — u(ws) 2
_1+a1+a a+1l a+1
2 2 2a+12a+1

Fu=12Z0
N ST B A ) R Crea B
(et L) (a1 )

l+al+aa+1 a+1 <

2 2 2a+12a+41 =

l+a/a+1 l+a u(wsg) — u
— +1)+ 1+
2 20+ 1 2 U

l4al+aa+l a+l <, U(/IUQ)—'LLUJ3)+ u(ws)
2 2 2a+12a+1~> u(wy) —u(wy)  u(wy) — u(ws)
<:>1—i-oz(oz—i-1 +1)+1+a(1+uw2)—u(w3)_1+a) (a—l—l N )
2 20+ 1 2 u(wy) — u(ws) 2 20+ 1
l+al+aa+1l a+1 u(ws) — u(ws) < u(ws)
2 2 20+120+1  w(wy) —u(wy) > u(wy) — u(w,)

a(Ba+ 1) u(wy) —u(ws) —7a*+ a4+ 8a? +ba+ 1
22a+ 1) u(wy) — u(wsy) 4(2c0 4 1)2

u(ws)

> u(wr) — u(wy)
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If u(ws) a(3a+1) u(wsz)—u(ws) + —7044—i—o¢3—i—8o¢2—i-5az—i-17 then f/()\l — 1) >0

u(wi)—u(ws) 2(2a+1) u(wr)—u(ws) 4(2a+1)2
and thus f(A;) > 0 exists. This means e; > e, must be satisfied under some
domains of overconfidence level given that u(wg_ugzig < (éaill) In this sit-
uation we are certain that case 1 equilibrium exists under some parameter
configurations.
If ot > st | ttsestebion ghon /() = 1) < 0

and thus f(A;) < 0 exists. In this situation we do not know if e; > ey will
u(wi)—u(w2) < 2(2a+1)

w(wa)—u(ws) < a(Batl)" It is not clear whether case 1

be satisfied given that
equilibrium exists.

(2) case 2: \jef = €§ and ey > e

o _ o+l o atl a
er =5 M T (@] (o)

—— Tarl 5ot (1l a+11
>‘ (v 1) (v3)2

1
2 AT @) )

Check the conditions Ajef > e§ and ey > e;:

D et > €5

always holds.

@) ex>e
€2 2a1+1 ~g\— s g\
- > 1 <= A\ (0]) 2201 (vd)2am1 > 1
1
”g > 1

4 1~q
=01 > >\1 Ok

Similar to the results in (1):
u(ws) a(3a+1) u(wz)—u(ws) —7ot+a?+8a2+5a+1 _

If u(wﬂ—i(wg) 2(2a+1) u(wj)—u(wi) + +(2;r+1)+ 2, then f'(\ = 1) > 0.
This means f(A;) < 0 and thus e; < e are satlsﬁed when \; is extremely
. u(wi)—u(ws2) 2(2a+1)

large, given that wws)—u(wy) S a(@atl)”

case 2 equilibrium exists under some parameter configurations.

In this situation we are certain that

u(ws) o(3041) u(ws)—u(ws) | —7ata’isa’t5atl 3
I ot > 30ty ww (g T e s then f/(A =1) <0

and thus f(A1) < 0 exists with certainty when \; is close to 1 or extremely
large. In this situation we are also certain that case 2 equilibrium exists
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under some parameter configurations.

When ef > e is satisfied, 7 > A '97. The equilibrium efforts are

el = S F ) 7

C

= oA () (o) B
C

1—L~L __oa
ph= 1= phy = 1= oA T @) ()0

1 (eq)a 1 —oatt __a _a
. =1 — - \2) 1 — 2\, 2ot 1) 2041 (pd) 201
P12 2N (e'f)a 51 (01) (v3)
where pf, > p3; > 5 = ply.

(3) case 3: Aief < e§ and ey > e

Player 1 max %AE?L U] — ceq
Player 2 max (1 — %%) va — cey
F.o.c

er] =T o=

[ea] %%vg —c=

divide the two F.O.C | we get

e vg

=<1 ((¥>e
o )\1@«11 (0] > v3)

which contradicts the condition that ey > e

ZEZ;;:ZEZ?& < i(ézﬁ)), case 2 equilibrium exists

with certainty. Whether case 1 equilibrium depends on the relationship between the

.. . u(ws) a(3a41) u(w2)—u(ws) | —Ta*+a3+802+5a+1
utility spread in each stage. When u(wl)_z(w) < 3GatT) u(wf)_u(wz) + 1(2at1)?

and A; is close to 1, e > @ > el is satisfied and the overconfident player exerts
higher effort at equilibrium than the rational player and the benchmark.

To conclude, under the condition

5. Participation constraints
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(1) When ef > el

E*(Uyz) = ply0} — cef
> piati — cef
=(L¥bﬂ%r%@f)%—c%w*amlwﬂf
=] — _Aa (vf ) " (03)" _)‘a ' (v )1 “ (vg)”
>ﬁ—§m@@P%v>—§W(w )"
=07 - ¢ (O] ()"

= (@) [(57?)“ — AT (vg)a]

>0

E1(Uy) = Pgﬂ)g — cej
= /\a (@)™ (v§)* v Aa @) (v)*

yﬂ@”@ﬁ%—vm>wy“

1_aa~—a «
e A CIR I

=0

(2) When e < ed
EY(Usa) = plyo] — cef

> 1,97 > 17 and ef < €, we can get that E(Uy,) > E'(U) > 0.

Since pi,
E9(Ua1) = piyvs — cej

1 - - el __a -
— (1 — 5)\1 2a+1 (Ug)&)r‘-l (Ug) 2a+1) ng _ CQ_CA 2a+1 +1 (

SA
~
g
IR
AR
—~
I~
[}
~—
N
Q
+
iR

= (1 T ) ) of - AT R o

1 o~ — o
=g - Ly (ug)

a _a 1 -2 _a
— o (o - LT )
>0

Next we characterize the equilibrium of the quarterfinal between rational players 3 and
4.

Proposition A10 In a three-stage elimination contest where player 1 is overconfident
and the other seven players are rational, consider the quarterfinal between two rational
players who have the chance of meeting the overconfident player in the semifinal.
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a+1

: (w1)—u(ws) 2(2a+1) 3 3 (w2)—u(ws) _ l4a)— _
(Az) If Z(Z;)_Z(zi) > a(32+1) and A\ < X\ where A > 1 solves 1 + W — )T =

A1+ % — HTO‘), then the equilibrium efforts and winning probabilities satisfy

ed =el <@l and pl, = ply =1/2. A
(i) If either Z&B:Z%i; < z((?,)zill)) or A\ = A, then the equilibrium efforts and winning
probabilities satisfy e3 = el > e and pl, = pl; = 1/2.

Proposition A10 shows that, for the rational players who have the chance to meet
the overconfident player in the semifinal, their expected utility of reaching the semifinal
depend on the equilibrium in the semifinal. When the parameter configurations are
such that the overconfident player exerts lower (higher) effort than his rational rival in
the equilibrium of the semifinal, the rational players’ expected utility of reaching the
semifinal increase (decrease) and thus they both exert more (less) effort.

Proof of Proposition A10

1. Expected utilities of reaching the semifinal

Player 3’s expected utility of reaching the semifinal is given by

vy = Pl (Usy) + 05, E° (Usy)

u(wy ) —u(w 2(2a+1 3
(1) When #ten-tee) o 22003 and Ay < A

E*(Us1) = p3y (v3 — u(ws)) — cez + u(ws)

= DA B — )™ (03 — u(us))* (05 — u(wy))
LN (7 = u(09) ™ (0§ = ()™ + ()
= X0 (3 — wus)) " (0 — uuwy)

= AT (@ — ulws) ™" (05 = u(ws))* " + u(ws)

= TSN (@1 — () (05 — () ()

= 22O 0 ) (5~ uuy)) )
11—« v° — u(ws)

2 ()\1_1 (07 — u(ws
< E°(U)

))) (T° — u(ws)) + u(ws)

et

ES(U32) — E (U)
Thus we have

q 49
v3 <
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. u(wy)—u(w 2(2a+1 N
(2) When either ugwigfugwig < a((mil)) or A\ = A

E*(Us1) = p3 (v3 — u(ws)) — cez + u(ws)

= (1= 30 @ — ) (- ) ) (05 - )

o -2 o atl
—eg A T (0] — w(ws)) 2 (v5 = u(ws)) 4 u(ws)
1 - _a __o
= (1 5 @ = ) (05— u(a) 7 ) (0] = o)
Q| =557 i~ o atl
= oA (O] = u(wy)) R (5 — u(ws)) 2+ u(ws)
s L+o, -5t _a a1
= (05 = u(ws)) = —5—=A " (07 — u(wy)) ¥ (v5 — u(ws)) >+ + u(ws)
s l+a —525 o o
= (0 —u(ws)) = ——=A " (0] — u(ws))>+ (T = ufwy)) >+ + u(ws)
. T+a (AT — u(w Tarl
— (7" — ufu) [1 S (AT e

vl >
Since player 3 and player 4 are identical, v] = vi.

2. Equilibrium efforts
ol — o0 — Lo
3 47508
— u(wi)—u(ws2) 2(2a+1) N
?1{< e?  when u(w;)_u(wi) > CGatl) and A < A

q _
€3 = ¢ u(wi)—u(wsz) 22041) oy s
w(wz)—u(ws) N a(3atl) 12

>¢€? when either

3. Participation constraints

1
BY(Uss) = B%(Uss) = plyvf — ces = 0} — oot
C
_ 1 ; Oévg
=0

Last we characterize the equilibrium of the quarterfinals between rational players 5
and 6, and 7 and 8.

Proposition A1l In a three-stage elimination contest where player 1 is overconfident
and the other seven players are rational, consider the quarterfinals between the rational
players who have the chance of meeting the overconfident player in the final. The equilib-
rium efforts and winning probabilities satisfy ez = e} = e = el > €%, pls = pls = Pl =
pir =1/2.

Proposition A11 shows that, for the rational players who only have the chance to meet

the overconfident player in the final, their expected utilities of reaching the semifinal are
higher and thus their equilibrium efforts in the quarterfinal increase.
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Proof of Proposition A1l

1. Expected utilities of reaching the semifinal

Ug = ES(U57)

= Psy (U5 — w(ws)) — ces + u(ws)

where
v§ = plypis B (Ust) + (1 — plypis) B (Uss)
S S _f
= plapis B (Ust) + (1 — plypis) B (U)
> EB(U) =7
Therefore

4 _ .4 _ 4 _ 4 =g
Vg =V =Us =Vg >
2. Equilibrium efforts

o
4 _ 4 0 4 7 < =4
€5 = €5 = €7 =€y = —U5 > €

2c

3. Participation constraints

E1(Usg) = EY(Uss) = EY(Uzg) = EY(Ugy) = plgvd — ces = —vd — c—vd = vE >
c

4 Two-Stage Elimination Contest with One Underconfident and
Three Rational Players

This section characterizes the equilibrium of a two-stage elimination contest with one
underconfident player and three rational players. Throughout we assume player 1 is
underconfident with 0 < A\; < 1 and players 2, 3, and 4 are rational with Ay = A3 = \y =
1. Players 1 and 2 are paired in one semifinal and players 3 and 4 are paired in the other
semifinal.

4.1 Final

We start by analyzing the impact of underconfidence on the final. Since players 3 and 4
are identical, we consider a final with an underconfident player 1 and a rational player 3
without loss of generality.

Proposition A12 In a final between an underconfident player and a rational player,
the equilibrium effort of the underconfident player is

o
2c

and the equilibrium effort of the rational player is

el = ZA\FoAy,

ef = %A?Au.
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with e{ < eg): < &. The perceived equilibrium winning probability of the underconfident

player is

1
~f _ _)\1+a
D13 oM
and the true equilibrium winning probabilities are
1
fo— 2\
P13 oM

1
pzj’:l = 1_5/\(11

with P§1 >1/2 > p{3 > ﬁ{3 The perceived equilibrium expected utility of the underconfi-

dent player is
- 1 —
B (Uny) = ulws) + —— A" A,

and the equilibrium expected utility of the rational player is

1+«
2

Ef(Ugl) = u(wl) — )\?AU,

with B (Ug)) > B (U) > B (Uyy).

Proposition A12 shows that an underconfident player exerts less effort than a rational
rival in the final and that both players exert less effort than if both were rational. It also
shows that the underconfident player’s perceived and true probabilities of winning the
final are decreasing in his bias whereas the rational player’s true probability of winning
the final is increasing with the bias of the underconfident player. Finally, Proposition A12
shows that the underconfident player’s perceived expected utility of the final is decreasing
in his bias whereas the rational player’s expected utility of the final is increasing in the
bias of the underconfident player. Hence, underconfidence makes reaching the final less
attractive for an underconfident player and more attractive for a rational rival.

Proof of Proposition A12

The perceived winning probabilities of the players are:

«
» 1= gyis if Al > ef
Pi3 = § 1 raey .
1 (0% «
3 en it Aef < el

«
1— l% lf €3
f 2 e§
Psi =31t -

«
2 e

Underconfident player 1 maxz  Ef(Ups) = plaAu — cey + u(ws)

1. — i a > e
1—3 A16?) Au — cey +u(wsg) if Aef > e
1Aef 3 o o
36 Au — ceq + u(ws) if Aef < ef

Rational player 3 maz Ef(Us) = pl,Au — ces + u(w,)

(0]



2eg

( _ﬁ) Au—ces +u(ws) if e3> e
! <

—gAu — ces + u(ws) if ey

There are 4 cases.

Aef <e§ and eg > e
Al <ef and ez < e
Aed = ef and ez < e
Aef > ef and eg > e

Since A\; < 1, the fourth case is impossible.
1. Equilibrium efforts

(1) case 1 Mjef < e§ and e3> e
Player 1 max )\CTAU — cey + u(ws)
3

1
2
Player 3 max ( — %—Z) Au — ceg + u(ws)
€3

e1] agl a_ Au—c: 0

[e3] %%Au —c=0

led] 2+ (a— 1)

fea] G- — 1)k
Solve F.O.C ;| we get
e; = %Xf‘“Au
€3 = g)\?Au
Check the conditions Ajef < ef and e3 >

D el < ef

€3
= AT <1

which always holds.

@ e3>e

ez = e; always holds.
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(2) case 2 \ef < ey and ez <e

Player 1 max %)‘;? Au — ceq + u(ws)
3

Player 3 max 5=2Au — ces + u(w,)

F.o.c

le1] a—hﬁm —c=
3

1
les]  $2—Au—c=

divide the two F.O.C |, we get

e 200—1
A (—1) =1
€3

Check the conditions Ajef > e and eg > e;:

1
63 _ 2a—1
_____Al

€1

@ -1
A €1 _ Sa—1
1\ - M
€3
1 e

_1 a—1
Since a—1 < 0, A{* " and A\{** have different signs, one of the conditions must
be contradicted. Case 2 does not hold.

(3) case 3 \ief > ey and ez < e

Player 1 max (1 — %;ia) Au — cey + u(wy)
1

[e%
Player 3 maz 5 Au — cez + u(ws)
1
F.o.c
e
le1] ﬁe?ﬁAu —c=0
e?il

les] § s Au—c=0
divide the two F.O.C |, we get
€3

—=X\<1
€1

A <ﬁ> = Al o
€3

which contradicts the condition that \jef > e§. Case 3 does not hold.

Thus we get

Thus the unique equilibrium is

f_ Y Nita —f
el = — M\ “Au<e
1= 5.0
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(e
NAu < &
C

I

where A\jef < e and eg > e;.

1 /e \“ 1
F=—(2X) =2\
Pis 2(63) 51

1 o
pglzl—p{3:1_§A1

2. Winning probabilities

1 \e? 1
~f _ 11 1+a
Pz = 5 es = 5)‘1

where p}, > 1> Pls > Pls.
3. Perceived expected utilities of the final

~ 1 Aref
Ef(Ulg) - 5 Ll

—Au — cey + u(ws)
€3

1
= 5)&JFO‘AUJ — %)\}JFO“AU + u(wy)

_ {(1— HO‘) A ulwe) | p,

2 wy) — u(ws)
<E )
7 lef
E (Ugl) = _5_(1 AU—C€3+U(UJ2)
€3
= (1 - %A?) Au — %A?Au + u(ws)
B u(wy) lta,,
= (1 g ) o
> E ()

The participation constraints are satisfied.

4.2 Semifinals

We now analyze the impact of underconfidence on the two semifinals. We start with the
semifinal with an underconfident and a rational player. Next, we consider the semifinal
with two rational players.

Proposition A13 In a semifinal between an underconfident player and a rational player
of a two-stage elimination contest where player 1 is underconfident and players 2, 3, and
4 are rational, the equilibrium efforts and winning probabilities satisfy € > e5 > e] and

1 ~
P51 > 5 > Pl > Dia-

Proposition A13 shows that in the semifinal, unlike overconfidence who has oppo-
site effects on overconfident players, underconfidence only has negative effects on the
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underconfident player since the perceived expected utility of reaching the final of the
underconfident player is lower than the benchmark. The underconfident player lowers his
effort relative to the benchmark, and the rational player reacts to this by reducing his
effort but not as much.

Proof of Proposition A13

1. Perceived expected utilities of reaching the final
Underconfident player 1:
U1 = B (Uis) + pisEY (Una)

Since players 3 and 4 are identical, Ef(Um) = E'f(UM)

apzﬁnmg:{(1—1;“)M#%+Mw3@2@m1Au<w

Rational player 2:
vy = P B (Uzs) + pis B (Usa)
Since players 3 and 4 are identical, B/ (Usz) = EY (Uyy)

u(w,) _1+a>Au:

o= (U s !

2. The equilibrium

Player 1 maz E*(Us2) = Dio01 — ceq

& ~ .
(1 — %i%) vy —cep if Aef > ed
- 1 Aef ~ . «a «a
3 65} U1 — cey it el <ef

Player 2 maz E*(Us) = p3,v2 — ces

1ef .
— 5o ) va—cey ifex = e
= €2
1 ey f <
5@2}2 — C€y 1Iég & €1

There are 4 cases.

Aed <ef and ey > e
Aed <ef and ey < e
Aed = e and ey < e
Aed = e and ey > e

Since \; < 1, the fourth case is impossible.
(1) case 1: \jef < ey and ey > e

Aref ~
Player 1 max % ég‘l v, — ceq
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Player 2 max (1 - %Z—i) Uy — CEo
2

F.o.c

[e1] 2T —c=0
[e2] %egilw c=0
S.0.c

[e1]  2(a— 1) e v1 <0
lea]  S(— a—1)-—= a+2U2 <0

Solve the two F.O.C , we get

«

e = %)\1114’1(51)14*&(1)2)7&
1+
— g)\?-ﬂ 1— l+a )\t{z—i—l + U("LUQ)
2c 2 u(wy) — u(ws)
(10 o) ey,
u(wy) — u(ws) 2
<e
Qo ~
€ =5 Al (T1)*(v2)' ™"
a 1+a u(wy) “
=—A\'(l1—- A
2¢"" (( 2 ) v u(ws) —U(wz))
u(ws) 1+ a) e
1+ Au
< u(w) — u(ws) 2
<e
Check the conditions A\jef < e§ and ey > e;:

[0} (e%

@ ex>e

€9

€1
always holds.

(2) case 2: \jef < ey and ey < e
1 Are
Player 1 max 3 eg 1)1 ceq
«
Player 2 max %—ivg — cés

F.o.c
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e b —e=0

a 1

[ea] §2 ’UQ—C—O

Divide the two F.O.C , we get

1

61 /02 2a—1
€2 A1

Since vy > A\ v, the condition ey < e; is satisfied if and only if 2o — 1
Now assume that o > % is satisfied.

er = —)\2"‘ 1(1}1)2& 11 (/02)2a 1

>Es

which is not satisfied under the assumption a > %
(3) case 3: \ief > €ef and ey < e

Player 1  max (1 — %Alea> v, — ceq

Player 2 max %—ivg — cés
F.o.c
a J—
lel] 3% a+1v1 c=0
a—1
€] % 20y —c=0
S.o.c

le] 5 (—a— 1) a+2v1 <0

[ea] Sl — 1)

Divide the two F.O.C | we get
€2 V2

2\
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Check the condition A\jef > eg:

which contradicts with A\; < 1 and v; < vs

Thus the unique equilibrium is

€1

2c 2

s _ g)\{ll—s—l (1 — O{)&—l-a + U’(w2)

(1+u( u(ws) _1+a)‘“

wy) — u(wsy) 2

s O l -« «a u(w ) “
62 = —/\1 ( )\%+ + 2 (11}2))

2¢ 2 u(wy) —u
u(ws) 1+
(1 * u(wy) — u(ws) 2

where ef < e3 < €°.

o L/ef\"
p12_2 65

1 l—a u(wy) )a ( u(wy) 1+ a)a
= -\ AT 4 1+ —
271 ( 2 1 u(wy) — u(wsy) u(wy) — u(ws) 2
por =1—pi,
1 11—« u(ws) )a < u(ws) 1+ a> -
=1- A M+ 1+ —
271 ( 2 ! u(wy) — u(ws) u(wy) — u(ws) 2
1 es\*
e
u(ws) 14

- (s ey (1

where p3; > % > piy > Do
3. Participation constraints

E*(Urz) = Pyt — cef

1 ~ o~
= S (@) (v) T — e
-«

82




E*(Uz1) = piyv2 — ce;
=(1- 1)\0‘ (01)" (v2)™ ) vg — cg)\a('ﬁ ) (vg)
- 2 1 1 2 2 % 1 1 2

_ (1 - 1;%? (01)" <v2>“) v2

>0

Next, we characterize the equilibrium of the semifinal between players 3 and 4.
Proposition A14 In a semifinal between two rational players of a two-stage elimination
contest where player 1 is underconfident and players 2, 3, and 4 are rational, the equilib-
rium efforts and winning probabilities satisfy e = e} > € and p35, = pi; = 1/2.
Proposition A14 shows that since playing against an underconfident player in the final

raises a rational player’s expected utility of reaching the final, the rational players 3 and
4 exert higher efforts in the semifinal.

Proof of Proposition A14

1. Expected utilities of reaching the final

Rational player 3:
v3 = pio B! (Us1) + pi B (Usy)
u(ws) 1+« u(ws) 1+a
_ s 1 . A S 1 _
{pm( +u( 1)+p21( +u(

wy) — u(ws) 2 wy) — u(ws) 2
Au

>0

Rational player 4:

Vg =V3 >0
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2. The equilibrium

«
S S

es =€; = —Us3
3 47 5

== [pig (1 + u(wll;(iu23(w2) - J;O‘A?)

u(ws) 1+«
+ (1 —p3 (1 + — ) Au
( i2) u(wy) — u(wsy) 2
a l+a 14« u(ws) 1+a
= — |p° — AY 1 - A
2¢ {pm ( 2 3 )T ( * u(wy) — u(wy) 2 "
1+a 14+« u(wa)
o« 11+ oz)\a ((1 B %) >\1 + u(w1)fz2i(w2)) (1 )\a>
T 2c|2 ! u(ws) lta -
ez 2 Lt S et~
1
+<1+ u(ws) B —I—a> Au
u(wy) — u(ws) 2
> e’
1
s s =
P31 = Paz = 5
3. Participation constraints
1 o
E*(Usy) = p34v3 — ce3 = gUs ~ C5 U3
11—«
>0
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