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Abstract

By allowing individuals to use goods they do not produce, economic exchange is recognized as

driving the wide diversity of economic activities seen in human societies. Since productivity also

depends on innate abilities, we ask whether economic exchange could also have influenced human

evolution and promoted adaptive genetic diversity. We model a system where individuals produce and

exchange goods under a Walrasian equilibrium, with abilities determined by an evolving quantitative

genetic trait. We then analyse how exchange shapes the evolutionary pressures on this trait. Our

analysis demonstrates that exchange consistently promotes negative frequency-dependent selection,

which favours the maintenance of genetic diversity. Exchange also generates stable long-term adaptive

polymorphism when the production of goods requires different abilities. Importantly, we establish

that the mode of exchange matters: markets, where individuals can switch trading partners, promote

genetic diversity under broader conditions than when exchange occurs in isolated pairs. Finally, we

show that genetic diversity and economic specialisation can co-evolve, each facilitating the emergence

of the other under a wider range of conditions. Our findings suggest that economic exchanges play a

crucial role in fostering biological diversity and offer insights into how a culturally determined mode

of organization may have shaped human adaptive genetic evolution.

1 Introduction

The practice of exchanging goods and services is one of the hallmarks of human societies (Oka and

Kusimba, 2008; Feinman and Garraty, 2010) and has profoundly impacted the social organisation of

human groups. The development of economic exchange played a central role in state formation (Service,

1978; Bates, 1983; Fenske, 2014; Depetris-Chauvin and Ozak, 2015), influenced subsistence strategies

(Stiles, 1993), and, perhaps most notably, is regarded as the primary cause of economic specialisation,

leading different individuals within many societies to specialise in producing distinct goods and services

(Smith, 1776; Stigler, 1951). From its earliest origins, human history has been intertwined with exchange,

as evidenced by archaeological findings of long-distance exchange dating back to the emergence of Homo

sapiens 200,000 to 300,000 years ago (Blegen, 2017; Potts et al., 2018). Then, could economic exchange

shape characteristics of a population other than just its social and economic organisation?
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If exchange has driven individuals to specialise in producing certain goods, it may have also shaped

the evolution of biological heritable traits associated with producing these goods. Indeed, a wide range

of heritable traits are likely involved in the key tasks required to produce goods (Polderman et al., 2015;

Houmark et al., 2024). For instance, among the Tsimane people, individuals with strong visual acuity

and high running speed appear to be more successful hunters (Apicella, 2014). Bajau people of Southeast

Asia are able to spend considerable time fishing at great depths of up to 70 meters (Sopher, 1977), thanks

to particular physiological adaptations (Ilardo et al., 2018). More generally, individuals’ earnings and,

presumably their work performance correlate with the main dimensions of personality traits (Denissen

et al., 2018; Barth et al., 2020), which, like physical traits, are partially heritable and shaped by evolution

(Loehlin et al., 1998).

These biological traits evolve by natural selection through their effects on survival and reproduction.

Since economic exchange alters the benefit of producing certain goods, it can also affect the reproduction

and survival of individuals producing these goods, and therefore change the selective pressures on the

traits involved in production. For instance, in the same way that exchange drives diversity in economic

activities, are there conditions under which exchange would lead to the emergence of adaptive diversity

in genetic traits? This possibility cannot be taken for granted. Evolutionary changes in genetic traits are

governed by particular dynamics, with changes generally occurring gradually over multiple generations,

in contrast to economic processes, where individuals can freely and nearly instantly adopt strategies

when it benefits them. As such, genetic diversity is thought to be favored only in restricted cases

where parents and offspring occupy the same economic roles across generations (Smaldino, 2014), while

arguments proposing that exchange and specialisation lead to phenotypic diversity typically apply to

plastic behavioural traits or skills acquired through learning (Montiglio et al., 2013; Lukaszewski et al.,

2017; Smaldino et al., 2019; Durkee et al., 2022). Yet debate persists (Hunt and Jaeggi, 2022), and it

remains an open question whether adaptive genetic diversity—and, by extension, phenotypic diversity

across a wider range of traits—can be favoured by economic exchange in diverse societies, or whether it

requires stricter conditions, such as individuals exclusively dedicating their time to distinct roles.

It also remains unclear whether biological traits, such as physical aptitudes or personality differences,

influence the conditions under which individuals tend to specialise in producing distinct goods in the

presence of economic exchange. The importance of these interactions—on one side biological traits

and on the other side a humanly devised mode of organization—is increasingly recognized, as shown

by the development of the gene-culture co-evolution theory (Cavalli-Sforza and Feldman, 1981; Boyd

and Richerson, 1988; Feldman and Laland, 1996) and the recent integration of genetic data to explain

economic outcomes (Barth et al., 2020; Biroli et al., 2022; Pereira et al., 2022). Interaction between

genetic diversity and economic specialisation has also been prompted by recent evidence showing that

the emergence of distinct economic roles happened earlier in areas where migration events have led to

greater neutral genetic diversity (Depetris-Chauvin and Ozak, 2015, 2020).

Given these open and complex questions, a theoretical analysis appears relevant and even necessary

to understand whether economic exchange might influence adaptive genetic diversity and whether this

changes the relationships between exchange and economic specialisation. Yet, previous studies have
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tended to stay within the domains of their specific disciplines and did not explore the interaction between

exchange, genetic diversity, and economic specialisation. For example, models focusing on the evolution

of genetic diversity under various modes of social organization have not explicitly considered the role of

exchange (Henrich and Boyd, 2008; Vásárhelyi et al., 2015; Vásárhelyi and Scheuring, 2018; Nakahashi

and Feldman, 2014). Conversely, the Ricardian model of economic specialisation assumes that the

abilities of individuals to produce one good or another are exogenous and constant parameters (Varian,

2009).

We address these open questions here by building a comprehensive mathematical model that combines

standard economic and evolutionary approaches. We examine a population of individuals who produce

and exchange goods, explicitly modelling exchange within the Walrasian general equilibrium framework.

In addition, the quantities of goods individuals produce depend on (i) their innate abilities modelled

as a quantitative trait and (ii) their allocation of time to produce each good modelled as a behavioural

strategy. We use this model to investigate (i) how much exchange can affect the adaptive dynamics

of genetic traits and (ii) how genetic diversity and economic specialisation interact. We do this under

two scenarios that reflect distinct modes of exchange experienced by humans at different periods in

history: individuals exchanging goods in isolated pairs, and individuals engaging in exchange within a

large market. We also compare both scenarios to a baseline case of autarky.

2 Model

2.1 Biological scenario

We consider a randomly mixing population of constant and large size N where individuals have economic

interactions according to the following non-overlapping generation life cycle. (i) Each individual produces

up to two goods, one of type x and the other of type y. (ii) Individuals can exchange goods with each

other. (iii) Individuals produce a large number of offspring proportional to their payoff, which depends

on the amount of goods they consume after exchange. As commonly done in evolutionary models

with individual interactions, we assume for simplicity, but without loss of qualitative generality, that

individuals reproduce asexually, meaning that bearing mutations genetic traits are passed intact from

parent to offspring (rather than combining with those of a mating partner). (iv) Adults die and offspring

compete for the breeding spots vacated by the adults and mature, i.e. Wright-Fisher population process

(Ewens, 1979). We next detail each of these events.

Production. The quantity of each good that individuals produce depends on (i) an evolving genetic

quantitative trait affecting their innate abilities to produce the good and (ii) the time they allocate to

the production of the good. Formally, an individual with genetically encoded trait τi ∈ R and time

hi ∈ [0, 1] allocated to produce good x, produces an amount qx(τi, hi) and qy(τi, hi) of goods x and y,
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respectively. These quantities are assumed to take the following functional forms:

qx(τi, hi) = hη
i · r

x(τi), (1)

qy(τi, hi) = (1− hi)
η · ry(τi).

The first component in the products on the right-hand sides of eq. (1) describes the returns of allocating

time to produce each good. The parameter η ∈ [0, 1), which we refer to as the elasticity of scale,

quantifies the decreasing returns to scale of allocating more time to the production of each good. A low

value of η describes production with strong decreasing returns to scale such as foraging and hunting,

where resources become increasingly difficult to find and extract, while η close to one represents constant

returns to scale.

The second component on the right-hand sides of eq. (1), the quantity rk(τi), captures the dependence

of the production of good k ∈ {x, y} by individual i on trait τi and is assumed to be given by

rk(τi) = exp

[
− (τi − ok)

2

σ2

]
(2)

(see top panel of Figure 1 for an illustration). The parameter ok represents the optimal trait value for

which the production of good k is maximal. Different values of ok for different goods capture the notion

that different goods require distinct abilities and thus traits. Thus, there is a trade-off as a trait value

that is optimal for one task is often not optimal for another. For instance, high muscle mass benefits tasks

requiring strength, such as heavy lifting or sprinting but can reduce flexibility, impair fine motor skills

and increase fatigue in endurance activities. The parameter σ2 > 0 represents the production breadth

of goods, that is, how deviations from the optimal trait value decrease production. A low σ2 describes a

knife-edge production breadth where a small deviation from the optimal trait value leads to a sharp drop

in production and so only individuals with a narrow range of traits can effectively produce each good. In

other words, when σ2 is low, production requires highly tailored abilities—for instance, some prey may

be inaccessible without the exact strength-endurance balance needed to dive to certain depths. A high

σ2 represents a plateau production breadth where a large deviation from the optimal trait value leads to

a modest drop in production and so individuals with a wide range of traits can effectively produce each

good.

Exchange. Individuals can exchange the goods they produce with others by giving up a quantity of

one good in return for another. Individual i producing quantity qk(τi, hi) of good k, exchanges eki units

of this good and ends up consuming cki = qk(τi, hi) + eki units of good k. The quantity exchanged eki

is negative for an individual that gives up some good (“sell” the good), positive for an individual that

receives it (“buys” the good) and equal to 0 when exchange does not take place. The quantity of good y

given in exchange of one unit of good x is defined as the price p of good x.

We consider two possible modes of exchange on top of a baseline situation where individuals live in

autarky and do not exchange with each other. First, dyadic exchange where individuals are randomly

paired and each pair is isolated from all others, meaning that they each settle on a potentially different

price. This scenario describes early human societies where the large distances between human groups
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Figure 1: (Top) Quantity of good x and y produced, namely eq. (2), as a function of trait value, assuming

an equal time allocated to the production of each good. The plots illustrate two types of goods, differing

in production breadth σ2, with either high or low values. The optima of production of each good are

ox = −2 and oy = 2. (Bottom) Modes of exchange considered: (i) autarky where exchange is not

possible, (ii) dyadic exchange, where individuals exchange in randomly formed pairs, with each pair

potentially settling on different prices independently, and (iii) market, where a single price is determined

by aggregate production across all individuals.

would have limited the number of partners with whom to exchange (Polanyi et al., 1957; Dupuy, 2016;

Huck et al., 2023). Second, we consider market exchange, where individuals can freely switch trading

partners. This scenario reflects later societies, where exchanges occurred in large markets, as it has been

described in many different preindustrial societies (Feinman and Garraty, 2010; Garraty and Stark, 2010;

Blanton and Feinman, 2024).

Payoff After exchange, the payoff πi of individual i depends on the amounts of the two goods he

consumes according to a Cobb–Douglas form: πi = (cxi )
α
(cyi )

1−α. Hence, the goods are essential and

both need to be consumed to entail a positive payoff. The parameter α ∈ (0, 1) captures the relative

importance of good x compared to y for the individual payoff. Unlike classical economic models, where

α typically reflects individual preferences, here α represents the effective contribution of each good to

reproductive success. When α < 0.5, good y is more valuable for fitness than good x. When α > 0.5,
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the opposite holds. If α = 0.5, goods x and y are equally valuable.

Our aim is to conduct an evolutionary analysis of this model under autarky, dyadic exchange, and

market exchange. To do so, we first need to determine the outcomes of the economic interactions that

determine individuals’ payoffs. Because the evolutionary dynamics unfold more slowly than individuals’

behaviour within a generation, we assume that prices and quantities settle at an equilibrium when

determining payoffs.

2.2 Behavioural equilibrium

We assume that individuals are producer-consumers that maximise their payoffs over three decision

variables: the quantities consumed of the two goods and the time allocated to produce each good. Thus,

the decision problem that consumer-producer i with trait τi and time allocation hi faces is

max
cxi∈R,cyi∈R,hi∈[0,1]

(cxi )
α
(cyi )

1−α
, (3)

subject to the budget constraint

p cxi + cyi = p qx(τi, hi) + qy(τi, hi). (4)

The left-hand side of eq. (4) describes the value of the goods individual i consumes measured in units

of good y (the price of good x is p and the price of good y is normalized to 1), while the right-hand side

represents the value of the goods individual i produces.

Solving the optimization problem (3)-(4) provides the equilibrium quantities of each good, ĉxi (p) and

ĉyi (p), and the time allocation ĥi(p) that maximise the payoff to individual i for a given price p. Note

that this procedure determines the quantity ĉki (p) − qk(τi, ĥi(p)) of good k the individual is willing to

exchange at this price. To close the model, we thus need to determine the equilibrium price. We assume

that the price at equilibrium p̂ is the one at which the quantities of a good that interacting individuals

want to sell (or buy) are exactly equal to the quantities that other individuals want to buy (or sell).

In other words, we assume a Walrasian equilibrium—the fundamental equilibrium concept of exchange

economics—whereby no surplus nor shortage of resources occurs (Walras, 1874; Arrow, 1951; Debreu,

1951; Mas-Colell et al., 1995). Beyond this assumption, we remain agnostic about the mechanism by

which the equilibrium is obtained. Walrasian equilibrium has been shown to arise under different types

of bargaining procedures in dyadic exchange (Yildiz, 2003; Dávila and Eeckhout, 2008), and has been

observed countless times in experimental markets, even when the number of traders is small (Kagel and

Roth, 1995; Lin et al., 2020).

At a Walrasian equilibrium, the equilibrium price, p̂, has to satisfy the following condition

Nint∑
i=1

ĉxi (p̂) =

Nint∑
i=1

qx(τi, ĥi(p̂)), (5)

where Nint is the number of interacting individuals. Under dyadic exchange, Nint = 2, while for market

exchange, we have Nint = N . The solution to the optimisation problem (3)-(4) and eq. (5) determines
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the equilibrium allocation (ĉxi (p̂), ĉ
y
i (p̂), ĥi(p̂)) for each individual i in the population. At the Walrasian

equilibrium, we have the unique feature that all individuals end up consuming precisely the quantities

that would maximise their payoff, and thus, we take this consumption to determine the payoff that

determines their survival and reproduction (recall our life-cycle). We solve this equilibrium explicitly

for the two modes of exchange along the special case of autarky in Appendix A to obtain the quantities

consumed for each good, the time allocation and the price at equilibrium for any distribution of types of

individuals. Having established the equilibrium behaviour as a function of traits of individuals, we can

now proceed to the evolutionary analysis.

2.3 Evolutionary analysis

To perform our evolutionary analysis we make the standard assumptions of quantitative trait evolution

that the mutation rate is low and the effect size of mutations on trait values are small (e.g. Eshel

et al., 1997; Geritz et al., 1998; Rousset, 2004; Walsh et al., 2018; Avila and Mullon, 2023). With these

assumptions, we can characterize long-term gradual evolution by focusing on the payoff π(τ, θ) of a single

individual with trait τ — henceforth called a mutant — which arises in a population of individuals that

are monomorphic for trait θ — henceforth called the resident population (a full description of the method

can be found in Appendix B.1). According to our model, the payoff of a mutant, derived in Appendix

B.2, is given by

π(τ, θ) =
[
ĉx(τ, θ)]α

[
ĉy(τ, θ)]1−α, (6)

with equilibrium consumption of goods x and y given by

ĉx(τ, θ) = α

[
qx(τ, ĥ(τ, p̂(τ, θ))) +

1

p̂(τ, θ)
qy(τ, ĥ(τ, p̂(τ, θ))

]
(7)

ĉy(τ, θ) = (1− α)p̂(τ, θ)

[
qx(τ, ĥ(τ, p̂(τ, θ))) +

1

p̂(τ, θ)
qy(τ, ĥ(τ, p̂(τ, θ)))

]
, (8)

and equilibrium time an individual with trait τi ∈ {τ, θ} faced with price p allocates to produce good x

given by

ĥ(τi, p) =
1

1 +

[
1

p

ry(τi)

rx(τi)

] 1
1−η

. (9)

The equilibrium price p̂(τ, θ) a mutant individual faces in eqs. (7)–(8) satisfies

p̂(τ, θ) =
α

1− α
· q

y(τ, ĥ(τ, p̂(τ, θ))) + qy(θ, ĥ(θ, p̂(τ, θ)))

qx(τ, ĥ(τ, p̂(τ, θ))) + qx(θ, ĥ(θ, p̂(τ, θ)))
, (10)

for dyadic exchange, while for market exchange the equilibrium price satisfies

p̂(τ, θ) = p̂(θ) =
α

1− α
· q

y(θ, ĥ(θ, p̂(θ)))

qx(θ, ĥ(θ, p̂(θ)))
. (11)

At the behavioural equilibrium, the quantities consumed, ĉx(τ, θ) and ĉy(τ, θ), consist of fractions of the

total budget an individual can consume, measured in units of good y (expression in square brackets in

eqs. 7–8). These quantities depend on the relative importance of each good for the individual’s payoff,

α for good x and 1− α for good y.
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The fraction of time devoted to producing good x at equilibrium ĥ increases with the relative value

of good x compared to good y (noting that the price of good y is normalized to 1) and with the

individual’s relative efficiency in producing x versus y. The strength of this relationship depends on η:

when η is close to 1, time allocation is highly responsive to changes in price and productivity, whereas

as η approaches 0, time allocation becomes nearly independent of both price and individual traits (and

economic specialisation remains limited).

Finally, the price at Walrasian equilibrium depends on (i) how much good x contributes to the payoff

relatively to good y, and (ii) how rare good x is relative to good y—between the two individuals in dyadic

exchange or among the resident population in exchange, where the mutant is ignored due to the large

group size.

We can now infer the evolutionary dynamics from eqs. (6)–(11) as follows. In a first time, the

population will evolve by directional selection with the average trait value in the population chang-

ing in the direction indicated by the payoff gradient, ∂π(τ, θ)/∂τ |τ=θ=θ∗ , until a singular point θ∗ is

reached where the payoff gradient vanishes. Once the population has converged to such a trait value

θ∗ under directional selection, i.e. a so-called “convergence stable” trait value has been reached (a

point at which dS(θ)/ dθ|θ=θ∗ = ∂2π(τ, θ)/∂τ2
∣∣
τ=θ=θ∗ + ∂2π(τ, θ)/∂τ∂θ

∣∣
τ=θ=θ∗ must be negative), the

nature of selection at that point can be of two types. Either (a) selection is stabilising so that the

trait value is “locally uninvadable” and evolution stops; or (b) selection is disruptive, in which case the

population evolves further. Disruptive selection requires that the uninvadibility coefficient is positive

(∂2π(τ, θ)/∂τ2
∣∣
τ=θ=θ∗ > 0), which entails that the population will subsequently divide into two dis-

tinct morphs with different trait values (polymorphism), i.e. evolutionary branching occurs. It follows

from these considerations that polymorphism evolves by gradual evolution if directional selection is first

convergent and subsequently disruptive. A necessary condition for this to occurs is the presence of

negative-frequency dependent selection (which requires that ∂2π(τ, θ)/∂τ∂θ
∣∣
τ=θ=θ∗ < 0).

As our full model is involved, we divide our evolutionary analysis into two parts in order to be able

to distinguish between the role of exchange and time allocation in favouring genetic diversity. First,

we analyse the effect of exchange on adaptive genetic diversity holding time allocation fixed and set

qk(τ, h) = qk(τ). Second, we let the time allocation depends on the trait (as per eq. 9) and analyse the

full model. For each case, we also start by analysing what is the trait value that would be favoured by

evolution in the absence of exchange (autarky).

3 Evolutionary analysis with fixed time allocation

3.1 Autarky

In the absence of exchange, the quantities that an individual consumes are equal to what it produces

whereby the mutant payoff in eq. (6) can be simplified to

π(τ, θ) = [qx(τ)]α[qy(τ)]1−α, (12)
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which does not depend on the resident trait value. Using eqs. (1)–(2), the payoff gradient derived from

this expression yields a single equilibrium point

θ∗ = αox + (1− α)oy, (13)

which is both convergence stable and uninvadable (see A-46). In the absence of exchange, the popula-

tion is expected to evolve towards and remain at a single trait value located between the two optimal

production values. Hence, evolution will favour individuals to express a generalist genetic trait, leading

them to produce similar quantities of each good when α is close to 0.5, albeit with reduced efficiency

compared to the maximum achievable production for each good. Further, each individual will express

the same genetic trait, namely, no adaptive genetic diversity is favoured under autarky.

3.2 Dyadic exchange

Now consider that individuals can exchange in dyadic interactions. Using eqs. (6)–(10), we find that

there is a unique interior equilibrium θ∗ = αox + (1− α)oy, which is exactly the same as in the absence

of exchange (eq. (13)). Furthermore, this trait value is convergent stable (Appendix B.3.2). Hence,

exchange does not alter the nature of directional selection and the population first evolves towards the

same equilibrium point as under autarky. Yet, exchange will affect the evolutionary stability of the

convergence stable trait value. To understand this, we first note that the presence of exchange always

entails negative-frequency dependent selection, since

∂2π(τ, θ)

∂τ∂θ

∣∣∣∣
τ=θ=θ∗

= −qx(θ∗)(−2+α)qy(θ∗)(1−α)

(
1

4

)(
α

1− α

)(
∂qx(τ)

∂τ

∣∣∣∣
τ=θ=θ∗

)2

< 0, (14)

which is true for any relationship between the trait and the productivity, e.g. any functions as defined

in eqs. (1) and (2). The rationale behind this result is that when an individual deviates from the

singular point by producing more of one good as a result of an increase in trait value, that good becomes

more common, leading to a decrease in its price and value, while the other good becomes rarer and

more valuable. As a result, individuals in the population whose traits deviate in the opposite direction

produce more of the now scarcer good, and achieve a higher payoff than those who continue producing

the more abundant good. This generates selective pressures that favour individuals producing the rarer

good, ensuring that in a population with two distinct types, neither can completely replace the other.

Eq. (14) establishes that economic exchange generically creates selection favouring coexistence of

distinct morphs, but it does not ensure that exchange will result in distinct morphs from a monomorphic

population. This second statement is true if selection is disruptive at θ∗, as it means that mutants

deviating from the mean have a higher payoff than those at the mean. We find that disruptive selection

occurs when(
αqy(τ)

∂2qx(τ)

∂τ2
+ (1− α)qx(τ)

∂2qy(τ)

∂τ2

)∣∣∣∣
τ=θ=θ∗

> −3

4

(
∂qy(τ)

∂τ

∂qx(τ)

∂τ

)∣∣∣∣
τ=θ=θ∗

. (15)

This requires that the second derivatives of the quantities produced with respect to the trait are large

enough (note that the right-hand side is positive as the partial derivatives are of opposite signs at the

generalist singular point). This condition implies that having a trait deviating from the singular point
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must increase the production of the goods at a rate much greater than linear. Substituting eqs. (1)–(2)

into eq. (15), the condition for polymorphism to emerge translates as

(ox − oy)
2

σ2
>

2

(1− α)α
. (16)

The left-hand side of eq. (16) is the ratio of the squared difference between the trait values ox and

oy (which maximise production of goods x and y, respectively) to the production breadth σ2. This

measures how much an individual excelling at producing one good performs poorly at producing the

other and represents the degree of trade-off between producing the two goods. The population becomes

polymorphic when this trade-off is strong, as it would be the case for goods that require very different

traits to be produced. The right-hand side of eq. (16) depends on the relative importance for fitness of

good x compared to good y. Since the denominator is largest when α = 0.5, the condition is easier to

satisfy when the two goods are equally valuable for fitness. When one of the goods is much more valuable

for fitness than the other, that is, α is either close to 0 or 1, the condition is harder to satisfy.

We validate these analytical results using individual-based simulations (see Appendix B.5 for details),

which allow us to illustrate the typical trajectory of trait evolution in a scenario where the population

initially lives in autarky and exchange is introduced after 5000 generations (see top left panel of Figure 2).

Individuals initially have a trait value close to the optimum for producing good y, and both goods are

equally valuable for fitness (α = 0.5). Prior to the introduction of exchange, the population evolves first

under autarky towards the singular trait value, as predicted by the analytical results. During this time,

(i) the population shifts from producing predominantly good y (indicated by a large proportion of red in

the top left panel of Figure 2) to producing both goods (a combination of blue and red), and (ii) the total

quantities of goods produced decreases drastically (bottom left panel of Figure 2). This is because both

goods are equally valuable for fitness, and in absence of exchange, individuals must produce sufficient

quantities of both goods. When exchange is introduced, the population quickly divides into two morphs,

with selection pushing the traits of each morph away from each other until each of the morphs has a

trait close to the optimal trait value for production of one of the two goods (top left panel of Figure 2).

During this process of diversification, the quantities produced, exchanged, and consumed largely increase,

demonstrating the benefits of exchange (bottom left, top right, and bottom right panels of Figure 2 ).

At the long-term evolutionary equilibrium, one fraction of the population produces predominantly good

x, while the other fraction produces almost exclusively good y, yet all individuals consume both goods

(bottom right panel of Figure 2). Exchange allows for genetic diversity, raising production of both

goods while maintaining an optimal allocation of goods. This is why the population composed of the

two morphs who exchange with each other has an average payoff 13 times higher than a population of

generalists who do not exchange (generation 12401 vs. 4801).

Supplementary Figure S1 illustrates the dynamics of the trait when one good is more important for

the payoff than the other. It confirms that (i) a population in autarky converges and remain towards a

singular point which is closer to the optimal of production of the most important good, and (ii) diverges

once exchange is introduced. At the long-term evolutionary equilibrium, the majority of individuals have

a trait close to the optimum of the good that is most valuable for fitness.
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Figure 2: Distribution of trait values (top left), of the quantities produced q (bottom left), exchanged

e (top right), and consumed c (bottom right) as a function of generations. The population remains in

autarky for the first 5000 generations, after which exchange is introduced (indicated by the grey dotted

line). We consider dyadic exchange where exchange takes place between pairs of isolated individuals.

For clearer visualization, the quantities shown are of a subset of 100 randomly selected individuals. In

the plots showing production and consumption, the quantities for each individual of goods x and y are

stacked on top of one another, with individual 1 at the bottom and individual 100 at the top. The

parameters used are production breadth σ2 = 1, an equal importance of each good α = 0.5, optima of

production of each good ox = −2, oy = 2, population size N = 1000, mutation rate µm = 0.01 and

variance of mutations σ2
m = 0.0004.

3.3 Market exchange

We have shown that dyadic exchange (i) always creates negative frequency-dependent selection and (ii)

even generates stable adaptive genetic diversity when the abilities necessary to produce the goods are

different enough. Do these results hold when exchanges take place in a market rather than through

isolated dyadic interactions? Under market exchange, the mutant payoff (eq. 6) and the quantities

consumed (eq. 8) remain the same as under pairwise interactions, only the price needs to be changed

(eq. (11)). Our analysis under market exchange (detailed in Appendix B.3.3) shows that θ∗ = αox +

(1 − α)oy is again convergent stable and that negative frequency-dependent selection will occur at this

point. Yet for this case, the condition for disruptive selection becomes(
αqy(τ)

∂2qx(τ)

∂τ2
+ (1− α)qx(τ)

∂2qy(τ)

∂τ2

)∣∣∣∣
τ=θ=θ∗

> 0 (17)
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When this condition is satisfied, polymorphism emerges as long as the increase in production due to a

deviation in the trait are superlinear. This condition ensures that the gain in production in one good for

a mutant is higher than its loss in the other good. Substituting eqs (1)–(2) into eq. (17) yields

(ox − oy)
2

σ2
>

1

2(1− α)α
. (18)

Comparing the right-hand sides of eqs. (16) and eq. (18) shows that polymorphism emerges under a

broader range of conditions in market compared to dyadic exchange. This suggests that the development

of markets can favor genetic diversity in contexts where dyadic exchange alone is insufficient. The

reason for this difference is that in dyadic exchange, genetic diversity is hindered because an individual

producing more of a good lowers its price at the same time. As a result, genetic diversity only evolves

when the increase in production associated is sufficiently large. However, this effect does not take place

in a market, as an individual does not affect the price by himself.

4 Evolutionary analysis with time allocation decision

Thus far, we have examined the influence of exchange exclusively on the evolution of genetic diversity by

keeping the time allocation h constant. We now examine how exchange shapes both genetic diversity and

economic specialisation by letting individuals decide how much time they want to allocate to producing

each good. We first carry out the evolutionary analysis along the same line as in the previous sections,

before examining more closely the interplay between genetic diversity and economic specialisation using

simulations.

4.1 Autarky

In autarky, we find that the time allocation at equilibrium in eq. (A-3) entails that all individuals allocate

a fraction ĥ = α of their time to produce good x. Substituting this time allocation into the mutant payoff

(eq. (12)) and then into computing the payoff gradient (eq. (A-30)) yields the same single equilibrium

point θ∗ = αox +(1−α)oy than when time allocation was fixed. Furthermore, we find that this singular

point is convergent and evolutionary stable (see Appendix B.4.1). In autarky, individuals thus evolve to

have a similar genetic trait between the two optimals of production, as we found in the case of fixed time

allocation.

4.2 Exchange

We now conduct the evolutionary analysis in presence of exchange using eqs. (6)–(11). While we can

derive analytical results with market exchange, part of the analysis with dyadic exchange must be carried

out numerically since the price can not be explicitly solved analytically. Thus, our analysis with dyadic

exchange focuses on varying two parameters: the elasticity of scale η in increments of 0.05 and the

production breadth σ2 over the range [1, 20] in increments of 1, while setting ox = −2, oy = 2 and

α = 0.5.
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In the presence of exchange, whether dyadic or market based, we find that there is a unique singular

point taking the usual form θ∗ = αox+(1−α)oy (see numerical analysis in the accompanying Mathematica

notebook for dyadic exchange and Appendix B.4.3 for market exchange). Furthermore, this trait value is

convergence stable on the range of η and σ2 considered. As under fixed time allocation, the population

thus first evolve by directional selection towards having the same generalist value of the trait.

At this generalist value, the synergy coefficient is negative on the range of η and σ2 considered

for dyadic exchange and is always negative for market exchange (eq. (A-64)). Hence, there is again

negative frequency-dependent selection at the singular trait value, which opens up the possibility that a

polymorphism might emerge. We next examine the conditions under which disruptive selection occurs

and thus polymorphism emerges by gradual evolution. For dyadic exchange, we assess these conditions

numerically across the parameter space considered and the results are displayed in the left panel of Figure

4. For market exchange, we obtain the following analytical condition (Appendix B.4.3)

(ox − oy)
2

σ2
>

1− η

2(1− α)α
. (19)

This expression is identical to the one derived under fixed time allocation in eq. (18), except that the

right-hand side now includes the additional term 1− η.

These results show that for both dyadic and market exchange, when η is close to 0, the time allocation

is largely independent of the evolving traits and selection is disruptive under the same conditions as

derived in eqs. (16) and (18), consistent with the results obtained under fixed time allocation. When

η is higher, meaning when the effect of diminishing returns is less pronounced, the range of values of

production breadth σ2 within which polymorphism emerges broadens. When η close to 1, individuals

tend to allocate a significant proportion of their time to producing either one good or the other (see

eq. (9)). As a result, polymorphism emerges almost inevitably, even when σ2 is high, that is, even when

the production of goods does not require tailored abilities. The key result is that a context favourable to

economic specialisation significantly broadens the conditions for genetic diversity to emerge. Comparing

the conditions for polymorphism to emerge between dyadic and market exchange (Figure 4) reveals that

polymorphism arises under a broader range of conditions in market exchange than in dyadic exchange.

4.3 Interplay between economic specialisation and genetic diversity

We now examine how the interaction between exchange and genetic diversity affects the distribution of

time allocation in the population. The expression for h in eq. (9) describes how the time allocation of

individuals depends on their traits and the price in a monomorphic population, but it did not clarify

how h is distributed across an evolving population when individuals vary in their traits. To address

this, we return to individual-based simulations under the scenario where the population first evolves

in autarky, and exchange is introduced after a period of time. First, when η is high and exchange is

introduced, individuals—particularly those at the extremes of the evolved trait distribution—shift their

time allocation from producing both goods x and y (spending a fraction α of their time on x and 1− α

on y) to focusing almost entirely on a single good (their h is close to 1 or 0, see Figure 3). In other

words, individuals become specialised in the production of goods. As generations go by, the population
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Figure 3: Evolution of genetic diversity and economic specialisation. (Left) Evolution of trait over

generations. The population remains in autarky for the first 5000 generations, after which exchange

is introduced (indicated by the grey dotted line). We consider dyadic exchange where exchange takes

place between pairs of isolated individuals. (Right) Distribution of trait (x-axis) and time allocation

(colour). Each point represents a single individual. The plot is divided in three parts, each focusing on a

particular time period, (top) at 3000 generations when exchange is absent, (middle) at 5000 generations

when exchange is introduced and (bottom) at 14000 generations to show the long-run outcome. The

parameters used are elasticity of scale η = 0.9, production breadth σ2 = 1, equal importance of goods

α = 0.5, optima of production ox = −2, oy = 2, population size N = 1000, mutation rate µm = 0.01 and

variance of mutations σ2
m = 0.0004.

splits into two morphs where morphs closer to the optimal of production of a good allocate more time

to produce that good (when interacting with the other morph). At equilibrium, the population consists

of individuals with distinct genetic traits and distinct time allocation patterns.

We refer to this variation in time allocation across individuals as economic specialisation and we

measure it by the difference between the highest and lowest h values observed in the population. We

then examine this measure of economic specialisation in the generation immediately after exchange is

introduced and across the parameter space to assess the role of economic specialisation in the emergence

of genetic diversity. Our results show that the transition from autarky to exchange can lead to varying

degrees of economic specialisation, with the greatest differences in time allocation occurring when returns

to scale are high and production breadth is low (Figure 4, supplementary Figures S3, S4). For these

parameter values at which economic specialisation is strongest, genetic diversity consistently emerges, as

shown by the two panels of Figure 4. However, genetic polymorphism can also be favoured even when

the population is not fully economically specialised. For instance, at moderate values of the elasticity
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Figure 4: Effect of the emergence of exchange on genetic diversity and economic specialisation as a

function of production breadth σ2 and elasticity of scale η. The shaded areas in the left panel show the

conditions under which genetic diversity is predicted to emerge, identified by locating the cases where the

singular trait value is both convergence stable and invadable (i.e. selection is disruptive). The right panel

shows the conditions under which economic specialisation is observed after 1 generation (dark shaded

area) and after 10,000 generations (light shaded area) following the introduction of dyadic exchange (top)

or market exchange (bottom). These conditions are determined by identifying when the average difference

between the highest and lowest values of h exceeds 0.8 across 10 replicates of numerical simulations.

The parameters used are equal importance of goods α = 0.5, optima of production ox = −2, oy = 2.

The parameters used specifically for the simulations to obtain the right panels are for population size

N = 1000, mutation rate µm = 0.01, variance of mutations σ2
m = 0.0004, and the initial population is

drawn from a Normal distribution centered on the singular point with small variance 0.0025.
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of scale and low production breadth, individuals continue to allocate a substantial portion of their time

to producing both goods, yet genetic diversity still emerges. This suggests that economic decisions

regarding time allocation promote genetic diversity not only when individuals engage in entirely distinct

production activities, but also under partial specialisation.

To evaluate how genetic diversity, once established at a long-term evolutionary equilibrium, influences

economic specialisation, we examine economic specialisation after 10,000 generations. At this stage, eco-

nomic specialisation is observed across a much broader range of parameter combinations than when

exchange was just introduced (supplementary Figures S3, S4). Notably, the conditions under which

economic specialisation is present now closely align with those that initially favoured the emergence of

genetic diversity (Figure 4). This demonstrates that the emergence of diverse morphs favour economic

specialisation, and importantly, that in some cases, the emergence of genetic diversity has even enabled

the development of economic specialisation. We illustrate this possibility under a scenario where η is low

(presented in Supplementary Figure S5). Here, when exchange is introduced into the population, the

time allocation of individuals remains close to 0.5. However, the variance in the trait quickly increases

and as traits diverge, individuals increasingly focus on producing the good for which they are better

suited (h approaches 0 or 1). In summary, over time, adaptive genetic diversity and economic speciali-

sation reinforce each other, resulting in a population divided into two morphs, each with traits near the

production optimum of one good and entirely specialising in its production (when interacting with the

other morph).

5 Discussion

The impact of economic exchange on the organisation of human societies has long been recognised, yet

its possible footprint on innate human abilities is less understood. In this paper, we introduced an

individual producer-resource model that we combined with a standard economic model of exchange and

a standard evolutionary model to investigate how the presence of economic exchange might shape the

selective pressures acting on quantitative traits involved in the production of goods by individuals. In

our model, the evolving trait can represent a wide range of biological characteristics, provided it has

a heritable genetic component. This includes most morphological and physiological traits, as well as a

substantial proportion of behavioural traits (Polderman et al., 2015). Our findings are summarized in

the following key points.

First, our theoretical analysis reveals that the development of exchange can shift the nature of selection

pressures, from maintaining by stabilising selection an homogeneous population, where all individuals

express a similar generalist trait in autarky, to favouring adaptive genetic diversity in presence of economic

exchange. Specifically, with exchange, selection (i) consistently promotes, at least temporarily, the

coexistence of different morphs through negative frequency-dependent selection, and (ii) can generate

stable long-term adaptive polymorphism by disruptive selection. This occurs because exchange allows

individuals whose heritable traits make them efficient at producing a single good, to still access the other

good, and thus to have a higher survival and reproduction. At the same time, the price dynamics—
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where an increase in production of a given good lowers its relative value and, consequently, the fitness of

these producers—prevent any single type from completely replacing others. Importantly, these processes,

despite resulting in an increase in the overall payoff to individuals and thus the average payoff in the

population, do not require conditions such as population structure, competition between groups, or

groups facing different environments.

Second, we identify the conditions under which exchange promotes adaptive genetic diversity. As

we have seen, a polymorphism is favoured by selection when small deviations from a generalist trait

lead to disproportionately higher production of one good, meaning the gain in production of one good

outweighs the loss in production of the other. This translates in our model in three conditions. First,

production of the two goods must require sufficiently different innate abilities, that is, the trait values

that maximize production of each good, must lie sufficiently far apart. Second, the goods must display a

knife-edge production breadth where small deviations from the optimal trait values (ox and oy) lead to

large reductions in quantities produced, that is, the production breadth (σ2) cannot be too large. Third,

one good can not be much more valuable than the other in terms of fitness, that is the relative importance

of good x (α) cannot be too close to 0 or 1. Our results further show that when exchange takes place

through a market involving many participants, selection generates stable polymorphism in a wider range

of conditions. This suggests that the transition from localised, bilateral exchanges between individuals

to broader market economies, could also have resulted in an increase in human genetic diversity.

Third, our model clarifies how genetic diversity—variation in individuals’ innate productive abilities—

and economic specialisation—variation in time individuals allocate producing each good—can co-evolve.

The interactions between adaptive genetic diversity and economic specialisation have been hard to study

as they can feed back into each other (Buchanan and Yoon, 2002), but our theoretical approach allows

us to disentangle their roles. The presence of economic specialisation on top of economic exchange

greatly widens the range of conditions under which natural selection generates adaptive genetic diversity.

This extends the verbal argument that different economic and social roles promote phenotypic diversity

through learning (Lukaszewski et al., 2017; Smaldino et al., 2019; Durkee et al., 2022) (i) to include

phenotypic diversity arising from genetic variation, as proposed by (Hunt and Jaeggi, 2022) and (ii)

to include traits that are more rigidly determined by genetic factors. However, our results also clarify

that different economic roles are not always necessary for genetic diversity to emerge, as the presence of

economic exchange can result in genetic diversity even when individuals do not differ in the time they

spend producing one good or the other. In contrast, it can even be the emergence of genetic diversity

which allows for the development of different economic roles.

Identifying the conditions and processes that favour genetic diversity has long been a central question

in evolutionary biology, as it underpins the adaptability of populations to environmental changes and

provides insights into past evolutionary processes. Importantly, it is well understood that cultural phe-

nomena could affect genetic diversity, as for instance change in descent system led to a large decrease in

the Y-chromosome diversity (Chaix et al., 2007; Zeng et al., 2018; Guyon et al., 2024). Yet, such exam-

ples remain rare. Our work adds a new example of such relationship by showing that the development of

economic exchanges, and the factors that allowed it (Demps and Winterhalder, 2019), such as changes in
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technology, infrastructure and population density, could have resulted in significantly increased genetic

diversity. So far, a correlation between exchange and genetic diversity has only been tested indirectly,

as previous studies have examined correlations between neutral genetic diversity and economic special-

isation rather than exchange directly (Depetris-Chauvin and Ozak, 2015). Integrating more detailed

data on economic systems, as done in large comparative databases, could allow for a more direct test

(Turchin et al., 2017). Alternatively, a population such as the Tsimane people presents a particularly

interesting case study, as different groups vary in their market integration, and this variation has already

been shown to influence the social structure of these groups (Gurven et al., 2015; von Rueden, 2023).

Our work also predicts, albeit less directly, that the development of exchange and the transition

to market exchange could be associated with an increase in trait diversity. Actually, by removing the

assumptions of asexual population, our model predicts less that the development of exchange would lead

to the emergence of extreme distinct traits, but rather to an increase in the overall adaptive diversity of

traits (Rueffler et al., 2006, see Figure 1 of Dieckmann and Doebeli 1999 for an example). As such, our

results resonates with the recent observation that personality traits can be described by fewer dimensions

in small-scale societies, where exchanges take place to a smaller degree and labour division is limited

(Kelly, 1995), than in industrialised societies (Lukaszewski et al., 2017; Durkee et al., 2022). Again,

previous explanations have mostly explored the role of the number of distinct economic roles to explain

this observation (Lukaszewski et al., 2017; Smaldino et al., 2019; Durkee et al., 2022), but our results

suggest that the prevalence of economic exchange and participation in large markets could also be key

factors.

In economics, specialisation was first considered a direct and almost inevitable consequence of eco-

nomic exchanges, as illustrated by the famous quote by Adam Smith: “the division of labour is limited

by the extent of the market.” Yet, since Adam Smith, a large body of evidence has shown that this state-

ment should be tempered, as past and current human societies exhibit wide variability in their levels of

specialisation. While specialists are prevalent in early states (Claessen and Skalník, 1978), small-scale

societies tend to have very limited division of labour, aside from gendered divisions (Kelly, 1995). There-

fore, a crucial question is what factors could account for the emergence of specialisation in some societies,

while it remains absent in others. Previous hypotheses usually focus on the role of changes in technology,

group size (Ben-Oren et al., 2023), or political elites, and ignore the potential role of biological factors.

Recently, Depetris-Chauvin and Ozak (2015, 2020) have proposed that genetic diversity could also have

been an important factor, based on evidence that economic specialisation emerged first in groups with

higher genetic diversity. Our analysis supports this verbal model and confirms that there are scenarios

where economic specialisation could emerge only under conditions favouring genetic diversity first. In

addition, our findings identify some of these conditions, with for instance the presence of goods whose

production requires different skills, which likely depends on the heterogeneity of the environment.

Essentially no model in the literature has previously explored the conditions under which adaptive

diversity can emerge in heritable traits related to the production of goods when economic exchange is

modelled explicitly, as we have done here. Previous models have demonstrated that diversity in an

evolving trait is expected when social interactions favour anti-coordination (Henrich and Boyd, 2008;
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Vásárhelyi et al., 2015; Vásárhelyi and Scheuring, 2018); for example, tasks where two individuals per-

forming different actions achieve a higher payoff than two individuals performing the same action (Henrich

and Boyd, 2008). Yet, these models focus on how heritable differences can be maintained given a partic-

ular fixed payoff structure. In contrast, our model takes a different perspective by identifying exchange

itself as the process which generates this payoff structure under which specialisation and genetic diversity

emerge. In line with this distinction, our model is particularly related to that of Nakahashi and Feld-

man (2014), who show that the custom of sharing goods can also promote genetic diversity. However,

their result depends on having sufficiently large groups, whereas our results show that genetic diversity

could emerge with economic exchange regardless of group size. This raises the broader question of how

transitions from food-sharing practices to market-based exchanges may have influenced the evolution of

adaptive genetic diversity.

A central assumption of our model is that it focuses on exchange under a Walrasian equilibrium,

a framework with strong theoretical (Mas-Colell et al., 1995; Yildiz, 2003; Dávila and Eeckhout, 2008;

Mandel and Gintis, 2016) and robust empirical support (Lin et al., 2020), demonstrated across numerous

experimental setups (Kagel and Roth, 1995) and diverse cultural contexts (Roth et al., 1991). However,

anthropological evidence has long pointed out that exchange in small-scale societies may also depend on

other factors (Hann, 2017; Polanyi et al., 1957; Sahlins, 1974). For example, while price in our model

dictates that rarer goods are more expensive, in small scale societies, social norms entails that those taking

advantage of owning a desired good are frowned upon or even punished (Lee, 1979; Woodburn, 1982;

Kelly, 1995; Boehm, 2001). Furthermore, price might directly deviate from its value under a Walrasian

equilibrium when it is imposed by a political authority, as commonly observed in past societies (Polanyi

et al., 1957). Investigating how exchange could promote adaptive genetic diversity in alternative economic

systems would be a valuable extension of our analysis.

Our model may seem to overlook the fact that individual’s abilities to produce a given good is also

determined by culturally learned traits. However, this omission does not affect our conclusions. Even

if cultural factors predominantly determine certain productive abilities compared to genetic traits, as

long as skill acquisition is independent of the evolving genetic traits under focus, selection would still act

on these traits as described by our results. Exploring more complex interactions between genetic and

cultural traits, where individuals learn skills that are either well suited or poorly suited to their genetic

predispositions, could be an interesting extension for future work. Furthermore, the quantitative evolving

trait in our model can also be interpreted as a cultural trait, when it is learned from parents (vertical

learning) or from successful individuals (payoff-biased learning). Accordingly, our model predicts that

exchange should favour cultural diversity as well as genetic diversity. In doing so, it extends the idea

that exchange fosters cultural diversity not only by facilitating the spread and recombination of ideas

(Ridley, 2009) but also by shaping the evolution of culturally transmitted traits linked to production of

goods.

When Adam Smith famously proposed that exchange leads to specialisation, he asserted that “the

difference between the most dissimilar characters, between a philosopher and a common street porter,

for example, seems to arise not so much from nature, as from habit, custom, and education.” (Smith,
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1776) Two centuries later, it is widely accepted that biological and cultural factors interact in shaping

human traits, making the picture far more complex than Smith initially envisioned. Our study extends

this insight by demonstrating that exchange itself—the very mechanism Smith described—not only

influences learning and skill acquisition, but may also have shaped adaptive genetic diversity through

evolutionary pressures. The historical transitions from simple exchange to complex markets may not

have merely reorganized production but actively reinforced biological differentiation, making exchange a

long-term evolutionary pressure.
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Appendix A Behavioural equilibrium

In this section, we derive the behavioural equilibrium solving the individual optimisation problem (3)-(4)

of the main text, which determines how individuals produce and exchange goods.

Appendix A.1 Autarky

In autarky, the optimization problem (3)-(4) faced by the producer-consumer individual i reduces to

simply choosing the optimal time allocation and is thus defined by

max
hi∈[0,1]

[qx(τi, hi)]
α
[qy(τi, hi)]

1−α
. (A-1)

The necessary first-order condition for an interior optimum is obtained by solving the following equation

for ĥi

∂
(
[qx(τi, hi)]

α
[qy(τi, hi)]

1−α
)

∂hi

∣∣∣∣∣∣
hi=ĥi

= 0. (A-2)

Substituting eqs. (1) therein and solving for ĥi, we find

ĥi = α. (A-3)

Since the payoff is concave in ĥi, this is also the optimal solution. Hence, in autarky, each individual

allocates a fraction α of their time to producing good x.

Appendix A.2 With exchange

Appendix A.2.1 Consumer-producer decision problem

In the presence of exchange, recall from section 2.1 that the decision problem (3)-(4) that consumer-

producer i with trait τi and time allocation hi faces is

max
cxi∈R,cyi∈R,hi∈[0,1]

(cxi )
α
(cyi )

1−α
, (A-4)

subject to the constraint

p cxi + cyi = p qx(τi, hi) + qy(τi, hi), (A-5)

where cki is the quantity of good k ∈ {x, y} consumed by individual i, qk(τi, hi) is his “endowment” of

good k ∈ {x, y}, which depends on the time allocation hi, and p is the price of good x.

To solve this problem we use standard constrained maximization method (Sydsaeter et al., 2008),

and form the associated Lagrangian function

L(hi, c
x
i , c

y
i ) = (cxi )

α
(cyi )

1−α − λi

[
pcxi + cyi − pqx(τi, hi)− qy(τi, hi)

]
, (A-6)

where λi is a Lagrange multiplier. A necessary condition to solve the decision problem is that the

Lagrangian L(hi, c
x
i , c

y
i ) is maximized with respect to the choice variables cxi , c

y
i and hi. Using eqs. (1),
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the necessary first-order conditions characterising the solutions to the problem are

∂L(hi, c
x
i , c

y
i )

∂hi

∣∣∣∣
hi=ĥi,cxi=ĉxi ,c

y
i=ĉyi

= 0 =⇒ λi

[
pη(ĥi)

η−1rx(τi)− η(1− ĥi)
η−1ry(τi)

]
= 0, (A-7)

∂L(hi, c
x
i , c

y
i )

∂cxi

∣∣∣∣
hi=ĥi,cxi=ĉxi ,c

y
i=ĉyi

= 0 =⇒ α (ĉxi )
α−1

(ĉyi )
1−α

= λip, (A-8)

∂L(hi, c
x
i , c

y
i )

∂cyi

∣∣∣∣
hi=ĥi,cxi=ĉxi ,c

y
i=ĉyi

= 0 =⇒ (1− α) (ĉxi )
α
(ĉyi )

−α
= λi. (A-9)

Time allocation. To solve the first-conditions, we first focus on the time allocation. Solving eq. (A-7)

for ĥi gives

pη(ĥi)
η−1rx(τi)− η(1− ĥi)

η−1ry(τi) = 0 (A-10)

⇐⇒ p (ĥi)
η−1rx(τi) = (1− ĥi)

η−1ry(τi) (A-11)

⇐⇒ (ĥi)
η−1

(1− ĥi)η−1
=

1

p

ry(τi)

rx(τi)
(A-12)

⇐⇒

(
ĥi

1− ĥi

)η−1

=
1

p

ry(τi)

rx(τi)
(A-13)

⇐⇒

(
1− ĥi

ĥi

)1−η

=
1

p

ry(τi)

rx(τi)
(A-14)

⇐⇒ 1− ĥi

ĥi

=

[
1

p

ry(τi)

rx(τi)

] 1
1−η

(A-15)

⇐⇒ 1

ĥi

− 1 =

[
1

p

ry(τi)

rx(τi)

] 1
1−η

, (A-16)

which gives

ĥi(p) =
1

1 +
[
1
p
ry(τi)
rx(τi)

] 1
1−η

. (A-17)

Owing to the fact that 0 ≤ η < 1, the Lagrangian is concave in hi, which is sufficient for this solution to

maximize the Lagrangian, holding everything else constant. Eq. (A-17) thus describes the time allocation

which maximises the payoff of the individual as function of the price.

Quantities consumed. Let us now focus on consumption. Dividing eq. (A-8) by eq. (A-9), we have

α (ĉxi )
α−1

(ĉyi )
1−α

(1− α) (ĉxi )
α
(ĉyi )

−α = p.

Solving for ĉyi gives

ĉyi =
1− α

α
p ĉxi . (A-18)

Substituting into eq. (A-5) and solving for ĉxi , we get the consumption at equilibrium for good x as

function of the price

ĉxi (p) = α

[
qx(τi, ĥi(p)) +

1

p
qy(τi, ĥi(p))

]
, (A-19)

which is called demand function of good x in economics. Substituting back this expression into eq. (A-18),

we get the demand function for good y by individual i

ĉyi (p) = (1− α)p

[
qx(τi, ĥi(p)) +

1

p
qy(τi, ĥi(p))

]
. (A-20)
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Because the Lagrangian (A-6) is concave in the consumptions cxi and cyi and the solutions eqs. (A-19)–

(A-20) are unique, these are the optimal solutions to the decision problem (Sydsaeter et al., 2008). The

consumptions so obtained depend on the price, and to close the model we need an expression for the

equilibrium price to which we next turn.

Appendix A.2.2 Price at equilibrium

Owing to our assumption of a Walrasian equilibrium (section 2.1), the equilibrium price p̂ is the one

at which the total quantities produced by the interacting individuals equals total consumption. This

requires that the price satisfies
Nint∑
i=1

ĉxi (p̂) =

Nint∑
i=1

qx(τi, ĥi(p̂)), (A-21)

where recall Nint is the number of interacting individuals, either 2 in dyadic exchange or N in market

exchange.

Substituting eq. (A-19) into eq. (A-21) and solving for p̂, we get the equilibrium price

p̂ =
α

1− α

∑Nint

i=1 qy(τi, ĥi(p̂))∑Nint

i=1 qx(τi, ĥi(p̂))
. (A-22)

Under market exchange we set Nint = N into this expression. Under dyadic exchange Nint = 2, there

are two interacting individuals, say i and j, whereby the price can be simplified to

p̂ =
α

1− α

qy(τi, ĥi(p̂)) + qy(τj , ĥj(p̂))

qx(τi, ĥi(p̂)) + qx(τj , ĥj(p̂))
. (A-23)

These expressions for the equilibrium price p̂ are only implicit, since p̂ appears on both sides. To

solve for the price, we substitute eq. (A-17) along eqs. (1) for each player into eq. (A-22) (or eq. (A-23))

and solve the resulting equation numerically for p̂. Note that when the time allocation is fixed, the price

is directly given by the explicit expressions in eq. (A-22) and eq. (A-23). We later show in Appendix

B.2.2 that this is also the case under market exchange in a monomorphic population. The above method

allows us to determine the equilibrium price, which we next show to be unique.

Uniqueness of equilibrium price We now demonstrate that eq. (A-22) has a unique solution. To do

so, we first reformulate eq. (A-22) as a root-finding problem, by defining the function f(p̂) for p̂ ∈ [0,∞)

such that solving eq. (A-22) is equivalent to solving f(p̂) = 0, which yields

f(p̂) =
α

1− α

∑Nint

i=1 qy(τi, ĥi(p̂))∑Nint

i=1 qx(τi, ĥi(p̂))
− p̂. (A-24)

We first assess the monotonicity of f(p̂). Differentiating f(p̂) with respect to p̂ gives

df(p̂)

dp̂
= −1+

α

1− α

Nint∑
i=1

1

qx(τi, ĥi(p̂))2
·∂ĥi(p̂)

∂p̂
·

(
qx(τi, ĥi(p̂))

∂qy(τi, ĥi(p̂))

∂ĥi(p̂)
− qy(τi, ĥi(p̂))

∂qx(τi, ĥi(p̂))

∂ĥi(p̂)

)
.

(A-25)

Using eqs. (1), the partial derivatives in the brackets satisfy ∂qy(τi,ĥi(p̂))

∂ĥi(p̂)
< 0, i.e. increasing time allocated

to produce good x decreases production of good y, and ∂qx(τi,ĥi(p̂))

∂ĥi(p̂)
> 0, i.e. increasing time allocated

to produce good x increases production of good x. Since these signs imply that the bracketed term is
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negative over the domain of p̂, the entire derivative df(p̂)
dp̂ is always negative if and only if ∂ĥi(p̂)

∂p̂ > 0 for

all p̂ ∈ [0,∞). Using eq. (A-17) shows that this is always true as

dĥi(p̂)

dp̂
=

(
1
p̂
ry(τi)
rx(τi)

) 1
1−η

p̂(1− η)

(
1 +

(
1
p̂
ry(τi)
rx(τi)

) 1
1−η

)2 > 0. (A-26)

Thus, df(p̂)
dp̂ is always negative and the function f(p̂) is strictly decreasing.

We then evaluate the sign of the function at the boundaries of its domain. Using the functional forms

of qx(τi, ĥi(p̂)) and qy(τi, ĥi(p̂)) in eqs. (1), along ĥi(p̂) in eq. (A-17) , we note that as the equilibrium price

approaches 0 (p̂ → 0), the equilibrium time allocated to produce good x also converges to 0 (ĥi(p̂) → 0),

and thus the production of good x vanishes while the production of good y increases to its maximum.

lim
p̂→0

qx(τi, ĥi(p̂)) = 0, lim
p̂→0

qy(τi, ĥi(p̂)) = ry(τi), (A-27)

while, as the equilibrium price approaches its maximum (p̂ → ∞), equilibrium time allocated to produce

good x converges to its maximum too (ĥi(p̂) → 1), and thus the production of good x increases to its

maximum while the production of good y vanishes.

lim
p̂→∞

qx(τi, ĥi(p̂)) = rx(τi), lim
p̂→∞

qy(τi, ĥi(p̂)) = 0. (A-28)

Substituting these limits into f(p̂) shows that

lim
p̂→0

f(p̂) = ∞, and lim
p̂→∞

f(p̂) = −∞. (A-29)

Thus, f(p̂) is positive at the lowest bound of p̂, and negative at the highest bound of p̂. Since f(p̂) is

strictly decreasing, it follows that there exists a unique root, and thus a unique price satisfying f(p̂) = 0.

Appendix A.2.3 Equilibrium consumption and time allocation

With the equilibrium price determined, we now turn to the final step, determining time allocation and

the quantities ultimately consumed by individuals. The time allocation at equilibrium is obtained by

substituting the equilibrium price satisfying eq. (A-22) into eq. (A-17). For consumption, substituting

the equilibrium price into eqs. (A-19)–(A-20) gives the demand functions at the Walrasian price. Since

at this price, the market clears (eq. (A-21)), there is no surplus or shortage, and all individuals end

up exchanging and consuming precisely the quantities specified by their demand functions (this being

an unique property of Walrasian equilibrium). Thus, the quantities consumed at equilibrium for each

individual i ∈ {1, 2, . . . , N} are ĉxi (p̂) and ĉyi (p̂), which determine the payoff to each individual. This

completes the derivation of the behaviour equilibrium and price, which we can now use in the evolutionary

analysis, whether the analytics or the individual-based simulations.
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Appendix B Evolutionary analysis

Appendix B.1 Adaptive dynamics

To study the evolutionary dynamics of the quantitative trait τ , we make the standard assumptions that

the mutation rate is low and that the phenotypic effects of mutations are small. Accordingly, we can

describe the long-term evolutionary dynamics of the trait by focusing on the invasion fitness (geometric

growth ratio) W (τ, θ) of a mutant with trait τ introduced in a population monomorphic for trait θ (e.g.

Eshel, 1983; Taylor, 1989; Christiansen, 1991; Eshel et al., 1997; Geritz et al., 1998; Avila and Mullon,

2023). We further assume that invasion fitness is of the form W (τ, θ) = w(π(τ, θ), R(θ)), where w is

a monotonically increasing function of payoff π(τ, θ) and R(θ) is a one dimensional regulating variable

entailing that in a fully monomorphic population the consistency condition W (θ, θ) = w(π(θ, θ), R(θ)) =

1 holds for all θ ∈ R. Then, it is sufficient to focus on the payoff π(τ, θ) of a mutant τ in a resident θ

population to characterise the evolutionary dynamics (e.g. McNamara and Leimar, 2020). The direction

in which the trait value changes in a population at θ can then be evaluated from the payoff gradient

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

. (A-30)

A trait value θ∗ satisfying S(θ∗) = 0 will be called a singular trait value and is a candidate evolutionary

equilibrium.

The local evolutionary dynamics around a singular points can be characterised by the sign of the

three components of the following expression:

dS(θ)

dθ

∣∣∣∣
θ=θ∗

=
∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

+
∂2π(τ, θ)

∂τ∂θ

∣∣∣∣
τ=θ=θ∗

, (A-31)

which are, respectively, the convergence stability, uninvadability, and synergy coefficients at θ (e.g. Eshel,

1983; Eshel et al., 1997; Geritz et al., 1998). The convergence stability coefficient dS(θ)
dθ

∣∣∣
θ=θ∗

indicates

the direction of selection on the trait value when the resident population is in the neighbourhood of the

singular point θ∗. A negative coefficient means that a population with a trait higher than the singular

point θ∗ will evolve towards a smaller value and thus the singular point is an evolutionary attractor

(and vice versa for a lower trait value). The uninvadability coefficient ∂2π(τ,θ)
∂τ2

∣∣∣
τ=θ=θ∗

in turn describes

what happens when the singular points are reached in the evolutionary process. If the uninvadability

coefficient is negative then selection is stabilising and the population remains at the singular point.

If the uninvadability coefficient is positive then selection is disruptive. If a singular trait θ∗ is both

convergence stable and invadable, then it is an evolutionary branching point; namely, an attractor of

the evolutionary dynamics that subsequently splits the population into distinct morphs leading to the

coexistence of different types in a protected polymorphism (e.g. Eshel et al., 1997; Geritz et al., 1998).

Branching points are of particular focus in this paper and it is useful to note from eq. (A-31) that a

necessary condition for ∂2π(τ,θ)
∂τ2

∣∣∣
τ=θ=θ∗

> 0 and dS(τ)
dτ

∣∣∣
τ=θ=θ∗

< 0 to hold is that the synergy coefficient

is negative:
∂2π(τ, θ)

∂τ∂θ

∣∣∣∣
τ=θ=θ∗

< 0. (A-32)
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A negative expression implies that individuals achieve higher payoffs when interacting with partners

possessing different traits rather than similar ones, thereby favouring the coexistence of different morphs.

Note that the focus on mutant payoff in a resident population to characterise selection in the above

analysis does not imply that the evolutionary process needs to unfold in a purely monomorphic pop-

ulation. All the above concepts apply to populations with distributions of traits following standard

quantitative genetics modelling assumption, whereby the resident trait θ can be always be though of to

be the average trait in the population where variation is segregating through the constant influx of mu-

tations (see Mullon and Lehmann, 2019 for more details on these connections between invasion analysis

and quantitative genetics).

Appendix B.2 Mutant payoff

We now turn to defining the mutant payoff π(τ, θ) required for the invasion analysis. Following our

definition in section 2.1, the payoff of a mutant with trait τ in a population composed of residents with

trait θ is

π(τ, θ) =
[
ĉx(τ, θ)]α

[
ĉy(τ, θ)]1−α, (A-33)

where ĉx(τ, θ) and ĉy(τ, θ) denote the mutant consumption of respectively goods x and y at equilibrium.

To get these expressions, we adapt the previously derived expressions in Appendix A as follows, where we

denote the equilibrium price that the mutant faces p̂(τ, θ), the time allocation of the mutant ĥ(τ, p̂(τ, θ))

and the time allocation of a resident ĥ(θ, p̂(τ, θ)).

The equilibrium consumptions of the mutant are obtained by assigning mutant type τ to individual

i in eqs. (A-19) and (A-20) while replacing the price p by the equilibrium price faced by the mutant

p̂(τ, θ) and the time allocation at equilibrium ĥi(p) by the time allocation at equilibrium of the mutant

ĥ(τ, p̂(τ, θ)). These substitutions yield the expressions in eqs. (7)–(8).

The equilibrium time allocation for mutant and resident for a given price are obtained by respectively

assigning type τ and type θ to individual i in eq. (A-17), leading to the expression given in eq. (9).

The equilibrium price under dyadic exchange, p̂(τ, θ) is obtained by assigning type τ to individual

i and type θ to individual j in eq. (A-23), leading the time allocation ĥi(p̂) and ĥj(p̂) to be rewritten

as the time allocation of mutant and resident ĥ(τ, p̂(τ, θ)) and ĥ(θ, p̂(τ, θ)). These substitutions yield

eq. (10). With market exchange, the mutant τ is assumed to have no effect on equilibrium price (since

population is large). The price at equilibrium is then obtained by assigning type θ to all individuals in

(A-22) with Nint = N , which simplifies to eq. (11) of the main text.

Appendix B.2.1 Validity of the monomorphic approximation for the equilibrium price

with market exchange

In the case of market exchange, the equilibrium price obtained depends only on the monomorphic popu-

lation, which may seem counterintuitive since no exchange should take place if all individuals produce the

same amount. However, recall that our evolutionary model can be interpreted in a quantitative genetics

way such that there is always some variance in trait values in the population owing to the constant
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influx of mutations (recall the last paragraph of Appendix B.1). The price obtained in the monomorphic

population is then an approximation of the price in a population where individuals exhibit variation in

trait values. To demonstrate the validity of this approximation, we show that taking it in account does

not affect the equilibrium price, which still converges to the same value as long as the population is large

enough and the variance in the unimodal trait distribution remains sufficiently small, both of which hold

in our model.

Let us now assume, for this section only, that the population trait follows some unimodal distribution

with mean trait value θ and small variance σ2
z . First, by the law of large numbers, and because the

population is very large (N → ∞), the price in eq. (A-22) can be rewritten as

p̂ =
α

(1− α)
·

(
N · E[qy(τi, ĥ(τi, p̂))]
N · E[qx(τi, ĥ(τi, p̂))]

)
, (A-34)

where the numerator and denominator represent expectations over the quantities produced and where

we have used ĥi(p̂) = ĥ(τi, p̂) to make the trait dependence of individual i explicit. Second, if a random

variable X has a small variance, then we can approximate the expectation of a function by the function of

the expectation E[qk(τi, ĥ(τi, p̂))] ≈ qk(E[τi], ĥ(E[τi], p̂)). Furthermore, by definition, we have E[τi] = θ.

Applying this approximation, eq. (A-34) can be rewritten as

p̂ = p̂(θ) ≈ α

1− α
· q

y(θ, ĥ(θ, p̂(θ))

qx(θ, ĥ(θ, p̂(θ))
, (A-35)

where ĥ(θ, p̂(θ)) is the equilibrium time allocation of a resident individual. The last equation is equal to

the equilibrium price in the mutant resident approximation when exchange takes place through a market

in eq. (11). This shows that even if individuals exhibit small variations in their traits, the monomorphic

approximation remains valid, as the price still converges to the same equilibrium value.

Appendix B.2.2 Explicit expression of equilibrium price in a monomorphic resident pop-

ulation with market exchange.

The equilibrium price in a mutant-resident population is explicitly defined by eqs. (10)–(11) when time

allocation is fixed. However, when time allocation is a decision, these expressions become implicit because

the price appears on both sides of the equation, requiring a numerical solution. While the equilibrium

price under dyadic exchange can only be determined numerically, we show that for market exchange, a

fully analytical expression for the price, and thus the equilibrium time allocations can be derived. This

allows for evolutionary analysis to be conducted without the need for numerical computations.

In a mutant-resident population, the price at equilibrium is given from eq. (11)

p̂(θ) =
α

1− α

qy(θ, ĥ(θ, p̂(θ)))

qx(θ, ĥ(θ, p̂(θ)))
, (A-36)

where ĥ(θ, p̂(θ)) is the time allocation at equilibrium of a resident individual with trait θ facing an

equilibrium price p̂(θ). Substituting the functional forms of the quantities produced from eqs. (1) into

the last equation yields

p̂(θ) =
α

1− α

[1− ĥ(θ, p̂(θ))]η

ĥ(θ, p̂(θ))η
ry(θ)

rx(θ)
, (A-37)
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Substituting this last equation into the equation defining the equilibrium time allocation—where we

adopt the formulation from eq. (A-13) for ease of derivation— and simplifying notation by writing

ĥ(θ, p̂(θ)) = ĥ(θ), gives (
ĥ(θ)

1− ĥ(θ)

)η−1

=
1− α

α

ĥ(θ)η

[1− ĥ(θ)]η
rx(θ)

ry(θ)

ry(θ)

rx(θ)
(A-38)

⇐⇒

(
ĥ(θ)

1− ĥ(θ)

)η−1

=
1− α

α

ĥ(θ)η

[1− ĥ(θ)]η
(A-39)

⇐⇒

(
ĥ(θ)

1− ĥ(θ)

)η−1

=
1− α

α

(
ĥ(θ)

1− ĥ(θ)

)η

(A-40)

⇐⇒

(
ĥ(θ)

1− ĥ(θ)

)−1

=
1− α

α
(A-41)

⇐⇒ 1− ĥ(θ)

ĥ(θ)
=

1− α

α
, (A-42)

which gives

ĥ(θ, p̂(θ)) = α. (A-43)

Hence, resident individuals allocate a proportion α of their time to produce good x. Substituting back

the time allocation into eq. (A-37), the price simplifies to

p̂(θ) =

(
α

1− α

)1−η
ry(θ)

rx(θ)
. (A-44)

Substituting this price into eq. (9), the equilibrium time allocated to produce good x of a mutant is

ĥ(τ, p̂(τ, θ)) =
1

1 + 1−α
α

[
rx(θ)
ry(θ)

ry(τ)
rx(τ)

] 1
1−η

(A-45)

If we finally substitute the equilibrium price from eq. (A-44) and the time allocation from eq. (A-45)

into the mutant payoff in eq. (6), it yields an explicit expression, which is used to conduct the invasion

analysis

Appendix B.3 Evolutionary analysis with fixed time allocation

Appendix B.3.1 Autarky

We first carry out the evolutionary analysis under autarky (main text Section 3.1). Substituting the

mutant payoff in eq. (12) into eq. (A-30), the payoff gradient for this case is

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

= qx(θ)(α−1)qy(θ)−α

[
αqy(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)qx(θ)
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

]
. (A-46)

The terms in square brackets describe the sum of the gain or loss in the production of each good due to

a change in the value of the trait, weighted by how much each good contributes to the payoff. When the

population trait lies between the two optimal values of production, the derivatives have opposite signs

since a different value of the trait increases the production of one good but reduces the production of the

other good. The sign of the payoff gradient will be equal to the sign of one of the derivatives, meaning
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that selection will push the population to increase the production of one good at the expense of the

other. Which good would be favoured depends on how much a change in the trait translates to a change

in the production of goods, how important the good is for the payoff and in particular, the quantity of

the other good that the individual consumes. As consuming a larger quantity of one good increases the

benefit of producing the other good, this ultimately favours generalists who can produce both goods.

Setting S(θ) = 0 and rearranging shows that a singular point θ∗ must satisfy

∂qy(τ)
∂τ /qy(τ)

∂qx(τ)
∂τ /qx(τ)

∣∣∣∣∣
τ=θ=θ∗

= − α

1− α
. (A-47)

Hence, at a singular point, the relative gain of production in one good is proportional (equal for α = 0.5)

to the relative loss in production of the other good. Substituting eqs. (1)–(2) into eq. (A-47) and solving

for θ∗ yields eq. (13).

Using the payoff gradient payoff along eqs. (1)–(2), we obtain

dS(θ)

dθ

∣∣∣∣
θ=θ∗

= −
2
(
exp

(
− (ox−oy)

2(1−α)2

σ2

))α (
exp

(
− (ox−oy)

2α2

σ2

))(1−α)

σ2
< 0. (A-48)

This expression is always negative, and thus the singular point is convergent stable. Using the mutant

payoff in eq. (12) along eqs. (1)–(2), we obtain the uninvadability coefficient

∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

= −
2
(
exp

(
− (ox−oy)

2(1−α)2

σ2

))α (
exp

(
− (ox−oy)

2α2

σ2

))(1−α)

σ2
< 0. (A-49)

This expression is equal to the convergence coefficient and is always negative. The singular point is thus

evolutionary stable.

Appendix B.3.2 Dyadic exchange

We now turn to the evolutionary analysis for the case of dyadic exchange (results of section 3.2). The

mutant payoff in this section is the one defined in eq. (6) with price in eq. (10). Substituting it into

eq. (A-30) but keeping the price in its symbolic form, the payoff gradient is

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

=

(
(1− α)(p̂(θ, θ)qx(θ) + qy(θ))

)−α(
α

(
qx(θ) + qy(θ)

1

p̂(θ, θ)

))α

(A-50)

(1− α)

(
∂qx(τ)

∂τ

∣∣∣∣
τ=θ

p̂(θ, θ) +
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

− ∂p̂(τ, θ)

∂τ

∣∣∣∣
τ=θ

(
αqy(θ)

1

p̂(θ, θ)
− (1− α)qx(θ)

))
.

The last part of the expression can be rewritten using the definition of the quantity consumed of good

x in eq. (A-19)

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

=

(
(1− α)(p̂(θ, θ)qx(θ) + qy(θ))

)−α(
α

(
qx(θ) + qy(θ)

1

p̂(θ, θ)

))α

(A-51)

(1− α)

(
∂qx(τ)

∂τ

∣∣∣∣
τ=θ

p̂(θ, θ) +
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

− ∂p̂(τ, θ)

∂τ

∣∣∣∣
τ=θ

(ĉx(θ)− qx(θ))

)
.
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The part of the expression in the first line does not influence the sign of the payoff gradient. The rest of

the expression can be decomposed in two parts. A change in the trait has again a direct cost and benefit

by changing the quantities of goods produced. Here, the importance of a loss or gain in production of a

good is captured by its price. Second, a change in the trait also has an indirect cost or benefit, described

on the third line, as changing the quantities produced also modifies the price of goods. An increase in

the price of good x is costly if the mutant is a net buyer of the good x, i.e. (ĉx(θ) − qx(θ)) > 0 but

beneficial if it is a net seller (ĉx(θ)− qx(θ)) < 0.

Substituting the equilibrium price from eq. (10), evaluated in a resident population into eq. (A-51),

the term in the third line vanishes

− ∂p̂(τ, θ)

∂τ

∣∣∣∣
τ=θ

(
αqy(θ)

1

p̂(θ, θ)
− (1− α)qx(θ)

)
= − ∂p̂(τ, θ)

∂τ

∣∣∣∣
τ=θ

(
αqy(θ)

[
(1− α)

α

2qx(θ)

2qy(θ)

]
− (1− α)qx(θ)

)
(A-52)

= − ∂p̂(τ, θ)

∂τ

∣∣∣∣
τ=θ

(
(1− α)qx(θ)− (1− α)qx(θ)

)
(A-53)

= 0, (A-54)

and the remaining expression is

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

=

(
(1− α)

([
α

1− α

2qy(θ)

2qx(θ)

]
qx(θ) + qy(θ)

))−α(
α

(
qx(θ) + qy(θ)

[
1− α

α

2qx(θ)

2qy(θ)

]))α

(A-55)

(1− α)

(
∂qx(τ)

∂τ

∣∣∣∣
τ=θ

[
α

1− α

2qy(θ)

2qx(θ)

]
+

∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
.

This simplifies as

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

=

(
αqy(θ) + (1− α)qy(θ)

)−α(
αqx(θ) + (1− α)qx(θ)

)α

(A-56)(
α
qy(θ)

qx(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
= qy(θ)−αqx(θ)α

(
α
qy(θ)

qx(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
. (A-57)

Factoring 1/qx(θ) from inside the parentheses out gives

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

= qy(θ)−αqx(θ)α
(
α
qy(θ)

qx(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)
qx(θ)

qx(θ)

∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
(A-58)

= qy(θ)−α q
x(θ)α

qx(θ)

(
αqy(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)qx(θ)
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
(A-59)

= qx(θ)(α−1)qy(θ)−α

(
αqy(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)qx(θ)
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
, (A-60)

where the last line is equivalent to eq. (A-46), the payoff gradient without exchange.

This simplification can be intuitively understood by observing that in the approximation of a monomor-

phic population, individuals produce the same quantities and thus do not exchange with each other. Note

that considering that all individuals have the same trait is an approximation of a model where residents

do exhibit minimal, yet present, variation among themselves. What our analysis shows is that even in
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a population where individuals have different production abilities, and within which exchange occurs,

exchange has no effect on selective pressures if the variance in the traits is small.

Because the payoff gradient with dyadic exchange is equal to the one in autarky, it follows that the

singular point, which is the root of the payoff gradient, and the convergence coefficient dS(θ)
dθ

∣∣∣
θ=θ∗

remain

the same than in autarky, described respectively in eq. (13) and eq. (A-48).

The synergy coefficient is given in the main text in eq. (14). Using the mutant payoff, we obtain the

uninvadability coefficient

∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

= qx(θ∗)(−1+α)qy(θ∗)−α

[ (
αqy(τ)

∂2qx(τ)

∂τ2
+ (1− α)qx(τ)

∂2qy(τ)

∂τ2

)∣∣∣∣
τ=θ=θ∗

(A-61)

− 3

4

(
α

1− α

qy(τ)

qx(τ)

(
∂qx(τ)

∂τ

)2
)∣∣∣∣∣

τ=θ=θ∗

]
.

The expression can be rewritten by substituting one of the partial derivatives in the expression
(

∂qx(τ)
∂τ

)2
with its explicit form obtained from the condition that holds at a singular point, given in eq. (A-47).

∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

= qx(θ∗)(−1+α)qy(θ∗)−α

[ (
αqy(τ)

∂2qx(τ)

∂τ2
+ (1− α)qx(τ)

∂2qy(τ)

∂τ2

)∣∣∣∣
τ=θ=θ∗

(A-62)

+
3

4

(
∂qy(τ)

∂τ

∂qx(τ)

∂τ

)∣∣∣∣
τ=θ=θ∗

]
.

Identifying when this expression is positive and rearranging the terms yields the condition stated in the

main text in eq. (15).

Appendix B.3.3 Market exchange

We here describe to the evolutionary analysis for the case of market exchange (results of section 3.3).

In this case, the mutant payoff is the one described in eq. (6) with the price at equilibrium in eq. (11).

Substituting it into eq. (A-30), the payoff gradient is

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

= qx(θ)(α−1)qy(θ)−α

(
αqy(θ)

∂qx(τ)

∂τ

∣∣∣∣
τ=θ

+ (1− α)qx(θ)
∂qy(τ)

∂τ

∣∣∣∣
τ=θ

)
, (A-63)

which is again equal to the one without exchange in eq. (A-46). Because the payoff gradient with market

exchange is equal to the one in autarky, it follows that the singular point, which is the root of the payoff

gradient, and the convergence coefficient dS(θ)
dθ

∣∣∣
θ=θ∗

remain the same as described respectively in eq. (13)

and eq. (A-48). Thus, there is a single convergent stable singular point.

Using the mutant payoff, we obtain the synergy coefficient

∂2π(τ, θ)

∂τ∂θ

∣∣∣∣
τ=θ=θ∗

= −qx(θ∗)(−2+α)qy(θ∗)(1−α) α

(1− α)

(
∂qx(τ)

∂τ

∣∣∣∣
τ=θ=θ∗

)2

< 0. (A-64)

This expression is always negative and there is always negative frequency dependent selection at the

singular point. Finally, using the mutant payoff, we obtain the uninvadability coefficient.

∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

= qx(θ∗)(−1+α)qy(θ∗)−α

(
αqy(τ)

∂2qx(τ)

∂τ2
+ (1− α)qx(τ)

∂2qy(τ)

∂τ2

)∣∣∣∣
τ=θ=θ∗

. (A-65)

Identifying when this expression is positive and rearranging the terms yields the condition stated in the

main text in eq.(17).
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Appendix B.4 Evolutionary analysis with time allocation decision

Appendix B.4.1 Autarky

We now turn to the evolutionary analysis when time allocation is a decision variable (results of section 4).

In autarky, the mutant payoff in eq. (6) simplifies to π(τ, θ) = [qx(τ, ĥ(τ, θ))]α[qy(τ, ĥ(τ, θ))]1−α where

we showed in Appendix A.1 that ĥ(τ, θ) = α. The payoff gradient derived from this expression yields

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

=
2 exp

(
−α(ox−θ)2+(1−α)(oy−θ)2

σ2

)
· (1− α)(1−α)η · ααη · (αox + (1− α)oy − θ)

σ2
.

(A-66)

Setting this payoff gradient to zero, and solving it at θ = θ∗, yields the singular point

θ∗ = αox + (1− α)oy. (A-67)

This singular point is equal to 0 for the parameters specified in the main text α = 0.5, ox = −2 and

oy = 2.

Using the payoff gradient, we obtain

dS(θ)

dθ

∣∣∣∣
θ=θ∗

= −
2
(
exp

(
− (ox−oy)

2(1−α)2

σ2

)
αη
)α (

exp
(
− (ox−oy)

2α2

σ2

)
(1− α)η

)(1−α)

σ2
< 0. (A-68)

This expression is always negative, and thus the singular point is convergent stable. Using the mutant

payoff, we obtain the uninvadability coefficient

∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

= −
2
(
exp

(
− (ox−oy)

2(1−α)2

σ2

)
αη
)α (

exp
(
− (ox−oy)

2α2

σ2

)
(1− α)η

)(1−α)

σ2
< 0. (A-69)

The uninvadability coefficient is again equal to the convergence stability coefficient (as we found in the

corresponding model with fixed time allocation). The population is thus expected to remain at the

singular point, which is evolutionary stable.

Appendix B.4.2 Dyadic exchange

For the case of dyadic exchange, as the price needs to be found numerically, the evolutionary analysis is

carried out in the accompanying Mathematica notebook.

Appendix B.4.3 Market exchange

We now turn to the evolutionary analysis for the case of market exchange (results of section 4). Substi-

tuting the mutant payoff in eq. (6) with the price at equilibrium in eq. (A-44) and the time allocation in

eq. (A-45) into eq. (A-30) gives the payoff gradient.

S(θ) =
∂π(τ, θ)

∂τ

∣∣∣∣
τ=θ

=
2 exp−

(
α(ox−θ)2+(1−α)(oy−θ)2

σ2

)
· (1− α)(1−α)η · ααη · (αox + (1− α)oy − θ)

σ2
,

(A-70)

which is equal to the one without exchange in eq. (A-66). Because the payoff gradient with market

exchange is equal to the one in autarky, it follows that the singular point, which is the root of the
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payoff gradient, and the convergence coefficient dS(θ)
dθ

∣∣∣
θ=θ∗

remain the same as described respectively in

eq. (A-67) and eq. (A-68). Thus, there is a single convergent stable singular point.

Using the mutant payoff, we obtain the synergy coefficient

∂2π(τ, θ)

∂τ∂θ

∣∣∣∣
τ=θ=θ∗

= −
4 exp

(
− (ox−oy)

2(1−α)2

σ2

)α
exp

(
− (ox−oy)

2α2

σ2 (1− α)η
)1−α

(ox − oy)
2(1− α)α1+αη

(1− η)σ4
.

(A-71)

This expression is always negative and there is always negative frequency dependent selection at the

singular point.

Using the mutant payoff, we obtain the uninvadability coefficient.

∂2π(τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

=
2
(
exp(− (ox−oy)

2α2

σ2 (1− α)η
)1−α (

exp(− (ox−oy)
2(1−α)2

σ2 αη
)α [

2(ox − oy)
2(1− α)α− (1− η)σ2

]
(1− η)σ4

,

(A-72)

which is positive if the expression in the square brackets is positive. Rearranging this expression yields

the condition given in the main text in eq. (19)

Substituting the parameters used in the main text α = 0.5, ox = −2 and oy = 2, into eq. (19), we

obtain the condition for polymorphism to emerge used to generate the left panel of figure 4

σ2 <
8

1− η
. (A-73)

Appendix B.5 Simulations

We used individual-based stochastic simulations to confirm our analytical results and further explore

long term evolution. These simulations describe the evolution of a haploid population of fixed and

even size N . Each individual i ∈ {1, ..., N} is characterised by its trait τi. The initial population

is a monomorphic population where all individuals have a trait of the same value. The life cycle of

individuals consists of discrete and non-overlapping generations as described in section 2.1, where the

following occurs: (i) individuals are randomly paired with each other; (ii) time allocations are set (detailed

below) (iii) individuals produce a quantity of each good as described in equation (1); (iii) individuals

exchange quantities of goods and end up with quantities described in eqs. (A-19)–(A-18); (iv) individuals

reproduce following a Wright-Fisher process (see eq. (A-74) below) during which mutations occur; and

(v) adults of the previous generation perish. We repeat the procedure for a fixed number of generations.

Time allocation. In the version of the model where time allocation is fixed, the time allocation is

automatically set to 0.5 for all individuals during step (ii). In the second version of the model where

individuals choose their time allocation, the time allocation is given by eq.(A-17), where the price is

found by solving eq. (A-22) numerically.

Reproduction. During the reproduction stage, a new population of the same size N is created by

sampling randomly with replacement in the parent population according to their payoff. The probability

that an individual i with payoff πi is the parent of an offspring is

πi∑N
j=1 πj

. (A-74)
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Mutation For each newborn, mutation occurs with probability µm. When a mutation occurs, a random

value is sampled from a Normal distribution centered on the parent’s trait value, with variance σ2
m.

Supplementary Figures
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Figure S1. Evolution of the distribution of trait over generations when goods have different importance

and for fixed time allocation. The top panel represents a scenario where good y is more important than

good x (α = 0.25), while the bottom panel represents the opposite case, where good x is more important

than good y (α = 0.75). The population remains in autarky for the first 5000 generations, after which

exchange is introduced (indicated by the grey dotted line). We consider dyadic exchange where exchange

takes place between pairs of isolated individuals. For better visualization of the density distributions, the

plots are split into two phases: the autarky period and the period with dyadic exchange. The parameters

used are production breadth σ2 = 1, optima of production of each good ox = −2 and oy = 2, population

size N = 5000, mutation rate µm = 0.01 and variance of mutations σ2
m = 0.0004.
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Figure S2. Evolution of the distribution of the trait over generations under two exchange regimes:

dyadic exchange, where trade occurs between isolated pairs of individuals, and market exchange, where

all individuals interact through a common market. The goal is to illustrate how market exchange creates

conditions more conducive to the emergence of polymorphism than dyadic exchange. To highlight this

effect, we select high values of production breadth for which our theoretical results predict the emergence

of polymorphism under market exchange but not under dyadic exchange: specifically, σ2 = 5 for dyadic

exchange and σ2 = 10 for market exchange. Exchange is initially absent and is introduced only after

10000 or 15000 generations (indicated by the grey dotted line). The parameters used are optima of

production of each good ox = −2 and oy = 2, population size N = 1000, mutation rate µm = 0.01 and

variance of mutations σ2
m = 0.0004.
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Figure S3. Effect of emergence of exchange on economic specialisation as a function of production breadth

σ2 and elasticity of scale η. The panels show average economic specialisation across 10 replicates and

after 1 generation (top) and after 10,000 generations (bottom) following the introduction of exchange.

Specialisation is measured as the difference between the highest and lowest values of h in the population.

We consider dyadic exchange where exchange takes place between pairs of isolated individuals. The

parameters used are equal importance of goods α = 0.5, optima of production ox = −2 and oy = 2,

population size N = 1000, mutation rate µm = 0.01, variance of mutations σ2
m = 0.0004, and the initial

population is drawn from a Normal distribution centered on the singular point with small variance 0.0025.
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Figure S4. Effect of emergence of exchange on economic specialisation as a function of production breadth

σ2 and elasticity of scale η. The panels show average economic specialisation across 10 replicates and

after 1 generation (top) and after 10,000 generations (bottom) following the introduction of exchange.

Specialisation is measured as the difference between the highest and lowest values of h in the population.

We consider market exchange where exchange takes place between all individuals. The parameters used

are equal importance of goods α = 0.5, optima of production ox = −2 and oy = 2, population size

N = 1000, mutation rate µm = 0.01, variance of mutations σ2
m = 0.0004, and the initial population is

drawn from a Normal distribution centered on the singular point with small variance 0.0025.
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Figure S5. Evolution of genetic diversity and economic specialisation. (Left) Evolution of trait over

generations. The population remains in autarky for the first 5000 generations, after which exchange

is introduced (indicated by the grey dotted line). We consider dyadic exchange where exchange takes

place between pairs of isolated individuals. (Right) Distribution of trait (x-axis) and time allocation

(colour). Each point represents a single individual. The plot is divided in three-part, each focusing on a

particular time period, (top) at 3000 generations when exchange is absent, (middle) at 5000 generations

when exchange is introduced and (bottom) at 14000 generations to show the long-run outcome. The

parameters used are elasticity of scale η = 0.5, production breadth σ2 = 1, equal importance of goods

α = 0.5, optima of production ox = −2 and oy = 2, population size N = 1000, mutation rate µm = 0.01

and variance of mutations σ2
m = 0.0004.
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