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Abstract

In many competitive settings, players must decide not only how hard to

work but also how much risk to take. This paper shows that overconfi-

dence—the tendency to overestimate one’s own ability—can lead to sur-

prising strategic behavior in tournaments in which players make both risk

and effort choices. We find two key results. First, overconfident players

may adopt less risky strategies than rational ones, defying the common

belief that overconfidence necessarily drives risk-taking. Second, when

overconfident players adopt less risky strategies, they may exert greater

effort, revealing a new mechanism by which overconfidence can enhance

effort provision.
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1 Introduction

The evidence that humans are overconfident is widespread and well-established.

For example, most drivers believe they are better than the median driver (Sven-

son, 1981). Overconfidence affects the behavior of decision-makers such as CEOs

(Malmendier and Tate, 2005, 2008, 2015), fund managers (Menkhoff et al., 2006),

poker and chess players (Park and Santos-Pinto, 2010), and CFOs (Ben-David

et al., 2013). These decision-makers are often engaged in tournaments, that is,

competitions where rewards are based on relative performance. For example, who

gets promoted to CEO, who wins a prize in an athletic competition (Szymanski,

2003), or who wins a sales bonus (Murphy et al., 2004).1

Studies analyzing the role of overconfidence in tournaments have so far fo-

cused on how it influences either risk taking (Goel and Thakor, 2008) or effort

provision (Santos-Pinto (2010); Santos-Pinto and Sekeris (2025)). However, in

many tournaments, players decide not only how much risk they take but also

how much effort they exert. For example, a CEO can choose whether her firm

has an innovative or a conservative research and development strategy in addi-

tion to how hard she works. A fund manager can choose the risk exposure of her

portfolio and how much time and resources to spend on collecting and analyzing

stock information. A researcher chooses between pursuing a safe, mainstream

project or engaging in a riskier, multidisciplinary one and then decides how many

hours to work. Similarly, a poker player chooses risk taking and the effort she

puts into computing conditional probabilities.

This paper investigates the implications of overconfidence for behavior in tour-

naments where players choose both risk and effort. We ask the following ques-

tions: Does overconfidence lead players to adopt more or less risky strategies?

Does overconfidence raise or lower effort provision? Can tournament organizers

benefit from the players’ overconfidence?

To answer these questions we consider a two player tournament in which the

1Moore and Healy (2008) distinguish between three types of overconfidence: (i) overestima-

tion of one’s absolute performance, (ii) overestimation of one’s relative performance (overplace-

ment), and (iii) excessive confidence in the precision of one’s private information, estimates,

and forecasts (overprecision or miscalibration). In our study, we use the term overconfidence in

the sense of overestimation of absolute and relative performance in a tournament.
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players’ production functions are additively separable in ability, effort, and a

random shock. The tournament consists of two stages. In the first stage (risk

stage), the players simultaneously choose the risk of their production functions

which can be either low or high. In the second stage (effort stage), each player

observes the chosen risks and then decides how much effort to exert. The player

attaining the highest output or performance wins the tournament and receives

the winner’s prize whereas the other player receives the loser’s prize. The players

are homogeneous in ability, cost of effort, and confidence. An overconfident player

overestimates the contribution of his ability to output. For analytical tractability,

we focus on normally distributed random shocks and an exponential cost of effort.

Since this is a two-stage game of complete information we look for subgame perfect

equilibria (SPE).

We obtain two main results. First, overconfident players can adopt less risky

strategies than rational ones. The intuition behind this rather counter-intuitive

result is as follows. In a tournament between two rational players, both players

choose the high-risk strategy in the first stage and low effort in the second stage

(Hvide, 2002). Rational players share a common incentive to increase the level

of risk to lessen the importance of differences in effort to the winning probabil-

ity. This allows them to lower effort and save on effort costs. Now, consider a

tournament between two overconfident players. Due to the (mis)perceived abil-

ity advantage, each player mistakenly believes he is the favorite, while viewing

the opponent as the underdog. As a consequence, there are two effects from de-

creased risk taking for each player. The first, the favorable likelihood effect, is

that decreased risk increases a player’s perceived probability of winning as differ-

ences in perceived ability have a larger impact under lower risk. The second, the

unfavorable effort effect, is that a player’s equilibrium effort increases, resulting

in higher effort cost without enhancing the probability of winning as the rival’s

effort rises by the same amount in response to the decreased risk. When overcon-

fidence is large–a player perceives a significant ability advantage–the first effect

dominates the second, resulting in the selection of a low-risk strategy in equi-

librium. Conversely, when overconfidence is small–a player perceives a modest

ability advantage over the opponent–the first effect is dominated by the second,

leading to the selection of a high-risk strategy.
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Our first main finding shows that in strategic settings such as tournaments,

whether overconfidence increases or decreases risk taking hinges on how big the

perceived ability gap is. It goes against the prevailing notion that overconfidence

always leads to greater risk taking such as retaining stock options for too long, or

investing in new technologies (See Malmendier and Tate (2008); Goel and Thakor

(2008); Nosić and Weber (2010); Hirshleifer et al. (2012); Goldberg et al. (2020)).

On the contrary, it reveals that overconfident players who perceive a significant

ability advantage in a tournament actually take fewer risks than rational players.

Second, when overconfident players adopt a low-risk strategy, they may exert

more effort than rational ones. To fully grasp this result, it’s crucial to recognize

that overconfidence has two distinct effects on effort. On the one hand, holding

risk strategies constant, higher overconfidence reduces effort: once a player per-

ceives an ability advantage, he feels comfortable scaling back on effort, thereby

saving on effort costs. On the other hand, if heightened overconfidence prompts

players to shift from a high-risk to a low-risk strategy, then it increases effort:

by reducing randomness, the lower risk makes the tournament’s outcome more

sensitive to effort, thus encouraging players to work harder. As shown earlier,

overconfident players with a large bias choose the low-risk strategy in the first

stage. When the bias is not very large, the negative effect of overconfidence on

effort provision is smaller than the positive effect due to lower risk taking. Con-

sequently, overconfident players exert higher effort than rational ones. When the

bias is very large, overconfident players exert less effort than rational ones as the

negative effect of overconfidence on effort is larger than the positive effect due to

lower risk taking.

Our second main finding provides a novel mechanism throught which overcon-

fidence, by leading to lower risk taking, raises effort provision. This new mecha-

nism stands in contrast to previous explanations that rely on the complementarity

between self-confidence and effort (Bénabou and Tirole (2002, 2003); Gervais and

Goldstein (2007); Santos-Pinto (2010); Santos-Pinto and Sekeris (2025)). Impor-

tantly, a reduction in risk coupled with increased player effort benefits the tour-

nament organizer. Suppose the organizer is risk-neutral, unaware of any player

biases, and aims to maximize profits—the difference between expected output and

total prize costs. Overconfident players, by exerting more effort than fully ratio-
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nal ones, generate higher output without increasing compensation costs, thereby

improving overall profitability for the tournament organizer.

The remainder of the paper is structured as follows. Section 2 discusses the

related literature. Section 3 sets up the model. Section 4 derives the equilibrium

and performs comparative statics. Section 5 describes what happens when an

overconfident player faces a rational player. Section 6 concludes the paper. All

proofs are in the Appendix.

2 Related Literature

Our paper contributes to two main strands of research.

First, it adds to the growing literature on how overconfidence affects labor

and financial markets. Seminal work by Malmendier and Tate (2005, 2008, 2015)

shows that overconfident CEOs overestimate their ability to raise their compa-

nies’ stock prices, often holding stock options too long. Goel and Thakor (2008)

examine overconfident and rational managers competing for promotion and find

that overconfident managers, who underestimate project risk, are more likely to

become CEOs. Santos-Pinto (2008) and De la Rosa (2011) demonstrate that over-

confident workers can benefit firms by raising effort provision, even when effort

is unobservable. Daniel and Hirshleifer (2015) focus on miscalibrated investors

who overestimate the precision of their information, leading to aggressive trading.

Hoffman and Burks (2020) show that truck drivers’ persistent overestimation of

productivity can benefit firms via reduced turnover. Our study contributes to this

literature by showing that overconfidence can lower risk taking in tournaments

which runs counter to the prevailing idea that overconfident individuals always

take more risks than rational ones. In addition, we uncover a new mechanism

through which worker overconfidence makes the firm better off: By lowering risk

taking, overconfidence can raise workers’ effort provision. This finding is in line

with previous studies that identify positive effects of worker overconfidence on

firms (Fang and Moscarini (2005); Gervais and Goldstein (2007); Santos-Pinto

(2008); De la Rosa (2011)).

Second, we contribute to the tournament literature inaugurated by Lazear

and Rosen (1981). Bronars (1986) was the first to analyze tournaments where
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risk taking is an explicit strategic choice. In his sequential tournament frame-

work, a trailing player tends to adopt a high-risk strategy to catch up, while a

leading player prefers a low-risk strategy to secure her advantage. Hvide (2002)

shows that when players choose both risk and effort, a tournament can collapse

into maximum risk and minimal effort. Kräkel and Sliwka (2004) analyze how

risk affects effort and winning odds when players differ in ability, while Kräkel

(2008) studies players with different risk aversion. Santos-Pinto (2010) studies

how overconfidence affects effort and how the tournament organizer can exploit

players’ overconfidence. Santos-Pinto and Sekeris (2022) analyze the role of con-

fidence heterogeneity on effort and performance in tournaments. We extend this

literature by being the first to analyze the interaction between overconfidence,

risk taking, and effort provision. Our results show that overconfidence may lead

to lower risk taking and higher effort, thus avoiding the breakdown described by

Hvide (2002).

3 Set-up

We consider a tournament with two players, where each player first chooses risk

and then selects effort. The winner of the tournament, the player who attains the

highest output or performance, receives the winner’s prize yw and derives utility

uw from it, while the other receives the loser’s prize yl, and derives utility ul,

with 0 ≤ ul < uw. The players are expected utility maximizers and have utility

functions that are separable in the valuation of prizes and cost of effort. Effort

ai carries a cost c(ai) to player i, with c′(ai) > 0, and c′′(ai) > 0. For simplicity,

each player’s outside option is normalized to zero.

Player i’s output is additive in ability t ≥ 0, effort ai, and an individual noise

term ϵi. Hence, when player i exerts effort ai his output is

Qi = t+ ai + ϵi,

where the random variable ϵi is unimodal and symmetric about zero. Moreover,

the random variables ϵi and ϵj are independent, have variances σ2
i and σ2

j , and

their probability distributions are known to both players. Since the difference

between ϵi and ϵj will be critical, we define the random variable x = ϵj − ϵi,
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with cumulative distribution function G(x) and density g(x). Since ϵi and ϵj are

independent and each is symmetric about zero, their difference x is also symmetric

about zero. This implies G(x) = 1−G(−x) for all x. Moreover, we assume G(x) is

continuous and twice differentiable. Note that continuity together with symmetry

about 0 imply g(x) = g(−x) for all x. Further, g(x) satisfies g′(x) > 0 for x < 0

and g′(x) < 0 for x > 0. Finally, observe that unimodality, symmetry about zero,

alongside continuity imply g′(0) = 0.2

Accordingly, player i’s probability of winning the tournament is

Pi(ai, aj, σ
2
i , σ

2
j ) = Pr(Qi ≥ Qj)

= Pr(t+ ai + ϵi ≥ t+ aj + ϵj)

= Pr(ϵj − ϵi ≤ ai − aj)

= G(ai − aj;σ
2
i , σ

2
j ).

An overconfident player i mistakenly perceives his output to be given by

Q̃i = λ+ t+ ai + ϵi,

where λ > 0 is the parameter that captures player i’s overconfidence. An overcon-

fident player correctly perceives the rival’s output function. Accordingly, player

i’s perceived probability of winning the tournament is

P̃i(ai, aj, λ, σ
2
i , σ

2
j ) = Pr(Q̃i ≥ Qj)

= Pr(λ+ t+ ai + ϵi ≥ t+ aj + ϵj)

= Pr(ϵj − ϵi ≤ λ+ ai − aj)

= G(λ+ ai − aj;σ
2
i , σ

2
j ).

The timing of players’ decisions is as follows. In the first stage (risk stage)

players simultaneously choose their risk exposure σ2
i ∈ {σ2

L, σ
2
H}, where i = 1, 2

and 0 < σ2
L < σ2

H < ∞. By choosing the high-risk strategy, a player induces a

mean preserving spread of his output through an increase of the variance of ϵi.

2This specification is chosen for its analytical simplicity and is often used in the tournament

literature (see Lazear and Rosen (1981), Green and Stokey (1983), and Akerlof and Holden

(2012)).
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In the second stage (effort stage), players observe the chosen risks and simultane-

ously decide their effort. This timing reflects real-world tournaments where risk

choices often precede effort decisions. For instance, managers have the option to

implement a new (and riskier) production technology or to stick to the old, more

standard technology before they actually start producing. Also in many sports,

players (or coaches) formulate a game plan before they decide how much effort

to exert during the game. The game plan can be seen as a risk choice when the

player (or coach) decides on an offensive (riskier) or defensive (less risky) strategy.

To be able to compute equilibria when players hold mistaken beliefs we as-

sume that: (1) a player facing an overconfident opponent is aware that the lat-

ter’s perception of his own ability is mistaken, (2) each player thinks that his

own perception of his ability is correct, and (3) both players have a common

understanding of each other’s beliefs, despite their disagreement on the accuracy

of their opponent’s beliefs. Hence, players’ agree to disagree about their abilities.

This approach follows Heifetz et al. (2007a,b) for games with complete informa-

tion, and Squintani (2006) for games with incomplete information.3 The solution

concept we employ is SPE. We start by solving the second stage (effort stage)

and then solve the first stage (risk stage).

4 Equilibrium

In the second stage, player i, i ∈ {1, 2}, chooses the optimal level of effort that

maximizes his perceived expected utility

E[Ui(ai, aj, λ, σ
2
i , σ

2
j )] = ul +G(λ+ ai − aj;σ

2
i , σ

2
j )∆u− c(ai),

where ∆u = uw − ul represents the utility prize spread.

The first-order condition of player i is

∂E[Ui(ai, aj, λ, σ
2
i , σ

2
j )]

∂ai
= g(λ+ ai − aj;σ

2
i , σ

2
j )∆u− c′(ai) = 0.

3These assumptions are consistent with the psychology literature on the “Blind Spot Bias”

according to which individuals believe that others are more susceptible to behavioral biases

than themselves (Pronin and Ross, 2002; Pronin and Kugler, 2007).
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The second-order condition of player i is

∂2E[Ui(ai, aj, λ, σ
2
i , σ

2
j )]

∂a2i
= g′(λ+ ai − aj;σ

2
i , σ

2
j )∆u− c′′(ai) < 0.

Hence, a sufficient condition for a pure-strategy Nash equilibrium to exist at the

effort stage is that

g′(λ+ ai − aj;σ
2
i , σ

2
j )∆u < c′′(ai), ∀ai, aj, λ, σ2

i , σ
2
j .

As established in the tournament literature, a pure-strategy Nash equilibrium

only exists if there is sufficient noise and the cost function c(a) is sufficiently

convex (Lazear and Rosen, 1981). Therefore, existence of a pure-strategy Nash

equilibrium is ensured when

∆u sup
x

g′(x) < inf
a>0

c′′(a). (1)

Condition (1) ensures that the second-order conditions are satisfied. Note that

the lower is supx g
′(x) the flatter is g(x) and hence the higher is the noise in the

tournament. Note also that 0 < c0 = infa>0 c
′′(a) defines a class of cost functions

with a second derivative bounded away from zero.

The pure-strategy Nash equilibrium of the effort stage (a∗1, a
∗
2) satisfies the

two first-order conditions simultaneously and is given by

g(λ+ a∗1 − a∗2;σ
2
1, σ

2
2)∆u = c′(a∗1)

and

g(a∗1 − a∗2 − λ;σ2
1, σ

2
2)∆u = c′(a∗2).

Lemma 1 shows that there exists a unique symmetric pure-strategy equilib-

rium of the effort stage.

Lemma 1. The effort stage has a unique symmetric pure-strategy equilibrium.

Lemma 1 tells us that in any SPE, for any risk strategy profile (σ2
1, σ

2
2) chosen

in the risk stage, the players exert the same effort in the effort stage. Since

a∗1 = a∗2 = a∗ the first-order condition in the effort stage becomes

g(λ;σ2
1, σ

2
2)∆u = c′(a∗). (2)
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Equation (2) shows that in equilibrium players should increase their effort level

up to the point where the perceived marginal benefit of doing so - the perceived

marginal probability of winning the tournament times the utility prize spread -

equals its incremental cost - the marginal disutility of effort. Differentiating (2)

gives us
∂a∗

∂λ
=

g′(λ;σ2
1, σ

2
2)∆u

c′′(a∗)
. (3)

Since ∆u and c′′(a∗) are positive, the relation between overconfidence and ef-

fort is given by the sign of g′(λ;σ2
1, σ

2
2), that is, how overconfidence influences

the perceived marginal probability of winning the tournament for any given risk

strategy profile (σ2
1, σ

2
2). Since λ > 0 it follows that g′(λ;σ2

1, σ
2
2) < 0 and therefore

∂a∗/∂λ < 0. Hence, holding first stage risk strategies constant, the second stage

equilibrium effort decreases in the overconfidence bias λ. In other words, in the

second stage, self-confidence and effort are substitutes. Intuitively, the higher a

player’s overconfident bias is, the greater his (misperceived) ability advantage to

get himself a lead in the tournament. Consequently, he decreases his effort to

save on effort costs.

In the first stage, players choose their risk strategies simultaneously. Hence,

players 1 and 2 solve the following maximization problems

max
σ2
1∈{σ2

L,σ
2
H}

ul +G(λ+ a∗1 − a∗2;σ
2
1, σ

2
2)∆u− c(a∗1),

max
σ2
2∈{σ2

L,σ
2
H}

ul +
[
1−G(a∗1 − a∗2 − λ;σ2

1, σ
2
2)
]
∆u− c(a∗2),

respectively. Since in any SPE a∗1 = a∗2 = a∗ for any given (σ2
1, σ

2
2), and the

symmetry of G(x) implies G(λ) = 1−G(−λ), the two problems are identical and

the first stage maximization problem becomes

max
σ2
i ∈{σ2

L,σ
2
H}

ul +G(λ;σ2
1, σ

2
2)∆u− c(a∗(λ, σ2

1, σ
2
2)). (4)

Problem (4) shows that a player’s risk choice has two effects on his perceived

expected utility. On the one hand, it changes the player’s perceived winning

probability (likelihood effect). On the other hand, it changes the player’s effort

in the second stage and therefore the cost of effort (effort effect).4

4This terminology for the two effects was introduced by Kräkel and Sliwka (2004),
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Since the tournament is symmetric, we have two possible candidates for pure-

strategy risk strategy profiles in a SPE: (σ2
H , σ

2
H) and (σ2

L, σ
2
L). It follows from

(4) that both players choose the high-risk strategy as long as

c(a∗(λ, σ2
L, σ

2
H))− c(a∗(λ, σ2

H , σ
2
H)) ≥

[
G(λ;σ2

L, σ
2
H)−G(λ;σ2

H , σ
2
H)
]
∆u. (5)

Inequality (5) tells us that a player chooses the high-risk strategy when a unilat-

eral deviation to a low-risk strategy raises the cost of effort more than it increases

the perceived probability of winning times the utility prize spread. In other words,

a player chooses the high-risk strategy when the unfavorable effort cost effect is

greater than the favorable likelihood effect of switching to a low-risk strategy.

Hence, when inequality (5) holds, there exists a SPE where (σ2
1, σ

2
2) = (σ2

H , σ
2
H).

It also follows from (4) that both players choose the low-risk strategy as long as[
G(λ;σ2

L, σ
2
L)−G(λ;σ2

H , σ
2
L)
]
∆u ≥ c(a∗(λ, σ2

L, σ
2
L))− c(a∗(λ, σ2

H , σ
2
L)) (6)

Inequality (6) tells us that a player chooses the low-risk strategy when a unilateral

deviation to a high-risk strategy lowers the cost of effort less than it lowers the

perceived probability of winning times the utility prize spread. In other words, a

player chooses the low-risk strategy when the favorable effort cost effect is smaller

than the unfavorable likelihood effect of switching to a high-risk strategy. Hence,

when inequality (6) holds, there exists a SPE where (σ2
1, σ

2
2) = (σ2

L, σ
2
L).

In following analysis, we establish the existence of threshold values for the bias

λ such that inequalities (5) and (6) hold as equalities. Moreover, we demonstrate

that when the players’ bias is small, both choose the high-risk strategy but, when

the players’ bias is large, both choose the low-risk strategy. To formalize this,

we specialize the model by assuming that ϵ1 and ϵ2 follow a normal distribution

with zero mean and variance σ2
1 and σ2

2, respectively. Consequently, the difference

x = ϵ1 − ϵ2 is also normally distributed with zero mean and variance σ2
1 + σ2

2.

We denote the cumulative distribution function of x by Φ(x) and its density by

ϕ(x). In addition, we assume an exponential cost of effort given by c(ai) = eai .5

5Note, that this specific cost function exhibits fixed costs as c(0) > 0. Fixed costs can

be motivated by the fact that tournament players often face costs before participating in the

actual tournament. Athletes may have to pay for a gaming license or travel to a specific sports

contest. Also, the preparation in form of training prior to a tournament can be seen as fixed

costs (Kräkel and Sliwka, 2004).
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This specification allow us to derive a closed-form solution for the equilibrium

effort and to obtain unique threshold values for λ under which (5) and (6) hold

as equalities. To ensure the equilibrium effort remains positive for all values of λ

we assume

∆u > 2
√
πmax

{
σLe

λ2

4σ2
L , σHe

λ2

4σ2
H

}
. (7)

Proposition 1 provides the equilibrium effort for the specialized model.

Proposition 1. In a tournament between two overconfident players where ϵ1

and ϵ2 are normally distributed with zero mean and variances σ2
1 and σ2

2, respec-

tively, and the cost of effort is exponential, the equilibrium effort is given by

a∗1(λ, σ
2
1, σ

2
2) = a∗2(λ, σ

2
1, σ

2
2) = ln

(
∆u√

2π(σ2
1 + σ2

2)

)
− λ2

2(σ2
1 + σ2

2)
. (8)

The equilibrium effort is decreasing in the overconfidence bias, λ, and increasing

in the utility prize spread, ∆u. Furthermore, the equilibrium effort is decreasing

in the sum of risks σ2
1 + σ2

2 when λ2 < σ2
1 + σ2

2.

Let us now consider stage 1, the risk stage. As we have seen, the level of risk

affects a player’s perceived winning probability (likelihood effect) as well as his

effort (effort effect). Depending on the size and direction of these two effects we

obtain different SPE outcomes. This finding is summarized below.

Proposition 2. Consider a tournament between two overconfident players where

ϵ1 and ϵ2 are normally distributed with zero mean and variances σ2
1 and σ2

2, re-

spectively, and the cost of effort is exponential. Let λ̄1 denote the unique solution

to (5) and λ̄2 the unique solution to (6).

(i) If λ < min{λ̄1, λ̄2}, then there is a unique SPE where both players choose the

high-risk strategy.

(ii) If λ > max{λ̄1, λ̄2}, then there is a unique SPE where both players choose

the low-risk strategy.

In the above SPE, the players’ equilibrium effort is given by (8).
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To understand the intuition behind Proposition 2, let us start by looking at

the SPE of a tournament between two rational players. In the second stage, the

equilibrium effort is obtained by setting λ = 0 in equation (8):

a∗1(σ
2
1, σ

2
2) = a∗2(σ

2
1, σ

2
2) = ln

(
∆u√

2π(σ2
1 + σ2

2)

)
.

Since the equilibrium effort in the second stage is negatively related to the sum

of risks, choosing a high-risk strategy in the first stage is a dominant strategy. In

other words, a unilateral deviation to a low-risk strategy in the first stage does

not alter a player’s probability of winning but raises the cost of effort. Hence,

in a tournament between two rational players, there is a unique SPE where both

players choose the high-risk strategy in the first stage, i.e., (σ2
1, σ

2
2) = (σ2

H , σ
2
H).

This result is in line with Hvide (2002).

Now consider a tournament between two overconfident players. When the

players’ bias satisfies λ < min{λ̄1, λ̄2}, a player’s perceived advantage over the

opponent is small. In this case, a player perceives the outcome of the tournament

does not dependent much on the ability gap. Hence, it is beneficial for the players

to limit the effort exerted, which they achieve by selecting the high-risk strategy.

In contrast, when the players’ bias satisfies λ > max{λ̄1, λ̄2}, a player’s perceived

advantage over the opponent is large, making him perceive the outcome of the

tournament to be highly dependent on the ability gap. In this case, players seek

to reduce the influence of risk to avoid jeopardizing their large perceived ability

advantage. They can do so by selecting the low-risk strategy.6

Next, we compare the equilibrium efforts in a tournament with two overcon-

fident players to those in a tournament with two rational players.

Proposition 3. Consider a tournament between two overconfident players where

ϵ1 and ϵ2 are normally distributed with zero mean and variances σ2
1 and σ2

2, re-

spectively, and the cost of effort is exponential. Let λ̄1 denote the unique solution

6When λ ∈ (λ̄1, λ̄2) there exists a unique SPE where players mix between the low and the

high-risk strategy. In addition, when λ ∈ (λ̄2, λ̄1) there exist one pure-strategy SPE where

players choose the high-risk strategy, one pure-strategy SPE where players choose the low-risk

strategy, and one SPE where players mix between the low and high-risk strategies. We focus

throughout on pure-strategy SPE and hence skip the characterization of mixed-strategy SPE.
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to (5) and λ̄2 the unique solution to (6).

(i) If λ < min{λ̄1, λ̄2}, then effort provision is lower than if both players were

rational.

(ii) If λ ∈ (max{λ̄1, λ̄2}, 2σL

√
ln(σH/σL)), then effort provision is higher than if

both players were rational.

(iii) If λ > 2σL

√
ln(σH/σL), then effort provision is lower than if both players

were rational.

As we have seen, rational players choose the high-risk strategy in the first

stage and low equilibrium effort in the second stage. We know from part (i)

of Proposition 2 that overconfident players choose the high-risk strategy when

λ < min{λ̄1, λ̄2}. In such instances, part (i) of Proposition 3 shows that over-

confident players exert less effort than rational ones due to the negative effect of

overconfidence on effort provision described by equation (3) and Proposition 1.

We also know from part (ii) of Proposition 2 that overconfident players choose

the low-risk strategy when λ > max{λ̄1, λ̄2}. In such instances two cases can arise.

First, when the bias is not too large, i.e., λ ∈ (max{λ̄1, λ̄2}, 2σL

√
ln(σH/σL)), the

positive effect of lower risk taking on effort provision dominates the negative effect

of overconfidence on effort provision. In this case, part (ii) of Proposition 3 shows

that overconfident players exert higher effort than rational ones. Second, when

the bias is too large, i.e., λ > 2σL

√
ln(σH/σL), the positive effect of lower risk

taking on effort provision is dominated by the negative effect of overconfidence on

effort provision. In this case, part (iii) of Proposition 3 shows that overconfident

players exert less effort than rational ones.

Figure 1 illustrates Proposition 3. The equilibrium effort of overconfident

players is depicted by the plain curve and that of rational players by the dashed

horizontal line. When the bias is low and players choose a high-risk strategy, over-

confident players exert lower effort than rational players. When the bias leads the

players to shift from the high-risk to the low-risk strategy, there is a jump in effort

provision and they exert more effort than rational ones. As the bias increases fur-

ther effort provision of overconfidence players decreases but is still higher than of

effort provision of rational players. However, as the bias increases further, effort

provision of overconfident players falls below that of rational players.
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Figure 1: Relationship between equilibrium effort and overconfidence level, for

(σ2
L, σ

2
H) = (4, 16) and ∆u = 30. In this case, the thresholds λ̄1 and λ̄2 are equal

to 0.963 and 0.927, respectively, and 2σL

√
ln(σH/σL) = 4

√
ln2 = 3.3302.
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5 Heterogeneity in Confidence

In the Online Appendix, we investigate a tournament where an overconfident

player faces a rational opponent, yielding four main findings.

First, in any SPE the overconfident player exerts less effort than the rational

player. When players are equally talented but one is overconfident and the other is

rational, the tournament is asymmetric and so is any SPE. Since the overconfident

player thinks, mistakenly, that he has a talent advantage over his opponent, he

prefers to lower his effort to save on effort costs.

Second, the overconfident player is less likely to win the tournament when risk

is normally distributed. As we have seen, in any SPE the overconfident player

exerts less effort than the rational player in the second stage. Hence, in any SPE

where both workers choose the same risk strategy in the first stage, risk taking

cancels out and the rational player has a higher objective probability of winning

the tournament due to her higher effort. Matters are not so straightforward in

any SPE where players choose different risk strategies. However, when the ran-

dom shocks are normally distributed, only the sum of risks matters to determine

how risk taking influences the players’ objective probabilities of winning the tour-

nament. Since both players face the same sum of risks, regardless of their chosen

risk strategies, it follows that the overconfident player, by exerting lower effort,

has a smallest objective winning probability than the rational player.

Third, the overconfident player may choose a less risky strategy than the ra-

tional player but the reverse cannot happen. The intuition behind this result is

as follows. As the overconfident player becomes increasingly overconfident, both

players exert lower efforts, and the effort gap increases. When the overconfident

player’s bias is large, he thinks, mistakenly, that he has a large talent advantage

over the rational player, even considering that he ends up exerting less effort

than the rational player. Thinking, mistakenly, that he is the favorite, the over-

confident player chooses the low risk strategy. The rational player, aware of her

opponent’s overconfidence, and knowing that the effort gap in her favor is small,

still prefers the high risk strategy. Therefore, when the overconfident player’s bias

is large, the overconfident player chooses the low risk strategy and the rational

player the high risk strategy.
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Fourth, when the overconfident player’s bias is very large, the rational player

takes less risk. In such instances, the overconfident player chooses a low risk

strategy since he thinks, mistakenly, that his very large talent advantage more

than compensates the large effort gap in favor of the rational player. The rational

player, aware that her opponent’s overconfidence, and knowing that the effort

gap in her favor is large, thinks correctly she has a clear advantage and switches

from the high to the low risk strategy. Thus, when the overconfident player’s

bias is very large, both players choose the low risk strategy. This finding shows

that overconfident individuals can lead rational individuals to innovate less than

they would if everyone were rational. This stands in contrast to the idea that

overconfident individuals spur innovation.

6 Conclusion

Our study shows that overconfidence can fundamentally alter the equilibrium of a

tournament in which players make both risk and effort choices. An overconfident

player who mistakenly believes he has a high enough ability advantage over his

rival will chose a low-risk strategy to avoid jeopardizing his advantage. This find-

ing challenges the conventional notion that overconfident individuals take more

risks than rational ones. In addition, if the overconfidence bias is not too high,

the lower risk taking leads to increased effort. By uncovering a new mechanism

through which overconfidence lowers risk and boosts effort, our study offers a

fresh perspective on how biased self-beliefs can reshape competitive behavior.
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7 Appendix

Proof of Lemma 1

Assume, by contradiction, a∗1 > a∗2. This implies λ + a∗1 − a∗2 > a∗1 − a∗2 − λ >

−λ − a∗1 + a∗2. Since g(x) = g(−x) we have g(λ + a∗1 − a∗2;σ
2
1, σ

2
2) = g(−λ −

a∗1 + a∗2;σ
2
1, σ

2
2). Since g′(x) < 0 for x > 0 and g′(x) > 0 for x < 0 it follows

from g(λ+ a∗1 − a∗2;σ
2
1, σ

2
2) = g(−λ− a∗1 + a∗2;σ

2
1, σ

2
2) that g(λ+ a∗1 − a∗2;σ

2
1, σ

2
2) <

g(−λ + a∗1 − a∗2;σ
2
1, σ

2
2). This inequality and the first-order conditions imply

c′(a∗1) < c′(a∗2) which contradicts c′(a∗1) > c′(a∗2). Now, assume, by contradiction

a∗1 < a∗2. This implies λ+a∗2−a∗1 > λ+a∗1−a∗2 > −λ+a∗1−a∗2. Since g(x) = g(−x)

we have g(λ+a∗2−a∗1;σ
2
1, σ

2
2) = g(−λ+a∗1−a∗2;σ

2
1, σ

2
2).Since g

′(x) < 0 for x > 0 and

g′(x) > 0 for x < 0 it follows from g(λ+ a∗2 − a∗1;σ
2
1, σ

2
2) = g(−λ+ a∗1 − a∗2;σ

2
1, σ

2
2)

that g(λ+a∗1−a∗2;σ
2
1, σ

2
2) > g(−λ+a∗1−a∗2;σ

2
1, σ

2
2). This inequality and the first-

order conditions imply c′(a∗1) > c′(a∗2) which contradicts c′(a∗1) < c′(a∗2). Hence,

the unique pure-strategy equilibrium of the effort stage is given by a∗1 = a∗2. It

is easy to see that this symmetric equilibrium satisfies the first-order conditions.

Setting a∗1 = a∗2 = a∗ in the first-order conditions we obtain

g(λ;σ2
1, σ

2
2)∆u = c′(a∗)

and

g(−λ;σ2
1, σ

2
2)∆u = c′(a∗).

These two first-order conditions are equivalent since symmetry of G(x) implies

g(x) = g(−x).

Proof of Proposition 1

When ϵ1 and ϵ2 are normally distributed with zero mean and variances σ2
1 and σ2

2,

respectively, and the cost of effort is c(ai) = eai , the perceived expected utility of

player i = 1, 2 is

E[Ui(ai, aj, λ, σ
2
i , σ

2
j )] = ul + Φ

λ+ ai − aj√
σ2
i + σ2

j

∆u− eai .
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The first-order condition of the effort stage for player i = 1, 2 is

∂E[Ui(ai, aj, λ, σ
2
i , σ

2
j )]

∂ai
=

1√
2π(σ2

1 + σ2
2)
e
−

(λ+ai−aj)
2

2(σ2
1+σ2

2) ∆u− eai = 0.

We know from Lemma 1 that at the unique equilibrium we have a1 = a2. Hence,

the equilibrium effort a∗ satisfies

ea
∗
=

∆u√
2π(σ2

1 + σ2
2)
e
− λ2

2(σ2
1+σ2

2) .

Taking logs we have

a∗ = ln

(
∆u√

2π(σ2
1 + σ2

2)

)
− λ2

2(σ2
1 + σ2

2)
.

This equilibrium effort is positive if the utility prize spread ∆u is sufficiently big,

i.e.,

ln

(
∆u√

2π(σ2
1 + σ2

2)

)
>

λ2

2(σ2
1 + σ2

2)

∆u√
2π(σ2

1 + σ2
2)

> e
λ2

2(σ2
1+σ2

2)

∆u >
√
2π(σ2

1 + σ2
2)e

λ2

2(σ2
1+σ2

2) .

It is easy to check that this inequality holds given assumption (7), the right-

hand side being convex in the sum of risks, and the fact that σ2
i ∈ {σ2

L, σ
2
H}, for

i = 1, 2. The equilibrium effort a∗ is decreasing with the overconfidence bias as

∂a∗/∂λ < 0, and increasing with the utility prize spread as ∂a∗/∂∆u < 0. To

determine how a change in risk affects the equilibrium effort a∗ let σ2 = σ2
1 + σ2

2.

We have

∂a∗

∂σ
=

∂

∂σ

[
ln

(
∆u√
2π

)
− lnσ − λ2

2σ2

]
= − 1

σ
+

λ2

σ3
=

1

σ

[
−1 +

(
λ

σ

)2
]
.

Hence, the equilibrium effort a∗ decreases with risk as long as λ2 < σ2 = σ2
1 +σ2

2.
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Proof of Proposition 2

For the specialized model, the perceived expected utility of player i = 1, 2 evalu-

ated at the stage two equilibrium efforts is

E[Ui(a
∗
i , a

∗
j , λ, σ

2
i , σ

2
j )] = ul + Φ

λ+ a∗i − a∗j√
σ2
i + σ2

j

∆u− ea
∗
i

= ul + Φ

 λ√
σ2
i + σ2

j

∆u− e
ln

(
∆u√

2π(σ2
i
+σ2

j
)

)
− λ2

2(σ2
i
+σ2

j
)

= ul + Φ

 λ√
σ2
i + σ2

j

∆u− ∆u√
2π(σ2

i + σ2
j )
e
− λ2

2(σ2
i
+σ2

j
)

Thus, the maximization problem of player i = 1, 2 at the risk stage is

max
σ2
i ∈{σ2

L,σ
2
H}

ul + Φ

 λ√
σ2
i + σ2

j

∆u− ∆u√
2π(σ2

i + σ2
j )
e
− λ2

2(σ2
i
+σ2

j
)

Proof of part (i): The high-risk equilibrium (σ2
1, σ

2
2) = (σ2

H , σ
2
H) takes place when

the perceived expected utility of the high-risk strategy is higher than a unilateral

deviation to the low-risk strategy, that is, if

ul + Φ

(
λ√

σ2
H + σ2

H

)
∆u− ∆u√

2π(σ2
H + σ2

H)
e
− λ2

2(σ2
H

+σ2
H

)

≥ ul + Φ

(
λ√

σ2
L + σ2

H

)
∆u− ∆u√

2π(σ2
L + σ2

H)
e
− λ2

2(σ2
L
+σ2

H
) ,

or

e
− λ2

2(σ2
L
+σ2

H
)√

2π(σ2
L + σ2

H)
− e

− λ2

2(σ2
H

+σ2
H

)√
2π(σ2

H + σ2
H)

≥ Φ

(
λ√

σ2
L + σ2

H

)
− Φ

(
λ√

σ2
H + σ2

H

)
. (9)

Setting λ = 0 in the LHS of (9) we obtain

LHS(λ = 0) =
1√

2π(σ2
L + σ2

H)
− 1√

2π(σ2
H + σ2

H)
> 0.

Setting λ = 0 in the RHS of (9) we obtain

RHS(λ = 0) = Φ(0)− Φ(0) = 0.5− 0.5 = 0.
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Hence, the inequality is satisfied when λ = 0, i.e., when both players are rational

they both choose the high-risk strategy. Note that RHS of (9) is always non-

negative. Note also that the LHS of (9) is equal to zero when

e
− λ2

2(σ2
L
+σ2

H
)√

2π(σ2
L + σ2

H)
=

e
− λ2

2(σ2
H

+σ2
H

)√
2π(σ2

H + σ2
H)

,

or √
σ2
H + σ2

H

σ2
L + σ2

H

= e
− λ2

2(σ2
H

+σ2
H

)
+ λ2

2(σ2
L
+σ2

H
) ,

or
1

2
ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
= − λ2

2(σ2
H + σ2

H)
+

λ2

2(σ2
L + σ2

H)
,

or

ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
= λ2

(
1

σ2
L + σ2

H

− 1

σ2
H + σ2

H

)
,

or

λ =

√
(σ2

L + σ2
H)(σ

2
H + σ2

H)

σ2
H − σ2

L

ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
.

Taking the derivative of the LHS of (9) with respect to λ we obtain

∂

∂λ
LHS(λ) =

∂

∂λ

 e
− λ2

2(σ2
L
+σ2

H
)√

2π(σ2
L + σ2

H)
− e

− λ2

2(σ2
H

+σ2
H

)√
2π(σ2

H + σ2
H)


= −

λ
σ2
L+σ2

H
e
− λ2

2(σ2
L
+σ2

H
)√

2π(σ2
L + σ2

H)
+

λ
σ2
H+σ2

H
e
− λ2

2(σ2
H

+σ2
H

)√
2π(σ2

H + σ2
H)

= − λe
− λ2

2(σ2
L
+σ2

H
)√

2π(σ2
L + σ2

H)
3
+

λe
− λ2

2(σ2
H

+σ2
H

)√
2π(σ2

H + σ2
H)

3

Evaluating this derivative at λ = 0 we have

∂

∂λ
LHS(λ)

∣∣∣∣
λ=0

= 0

The derivative is negative when

e
− λ2

2(σ2
H

+σ2
H

)√
(σ2

H + σ2
H)

3
<

e
− λ2

2(σ2
L
+σ2

H
)√

(σ2
L + σ2

H)
3
,
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or

e
λ2

2(σ2
L
+σ2

H
)
− λ2

2(σ2
H

+σ2
H

) <

√(
σ2
H + σ2

H

σ2
L + σ2

H

)3

,

or
λ2

2(σ2
L + σ2

H)
− λ2

2(σ2
H + σ2

H)
<

3

2
ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
,

or
(σ2

H + σ2
H)− (σ2

L + σ2
H)

(σ2
L + σ2

H)(σ
2
H + σ2

H)
λ2 < 3 ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
,

or
σ2
H − σ2

L

(σ2
L + σ2

H)(σ
2
H + σ2

H)
λ2 < 3 ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
,

or

λ <

√
3
(σ2

L + σ2
H)(σ

2
H + σ2

H)

σ2
H − σ2

L

ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
.

Taking the derivative of the RHS of (9) with respect to λ we obtain

∂

∂λ
RHS(λ) =

∂

∂λ

[
Φ

(
λ√

σ2
L + σ2

H

)
− Φ

(
λ√

σ2
H + σ2

H

)]

=
1√

σ2
L + σ2

H

ϕ

(
λ√

σ2
L + σ2

H

)
− 1√

σ2
H + σ2

H

ϕ

(
λ√

σ2
H + σ2

H

)

=
1√

σ2
L + σ2

H

1√
2π(σ2

L + σ2
H)

e
− λ2

2(σ2
L
+σ2

H
) − 1√

σ2
H + σ2

H

1√
2π(σ2

H + σ2
H)

e
− λ2

2(σ2
H

+σ2
H

)

=
1

(σ2
L + σ2

H)
√
2π

e
− λ2

2(σ2
L
+σ2

H
) − 1

(σ2
H + σ2

H)
√
2π

e
− λ2

2(σ2
H

+σ2
H

) .

Evaluating this derivative at λ = 0 we have

∂

∂λ
RHS(λ)

∣∣∣∣
λ=0

=
1

(σ2
L + σ2

H)
√
2π

− 1

(σ2
H + σ2

H)
√
2π

> 0.

The derivative is positive when

1

σ2
L + σ2

H

e
− λ2

2(σ2
L
+σ2

H
) >

1

σ2
H + σ2

H

e
− λ2

2(σ2
H

+σ2
H

) ,

or

e
λ2

2(σ2
L
+σ2

H
)
− λ2

2(σ2
H

+σ2
H

) <
σ2
H + σ2

H

σ2
L + σ2

H

,

or
λ2

2 (σ2
L + σ2

H)
− λ2

2 (σ2
H + σ2

H)
< ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
,
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or
λ2

σ2
L + σ2

H

− λ2

σ2
H + σ2

H

< 2 ln

(
σ2
H + σ2

H

σ2
L + σ2

H

)
,

or
σ2
H − σ2
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We have shown the LHS of (9) is strictly positive at λ = 0, decreases in λ, and is

equal to zero at λ =
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H)(σ2

H+σ2
H)
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L
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)
. Furthermore, we have shown

the RHS of (9) is non-negative, is equal to zero at λ = 0, first increases and then

decreases in λ, and attains its maximum at λ =
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L
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(
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Hence, it follows that there is a unique positive value for λ that satisfies (9) as

an equality. Let λ̄1 denote the unique solution to:

e
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Figure 2: LHS and RHS of inequality (9)
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Figure 2 shows the LHS and RHS of (9) for (σ2
L, σ

2
H) = (4, 16). As the plot shows,

the LHS and RHS of (9) cross only once. We, thus, have a unique threshold for

the overconfidence bias λ for which (9) holds as an equality. The point of inter-

section between the LHS and RHS represents the threshold λ̄1.

Hence, we have shown that if λ < λ̄1, then there exists a pure-strategy SPE

where both players choose the high-risk strategy in the first stage and where the

equilibrium effort in the second stage is given by (8) with (σ2
1, σ

2
2) = (σ2

H , σ
2
H).

Proof of part (ii): The low-risk equilibrium (σ2
1, σ

2
2) = (σ2

L, σ
2
L) takes place when

the perceived expected utility of the low-risk strategy is higher than a unilateral

deviation to the high-risk strategy, that is, if
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Setting λ = 0 in the LHS of (10) we obtain

LHS(λ = 0) =
1√

2π(σ2
L + σ2

L)
− 1√

2π(σ2
L + σ2

H)
> 0.

Setting λ = 0 in the RHS of (10) we obtain

RHS(λ = 0) = Φ(0)− Φ(0) = 0.5− 0.5 = 0.

Hence, the inequality is violated when λ = 0, in other words, when both players

are rational the low-risk equilibrium does not exist. Note that the RHS of (10)

is always non-negative. Note also that the LHS of (10) is equal to zero when
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Taking the derivative of the LHS of (10) with respect to λ we obtain
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Taking the derivative of the RHS of (10) with respect to λ we obtain
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We have shown the LHS of (10) is strictly positive at λ = 0, decreases in λ, and is

equal to zero at λ =
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. Furthermore, we have shown

the RHS of (10) is non-negative, is equal to zero at λ = 0, first increases and then
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decreases in λ, and attains its maximum at λ =
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Hence, it follows that there is a unique positive value for λ that satisfies (10) as

an equality. Let λ̄2 denote the unique solution to:
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Figure 3: LHS and RHS of inequality (10)

Figure 3 shows the LHS and RHS of (10) for (σ2
L, σ

2
H) = (4, 16). As the plot shows,

the LHS and RHS of (10) cross only once. We, thus, have a unique threshold

for the overconfidence bias λ for which (10) holds as an equality. The point of

intersection between the LHS and RHS represents the threshold λ̄2.

Hence, we have shown that if λ > λ̄2, then there exists a pure-strategy SPE

where both players choose the low-risk strategy in the first stage and where the

equilibrium effort in the second stage is given by (8) with (σ2
1, σ

2
2) = (σ2

L, σ
2
L).

Since there no guarantee that λ̄1 is always bigger (or smaller) than λ̄2, to en-

sure that there is a unique SPE where both players choose the high-risk strategy
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in part (i) we impose λ < min{λ̄1, λ̄2}. Similarly, to ensure that there is a

unique SPE where both players choose the low-risk strategy in part (ii) we im-

pose λ > max{λ̄1, λ̄2} .

We now discuss what is the SPE for the remaining values of λ. We distinguish

between two cases: (a) λ̄1 < λ < λ̄2 and (b) λ̄2 < λ < λ̄1. In case (a) there is

no symmetric pure-strategy SPE. However, existence is guaranteed by standard

arguments. Hence, there exists a symmetric SPE where players mix between the

low and the high risk strategies in the first stage and where the equilibrium effort

in the second stage is given by (8). In case (b) there exist three SPE. There is

one pure-strategy SPE where both players choose the high-risk strategy in the

first stage and where the equilibrium effort in the second stage is given by (8)

with (σ2
1, σ

2
2) = (σ2

H , σ
2
H). There is another pure-strategy SPE where both players

choose the low-risk strategy in the first stage and where the equilibrium effort in

the second stage is given by (8) with (σ2
1, σ

2
2) = (σ2

L, σ
2
L). Finally, there is a SPE

where players mix between the low and the high-risk strategies in the first stage

and where the equilibrium effort in the second stage is given by (8).

Proof of Proposition 3

The equilibrium effort in a tournament with rational players is
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both players choose the low-risk strategy is
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It follows directly from (11) and (12) that if λ < min{λ̄1, λ̄2}, then a∗(σ2
H , σ

2
H) >

a∗(λ, σ2
H , σ

2
H). This proves part (i). It follows from (11) and (13) that for
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Hence, if max{λ̄1, λ̄2} < λ < 2σL

√
ln σH

σL
, then a∗(λ, σ2

L, σ
2
L) > a∗(σ2

H , σ
2
H). This

proves part (ii). Finally, this last result implies that if λ > 2σL
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, then
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H). This proves part (iii).
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