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1 Introduction

This paper investigates the role of overconfidence in Tullock contests. This question

is of relevance since evidence from psychology and economics shows that humans

tend to be overconfident. A majority of people believe they are better than others

in a wide variety of positive traits and skills (Myers 1996, Santos-Pinto and Sobel

2005). Examples include entrepreneurs (Cooper et al. 1988), judges (Guthrie et al.

2001), CEOs (Malmendier and Tate 2005, 2008), fund managers (Brozynski et al.

2006), currency traders (Oberlechner and Osler 2008), or poker and chess players

(Park and Santos-Pinto 2010).

Competitions often take the form of contests. For example, an R&D race to be

the first to develop or get a patent in new product or technology, election campaigns,

rent-seeking games, competitions for monopolies, litigation, and wars, are examples

of contests. Overconfidence matters for entry and performance in competitions and

for labor markets (Camerer and Lovallo 1999, Niederle and Vesterlund 2007, Moore

and Healy 2008, Dohmen and Falk 2011, Malmendier and Taylor 2015, Huffman et

al. 2019, Santos-Pinto and de la Rosa 2020). Overconfidence also seems to play

a role in mate competition and acquisition (Waldman 1994, Murphy et al. 2015).

Interestingly, Lyons et al. (2020) provide evidence that high-status lobbyists working

for private interest groups in Washington, DC, USA tend to be overconfident: they

overate their achievements and their success. This empirical finding is in line with

the experimental findings of Niederle and Vesterlund (2007) and Dohmen and Falk

(2011) according to which overconfident participants tend to self select more into

more competitive environments.

What is the effect of players’ overconfidence on their effort provision and on

rent dissipation? Does overconfidence lead to more entry in a contest? These are

important questions since although the extant literature has characterized in depth

equilibria in contests, behavioral biases have so far received limited attention by

scholars (e.g. Baharad and Nitzan 2008, Santos-Pinto and Sekeris 2025).

To address these questions, we employ a generalized n player Tullock contest
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(1980) where v is the prize being contested, ai the effort of player i, and c(ai) the

cost of effort to player i. Player i’s probability of winning the contest is P (ai, a−i) =
q(ai)

q(ai)+
∑
j ̸=i q(aj)

, where q(ai) is often referred to as the impact function (Ewerhart

2015). In an environment with fully rational players, the expected utility of player i

is given by E[Ui(ai, a−i)] = Pi(ai, a−i)v − c(ai).

An earlier study conceptualizes overconfidence as an underestimation of the cost

of effort: E[Ui(ai, a−i; γ)] = Pi(ai, a−i)v − γc(ai), where 0 < γ < 1 (Ludwig et

al. 2011). Likewise, overconfidence can also be modeled as an overestimation of the

rival’s cost of effort (Deng et al. 2024). These approaches to modeling overconfidence

are isomorphic. We follow a novel approach by assuming an overconfident player i

thinks, mistakenly, his impact function is λq(ai), where λ > 1, and has correct

beliefs about his rivals’ impact functions. Accordingly, an overconfident player’s

perceived winning probability is Pi(ai, a−i;λ) =
λq(ai)

λq(ai)+
∑
j ̸=i q(aj)

, which is larger than

his actual winning probability. Since the impact function embeds a player’s ability,

we conceptualize overconfidence as an overestimation of the effect of one’s effort

on contest outcomes—a common definition of overconfidence in the literature (e.g.

Bénabou and Tirole 2002, 2003, Santos-Pinto 2008, 2010)—while assuming that

players accurately assess their cost of effort. Importantly, our findings regarding the

effect of overconfidence in contests run counter to earlier research.

We consider a symmetric n ≥ 2 player Tullock contest where all players are

overconfident. We demonstrate that the number of players as well as the degree of

overconfidence matters in terms of understanding the effects of overconfidence on

effort provision and rent dissipation in contests. On the one hand, overconfidence

reduces individual and aggregate efforts when λ is larger than n − 1. In this case

all players expect to be highly likely to win the contest. Hence, an increase in

overconfidence lowers the perceived marginal probability of winning, which pushes

players’ efforts downwards. On the other hand, overconfidence raises individual and

aggregate efforts if λ is smaller than n − 1. In such instances, all players expect to

win the contest with a low probability. Therefore, an increase in overconfidence will
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raise the perceived marginal probability of winning, which pushes players’ efforts

upwards. This stands out as a novel contribution of our work compared to the

existing literature which has exclusively focused on 2 player contests.

We next demonstrate that overconfidence can lead to overdissipation, i.e. situ-

ations where players’ aggregate cost of effort is strictly larger than the value of the

prize. In particular, we show that there is a threshold value of the number of players

above which overdissipation can always occur, provided players are sufficiently over-

confident. Moreover, we show that as the number of players goes up, overdissipation

can be observed for values of λ close to 1.

Last we inquire how overconfidence affects entry in a contest. In order to answer

this question, we assume N ≥ 2 symmetric potential entrants that have an outside

option. Overconfidence affects incentives to enter the contest through two channels.

First, it raises the perceived winning probability, and thus the benefit of entry for

given efforts of players. Second, it incentivizes players to modify their equilibrium

efforts, thereby indirectly impacting the potential entrants’ payoffs. We show that

even when an increase in overconfidence raises players’ individual efforts, and the two

effects then go in opposite directions, higher overconfidence always results in more

entry.

The paper is organized as follows. Section 2 discusses related literature. Section

3 sets-up the contest model. In Section 4 we derive the equilibrium and perform

comparative statics. Section 5 studies entry, and Section 6 concludes the paper. All

proofs are in the Appendix.

2 Related Literature

This study relates to two strands of literature. First, it contributes to the literature

on behavioral biases in contests and tournaments.

Ludwig et al. (2011) analyze a Tullock contest where an overconfident player

competes against a rational player. The overconfident player is assumed to under-
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estimate his cost of effort. Ludwig et al. (2011) find that the overconfident player

exerts more effort and the rational player exerts less effort than if both players were

rational. They also find that the bias makes the contest organizer better off since the

overconfident player’s increase in effort more than compensates the rational player’s

decrease in effort. The intuition of these results is that an overconfident player has

a lower perceived marginal cost of effort for any given marginal utility from winning

the contest which leads him to put more effort. In turn, the rational player reduces

his own effort because of strategic substitutability. Our results show that when over-

confidence is an overestimation of the impact of one’s effort, its effects on equilibrium

efforts are quite different than those in found Ludwig et al. (2011). The differences in

the results are driven by the fact that overconfidence in our setup raises the marginal

perceived probability from winning for low values of effort whereas it lowers it for

high value of effort. As a consequence, and in contrast to Ludwig et al. (2011), in

our study, overconfidence shifts a player’s best response function in a non-monotonic

way as shown in Lemma 2. Our definition of overconfidence is adequate when both

the monetary value of winning the contest and the cost of effort are known before

entry.

Bansah et al. (2024) explore the role of overconfidence on a 2 player Tullock

contest with linear impact and cost functions. Overconfidence is modeled as an over-

estimation of the winning probability, rather than an overestimation of the impact

of one’s effort. Observe, however, that their definition of overconfidence does not

satisfy the property that the perceived winning probabilities are well defined for any

value of the bias. In addition to our distinct approach to modeling overconfidence,

our study employs more general impact and cost functions and extends the analysis

to n players.

Santos-Pinto and Sekeris (2025) study how confidence heterogeneity affects effort

and performance in tournaments and contests with two players. They demonstrate

a non-monotonic effect of confidence on equilibrium relative efforts and winning

probabilities. In the present paper, we use the same definition of overconfidence as
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in Santos-Pinto and Sekeris (2025), but rather than focusing on a 2 player contest, we

consider contests with n players, and we explore the implications of overconfidence

on rent dissipation and on entry.

The aforementioned studies analyze Tullock contests under the assumption that

players have complete information about their abilities or costs, yet overconfident

players overestimate their abilities or underestimate their costs. In contrast, Deng et

al. (2024) consider a Tullock contest with incomplete information about the players’

costs. In their model, a newly hired employee has private information about his cost

of effort, while the incumbent employee has biased beliefs on the former’s cost-type,

i.e. he holds a biased prior belief on whether his rival is a low-cost or a high-cost

type. They study how the asymmetry in beliefs affects aggregate expected effort

provision, and whether a contest organizer should disclose or conceal information on

the new hire’s cost of effort to the incumbent. We instead model overconfidence as an

overestimation of the impact of one’s effort in a setup where there is no uncertainty

about the players’ true types.1 Observe that, as explained above, overestimating

one’s own ability deeply differs from misestimating one’s effort cost, and we equally

extend the analysis to n player contests.

Santos Pinto (2010) studies how a tournament organizer optimally sets the prizes

in a Lazear and Rosen (1981) rank-order tournament with overconfident players.

We adopt the same definition of overconfidence and equilibrium concept. Observe,

however, that although players’ winning probabilities in both Lazear-Rosen tour-

naments and Tullock contests are logistic functions, the way in which noise affects

1Overconfidence has been studied using two approaches. One approach assumes incomplete

information about players’ types and models overconfidence as a shift in the belief distribution that

places greater weight on types with higher ability or lower effort cost. (Bénabou and Tirole 2002,

2003, Santos-Pinto 2008, De la Rosa 2011, Deng et al. 2024). In contrast, the other approach

assumes complete information and posits that overconfidence is an overestimation of ability or an

underestimation of effort cost. (Santos-Pinto 2010, Ludwig et al. 2011, Bansah et al. 2024, Santos-

Pinto and Sekeris 2025). The first approach imposes an upper limit on the bias, whereas the second

approach does not.
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the mapping of players’ efforts to winning probabilities differs. As a consequence,

overconfidence shifts players’ best response functions differently in these two models.

Santos Pinto (2010) finds in a symmetric two player tournament that an increase

in overconfidence raises the equilibrium efforts of players. In contrast, we find the

opposite in a two player contest, while we equally consider more than two players in

our study.

Baharad and Nitzan (2008) and Keskin (2018) amend the standard model of

contests by introducing probability weighting in line with Tversky and Kahneman’s

(1992) Cumulative Prospect Theory. This behavioral bias is modeled with an inverse

S-shaped probability weighting function, i.e., a function where the marginal increase

in the (perceived) subjective probability is higher for extreme (i.e. low and high)

probabilities. Our own approach assumes a constant bias in players’ beliefs that

they are better than they really are at contesting their opponents. We thus see our

approach as complementary to these earlier works since nothing precludes players

from both assigning ‘weights’ to probabilities and be subject to an overconfidence

bias. Notice that in terms of contribution to the literature on behavioral biases, our

approach has the advantage to be flexible enough to accommodate a very large family

of contest success functions while also allowing for any possible heterogeneities among

players. Last, whereas Baharad and Nitzan (2008) and Keskin (2018)’s approach

applies exclusively to probabilistic setups, our own model is equally suited to describe

sharing contests that have gained in importance over the years (e.g. Dickson et al.

2018).2

Second, our study relates to the experimental literature on behavior in contests.

Scholars have also long tried to explain the puzzle that contestants in lab experiments

spend significantly higher amounts than the game’s Nash equilibrium (Chowdhury

et al. 2014, Price and Sheremeta 2015, Mago et al. 2016), and even overdissipation

2Other scholars have equally focused on the effect of behavioural biases on equilibrium out-

comes in the presence of uncertainty. Kelsey and Melkonyan (2018) consider both optimistic and

pessimistic attitudes to ambiguity, while Cornes and Hartley (2003) and Fu et al. (2022) introduce

loss aversion in probabilistic contests.
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can occur (Sheremeta 2011). The theoretical literature has attempted to explain

overspending, but also extreme manifestations of such phenomena where contestants

overdissipate the rent by expending on aggregate more resources than the value of

the prize that is contested. Overspending has so far been attributed to players’

risk attitudes (Jindapon and Whaley 2015) or to mixed strategy equilibria where

overspending occurs with some probability but not in expectation (Baye et al. 1999).

Our paper demonstrates that with overconfident contestants, overspending and even

overdissipation can result when the number of players is sufficiently large and the

overconfidence bias is relatively mild; overconfident players individually expend more

effort than rational players when their odds of winning are low because of the high

number of participants.

3 Set-up

To study the role of overconfidence in contests we consider a generalized n player

Tullock contest. The effort cost is c(ai) with c(0) = 0, c′(ai) > 0 and c′′(ai) ≥ 0.

Following Baik (1994) we assume the CSF is:

Pi(ai, a−i) =

{
q(ai)/

∑
j q(aj) if

∑
j q(aj) > 0

1/n if
∑

j qj(aj) = 0
,

where a−i designates the vector of player i’s competitors’ efforts, q(0) ≥ 0, q′(ai) > 0

and q′′(ai) ≤ 0. The overconfident player i mistakenly perceives his impact function

to be λq(ai), with λ > 1, and correctly perceives the rivals’ impact functions. This

way of modelling overconfidence in a contest implies that an overconfident player i’s

perceived winning probability is equal to

Pi(ai, a−i;λ) =

{
λq(ai)/[λq(ai) +

∑
j ̸=i q(aj)] if λq(ai) +

∑
j ̸=i q(aj) > 0

1/n if λq(ai) +
∑

j ̸=i q(aj) = 0
.

This specification of overconfidence in a contest satisfies four desirable properties.

First, contests where players have heterogeneous productivity of effort are mod-
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elled similarly, that is, the players are assumed to have heterogeneous impact func-

tions (Baik 1994, Singh and Wittman 2001, Stein 2002, Fonseca 2009). Second, the

overconfident player’s perceived winning probability is well defined for any value of

λ > 1.3 Third, the overconfident player’s perceived winning probability is increasing

in λ. Fourth, overestimating one’s impact function is equivalent to underestimat-

ing the rivals’ impact functions since λq(ai)/[λq(ai) +
∑

j ̸=i q(aj)] = q(ai)/[q(ai) +∑
j ̸=i q(aj)/λ]. In other words, all our results are unaffected if overconfidence is

instead modeled as underestimation of the impact of an opponent’s effort.4

To be able to compute equilibria when players hold mistaken beliefs we assume

that: (1) a player who faces a biased opponent is aware that the latter’s perception

of his own impact function (and probability of winning) is mistaken, (2) each player

thinks that his own perception of his impact function (and probability of winning) is

correct, and (3) both players have a common understanding of each other’s beliefs,

despite their disagreement on the accuracy of their opponent’s beliefs. Hence, players

agree to disagree about their impact functions (and winning probabilities). This

approach follows Heifetz et al. (2007a,2007b) for games with complete information,

and Squintani (2006) for games with incomplete information.

These assumptions are consistent with the psychology literature on the “Blind

Spot Bias” according to which individuals believe that others are more susceptible to

behavioral biases than themselves (Pronin et al. 2002, Pronin and Kugler 2007). As

stated by Pronin et al. (2002: 369) “people recognize the existence, and the impact,

of most of the biases that social and cognitive psychologists have described over the

past few decades. What they lack recognition of, we argue, is the role that those same

biases play in governing their own judgments and inferences.” For example, Libby

3This is not the case with alternative specifications. For example, if one assumes an overconfident

player’s perceived winning probability is Pi(ai, a−i;λ) = λq(ai)/[q(ai) +
∑

j ̸=i q(aj)], with λ > 1,

then Pi(ai, a−i;λ) is not a well defined probability for any value of λ > 1.
4This way of modeling overconfidence is often used in studies that analyze the impact of overcon-

fidence on contracts (Bénabou and Tirole 2002 and 2003, Gervais and Goldstein 2007, Santos-Pinto

2008 and 2010, and de la Rosa 2011).
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and Rennekamp (2012) conduct a survey which shows that experienced financial

managers believe that other managers are likely to be overconfident while failing to

recognize their own overconfidence. Hoffman (2016) runs a field experiment which

finds that internet businesspeople recognize others tend to be overconfident while

being unaware of their own overconfidence.5

4 Equilibrium

Any player i chooses the optimal effort level that maximizes his perceived expected

utility:

E[Ui(ai, a−i;λ)] = Pi(ai, a−i;λ)v − c(ai) =
λq(ai)

λq(ai) +
∑

j ̸=i q(aj)
v − c(ai).

The first-order condition is

∂E[Ui(ai, a−i;λ)]

∂ai
=

λq′(ai)
∑

j ̸=i q(aj)[
λq(ai) +

∑
j ̸=i q(aj)

]2v − c′(ai) = 0. (1)

The second-order condition is

∂2E[Ui(ai, a−i;λ)]

∂a2i
=
q′′(ai)[λq(ai) +

∑
j ̸=i q(aj)]− 2λ[q′(ai)]

2

[λq(ai) +
∑

j ̸=i q(aj)]
3

λ
∑
j ̸=i

q(aj)v−c′′(ai) < 0,

(2)

and the above inequality is satisfied since q′′(ai) ≤ 0 and c′′(ai) ≥ 0.

Let Ri(Q−i) denote player i’s best response to the aggregate effective effort of the

rivals Q−i, where Q−i =
∑

j ̸=i q(aj). Accordingly, Ri(Q−i) is defined by the value of

ai satisfying (1), or

λq′(ai)Q−iv = c′(ai) [λq(ai) +Q−i]
2 . (3)

Lemma 1 describes the shapes of the players’ best responses.

5Ludwig and Nafziger (2011) conduct a lab experiment that elicits participants’ beliefs about

own and others’ overconfidence and abilities. On the one hand they find that the largest group of

participants thinks that they are themselves better at judging their ability correctly than others. On

the other hand, they find that with a few exceptions, most people believe that others are unbiased.
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Lemma 1. Ri(Q−i) is quasi-concave in Q−i and reaches a maximum for Q−i =

λq(ai).

Lemma 1 tells us that the players’ best responses are non-monotonic. Given high

aggregate effective effort of the rivals, Q−i, a player reacts to an increase in Q−i by

decreasing effort; given low aggregate effective effort of the rivals, a player reacts to

an increase in Q−i by increasing effort.

A second useful lemma describes how the players’ best responses change with the

overconfidence parameter λ.

Lemma 2. An increase in λ leads to a contraction of player i’s best response func-

tion, ∂Ri(Q−i)
∂λ

< 0, for Q−i < λq(ai) and to an expansion of his best response function,
∂Ri(Q−i)

∂λ
> 0, for Q−i > λq(ai). Moreover, the maximum value of a player’s best re-

sponse, amax implicitly defined by q′(amax)
4q(amax)

v = c′(amax), is independent of λ.

Lemma 2 characterizes the best response function of players who are subject to

an overconfidence bias. For a high aggregate effective efforts of the rivals, an increase

in overconfidence raises player i’s effort level, while for low aggregate effective efforts

of the rivals, an increase in overconfidence lowers player i’s effort level. Moreover, the

maximal value taken by player i’s best response is independent of the overconfidence

bias.

Making use of these results, and assuming for the time being that participation

in the contest is guaranteed, we can establish equilibrium uniqueness in the following

lemma:

Lemma 3. A Tullock contest featuring n overconfident players admits a unique equi-

librium.

To guarantee participation by all n players for any overconfidence parameter λ,

we impose the following assumption:

Assumption 1. v
2
− c(amax) ≥ 0.
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We next present our first proposition that uncovers the effect of overconfidence

on equilibrium efforts.

Proposition 1. In a Tullock contest with n ≥ 2 symmetric players, individual and

aggregate efforts decrease (increase) with overconfidence if λ > (<)n− 1.

Proposition 1 uncovers that the effect of overconfidence on individual efforts is

not the same in a Tullock contest with few versus many players. This result is driven

by how overconfidence affects a player’s perceived marginal winning probability.

In Figure 1 we depict with the plain curve a rational player i’s winning probability,

and with a dashed curve an overconfident player i’s perceived winning probability,

for fixed efforts of the rivals. In Figure 2, we accordingly depict the corresponding

marginal winning probabilities of the two types of players. As we can see on Figure

2, the concavity of the perceived winning probability in own effort, ai, implies that

the perceived marginal winning probability of the overconfident player is higher than

the one of the rational player for low efforts of player i, and therefore for low winning

probabilities of player i, as seen on Figure 1. In contrast, the perceived marginal

winning probability of the overconfident player is lower than the one of the rational

player for high efforts.

Consider first a situation where overconfidence is high relative to the number of

player, i.e. λ > n− 1. In such instances, all players expect to be highly likely to win

the contest, which implies, as observed on Figure 2 that their perceived marginal

winning probability is low. An increase in overconfidence will then reduce players’

perceived marginal probability of winning and this incentivizes players to reduce

their effort for a given expected (equilibrium) effort of their opponents: the high

expected winning probability can now be achieved at lower cost. The exact opposite

mechanism is at play when the degree of overconfidence is low compared to the

number of players, i.e. λ < n − 1. In such instances, all players expect to have a

small probability of winning the contest. In this case, an increase in overconfidence

raises the players’ perceived marginal probability of winning and this incentivizes

them to increase effort.
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Interestingly, if n = 2, the effect of an increase in overconfindence is unambiguous,

as it always lowers players’ equilibrium efforts. This finding is quite intuitive given

that more confident players expect to have a high winning probability for given effort,

and one can then expect that they save on cost of effort. However, for n ≥ 3, we

obtain the unexpected result that this is no longer necessarily the case.

1

ai

p(ai, a−i;λ)

Figure 1: Perceived winning probabilities with rational ( ) and overconfident ( )

players

ai

∂p(ai,a−i;λ)
∂ai

Figure 2: Perceived marginal winning probabilities with rational ( ) and overcon-

fident ( ) players

The above results allow us to state the following corollary which relates overcon-

fidence to rent dissipation:
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Corollary 1. With n ≥ 2 symmetric players, the maximal rent dissipation is attained

when λ = n− 1. For an overconfidence bias λ > 1, there always exists a finite nD(λ)

such that overdissipation (i.e. the sum of players’ effort costs is greater than the

value of the prize) can be observed at equilibrium for n > nD(λ).

It is widely known in the literature on contests that with rational players overdis-

sipation can never be observed at equilibrium if the player’s valuation of the prize

is equal to the actual value of the prize.6 Although the dissipation ratio, defined as

the ratio of total expenditures (or sum of players’ effort costs) to the value of the

prize, D =
∑
i c(ai)

v
, does increase in the number of players, it is bounded by unity

because individual equilibrium effort drops as the number of contestants increases.

Indeed, a larger number of contestants implies that the competitors’ aggregate effort

is expected to be higher, thence reducing the marginal return to investing in the

contest, which in turn pushes all contestants to individually contract their equilib-

rium effort. In Proposition 1 we demonstrated, however, that some overconfidence

may push players to increase their equilibrium effort compared to a setup with fully

rational players. Corollary 1 shows that there always exists a degree of overconfi-

dence such that equilibrium individual efforts of overconfident players will equal the

maximal equilibrium individual efforts that can be obtained in the game, i.e., the

individual efforts produced in setups with fully rational players. Consequently, with

sufficiently many overconfident players the aggregate effort can be higher than the

value of the contested prize.

To visualize these two results, in Figure 3 we depict the individual equilibrium

effort of (symmetric) contestants as a function of their overconfidence parameter in

the most simple contest where players’ payoffs are given by:

E[Ui(ai, a−i;λ)] =
λai

λai +
∑

j ̸=i aj
− ai,

6See Dickson et al. (2022) for instances where players’ valuation of the prize differs from the

actual value of the prize.
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With n = 2 and λ = 1, the equilibrium efforts are equal to 1/4. If we consider

contests with more players, the individual efforts can be kept equal to 1/4 if λ = n−1.

Consequently, under such circumstances, full dissipation can result with n = 4 and

λ = 3, and overdissipation can therefore obtain for any n > 4.

1 2 3 4 5 6 7
0

0.25n = 2

n = 2

n = 3

n = 4

n = 5

λ

a∗i

Figure 3: Individual equilibrium efforts as a function of λ with q(ai) = ai, v = 1 and

c(ai) = ai.

It is important at this stage to underline that although for overdissipation to be

observed it is necessary to have n > nD > 2 players, the required degree of overconfi-

dence may be quite low. Indeed, to visualize this we consider again the previous basic

contest setup, and we impose for the sake of the argument the parameter restriction

λ < n − 1, for n ≥ 3. Since a∗ = λ(n−1)
(λ+n−1)2

, this parameter restriction can easily be

shown to imply that ∂na∗/∂n > 0, ∂2na∗/∂n2 < 0, and ∂a∗/∂λ > 0. We then plot

the equilibrium aggregate effort, na∗, against the number of players, n, for various

levels of overconfidence in Figure 4. It is well known that, with rational players,

as n becomes arbitrarily large the dissipation ratio converges to unity, without ever

reaching total rent dissipation. We know from Corollary 1 that for any number of

players n > nD(λ) > 2, there always exists a degree of overconfidence conducive to
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overdissipation. For example, Figure 4 shows that with n = 6 overdissipation is al-

ready observed when λ = 1.5, which corresponds to a perceived winning probability

of 0.231 as opposed to the actual winning probability of 1/6. Increasing the number

of players to, say, n = 8 implies that overdissipation can be achieved with an even

lower degree of overconfidence (e.g. λ = 1.25). It is immediate to deduce that as

the number of players becomes arbitrarily large in this setup, the required degree

of overconfidence for observing overdissipation will become arbitrarily small (i.e. λ

close to 1).

2 5 7 20
0

1

λ = 1.5

λ = 1.25

λ = 1

n

na∗

Figure 4: Equilibrium aggregate effort na∗ as a function of n.

5 Entry

We now study the effect of overconfidence on entry in symmetric Tullock contests.

The analysis so far assumes that players’ outside option is zero. However, if the

outside option is high enough, it is possible that the perceived expected utility of

participating to the contest is too low to make entry attractive. To analyze how

confidence affects entry, we assume there exist N ≥ 2 symmetric potential entrants,
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and designate by n the number of players that enter the contest. Moreover, all

potential entrants have an outside option equal to v̄ < v. This assumption guarantees

that there is an incentive for at least one player to enter the contest. Further, we

focus on pure strategy subgame perfect equilibria and on instances where at least

two players have incentives to enter the contest. At the symmetric equilibrium, the

equilibrium number of entrants, n∗, satisfies the equation:

λ

λ+ n∗ − 1
v − c(a∗) = v̄ (4)

Our last result describes how overconfidence affects n∗.

Proposition 2. In a Tullock contest with a pool of N ≥ 2 symmetric potential

entrants, the equilibrium number of entrants n∗ increases in overconfidence λ.

An increase in overconfidence affects the incentives to enter the contest in two

ways. First, it increases the players’ perceived probability of winning for given ef-

forts, which makes entry more attractive. Second, we know from Proposition 1 that

for a fixed number of entrants, an increase in overconfidence raises (lowers) equilib-

rium individual efforts for λ < (>)n − 1, which makes entry less (more) attractive.

Consequently, for high values of λ (higher than n− 1), an increase in overconfidence

unambiguously makes entry more attractive. However, for low values of λ, the two

effects go in opposite direction. Proposition 2 shows that the former effect always

dominates the latter.

6 Conclusion

This paper studies the impact of overconfidence on Tullock contests. We assume

an overconfident player overestimates the impact of his effort on the outcome of the

contest while holding a correct assessment of the winning prize and his cost of effort.

We demonstrate that in a symmetric n > 2 player contest, an increase in overconfi-

dence increases the efforts of all players provided that the bias is small relative to the
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number of players. With sufficiently high levels of overconfidence, on the other hand,

an increase in overconfidence will lead to lower equilibrium efforts. Our paper also

provides conditions under which overspending and even overdissipation can result

from overconfidence. Finally, we show that higher overconfidence always results in

more entry at equilibrium.

Over the past years, Tullock contests have been extensively studied in laboratory

experiments (e.g. Dechenaux et al. 2015). Our novel results highlight the importance

of accounting for players’ overconfidence when drawing predictions about behavior

in Tullock contests. Our findings can be tested in a controlled laboratory experiment

where self-confidence biases as well as the number of players can both be exogenously

manipulated. We leave that for future research.
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7 Appendix

Proof of Lemma 1: The best response of player i, is defined implicitly by (3).

Hence, the slope of the best response of player i, R′
i(Q−i) is given by

−∂Ri/∂Q−i

∂Ri/∂ai
= −

∂2E[Ui]
∂ai∂Q−i

∂2E[Ui]

∂a2i

= −
λq(ai)−Q−i

[λq(ai)+Q−i]3
λq′(ai)v

q′′(ai)[λq(ai)+Q−i]−2λ[q′(ai)]2

[λq(ai)+Q−i]3
λQ−iv − c′′(ai)

. (5)

The denominator is negative because player i’s second-order condition is satisfied.

Therefore, the sign of the slope of player i’s best response is only determined by

the sign of the numerator which only depends on λq(ai) − Q−i. Hence, R′
i(Q−i) is

positive for λq(ai) > Q−i, zero for λq(ai) = Q−i, and negative for λq(ai) < Q−i.

This implies that Ri(Q−i) increases in Q−i for λq(ai) > Q−i, reaches the maximum

at λq(ai) = Q−i, and decreases in Q−i for λq(ai) < Q−i.

Proof of Lemma 2: (This proof follows Baik 1994) Player i’s best response is

implicitly defined by:
λq′(ai)Q−i

[λq(ai) +Q−i]
2v − c′(ai) = 0.

Hence, we have
∂Ri(Q−i)

∂λ
=

Q−i − λq(ai)

[λq(ai) +Q−i]
3 q

′(ai)Q−iv.

We see that ∂Ri(Q−i)/∂λ ⋛ 0 for Q−i ⋛ λq(ai). We also know from Lemma 1 that

sign{R′
i(Q−i)} = −sign

{
∂Ri(Q−i)

∂λ

}
.

Substituting next q(Q−i) = λq(ai) into the first-order condition of player i and

denoting the maximal effort he is willing to invest in the contest by amax we obtain

λq′(amax)λq(amax)

[λq(amax) + λq(amax)]2
v = c′(amax),

or
λ2q′(amax)q(amax)

4λ2 [q(amax)]2
v = c′(amax),

or
q′(amax)

4q(amax)
v = c′(amax). (6)
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This implies that the value of ai corresponding to the maximum value of the player’s

best response, amax, does not depend on λ.

Proof of Lemma 3:

To prove that the equilibrium is unique, and bearing in mind that q(ai) is mono-

tonically increasing in ai, we can rewrite the optimization problem as a function

qi = q(ai), so that ai = a−1(qi), derive the equilibrium value of qi, and deduce the

equilibrium value of ai. If there is a unique equilibrium in the space (q1, q2, . . . , qn),

then there is a unique equilibrium in the space (a1, a2, . . . , an).

max
qi

λqi
λqi +Q−i

v − ϕ(qi),

where ϕ(qi) = c(a−1(qi)). Accordingly, ϕ′(qi) > 0, and since a−1′′(qi) > 0, it is

immediate to deduce that ϕ′′(qi) > 0.

Optimizing, we obtain:

λQ−i

(λqi +Q−i)2
v − ϕ′(qi) = 0,

and this expression implicitly defines the best response of player i, B(Q−i).

To prove that the equilibrium is unique it is then sufficient to show that the

product of the slopes of the best response functions is less than 1: Γ = B′
1(Q−1) ◦

B′
2(Q−2) . . .◦B′

n(Q−n) < 1. We first derive the slope of the best response of player i:

B′
i(Q−i) = −

λ(λqi+Q−i)−2λQi
(λqi+Q−i)3

v

− 2λ2Q−i
(λqi+Q−i)3

v − ϕ′′(qi)
=

λqi−Qi
(λqi+Q−i)3

v

2λQ−i
(λqi+Q−i)3

v + ϕ′′(qi)
λ

.

Observe that if for an odd number of players B′
i(Q−i) < 0, and that for the re-

maining players the best responses are positively slopped, then we necessarily deduce

that Γ < 1. Second, if for an even number of players B′
i(Q−i) < 0, and that for the

remaining players the best responses are positively slopped, then we wish to prove

that:

Πn
i=1

{
λqi−Qi

(λqi+Q−i)3
v

2λQ−i
(λqi+Q−i)3

v + ϕ′′(qi)
λ

}
< 1.
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Since B
′
i(Q−i) is decreasing in ϕ′′(qi), it is thus sufficient to establish the result

for c′′(qi) = 0. Rewriting the product of the contestants’ best responses with this

restriction, and simplifying, we thus want to show that:

Πn
i=1

{
λqi −Q−i

2λQ−i

}
< 1.

This expression is necessarily true if Q−i is set to zero in the numerator, therefore

implying that the expression is always verified since Πn
i=1qi < 2Πn

i=1Q−i.

The above reasoning guarantees that if all n players participate to the contest,

then the game admits a unique equilibrium. It is immediate to observe that a

symmetric equilibrium exists, therefore implying that the game’s unique equilibrium

is indeed symmetric.

Proof of Proposition 1: At the unique symmetric equilibrium the first-order con-

dition (1) reads as:

λq′(a∗)(n− 1)q(a∗)

[λq(a∗) + (n− 1)q(a∗)]2
v − c′(a∗) = 0,

or
λ(n− 1)q′(a∗)

(λ+ n− 1)2 q(a∗)
v − c′(a∗) = 0. (7)

To inspect the sign of ∂a∗/∂λ we apply the implicit function theorem to the above

expression to obtain:

∂a∗

∂λ
= −

(n−1)(λ+n−1)2−2(λ+n−1)λ(n−1)

(λ+n−1)4
v q

′(a∗)
q(a∗)

λ(n−1)

(λ+n−1)2
v q

′′(a∗)q(a∗)−[q′(a∗)]2

q2(a∗)
− c′′(a∗)

= −
(n−1)(n−1−λ)

(λ+n−1)3
v q

′(a∗)
q(a∗)

λ(n−1)

(λ+n−1)2
v q

′′(a∗)q(a∗)−[q′(a∗)]2

q2(a∗)
− c′′(a∗)

.

Since the denominator of this expression is unambiguously negative, the sign of

the expression is therefore given by the sign of (n− 1− λ).
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Last, we need to guarantee that all n players are willing to participate to the

contest. The perceived expected utility of any contestant i is given by:

E[U(ai, a−i;λ)] =
λq(ai)

λq(ai) +
∑

j ̸=i q(aj)
v − c(ai).

Therefore, an increase in λ changes the perceived expected utility as follows:

dE[U(ai, a−i;λ)]

dλ
=
∂E[U(ai, a−i;λ)]

ai

dai
dλ

+
∑
j ̸=i

∂E[U(ai, a−i;λ)]

aj

daj
dλ

.

By the Enveloppe theorem, we know that the first term of the above expression

is nil. Consequently, and since ∂E[U(ai,a−i;λ)]
aj

< 0, ∀j ̸= i, at equilibrium, the sign of
dE[U(ai,a−i;λ)]

dλ
is given by the sign of da∗

dλ
, which has been shown to be given by the

sign of n − 1 − λ. We then deduce that the lowest perceived expected utility for

symmetric equilibrium efforts is attained when λ = n − 1. To ensure participation

of all n players, we then require that the following holds:

E[U(a∗i , a
∗
−i;λ)] =

λ

λ+ n− 1
v − c(a∗) ≥ 0.

Replacing for λ = n− 1 this condition reads as:

E[U(a∗i , a
∗
−i;λ)] =

v

2
− c(a∗) ≥ 0.

Last, since the maximal value of a∗ has been proven to equal amax, participation by

all n contestants is always guaranteed by Assumption 1.

Proof of Corollary 1: At the unique symmetric equilibrium, players’ equilibrium

effort is given by equation (7). We know that the value of the maximal equilibrium

effort is defined by amax as implicitly defined by (6), and that when λ = n− 1, then

a∗ = amax. Accordingly, for any n, there exist a λ = n− 1 such that the dissipation

ratio is given by:

Dmax =
nc(amax)

v
,

and this characterizes the highest possible dissipation ratio. Since amax is indepen-

dent of n, that for n = 2, Dmax < 1, and that Dmax is monotonically increasing in

n, there must always exist a nD(λ) > 2 such that Dmax > 1.

27



Proof of Proposition 2: We can re-write equation (4) as:

ψ =
λ

λ+ n∗ − 1
v − c(a∗)− v̄ = 0.

Consequently, the effect of overconfidence on the number of entrants is given by:

dn∗

dλ
= −

∂ψ
∂λ
∂ψ
∂n∗

= −
(n∗−1)

(λ+n∗−1)2
v − c′(a∗)∂a

∗

∂λ

− λ
(λ+n∗−1)2

v − c′(a∗) ∂a
∗

∂n∗

.

We can separately compute the following two expressions:

∂a∗/∂λ =

[n−1][λ−n+1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

,

and,

∂a∗/∂n = −
λ[λ−n+1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

,

where ψ = λ(n−1)q′(a∗)
(λ+n−1)2q(a∗)

v − c′(a∗) = 0 as given in equation (7).

Substituting these two expressions in dn∗/dλ, we obtain:

dn∗

dλ
= −

(n− 1)

[
1

(λ+n∗−1)2
v + c′(a∗)

[−λ+n−1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

]

λ

[
− 1

(λ+n∗−1)2
v − c′(a∗)

[−λ+n−1]q′(a∗)v
[λ+n−1]3q(a∗)

∂ψ
∂a∗

] =
n− 1

λ
.
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