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Abstract

The paper develops a theoretical model of a two-stage elimination contest in
which an overconfident newcomer, uncertain about his ability, sees his overconfi-
dence bias evolving endogenously following an early success. We show that a first
stage win amplifies the newcomer’s overconfidence bias when his ex-ante proba-
bility of being high ability is low, and dampens it otherwise. Overconfidence can
raise the newcomer’s equilibrium effort in both stages and thus increase his chance
of winning the contest. The model clarifies when success feeds further overconfi-
dence biases and helps explain why overconfident individuals often rise to the top

in organizational or competitive environments.
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1 Introduction

Why do overconfident individuals—who misjudge their abilities—so often reach the top
in organizations? For instance, empirical studies show that approximately 40 percent
of CEOs of companies listed in the Standard & Poor’s 1500 index are overconfident
(Malmendier and Tate, 2015). Existing theories suggest that overconfident individuals
may rise to the top because their bias can serve as a commitment device that attracts
like-minded employees (Van den Steen, 2005), align incentives through higher leverage
(Hackbarth, 2008), promote risk taking that increases promotion chances (Goel and
Thakor, 2008), or signal greater effort and learning intensity valued by firms (Gervais
et al., 2011). In this paper we offer a new explanation: individuals who are both
uncertain about their ability and overconfident may work harder than their rivals in a
multistage elimination contest.

Uncertainty about ability is common in organizations. Indeed, organizations typ-
ically staff open positions by promoting from within or by drawing on the external
labor market (Bidwell and Keller, 2014). In such cases, the promotion contest sets a
newcomer whose ability is largely untested against incumbents whose ability is already
known. Early victories in these contests not only advance the outsider but also reshape
beliefs: both incumbents and the newcomer update their assessments of the latter’s true
talent.

Examples abound. Consider an external hire in a law firm who, after joining mid-
career, must compete with long-tenured associates for a partnership slot in an up-or-out
promotion contest. The partners can rely on years of information about their incumbent
associates, whereas the newcomer enters with uncertain prospects (Rebitzer and Taylor,
2007). Promotions to CEO positions often display a similar dynamic: boards weigh
candidates from inside the firm, whose past performance is well documented, against
external recruits whose ability to lead the organization remains largely untested (Parrino,
1997; Zhang and Rajagopalan, 2004). In politics, two-round elections—where candidates
first compete in their party for party leadership before facing off a leader from a rival
party in the general election—often place a political newcomer, uncertain about how
voters perceive her abilities, against seasoned opponents whose reputations are already
well established (Crutzen et al., 2010; Andreottola, 2021). Similarly, in academic grant
applications, junior faculty face funding tournaments alongside senior faculty whose
publication records and expertise are broadly known (Azoulay et al., 2011). In each

case, the eliminatory nature of the process creates settings where early successes affect



expectations about an unknown entrant.

Crucially, this uncertainty about an newcomer’s true ability opens the door to over-
confidence. When individuals face incomplete information about how their skills com-
pare to others’ initial victories can inflate their beliefs about their own competence
beyond what is objectively warranted. Indeed, overconfidence is most likely to emerge
precisely when the contestant is uncertain about his type (Benoit and Dubra, 2011).

Does earning a promotion increase a newcomer’s overconfidence? How does overcon-
fidence shape contestants’ efforts across the successive stages of a promotion contest?
Are overconfident newcomers more likely to win the contest than their rational rivals?

To address these questions, we develop a formal model that embeds overconfi-
dence—defined as an overestimation of the probability of being high ability—within
a two-stage elimination contest with incomplete information. In the first stage (semifi-
nal stage), four players are matched pairwise, and each pair competes in one semifinal.
The semifinal winners go on to the second stage and compete in the final. In each
pairwise interaction the players choose their efforts simultaneously and their winning
probabilities are determined by their efforts and abilities via a Tullock contest success
function (CSF). We consider a winner-take-all contest where players’ utility of the prize
is v and their constant marginal cost of effort is ¢ € [1, v).

Player 1, the newcomer, can have either low, 0y, or high, 6, ability, with 0 <
0;, < 1 < 0y. The ex-ante probability player 1 has high ability is 7 € (0,1), and this
is common knowledge. We sequentially analyze two scenarios. In the first scenario,
the newcomer is rational, while in the second he is overconfident. A rational newcomer
holds the correct prior belief that his ability is high with probability 7. An overconfident
newcomer holds the mistaken prior belief that his ability is high with probability 7 =
m + b®, where b° is the newcomer’s semifinal stage bias which satisfies b* € (0, 1 — 7.
Players 2, 3, and 4, the incumbents, possess identical ability normalized to 1, and this
value is common knowledge. The incumbents know the newcomer’s ability is 0y with
ex-ante probability m and 67, with ex-ante probability 1 — m, and that an overconfident
newcomer perceives his ability is g with probability 7 and 67, with probability 1 — 7.
Hence, we are considering an incomplete information setup where players hold no private
information.

A semifinal win prompts the newcomer to update his self-belief via Bayes’ rule, while
the incumbent who reaches the final also updates her belief about the newcomer’s type
via Bayes’ rule. A rational newcomer’s posterior belief that his ability is high is denoted

by @ and that of an overconfident one by fi. Posterior beliefs about the newcomer’s



ability are determined by the equilibrium semifinal efforts and prior beliefs.! Accordingly,
an overconfident newcomer’s final-stage bias b/ is determined endogenously and equals
b/ = i — p. Given the resulting posterior beliefs, the semifinal winners choose their
efforts in the final. Comparing b to b/ reveals whether a semifinal victory amplifies or
attenuates the newcomer’s overconfidence bias.

Our main findings are as follows. First, a semifinal victory amplifies the newcomer’s
overconfidence bias when his ex-ante probability of being high ability is low: b/ > b®
whenever 7 is small. Conversely, the same win dampens the newcomer’s overconfidence
bias when his ex-ante probability of being high ability is high: b/ < b® for large 7.
Thus an early victory in an elimination contest can either heighten or temper a player’s
overconfidence bias depending on the ex-ante likelihood of being high ability. The mech-
anism behind this unexpected result is straightforward once beliefs are traced. When
7 is close to zero, the incumbent’s posterior hardly moves if the newcomer wins his
semifinal. On the other hand, following a semifinal victory, an overconfident newcomer
significantly upgrades his self-belief because © = w + b° shifts appreciably away from
zero: this unexpected win is mistakenly attributed in the newcomer’s mind to a sig-
nificantly higher probability he is of high type. By contrast, when 7 is near one, both
players already regard the newcomer as almost certainly high-ability, leaving little scope
for further upward revision, so the bias naturally contracts. Overall, a semifinal vic-
tory amplifies overconfidence in players with lower expected ability, while attenuating
it in those with higher expected ability. This result carries implications for the players’
behavior and outcomes in the final stage as described below.

Second, in our first scenario where the final involves a rational newcomer and an
incumbent, both players select the same effort at equilibrium regardless of how the
newcomer’s possible abilities compare to that of the incumbent.? In contrast, in our
second scenario where the final involves an overconfident newcomer and an incumbent,
the players’ efforts at equilibrium are sensitive to the ability comparison: the newcomer’s
effort exceeds the incumbent’s only when the product of the newcomer’s possible abilities
01,0y lies below the incumbent’s ability (normalized to 1). The intuition behind this
result is as follows. When 61,05 € (0, 1), the overconfident newcomer attributes a higher

weight than the incumbent to a scenario where the gap between the players’ abilities is

LAt equilibrium with incomplete but symmetric information about ability, semifinal efforts do not
need to be observable for finalists to form posterior beliefs about ability as semifinal efforts are perfectly
anticipated through the equilibrium strategy.

2This is a well known result in Tullock contests with complete information. With identical linear
costs, heterogeneous abilities cancel out in the first-order conditions, forcing identical effort. In our
model with a rational newcomer, where both players hold the same posterior beliefs, they can be seen
as optimizing a weighted average of two complete information contests.



not too large. This in turn incentivizes the overconfident newcomer to invest more effort
than the incumbent. Moreover, the overconfident newcomer’s equilibrium effort as well
as his true probability of winning the final rise monotonically with his bias in the final,
bf. The opposite happens when 070y > 1 and the overconfident newcomer attributes
a higher weight than the incumbent to a scenario where the gap between the players’
abilities is large. This in turn incentivizes him to invest less effort than the incumbent.

Third, in our first scenario where the semifinal involves a rational newcomer and
an incumbent, the identity of the higher-effort player hinges on the ex-ante probability
7w that the newcomer is high ability: when 7 is small the rational newcomer expends
less effort than the incumbent at equilibrium, but when 7 is large he expends more.
The intuition for this result can be grasped by considering the two extreme cases where
7 is either close to 0 or to 1. If 7 is close to 0, the incentives for the newcomer to
invest in the semifinal are very low, since both the likelihood of winning the semifinal
(for any effort) and the expected utility of the final are low. The incumbent is equally
incentivized to invest little effort in the semifinal, yet, she will invest more than the
newcomer since both her winning probability and expected utility of the final are much
higher. Combined, this implies that for low values of 7 the incumbent invests higher
effort in the semifinal. When = is close to 1, the incentives of the newcomer and the
incumbent are reversed since the newcomer holds both a high probability of winning the
semifinal (for a given effort) and has a higher expected utility of the final compared to
the incumbent. Accordingly, for high values of 7 the rational newcomer exerts higher
effort in the semifinal.

Fourth, in our second scenario where the semifinal is played between an overconfident
newcomer and an incumbent, an increase in the newcomer’s semifinal stage bias b° raises
his prior belief # which has similar effects as an increase in 7 in the rational newcomer
case. In addition, an increase in b° changes the wedge between the newcomer’s posterior
belief i and the incumbent’s posterior belief u as previously described. This introduces
a new linkage between the semifinal and the final whereby, the overconfident newcomer’s
choice of effort in the semifinal affects b/ which, in turn, affects the newcomer’s rival
choice of effort in the final. The complexity of the problem prevents us from deriving
general results for any value of 6;, and 6. However, imposing 60,0 = 1 we are able to
characterize the equilibrium of the semifinal since the final stage equilibrium efforts are
identical and unaffected by the newcomer’s final stage bias bf. We find that when 7 is low
and the bias b® is large enough, an overconfident newcomer exerts higher semifinal effort

than the incumbent whereas, in our first scenario, for such low values of 7 a rational



newcomer exerts lower semifinal effort than the incumbent. Indeed, when 7 is low, a
rational newcomer anticipates a low expected utility from winning the semifinal. By
contrast, an overconfident newcomer misattributes a semifinal victory to his own ability,
thereby reinforcing his overconfidence and making advancement to the final appear more
attractive. This in turn incentivizes the overconfident newcomer to exert higher effort
than his rival in the semifinal.

Fifth, we demonstrate that overconfidence raises the newcomer’s true equilibrium
probability of winning the elimination contest when 6,0y = 1. An increase in the over-
confident newcomer’s semifinal stage bias b° raises the newcomer’s semifinal equilibrium
relative effort. This raises the newcomer’s true equilibrium probability of winning the
semifinal. However, the increase in the newcomer’s semifinal relative effort also lowers p
which, in turn, reduces the newcomer’s true equilibrium probability of wining the final.
Still, we are able to show that the increase in the probability of winning the semifinal
dominates the drop in the probability of winning the final.

The rest of the paper proceeds as follows. Section 2 discusses related literature.
Section 3 sets-up the model. Section 4 studies the elimination contest with a ratio-
nal newcomer. Section 5 considers the case of an overconfident newcomer. Section 6

concludes the paper. All proofs can be found in the Appendix.

2 Related Literature

Our paper contributes to three strands of the literature: elimination contests, the dy-
namics of overconfidence, and the effect of overconfidence in contests and tournaments.

First, our contribution to elimination contests is most closely related to Rosen (1986)
and Chen and Santos-Pinto (2025).> The main focus of Rosen (1986) is to explain why
contest organizers set increasingly larger prizes as players advance in an elimination
contest. Although most of the analysis is performed under complete information, Rosen
(1986) also discusses the extension of his model to an incomplete information elimination
contest. Rosen (1986) finds that uncertainty about ability is a force that dampens
incentives to perform in the early stages since it creates incentives to experiment to
discover own strength. Unlike Rosen, we focus on the effect of overconfidence on effort
provision and winning probabilities in elimination contests. We find that uncertainty

about ability coupled with overconfidence can instead induce an overconfident player

3Related analyses of elimination contests examine aspects of optimal design and organization, such as
rent-seeking structures (Gradstein and Konrad, 1999), information revelation (Zhang and Wang, 2009),
optimal seeding (Groh et al., 2012), multi-stage design (Fu and Lu, 2012), and sabotage (Klunover,
2021).



to invest more in the early stage of the elimination contest, thereby revealing that
overconfidence can totally reverse Rosen’s results for incomplete information.

Chen and Santos-Pinto (2025) provide the first formal analysis of overconfidence in
elimination contests. They show that in the second stage the overconfident player always
exerts less effort than a rational rival, and if the prize spread is large and confidence
moderate, may exert more effort in the first stage. In their model there is no uncertainty
and so the overconfidence bias remains fixed across stages. In our framework instead,
there is uncertainty about the overconfident player’s ability, and as a consequence the
overconfidence bias changes endogenously from the first to the second stage.* We show
that winning the first stage amplifies the bias when the player’s true prior probability
of being high-ability is low and dampens it otherwise. This novel mechanism yields
new predictions for efforts and outcomes. In the second stage, when 00y € (0,1),
the equilibrium effort of the overconfident newcomer is larger than his rational rival,
and both his effort and true winning probability increase with his bias. The opposite
result obtains if .0y > 1. In addition, we show that the overconfident player’s true
probability of winning the contest, measured as the product of the first and second
stages true winning probabilities, can increase with his first stage bias.

Second, we also contribute to the literature on the emergence and evolution of
overconfidence. Gervais and Odean (2001) show that initial success increases poste-
rior assessments of one’s ability because agents apply a self-serving weighting to out-
comes—successes receive greater subjective weight as evidence of skill than failures do
as evidence of low ability—producing upward-biased belief updating.

In Compte and Postlewaite (2004), confidence—shaped by recalled past successes and
failures—affects the actual probability of success, and overconfidence arises from a biased
recollection of past events. They find that this type of overconfidence can have positive
welfare implications and that overconfidence decreases with experience. In contrast, our
model assumes that while overconfident players begin with biased priors about their
abilities, they perfectly recall past performance and update beliefs in accordance to
Bayes’ rule. Our findings are also more nuanced, since we find that an overconfident
newcomer who is successful early on (i.e. wins in the semifinal) will either dampen
or amplify his overconfidence bias depending on the ex-ante true probability of being
high ability. Interestingly, when the newcomer is initially highly overconfident, an early

success will induce him to attribute a higher probability he is of a high type, thereby

4 Another fundamental difference is that in Chen and Santos-Pinto (2025) the players’ winning prob-
abilities are determined by Alcalde and Dahm’s (2007) CSF while here we consider a Tullock CSF. This
is important given the prevalence and wide use of the Tullock CSF in multistage contests.



reducing his overconfidence bias.

In Bénabou and Tirole (2002) a time-inconsistent agent, with imperfect knowledge
about his ability, may choose to remain ignorant about his ability to induce a future
self to work harder. Likewise in our model, that is admittedly very different, the over-
confident newcomer can influence both knowledge about his ability and his final stage
overconfidence via the choice of semifinal stage effort. We show that players may con-
tain their efforts at the semifinal stage to increase everyone’s belief that they are of
a high ability, thereby increasing their expected payoff from the final. We also find
that depending on the newcomer’s ex-ante true probability of being high ability, victory
increases the true likelihood the player is of high ability, and it can either amplify or
dampen his overconfidence bias. Our results do not rely on time-inconsistency.

Last, Z&bojnik (2004) and Benoit and Dubra (2011) develop Bayesian decision-
theoretic learning models where agents receiving exogenous signals about their ability
might end up rationally overconfident. We instead assume that some agents are over-
confident, and study how confidence biases evolve endogenously through agents’ choice
of effort in the first stage of a dynamic elimination contest.

Third, we contribute to the literature that explores the role of overconfidence in
contests and tournaments. Santos-Pinto (2010) studies how a principal chooses prizes
in static tournaments featuring players overestimating their abilities. Ludwig et al.
(2011), model overconfidence in a static contest as an underestimation of the cost of
effort, and conclude that it leads to higher equilibrium efforts. Santos-Pinto and Sekeris
(2023, 2025) demonstrate that the results are totally reversed when players overestimate
their abilities in contests, while the results are shown to be more nuanced in tournaments
(Santos-Pinto and Sekeris 2025). This paper shows that overconfidence in the presence
of uncertainty can result in the overconfident player exerting lower or high effort than a
rational rival even in a static contest.

Denter et al. (2022) explore how one-sided asymmetric information about the marginal
cost of effort affects effort levels in a contest. They assume that prior to competing in
the contest, a newcomer—the informed player—can signal his type to an incumbent—the
uninformed player—through a costly signal. They find that only newcomers who have a
very low marginal cost of effort, relative to the incumbent, benefit from disclosing their
type in equilibrium. In addition, they allow the newcomer to be overconfident as we
do. Our study differs from Denter et al. (2022) in at least two main dimensions. First,
we assume information is symmetric whereas they assume it is asymmetric. Second, we

study a two-stage elimination contest whereas they allow for costly signaling prior to



competing in a one shot contest. We show that the newcomer must take into account
that, everything else constant, higher effort in the semifinal lowers his posterior belief
of having high ability in final.

Last, our paper is related to the literature on learning in dynamic contests and
tournaments. In Altmann et al. (2012), Kubitz (2023), Barbieri and Serena (2025), and
Catepillan et al. (2025), each player has private information about either his ability, cost
of effort, valuation of the prize, or more generally objective function. We instead assume
that nobody (including the newcomer himself) knows the newcomer’s ability. This
distinction is essential, since unlike private information setups where players attempt
signaling or concealing their known identity, in our setup the newcomer’s first stage effort
influences everyone’s beliefs about his ability at the start of the second stage. Indeed, an
early victory achieved with little effort lead to a sharper updating of beliefs, since such
success is more likely attributed to the winner’s unknown — and potentially high —
ability than it would be if the effort had been greater. Such behavior therefore potentially
trumps everyone, the newcomer included, and may confer a strategic advantage to the
newcomer if he reaches the subsequent round. This mechanism is highlighted in Krahmer
(2007) in a repeated contest with symmetric incomplete information about players’
abilities. In contrast to Kréahmer (2007), we focus on the role of overconfidence in an

elimination contest.

3 Set-up

Consider a two-stage elimination contest where players 1 and 3 compete in one semifinal
and 2 and 4 in the other semifinal. The semifinal winners move on to the final. Player
1, the newcomer, can have either low, 67, or high, 65, ability, with 0 < 0y < 1 < 0.
The ex-ante probability player 1 has high ability is 7 € (0,1). The abilities of players
2, 3, and 4 are common knowledge, identical, and normalized to 1. Players 2, 3 and 4
know that the ex-ante probability player 1 has high ability is =.

The utility of the winning prize is v and the utility of the losers’ prize is normalized
to 0. Player i’s cost of exerting effort a; is equal to C(a;) = ca;, with ¢ € [1,v). We
assume that the ratio v/c is large enough to ensure that in both stages of the elimination
contest the game admits interior pure-strategy equilibria.

The players’ winning probabilities in any pairwise interaction are determined ac-

cording to a Tullock contest success function. Moreover, the probability player i’s wins



against player j when player ¢ has ability 6; and player j has ability 6; is as follows:

0;a;

Pi(ai,aj;é’iﬁj) = W,

1)
where 01 € {01,0p}, 0o =03 =6, =1, and j # i.

Player 1 is rational when his prior belief of having high ability is equal to 7. To model
overconfidence, we assume player 1 has a (subjective) prior belief of having high ability
equal to # = m + b®, where b° € (0,1 — ] is the overconfidence bias in the semifinal.
Player 1’s rivals know that player 1 is overconfident, that is they know b°, but think,
correctly, player 1 is mistaken.

We work with the perfect Bayesian equilibrium concept (PBE) and solve the game
by backwards induction. A semifinal victory prompts the newcomer to update his belief
about his own type via Bayes’ rule, while an incumbent who also reaches the final also
updates her belief about the newcomer’s type via Bayes’ rule. The players’ posterior
beliefs are a function of their prior beliefs and the semifinal efforts. Given the posterior
beliefs, we derive the Bayesian-Nash equilibrium (BNE) of the final and compute the
corresponding equilibrium payoffs (continuation values). Finally, given the continuation
values, we then solve for the BNE of each semifinal. The resulting strategy profile and
belief system jointly satisfy the requirements of a PBE for the two-stage elimination
contest.

To be able to compute the equilibrium taking into account that players can hold
mistaken beliefs we assume: (i) a player who faces a biased opponent is aware that
the latter’s perception is mistaken, (ii) each player thinks that his own perception is
correct, and (iii) both players have a common understanding of each other’s beliefs,
despite their disagreement on the accuracy of their opponent’s beliefs. Hence, players
agree to disagree about their perceptions. This approach was introduced by Squintani
(2006) and has been implemented in related literature (e.g., Yildiz 2007, Santos-Pinto
and Sekeris, 2025).5

4 Rational Newcomer

In this section we analyze the model under the assumption that the newcomer is rational.

We proceed by backward induction. First, we derive the equilibrium efforts in a final

5These assumptions are consistent with the psychology literature on the “Blind Spot Bias” according
to which individuals believe that others are more susceptible to behavioral biases than themselves
(Pronin et al. 2002, Pronin and Kugler 2007).

10



between a rational newcomer and an incumbent. Second, using the final stage solution,
we characterize the equilibrium efforts in the semifinal between a rational newcomer and

an incumbent.

4.1 Final

We study the final between the rational newcomer, player 1, and the incumbent player

2, without loss of generality. The expected utility of player ¢ = 1,2 in the final is

E[Uif(aifa a;)] = Pl-f(a{, a;)v — ca{.

Player 1’s expected utility in the final is therefore

B (o, af)] = NM . u)% o cal @)
L Onal +al Oraf + a} v
and player 2’s expected utility in the final is
B afad)) = [p—B 1= )—% | v caf 3)
2 Opal +af Oraf +af v

where p is the players’ common posterior belief that player 1 has high ability, given by

mPi(ai, a3;0u)
mP;(af, a3;0m) + (1 =) Py (ai, a3;61)

‘LL:

QHCLf
Tre S S
Haj + a3

+(1-m)

QHCLf

T 0La§
Oral + aj

Orai + af
_ 7T(9H(9LCL‘{ +a§)
QLQH(I‘i + [’NQH —+ (1 — W)@L]ag’

(4)

where (af,a§) are the semifinal efforts for players 1 and 3. Note that p is decreasing

with af since
6M _ 77(1—77)9L9H(9H—9L)a§

aal [GLHH(I;—F [7T9H+(1—7T)9L}a§]2

and p is increasing in a3 since

% - 77(1—77)0L9H(9H—9L)a§ <0 (6)
oas o s _ 572 ’
3 [9[,9[{(11 + [7‘(9[{ + (1 W)QL]G3]
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The first-order conditions of players 1 and 2 in the final are given by

O 0L f
p— (1= p)——=——| av =, (7)
(Orraf +a})? (Oraf +af)2] °

and
Ou

p—t
(GHa{ + aﬁc)2

L f
+ (1 a3v = cC. 8
( M) (GLO“{ a’g)Q_ ' ( )

It follows from the first-order conditions that the final has a unique pure-strategy
Bayesian-Nash equilibrium. Our first result characterizes the BNE equilibrium of the

final.

Proposition 1. In a final between a rational newcomer and an incumbent, the equilib-
rium efforts are symmetric and given by:
O 0r,

)2+ﬂ*uk

fx fx _
“ (O +1 0 + 1)

—of =al* = |u . (9)
c

The proof of Proposition 1 follows directly from the combination of first-order con-
ditions (7) and (8). Note that the equilibrium effort (i) is unaffected by p when
0.0 € {0,1}, (ii) increases in p for 6.0y € (0,1), and (iii) decreases in p when
060 > 1. The intuition of this result is the following. In any complete information
Tullock contest with linear costs and asymmetric abilities, equilibrium efforts are sym-
metric across players. Moreover, the higher the asymmetry in abilities, the lower the
equilibrium efforts (see e.g. Corchén 2000). In our setup where there is incomplete
information about the newcomer’s ability, players can be seen as optimizing a weighted
average of two complete information Tullock contests with linear costs, where the weights
are given by the posterior beliefs p and (1 —pu). Accordingly, the players will invest equal
efforts at equilibrium.

Second, observe that with probability (1 — ), the newcomer has an ability of 6,
and the incumbent an ability of 1. Alternatively, by dividing the numerator and the
denominator of the Tullock contest success function by 6y, one can re-interpret this
as the newcomer having an ability of 1 and the incumbent having an ability of 1/6;,.
Therefore if 807, = 1, so that 8 = 1/, this implies that the players invest the same
equilibrium efforts in the two “degenerate” cases where p = 0 and p = 1. Consequently,
for any probability p the players invest these same equilibrium efforts as explained above
in point (i).

Extending this logic, we deduce that g < 1/ implies that when p = 1 equilib-
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rium efforts are higher than when p = 0. Hence, equilibrium efforts are monotonically
increasing in p when 6.0y € (0,1), as stated above in point (ii). Likewise we deduce
observation (iii) according to which equilibrium efforts are monotonically decreasing in
w when 005 > 1.

It follows from (9) that player 1’s equilibrium probability of winning the final is:5

0L
9L+1.

* 9H
P{(al*,a} )=u9H+1+(1—u)

Hence, player 1 has a higher chance of winning the final at equilibrium when

J1, 1-0u0n
R T (7 —

It also follows from (9) that player 1’s equilibrium expected utility of the final is

E[Uf (af* a")] = ) x| v

L
0 +1

2 2
_ O _ 0r
Wherex—(eHH) (9L+1) .

From equation (10) we can determine how a change in u affects payer 1’s equilibrium

expected utility of the final. We have

OE[U{ (a]*,al")]
op

=xv >0

Hence, E[U{ (af*,a}")] is increasing with . It follows from (9) that player 2’s equilib-
rium expected utility of the final is

1\ 1 \? 1 \?
0 +1 H 0 +1 O +1

From equation (11) we can determine how a change in u affects payer 2’s equilibrium

1 \? 1 \?
<9L+1) _<9H+1>

Hence, E[U{ (af*,al*)] is decreasing with .

[Uz (a1 ,ag*)] =

] v (11)

expected utility of the final. We have

OF [U2 (a1 ,ag*)] _
op

6Throughout the analysis we slightly abuse notation for presentation reasons. We designate the
optimal efforts in the final for player ¢ by azf*, omitting its implicit dependence on the semifinal efforts
(af,a3).
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4.2 Semifinal

We now consider the semifinal between the rational newcomer and the incumbent player
3. Observe that in the semifinal opposing incumbents 2 and 4, the players’ expected
utility of reaching the final is a weighted average of their expected utility when facing
either player 1 or player 3. Yet, given the symmetry of incumbents 2 and 4, their
continuation value is identical, and their equilibrium semifinal effort as well. Although
their equilibrium efforts eventually depend on their expectation of whom they will meet
in the final, the identity of the winner is irrelevant, and we can then assume, without
loss of generality, that the winner of the semifinal opposing players 1 and 3 will face
player 2 in the final.
Player 1’s expected utility of the semifinal is

E[U; (a5, a3)] = P§(a},a3)E[U{ (af*,ad")] — caj

GHCL‘lq

— |r U (1)

= |7
Omal + aj

v — caj,

9[1(1? :|

2
o\,
Ora; + a3 (0L+1) Hx

where p is the posterior belief that player 1 has high ability and is given by equation

(4).

Player 3’s expected utility of the semifinal is

E[U3(a3,a3)] = P§ (a3, a3) E[U] (a}",ad")] - caj
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If player 3 reaches the final and the opponent is player 2, then both players exert effort
a’* = L and player 3’s equilibrium expected utility of the final is E[US (a*,al*)] = v/4.

The first-order conditions of players 1 and 3 in the semifinal are
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respectively. The first term in the left-hand side of equation (12) captures the effect
of an increase in the rational newcomer’s semifinal effort on his probability of winning

the semifinal, which is positive. The second term in the left-hand side of equation
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(12) captures the effect of an increase in the rational newcomer’s semifinal effort on
the posterior belief u. This second effect is negative since, everything else constant, a
semifinal victory under higher effort by the rational newcomer is interpreted as a negative
signal of ability (“a truly strong player would not need to try so hard”), thereby lowering
the posterior belief © which, in turn, reduces the rational newcomer’s expected utility of
the final. Hence, the rational newcomer’s semifinal effort choice has a public-signaling
component that affects both his and incumbent 2’ posterior belief i, that, in our setting,
is negative—a semifinal victory driven by greater effort is less indicative of high ability
than a victory driven by smaller effort.

To show existence of a pure-strategy equilibrium we demonstrate in the Appendix
that the second-order conditions are verified whenever the first-order conditions are
satisfied. The assumption that v/c is sufficiently large ensures that both players attain

strictly positive expected utilities for these strategy profile.

Proposition 2. In the semifinal between a rational newcomer and an incumbent of
a two-stage elimination contest, there exists a unique value T € (0,1) for the ex-ante

probability m that the newcomer has high ability such that when ™ =

= 7, the players’

sx <

equilibrium efforts satisfy ai* < a3”.

Four distinct forces govern how 7 shapes a rational newcomer’s equilibrium effort in
the semifinal. Consider the effect of a change in 7 on the marginal benefit of semifinal
effort expressed as the left-hand side of equation (12). The first effect, the contest-
sensitivity effect, captures how an increase in 7 changes the rational newcomer’s marginal
probability of winning the semifinal. It’s sign is determined by
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Hence, the newcomer’s marginal probability of winning the semifinal rises with 7 as long
as aj < a$/\v0.0g, is zero at a = a$/\/0.0y and falls with 7 when a§ > a3/v/0.05.
Everything else equal, this effect produces a inverted U-shaped response of af(7) to .

The second one, the encouragement effect, captures how an increase in 7 changes the
rational newcomer’s expected utility of the final E[UJ (a!*,a3*)]. Indeed, we see from
the first multiplicative term of (12) that part of the marginal benefit of effort is given
by the marginal probability of winning the expected prize. If the latter increases, so do
the incentives to invest in semifinal effort. This effect is positive since an increase in m

raises the posterior belief u (Ou/Om > 0) and an increase in the posterior belief, in turn,

raises the rational newcomer’s expected utility of the final (OE[U{ (af*,al*)]/0u > 0).
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This effect pushes af(7) upward with .

Consider now the second multiplicative term of the left-hand side of equation (12).
Recall that the last term, Op/0af, is negative (see equation (5)), that is, higher semifinal
effort leads to lower posterior beliefs about ability (less positive signal of ability) and
therefore a smaller expected value of reaching the final. Hence, the second multiplicative
term captures the probability of reaching the final weighted by the drop in expected
utility of reaching the final due to the less positive signal of ability. This implies two
additional effects (third and fourth effect).

The third effect, the public signal effect, captures how an increase in 7 raises the
probability the rational newcomer reaches the final and makes him more exposed to the
less positive signal of ability. This effect is negative since an increase in 7 raises the

rational newcomer’s probability of advancing to the final as
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and higher semifinal effort leads to a lower posterior belief, Ou/dai < 0. This effect
pushes a$(7) downward with .
The fourth one, the posterior-sensitivity effect, captures how an increase in 7 changes

the marginal posterior belief Ou/0aj. It’s sign is determined by
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Hence, 0u/0a$ falls with 7 as long as 7 < 7%, is zero at m = 7%, and rises with = when
7w > ¥, where 7* = 0(0gai + a3)/[20L(0nas + af) + (0m — 01)ai]. Everything else
equal, this effect produces a U-shaped response of af(7) to w. The intuition behind this
effect is rooted in the fact that both with very low or very high 7, the posterior belief i
will not be very sensitive to the newcomer’s effort af. Indeed, with a very low ex-ante
probability of being a high type m, whether the newcomer wins by exerting low or high
effort, the posterior probability p will be high, hence p is not very sensitive to effort af.
Likewise, if 7 is high, then there is little room for improvement in beliefs, thereby again
implying that @ is not very sensitive to effort aj. For intermediate cases, however, a
victory with higher effort af tends to significantly reduce p.

Let us now turn to the incumbent. Her ability and the value of reaching the final
are fixed and hence a change in 7 only affects the incumbent’s semifinal effort through

a contest-sensitivity effect which has the opposite sign than the one of the newcomer.
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Despite the complex nature of the problem revealed by the multiple effects we identi-
fied, we can determine in Proposition 2 which player exerts higher effort in the semifinal
for any value that m can take. To then better grasp Proposition 2, we first consider the
two extreme cases where 7 is either close to 0 or to 1.

If 7 is close to 0, the incentives for the newcomer to invest in the semifinal are very
low, since both the likelihood of winning the semifinal (for any effort) and the expected
utility of the final are low. The incumbent is equally incentivized to invest little effort
in the semifinal, yet, she will invest more than the newcomer since both her winning
probability and expected utility of the final are much higher. Combined, this implies
that for low values of 7 the incumbent invests higher effort in the semifinal.

Consider next a situation where 7 is close to 1. In such instances the incentives of
the newcomer and the incumbent are reversed since the newcomer holds both a high
probability of winning the semifinal (for a given effort) and has a higher expected utility
of the final compared to the incumbent. Accordingly, for high values of m the newcomer
exerts higher effort in the semifinal.

The four effects described above for the newcomer together with the effect of a
change in 7 on the incumbent’s incentive to invest effort in the semifinal allow us to
better comprehend how equilibrium relative efforts in the semifinal depend on 7. For low
values of T we know that, since a§*/a* < 1, the incumbent’s incentives to invest in effort
in the semifinal will drop with . On the other hand, the two first effects will be positive
for the newcomer. Our findings therefore suggest that the two potentially negative effects
(public signal and posterior-sensitivity) are not strong enough to overturn the potentially
positive contest-sensitivity and encouragement effects. Moreover, although for values of
m > 7 the newcomer invests higher effort in the semifinal, potentially flipping the contest-
sensitivity effect for both the incumbent and the newcomer, we demonstrate that the
encouragement effect is strong enough to secure that at equilibrium the newcomer invests

more effort than the incumbent.

5 Overconfident Newcomer

This section analyzes the model with an overconfident newcomer. First, we characterize
the equilibrium efforts in a final between the newcomer and an incumbent. Second, we
analyze the first-order conditions that determine the equilibrium efforts in the semifinal
between the newcomer and an incumbent. Third, we specialize the model to the case

01,0y = 1 which allows us characterize how overconfidence affects winning probabilities.
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5.1 Final

Assume, as before, that player 2 reaches the final. The perceived expected utilities of

players 1 and 2 in the final are given by
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In equation (14), i1 is player 1’s perceived posterior belief of having high ability given
by
ﬁ&H(HLai + a§)
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i (16)

Likewise, in equation (15), u designates player 2’s posterior belief that player 1 has
high ability and is given by equation (4).

Define player 1’s final stage overconfidence bias as b/ = ji — . Note that whereas
the semifinal stage bias b® is exogenous, the final stage bias b/ is endogenous because
it depends on the posterior beliefs ji and g which are determined by the equilibrium
efforts exerted in the semifinal. Furthermore, since fi is a function of 7, which itself is
influenced by the semifinal stage bias b°, and the semifinal equilibrium efforts depend
on b*, the final stage bias b/ depends on b® as well. Comparing player 1’s overconfidence

biases in the two stages, b° and bf, we can make the following observation.

Result 1. There exists a unique value & € (0,1) for the ex-ante probability w the

newcomer has high ability such that when 7 § 7t then bf z b,

This results says that in an elimination contest, winning the semifinal amplifies the
overconfidence bias of a player whose ex-ante probability of being high ability is low,
and dampens it otherwise. First observe that when the overconfident player 1 wins the
semifinal, both player 1 and his rival in the final, player 2, revise upwards their beliefs
about player 1 having high ability, i.e., ;i > 7 and p > 7. Given that both players revise
their beliefs upwards, we wish to understand what makes either player revise his beliefs
the most. When = is close to 0—meaning the rational player is almost certain that
his opponent has low ability—a win by player 1 in the semifinal does little to change
player 2’s belief. The strong prior prevents the rational player to significantly revise

his expectations. For intermediate values of m,—meaning the rational player is very
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uncertain about his opponent’s ability—a win by player 1 in the semifinal leads to a
large upwards revision in the beliefs of player 2. Last, when 7 is close to 1, there is little
room for further increasing players’ beliefs. The overconfident player mistakenly assigns
a higher probability to having high ability. This, in turn, leads the overconfident player
to update upwards his beliefs by a large amount when 7 is low. Consequently, for low
values of 7 the update from the overconfident player will be larger that the one from
the rational player. For intermediate values of 7, the overconfident player believes his
probability of being a high type is very high, and the update of beliefs will therefore be
small. Accordingly, it will be the rational player who will update his beliefs the most

for such priors.
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Figure 1: Top panel: rational (p(7)) and biased (fi(7)) posterior beliefs. Bottom panel:

change in the overconfidence bias: b/ — b%. The two panels are produced by imposing

aj =a3, 0g =2, 0, =0.5, and b* = 0.2.

Figure 1 illustrates Result 1. On the top panel the plain curve displays the posterior
belief of the rational incumbent on the newcomer having high ability following a semifinal
victory by the newcomer, u(w). The dashed curve depicts the overconfident newcomer’s

posterior belief of being high ability, fi(7). Both posterior beliefs increase with 7, but as
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the prior beliefs that the newcomer is high ability gets higher, the scope for improvement
of both beliefs shrinks. On the bottom panel we depict the change in the overconfidence
bias of the newcomer, i.e. by — b,.

Optimizing (14) and (15), we obtain the two following first-order conditions:
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From these expressions, we can derive the next two Lemmas:
Lemma 1. The players’ best response functions in the final are quasi-concave.
Lemma 2. The final admits a unique pure strateqy Bayesian-Nash equilibrium.

Having shown that the final admits a unique pure strategy BNE, we can establish

the next proposition.

Proposition 3. In a final between an overconfident newcomer and an incumbent, the
equilibrium efforts depend on the product of the newcomer’s possible abilities as follows:
(i) If 0,0y € {0,1}, then al* = al*;

(it) If 0,0y € (0,1), then al* > al*;

(iii) If 0,05 > 1, then al* < al*.

Proposition 3 shows that whether the overconfident newcomer invests more than the
incumbent in the final depends on how the incumbent’s fixed ability, which equals 1,
compares with the product of the newcomer’s possible abilities, 0;0y. Interestingly,
the posterior beliefs that the newcomer is of high ability, x and fi, are irrelevant in
determining which player exerts higher effort at equilibrium.

Following the reasoning underlying Proposition 1, we know that when 0.0y = 1,
i.e. 0y = 1/0;, the players can be seen as optimizing a weighted average of two Tullock
contests where the most able player is either the newcomer with an ability 6y, or the
incumbent with an ability 1/6;, = 6y. Hence, the highest ability player will always
have the same ability for any weights p or fi. Accordingly, for any weighing (1 and fi)
the equilibrium efforts will be the same for both players, and equal to the efforts they
would invest if information was complete. When 070y = 0, i.e. 0, = 0 and 6y > 1,

the newcomer can only reach the final if he has high ability, consequently the posterior
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beliefs are i = = 1 (there is certainty in the final), and both players choose the same
effort.

When 0y < 1/6;, since fi > p, the newcomer puts more weight than the incumbent
in the scenario where his relative ability is 6y, while the incumbent puts more weight
than the newcomer in the scenario where his own relative ability is 1/6;,. Yet, we know
that the more unequal the abilities of the player, the lower their equilibrium efforts
in a complete information setup. Consequently, when 8y < 1/0;,, the newcomer puts
more weight on the scenario where players invest higher equilibrium efforts, whereas
the incumbent puts more weight on the scenario where the players invest lower equilib-
rium efforts. Accordingly, at equilibrium the newcomer will invest more effort than the
incumbent.

When 61,05 > 1 the opposite holds true. In such instances, the newcomer puts more
weight on the scenario where the players invest lower equilibrium efforts, since 0y is
indeed higher to 1/6;,. Therefore, at equilibrium the newcomer will invest less effort
than the incumbent.

Proposition 3 uncovers a interesting result: in a one-shot contest, an overconfident
player may expend more effort than his rational rival. This finding differs from earlier
work on overconfidence in elimination contests by Chen and Santos-Pinto (2025) that
predicts lower effort by the overconfident player in the final stage. The divergence arises
from how the bias is specified: whereas Chen and Santos-Pinto (2025) assume an over-
confident player overestimates his deterministic ability, we here treat the overconfident
player as uncertain about his ability and prone to exaggerating the chance that it is
high.

The next result describes how a change in the newcomer’s final stage bias b/ affects
his equilibrium effort, a{ *, his true equilibrium probability of winning the final

Opal*

. 0ral*
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and his perceived equilibrium probability of winning the final
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Proposition 4. In a final between an overconfident newcomer and an incumbent, the
newcomer’s equilibrium effort increases with his bias b’ if and only if 0.0y € (0,1).

The newcomer’s true equilibrium probability of winning the final, Plf*, increases with
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his bias b’ if and only if 01,05 € (0,1). Moreover the newcomer’s perceived equilibrium
probability of winning the final, If’lf*, increases with his bias b’ if 010 € (0,1], while

the effect is undetermined otherwise.

When the product of the newcomer’s possible abilities is low, 6,05 € (0,1), an
increase in the newcomer’s final stage bias b raises his equilibrium effort and this, in
turn, increases his true and perceived equilibrium probabilities of winning the final.
In contrast, when the product of the newcomer’s possible abilities is high, 6,0y > 1,
an increase in b, lowers the newcomer’s equilibrium effort which, in turn, reduces his
true equilibrium probability of winning the final. Note that in this case the impact
of an increase in b/ on the newcomer’s perceived probability of winning the final is
undetermined since i goes up but the newcomer’s effort goes down.

We next explore the effect of the newcomer’s posterior belief fi, taking the incum-
bent’s posterior belief y fixed, on the incumbent’s equilibrium effort and on the new-
comer’s equilibrium perceived expected utility of the final denoted by E[UY (a]*, a3™)).

We now introduce a lemma that will be helpful to state our next proposition.

Lemma 3. An increase in the newcomer’s posterior belief fi leads to a contraction of
his best response function in the final, BR{(ag)/aﬂ <0, for ag < a{ 0101, and to an

expansion of his best response function in the final otherwise.

Proposition 5. Consider a final between an overconfident newcomer and an incumbent
and fix the incumbent’s posterior belief, p. The incumbent’s equilibrium effort, and the
newcomer’s equilibrium perceived expected utility vary with the newcomer’s posterior be-
lief @i, as follows:

(i) If 0,0y = 1, then dal* /dfi = 0, and dE[U{ (a]*,a]*)]/dfi > 0.

(i) If 0.0g € (0,1), and p > [, then da2 /di < 0, and dE[Uf(a1 7a2 ] /dp > 0.
Otherwise, if i < [i, then dal*/di > 0 and dE[U{ (af*, a™)])/dfi is undetermined.

(iii) If 0,0 > 1, and p < fi, then dal*/di < 0, and dE[U{ (a]*,a3"))/di > 0. Other-
wise, if u > [, then da2 /di >0 and dE[Uf(a1 ,a2 ) /di is undetermined.

A change in the newcomer’s posterior belief, fi, for fixed 4 (a change in b/ therefore)
has two effects on his equilibrium perceived expected utility. First, there is a direct
positive effect of the biased posterior belief on the equilibrium perceived expected win-
ning probability. Second, there is a strategic effect of the biased posterior belief going
through the effort provision of the rival player. If the strategic effect is positive, then

the overall effect is unambiguously positive as well. However, if player 2 increases his
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equilibrium effort in response to a higher posterior belief of player 1, then the overall
effect is undetermined.

Observe first that when 670y = 1, the equilibrium efforts are equal and unaffected
by the newcomer’s posterior belief. In such cases, only the direct positive effect of
the biased posterior belief on the equilibrium perceived expected winning probability
matters. When the product of the newcomer’s possible abilities is low, i.e. 8.0 € (0,1),
and the incumbent’s posterior belief is high, p > [i, an increase in the final stage bias
b/ makes the final more attractive to the newcomer. In such instances, higher levels of
overconfidence incentivize player 1 to increase his equilibrium effort, while also pushing
player 2 to reduce his equilibrium effort, i.e. the strategic effect is positive. In contrast,
if the incumbent’s posterior belief is low, pu < fi, the strategic effect is negative, and the
overall effect is therefore undetermined. Finally, when the product of the newcomer’s
possible abilities is high, i.e. 650y > 1, and the incumbent’s posterior belief is low,
i < [i, an increase in final stage bias b/ makes the final more attractive to the newcomer.

We now study the effect of the incumbent’s posterior belief i, taking the newcomer’s
posterior belief i fixed, on the incumbent’s equilibrium effort and on the newcomer’s

equilibrium perceived expected utility.

Proposition 6. Consider a final between an overconfident newcomer and an incumbent
and fix the newcomer’s posterior belief, fi. The incumbent’s equilibrium effort, and the
newcomer’s equilibrium perceived expected utility vary with the incumbent’s posterior
belief i, as follows:

(i) If 0005 = 1, then dal* /dp = 0, and dE[UY (al*, al™)]/dp = 0.

(it) If 0,0y € (0,1), then dal* /dp > 0, and dE[UY (al*,a3™))/dp < 0.

(iii) If 01,05 > 1, then dal*/dp < 0, and dE[UY (a]*,a3*))/dp > 0.

In Proposition 6 we isolate the effect of a change in the posterior belief of an in-
cumbent in the final, u, on her equilibrium effort ag *, as well as on the overconfident
newcomer’s perceived expected utility of the final. When 6,0y = 1, only the direct
positive effect of the posterior belief matters, for the same reason as in Proposition 5(i).
When 0,05 € (0,1), an increase in the posterior belief p incentivizes the incumbent
to invest lower effort at equilibrium, thence resulting in a higher equilibrium perceived
expected utility for the overconfident newcomer. In contrast, when 60y > 1, the in-

cumbent is incentivized to increase his equilibrium effort, thereby leading to a reduction

of the newcomer’s payoff.
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5.2 Semifinal

Player 1’s perceived expected utility of the semifinal is

E[Uf (a3, a3)] = P} (a3, a3) E[U] (a",a3"; )] — caf
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where a{* = hy(@, 1), ag* = ha(fi, p), i is given by equation (16) and p by equation (4).

The first-order condition of player 1 in the semifinal is

OPf — - ;1 =
7E[U1] + Py (al,ag) i 9ay dii o (19)

dE[U]) op , dE[U]] 3#] .

To show existence of a pure-strategy equilibrium we demonstrate in the Appendix
that the second-order conditions are verified whenever the first-order conditions are
satisfied for the specific case 0,0y = 1. By continuity of the players’ perceived expected
utilities in 07, and 0 it follows that there is an interval [©, O], with © < 1 and © > 1,
such that for any ©® = 670 in that interval the second-order conditions are verified.
The assumption that v/c is sufficiently large ensures that both players attain strictly
positive expected utilities for these strategy profile.

We can re-express the equilibrium perceived expected utility of player 1 in the final
E[Ulf*], as a function of the updated beliefs in the final p and the bias b/, rather than
as a function of y and ji. Accordingly, define E[UJ* (b7, p)] = E‘[U{*([L, 1)] and re-write
(19) as:

OP;
oa$
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(20)

The above first-order condition equates the perceived marginal benefit of effort in
the semifinal to the constant marginal cost ¢. The perceived marginal benefit of effort is
itself composed of three terms. The first two terms are directly comparable to the ones
obtained in the previous section with a rational newcomer. The third term is new and
is related to the newcomer’s overconfidence bias. Combined, these three effects shape
the overconfident newcomer’s behavior in the semifinal.

The first term captures the fact that increasing effort in the semifinal raises the
newcomer’s perceived probability of winning the semifinal. The sign of the first term in

(20) is positive since an increase in semifinal effort raises the perceived probability of

24



winning.

The second term in (20) describes how a change in the newcomer’s semifinal ef-
fort affects the incumbent’s posterior belief p, which in turn affects the efforts of the
newcomer and the incumbent in the final, thereby modifying the newcomer’s perceived
expected utility of the final. Bearing in mind that Ou/daj < 0 (Equation (5)), the sign
of the second term is directly determined by Proposition 6. Indeed, we know that higher
semifinal effort reduces the rival’s posterior belief. Moreover, for a fixed posterior belief
of the newcomer, we know from Proposition 5 that an increase in the rival’s posterior
belief p raises the rival’s effort in the final when 6,0y € (0,1), in turn leading to a
lower perceived expected utility for the newcomer in final. Conversely, for 0.0y > 1
an increase in p will generate the opposite effects. Combined, these effects imply that
for 8,0y < 1, the second term is negative, thence providing the newcomer with lower
incentives to invest in the semifinal effort. If, on the other hand, 07,0y > 1, the effect is
reversed.

Lastly, the third effect in (20) captures how a change in semifinal effort impacts
the (endogenous) final stage overconfidence bias for a given posterior belief u, which
in turn affects the efforts of the newcomer and the incumbent in the final, thereby
modifying the newcomer’s perceived expected utility of reaching the final. This effect
is the product of two terms. The sign of the first multiplicative term, dE[U]*]/db?, is
described in Proposition 5. The sign of the second multiplicative term, db/0a$, the
effect of semifinal effort on the newcomer’s final stage bias b/, is described in the next

lemma.

Lemma 4. There exists a value ¥(a3,a§) € (0,1) such that for any 7 > F(a$,a3),
bl /0a; > 0, and for any ™ < %(af,a3), Ob! /Oai > 0 if b* > b* € (0,1 — 7), and
bt /9a5 < 0 otherwise.

This lemma states that an increase in semifinal effort raises the newcomer’s final
stage bias b7 if the ex-ante probability the newcomer is of high ability, 7 is large enough.
Moreover, this is also true for a small 7 provided the newcomer’s semifinal stage bias,
b®, is sufficiently high. For low 7 and 0°, an increase in semifinal effort lowers the
newcomer’s final stage bias b7.

We see that the overconfident newcomer’s semifinal effort choice has two informa-
tional consequences: a public-signaling component that affects incumbent 2’s posterior

belief 41, and a self-signaling component that affects the newcomer’s posterior belief ji.”

"We use the term self-signaling in a similar way as Bodner and Prelec (2003).

25



In both cases greater semifinal effort is interpreted as bad news about ability.

Observe that if the newcomer’s final stage bias were exogenous and independent of
the semifinal stage bias, we would be able to gauge the effect of b/ on the equilibrium
semifinal efforts and winning probabilities. Yet, since b/ is endogenous to players’ semi-
final efforts, which in turn depend on b®, we are not in a position to derive general
results for any value of 6 and 6y. However, by imposing 070y = 1, we are able to
derive closed-form solutions for the final stage efforts, and this in turn allows us to derive

additional results in the next section.

5.3 The Model with ;05 =1

When 0,0y = 1, we know that a]* = ag *, which using player 1’s first-order condition

is shown to equal:
Ou
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Substituting for 8;, = 1/0p, this expression reads as:

al*

_Ou v
(9H + 1)2 ¢

Player 1’s equilibrium perceived expected utility of the final is then equal to:

I * * o~ ~ 9 ~ ]- *
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where, imposing 0, = 1/0y, we have

v,

70y (af + 9Ha§)
Opas + [70% + (1 —7)]as

[L =
In the semifinal, the first-order condition of the overconfident newcomer is then:

OP;
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dal op Oa  Ou daj op  daj
=0 =0

E[U{*]+P; (a3, a3)

Observe that by focusing on the specific case where 07,05 = 1, the players’ equilibrium
efforts in the final are independent of y. Consequently, when modifying his effort in
the semifinal, the overconfident newcomer is aware that his rival in the final will not

subsequently adapt her effort, as shown in Propositions 5(i) and 6(i). This result explains
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why the two terms in (21) are equal to 0. Consequently, when deciding his semifinal
effort, the overconfident newcomer accounts for the effect of his effort on the expected
utility of the final only through the effect of i on the perceived probability of winning
the final. Equation (21) then simplifies to

1 2+(9H—1~
Oy +1 9H+1'u

Using the incumbent’s first-order condition in equation (13), alongside the overcon-

oOP;
da3

- 0
v+ Pi(af,a3) vl — ¢ (22)

fident newcomer’s first-order condition in equation (22), we can state the next result.

Proposition 7. In the semifinal between an overconfident newcomer and an incumbent

of a two-stage elimination contest where 01,0y = 1, there exists a unique value

. O +3

T An )
for the ex-ante probability w the newcomer has high ability such that:
(i) For m < & < 7, both a rational and an overconfident newcomer exert less effort than
the incumbent at equilibrium in the semifinal.
(ii) For m < & < 7, an overconfident newcomer exerts more effort than the incumbent
at equilibrium in the semifinal, while a rational newcomer exerts less effort.
(iii) For i < m < 7, both a rational and an overconfident newcomer exert more effort

than the incumbent at equilibrium in the semifinal.

When 01,0 = 1 we have the following three scenarios. First, when the newcomer’s
ex-ante probability of having high ability is low and his biased prior belief 7 is smaller
than the threshold value, # < ©# < 7, both a rational and an overconfident newcomer
exert less effort at equilibrium in the semifinal than the incumbent. This is intuitive, the
small bias leads to a small change in effort provision and both a rational and an overcon-
fident newcomer exert less effort than the incumbent for the same reasons highlighted
after Proposition 2 in Section 4.2.

Second, when the newcomer’s ex-ante probability of having high ability is low and
his biased prior belief 7 is greater than the threshold value, 7 < 7 < 7, an overconfident
newcomer exerts more effort at equilibrium in the semifinal than the incumbent whereas
a rational newcomer exerts less effort. In this case the higher bias leads to a large effort
provision since the newcomer overestimates his probability of winning the semifinal as
well at his expected utility of the final. Consequently the overconfident newcomer exerts

more effort than the incumbent when a rational newcomer would have exerted less effort
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than the incumbent.

Third, when the newcomer’s ex-ante probability of having high ability is greater than
the threshold value, 7 < m < 7, both a rational and an overconfident newcomer exert
more effort at equilibrium in the semifinal than the incumbent.

Last we analyze the impact of the newcomer’s semifinal bias b® on his true equilibrium
probabilities of winning the final and semifinal, Plf * and PP*, respectively. This allows
us to determine how the semifinal bias b° changes the newcomer’s true equilibrium

probability of winning the elimination contest Pf*Plf *.

Proposition 8. In a two-stage elimination contest where 0,0y = 1, the overconfi-
dent newcomer’s true equilibrium probability of winning the final, Plf *, decreases in his
overconfidence bias b°, and his true equilibrium probability of winning the semifinal,
PP*, increases in b°. His true equilibrium probability of winning the contest, Pf*Plf ",

increases in his overconfidence bias b*.

When 601,05 = 1, the newcomer’s true equilibrium probability of winning the final is

given by
plx—_T7H 0 23
where .
24 0m
=T = .
(Té +7m0y +(1—m)/0x
Since

(1 - 7T)(9H - 1/91{)
(ai/a3 +m0u + (1 —7)/0n)?

op/0(a3 fa3) = - <0,

and since Plf * is increasing in u, it follows that the newcomer’s true equilibrium proba-
bility of winning the final is decreasing in a3 /aj.
The newcomer’s true equilibrium probability of winning the semifinal is given by

ai*/0u
9
as* /0y + as*

HH(J,'{*

Pr=r—
! Omal* +as*

+(1—m) (24)

and we immediately observe that Pf* is increasing with a5* /a$*. Consequently, a change
in the equilibrium semifinal relative effort induces Plf * and P{* to move in opposite di-
rections. We show, in the proof of Proposition 8, that an increase in the newcomer’s
semifinal bias b® raises the semifinal equilibrium relative effort a§*/a3*. Hence, an in-
crease in the newcomer’s semifinal bias b° lowers his true equilibrium probability of win-
ning the final while it raises his true equilibrium probability of winning the semifinal.

We demonstrate in Proposition 8 that the net effect of the increase in Pj* dominates.
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Figure 2 illustrates Proposition 8. It depicts P}J*, Plf *, and their product as a
function of b* when 7w =1/4, 6, =1/2, 0y =2, v =10, and ¢ = 1.

06 | P
055 F----- _‘_T_T_T_,d~;-;';'L':‘;- _______________________
---------- Pl
0.5 |
0.45 |
04 |
035 T y [
Py Py
0.3 ’ //
0 0.15 0.3 0.45 0.6 0.75
bS

Figure 2: Newcomer’s true winning probabilities in the elimination contest.

6 Conclusion

This paper analyzes how overconfidence shapes behavior and winning probabilities in a
two-stage elimination contest with incomplete information. We start by showing that
following a first stage victory the newcomer’s overconfidence bias is boosted when his ex-
ante probability of having high ability is low, otherwise the bias is dampened. This new
mechanism has implications for behavior in the second stage. When the product of the
newcomer’s possible abilities is low, the equilibrium effort of the overconfident newcomer
is larger than his rational rival, and both his effort and true winning probability increase
with his bias. The opposite result obtains if the product of the newcomer’s possible
abilities is high. In addition, we show that the overconfident player’s true probability
of winning the contest, measured as the product of the first and second stages true
winning probabilities, can increase with his first stage bias. Our results clarify under
which conditions success breeds further overconfidence or tames it. They also provide
an explanation for why overconfident individuals so frequently attain the upper levels

of promotion contests.
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7 Appendix

Second-order conditions of the semifinal with a rational newcomer: The first

derivative of the newcomer’s expected utility in the semifinal is:

OE[US]  oPs 0, \° ou
= Pixv=— —c.
dar das |\op 1) THX|UTixvgs e
The second derivative is therefore given by:
OE[U;]  0%Pf o, \° oP; %y
= 2 PS *
(0ai)? ~ (9a})? <0L ¥ 1> X 0 X ey T (a2

. a2 ps . . . .. . .
Since W < 0, this expression is a fortiori negative if:
1

0%ps oP; o . O%u <0
(8(1‘})2'u da$ da$ ! (0af)? \X,UO/ '
>

We thus need to show that the term inside squared brackets is negative. Substituting

for the appropriate terms, and simplifying, the term inside squared brackets is given by:

2102, a3
—__ZTTHT .
(0rai + a3)?
Hence, the second-order condition for the newcomer is satisfied. It is immediate to

verify that the second-order condition for the incumbent is also satisfied.

Proof of Proposition 2: To prove this result, we consider an effort level of a player
that maximizes his semifinal payoff. Accordingly, that effort level must satisfy his first-
order condition. We next fix the other player’s effort at the same level, i.e. af = a3, and
deduce that af ; a§ < OE[U;(a$,af)]/0as ; OFE[US (a3, a$)]/0as, for aj = a = a > 0.
More specifically, we define the difference of the players’ first order derivatives when
evaluated at aj = a§ as ¥(rw), and we show that ¥(0) < 0, ¥(1) > 0, and ¥'(7) > 0
on 7 € [0, 1], thence implying that there is a unique ex-ante probability the newcomer

has high ability 7 for which players 1 and 3 exert the same equilibrium effort in the
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semifinal.

We start by simplifying the first-order condition of player 1 given by equation (12):

OP;}
0as

op
0as

E[U{(a{*,ag*)] + Py (af,a3)xv =c.

We know that
or;  OPj5 a3
da§  0Oaj ai’

Using this last equation, the first-order condition of player 3 given by equation (13)

becomes
0P} af v

S S
Oai aj 4

Using these first-order conditions, we can next express ¥(m) as:

E S S S E' S S S
U(r) = 9 [Ula(acipa?,)] _8 [Uyéiilvaa)}
1 ai=aj 3 aj=aj
1 3 1 3
6P15 fr o fx  fx 3/1, 8P15 afv
— E PS S S _ _ L
(Gl of ) + eyl - S
a1:a3
opP; «  fx aj v s/ s s Ou
- {5 Ew ol ) - 5] e |
a1:a3
We have
9Haf 0La§
Pi(aj,a3)=n———+(1—7m1)———.
T e =g e T e+ a3
So, we have
P} Opaj Oraj
1 =T HAa3 - +(1—7T) Las

das (Ouas + af) (Oras + a5)?

Observe that when imposing af = a3 = a, we have:
0 0 0
L. ( H L ) 7

:1+9L 1+9H_1+9L

S__ 5
al_a3_a

Py (ai, a3)

oPy
Oaj

- [<9L9+L1)2 o ((f%ffl)? B (9L9+L1)2)] é

a'f——ag——a
6 2 0y (0 +
( L ) H( L ) vl o,

EU{ (a]", a3")]

¢ 0 +1 00 + 70 + (1 —m)0;,
and
o _ 7(1—=m)00u(0n — Or)
Oaj a=ai=a [9L9H + 7m0 + (1 — w)&L]Qa
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Substituting in ¥ for the appropriate terms we then obtain:

\I’(Tl') _ [ Or, —|—7r< Ou B 0r, ):| l ( Or, >2+ 7TOH(0L+1) N _l v
(9L+1)2 (9H+1)2 (0L+1)2 a O +1 9L9H+7Tt91-[+(177r)0[, 4
[ 0r ( O 0r, ):l 7T(1*7T)9L9H(9H*9L)
+ — v 5
1+0. 1+0n 1+06L (0000 +m0m + (1 —m)0L] a

After some manipulations we obtain

\Il( ) _ —HL(QH + 1)4(1 + 20, — 30%) + [OH(GL + 1)4(39125[ — 20 — 1) + HL(QH + 1)4(1 + 205, — 39%)] 71'9
i (On + 1)* (0, + 1) a

Setting ¥(7) = 0, and solving for 7, we obtain:

00 + 1)*(1 420 — 362%)
O (0 + 1)4(39%{ —20g — 1)+ 0,0y + D41 + 26 — 39%)

T =

Proof of Result 1: There exists a unique prior belief # € [0,1] which is such that

< A > 1
when 7 S then bf = bs.

o= = (i—p)— (7 —m)
fi— ) = (p—m)
P (af, a3: 0n) ) 1} o [ P (af, a3: 011
7Pf(af,a3;0n) + (1 - 7)Pf(af, a3;01) mPf(af,a3;0m) + (1 — 7)Pf (af, a3;01)
Py (ai, a3;0n) — P (af,a3;01) Pr(ai,a3;0n) — P (af,a3;01)

-1

= T 1 — T — 1 —
) P (at a3:0m) + (- #)Prlanay0z) " " aPr(ag.az:0m) + (1 m)Pi(ata3:07)

Thence, the sign of b/ — b® is given by:

sen{b/ —v*} = sgn{(1—7)(1—n)Pi(a},a$;0L) — 77 P§(af,a};0n)}
= sen{(1— 7 —b*)(1 ) Pi(a}, 3 01) — m(n + %) P (a, a3 011)}
= sen{ =[P (ai, a3 0n) — P (a5, 05:0,)] 7
— [2 + (Pi(ay,a3;0g) — Pf(ai,ag;OL))} b*m

+ (1= ) Py (a5, a3:01) }.
Since for m = 0 the above expression is always positive, for 7 = 1 it is always neg-

ative, and given the quadratic nature of the expression there exists a unique threshold

# € (0,1) such that 7 = # & b Z b*.
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Proof of Lemma 1: To show that the best response functions of players in the fi-
nal, Rf(afi), i € {1,2}, are quasi-concave, we focus on the best response of the
overconfident player, player 1, and the reasoning extends to the rival player 2. We
show that (i) the slope of player 1’s best response function is strictly positive for
al =0, ie. (aR{/&zg)‘aZ{:O > 0, (i) that it it strictly negative for aj — oo, i.e.
(8R{/8a£)|agﬁoo <0, and (iii) that whenever RJ /dal = 0, then 82R{ /(9al)? < 0.
By implicit differentiation of the first-order condition of player 1 as given by equation

(17), we deduce that the sign of the slope of player 1’s best response is given by:

sgn LR{ = sgn w = sgn [j’oH(eHa{ - ag) + (1 - ,&)é)L(GLa{ — ag
da}daj (Onaf +af)? (Oral +a)?

daj
(25)

Points (i) and (ii) are immediately deduced upon observing the above expression.

O*E[U(af af)]
8a{8a£ ’

sufficient to show that when ¢(ad) = 0, then ¢/(al) < 0. We thus compute ¢'(a}) which

Turning next to (iii), define first (;5(@%c ) = To establish (iii) it is then

is given by:
Slal) = PPn  3iu(bnal —a3) (1-@6r 30 - WoLbLel —az)
(Onaf +a3)*  (Omaf +aj)*  (fraf +ad)? (Oaf +a3)*
Substituting for gb(ag ) = 0, we can show that the above expression can be re-

expressed as:

) = T (o -y (] )

(HHa{ + ag)?’ (9,;@{ —aj HHa{ + ag 9La{ + ag

or,
[IIQH4(9H — GL)G,{
(Ora] +a3)*(0raf — a})

¢'(ad) =

<0,

with the sign following from the observation that to have (b(ag ) =0, it is necessary that

HLa{ — ag < 0.

Proof of Lemma 2: To prove uniqueness, we show that the contraction mapping
ORI (al)/0al.0R] (al)/0al is smaller to 1. The slopes of R] (a}) and RS (af) are re-

spectively given by:

fof A0n(Ona{—af) | (1-f@)0s(9raf—af)
IRy (ay) _ (9mai+ad)? (0r.af+af)®

- ~02 =192 ’
aaf zaf A% (1—)07
2 2 [@nal+al)® * Gral+al)?
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and,

w0 (Oua—af) | (1-p)0r(0raf—af)
OR{(af) _ _ “nelraDt T @refrad?
dal f pOu (1-p)0r
! 20y (0mal +a)?  (0nal +al)?

! (ol ! ol
Observe first that if HLa{ > ag, then M(ST(?) > 0 and M;T(}ll) < 0. Next, observe that
2 1
! (ol fad
if HHa{ < a§7 then M{;T(?"’) < 0 and W(;T(;H) > 0. In both cases the product of the
2 1

slopes of the best responses is negative and the contraction mapping is smaller to 1. A
necessary condition for the slopes of the best responses at equilibrium to be of equal
sign is that

Oral —a} > 0> 0pal —d. (26)

We now demonstrate that at equilibrium it is impossible for both best responses to be

GK(GKG{—ag) _ . e f*
bralral)s K = {H,L}. Since at equilibrium aj

and al* cannot be negative, when condition (26) holds we have ¥z > 0 and ¥y < 0.

negatively sloped. Denote Uy =

Accordingly, the sign of the slope of R{ (ag*) is given by the sign of 4V x+(1—)¥y,, and
the sign of the slope of Rg(a{*) is given by the sign of pUx + (1 — p)¥ . Assume then
that the sign of the slope of R} (a!*) is negative. For this to be the case when ¥y > 0

and ¥y, < 0 we must have 7‘1\1’,—1; > I_T” Thence, for R{ (ag*) to also be negative when

Uy > 0and ¥y <0, we need that _% < 1;[‘. For both these inequalities to hold, we
need that % > 177“, which contradicts i > p. Hence, at equilibrium it is impossible
for both best responses to be negatively sloped.

We are left with the case where at equilibrium both best responses are positively

sloped. To next show that the contraction mapping is smaller to 1. This is equivalent

to inquiring whether the following inequality is true:

i0r (Omal” —ad*) (1 —@)0r0ral” —af")\ [10m(Onal* —ad) (1 - pw)or(0ral" —af")
(Omar” +a3™)3 (Ora1” +a3")?

( (Orar” +ay")3 (fray” +ay”")?

daf*ad? 0% L (A -moE poy  (1—pr
(Omar”™ +ay")®  (Oray” +ay”

(QHG{* +ay")?  (Opay” +ay")?

We then drop from the above expression the following two positive terms:

[0rOmal” —af") (1 p)0p(0ral” —al*)\ pom(0nal* — af”)
(eH%* + a2*)3 (9La1* + az*)S (eHal* + @2*)3

b (9Ha1*+a2*)3 (9La1*+a2*)3 (aHa1*+a2*)3

37

o



The original expression is then necessarily true if:

(ﬂaH(eHa{* —a}")

1— )05 (0ral™ — al* .
‘ * +( M)L(*L1* 2 ) (Ora!
(Oray” +ay")3 (Ora;”™ +ay")?

—a}")

1 ™2 (HHCL{* +a2*)3

(9La1* + %*)3
or,

/jﬂH * * * * *  fx
Gl 2oy (Onal” —af)0ral" —af") + daf"af )
H%1 2

1 — [ 9 * * * *
@ (a ” il:)aL*)S ((GLa{ —al*)? + 4a*a] 9,;) > 0.
L4 2

It is then sufficient to prove that the first expression is true, or:

0005 (al™)? + (a*)? — Opal*al” + 3af*al* 05 > 0,

and this expression is always true since 0y > 6.

Proof of Proposition 3: Let ¢x = (ee"iif)za K = {L,H}. The first-order condi-
Kaj+aj
tions become

[ipn + (1 — @)or]afv = c,
and

ués + (1= por]afv=c.
Let us study the sign of

E=[apg + (1 - @)or] — [pdm + (1 — p)or]
= j(¢n — ér) — (o — or)
= (i — ) (¢m — or)

2 _ a2
= i )0 — o) )

(Orra] + a})2(0ra] + af)?

If we know the sign of =, then we know which player exerts higher effort as = = 0
implies a* = al*, = > 0 implies af* > a}*, and = < 0 implies al* < af*. Note that

7 > m implies 1 — p > 0. Hence, to determine the sign of = we only need to consider the

sign of the numerator of the third term. To do that we consider three possible situations:
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(i) 0,0 € {0,1}; (ii) 0,04 € (0,1); and (iii) 0,0 > 1.

Consider case (i): 0.0y € {0,1}. When 650y = 0, then we must have 6, = 0.
Substituting 6;, = 0 in the expressions for the posterior beliefs we have g = p = 1,
and hence = = 0 and a{* = ag* = v0g/c(0g + 1)2. When 0.0y = 1, the sign of =
is given by (a)2 — (af)2. If a} = af, then = = 0 and both first-order conditions are
satisfied. If a > af, then = > 0, and the first-order conditions are violated. If aj < a7,
then = < 0, and the first-order conditions are violated. Hence, when 670y = 1 the
equilibrium satisfies al* = al* = v0y /(0 + 1)2.

Consider case (ii): 0.0y € (0,1). The sign of Z is given by (a)2 — 0.0 (al)?. If
ag = a{ , then = > 0, and the first-order conditions are violated. If a{ > a{, then
= > 0, and the first-order conditions are violated. For aé < a{ there are three subcases:
(a) if 0.0k (a)? < (a})? < (al)?, then = > 0, and there will exist values of af and
al that satisfy the first-order conditions; (b) if (a)? = 0,04 (af)?, then Z = 0, and
the first-order conditions are violated; (c) if (ag)2 < GLOH(a{)Q, then = < 0, and the
first-order conditions are violated. Hence, when 610y € (0,1) the equilibrium satisfies
al* > al*.

Consider case (iii): 00y > 1. The sign of = is given by (a)? — 0,0y (a])?. If

ag = a{, then £ < 0, and the first-order conditions are violated. If ag < a{, then

E < 0, and the first-order conditions are violated. For ag > a{ there are three sub-
cases: (a) if (a)? < 0.0x(al)?, then 2 < 0, and there will exist values of af and af
that satisfy the first-order conditions; (b) if (af)? = 6,0 (af)?, then Z = 0, and the
first-order conditions are violated; (c) if (ag)2 > 9L¢9H(a{)2, then = > 0, and the first-

order conditions are violated. Hence, when @0 > 1 the equilibrium satisfies a}* > af*.

Proof of Proposition 4: Observe first that the bias b/ does not affect the best response
of player 2 as implicitly defined in (18). Second, we can show by implicit differentiation
that the best response function of player 1, as implicitly defined in (17), is shifting

outwards with the bias b/ if and only if the sign of the following expression is positive:

On 0r

(HHG{* + ag*)z (Opal” +af")?

In the proof of Proposition 2 we demonstrate that the sign of this expression is positive
if and only if 0.0 € (0,1). Consequently, if 0.0 € (0,1), then an increase in b/ shift
outwards the best response of player 1, thence resulting in a higher equilibrium effort

a{*, and, given the quasi-concavity of player 2’s best response function, the true as well
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as the perceived equilibrium winning probability of player 1 increases. If 0.0y > 1,
the equilibrium effort of player 1 as well as his true winning probability will therefore
decrease with the bias b/. Yet, the effect on player 1’s perceived equilibrium probability
is undetermined in this case since, even though the bias raises the perceived equilibrium
winning probability, the change in players’ efforts pushes the perceived equilibrium win-

ning probability in the other direction.

Proof of Lemma 3: The sign of R (a})/dji is given by the sign of 02E[U{ (af, a})]/0a! 0},

which is given by:

sgn{fn(0ra] +ad)? — 0L(0nal +ad)?} = sgn{(0n0} — 0.0%)(a])? + (0 — 01)(ad)?}

= sgn{(0m — 01)((a§)> — 0101 (a]))}.

Hence, if af < af /0505, then OR](a})/0fi < 0. However, if a} > af\/@.0x, then
ORI (al) /0 > 0.

Proof of Proposition 5: Making use of the Envelope theorem, we deduce that the

effect of the newcomer’s posterior belief i on his equilibrium perceived expected utility

is given by:
dEWU] (o ad" )] _ OB (af* af"s )] | OB(U{ (af", of"s ) dai”
dii op daj,* dji
Opal* Opal* _ Opal” y Opal” day”
* f*_ * * - M*—*Q-f—(].—l,b) * f*2 de
Ora” + ay Oray” + ay Opai;™ +a3”) (Orai™ +ad”) 12

2
>0 >0 :

Case (i): 00y = 1. From Proposition 3 part (i), we know that if 6,0y = 1, then
a{* = a2 Substituting for 0, = 1/0y and a/* = a{ = ag* in the first-order condition

(17), we obtain:
oH’U

al* = m
We thus obtain that the players’ equilibrium efforts are independent of their beliefs,
which necessarily implies that dE[Uf (a1 ,a2 *sm)]/di > 0.
Case (ii): 00 € (0,1). Observe first that from Proposition 3 part (ii) we know that
0.0 € (0,1) implies ag > al “V0r05, which in turn, thanks to Lemma 3 implies
ORI (al*) /01 > 0.

Assume that i = g, which implies that a]* = ag*. Using Lemma 2, the sign of the
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slope of the best response of player 2 at equilibrium, [“)Rg (a{*)/aa{*, is given by:

S (o f* o o f
sen R2(a1* ) — —sen MeH(aH? ay’) Y (1—p) 9L(9LC11 ay’)
day (Omai” +ay")3 (0rai” +ay")?
_ O 0y — 1) B 0.0 — 1)
N Set {M (O +1)3 1 =n) (0, +1)3 |-

Observe that the above expression is decreasing in p since 8y > 1 > 6. Moreover
for 4 = 0, the expression is positive, and for p = 1 it is negative. We can then deduce
that there exists a unique y = fi, such that for p < fi, RS (al*)/0al™ = 0. This i is
defined as:

GL(lfeL)

= (TESE B 0r(1—0.)(0m +1)3
T 0.(1-61) O (0 —1) _ 3 _ 3
Gty + s QL(I QL)(QH + 1) + QH(QH 1)(9L + 1)

It follows that for p = i, dE[UY (al*,al*; i)]/dfi > 0.

Consider next any i > p. We know from above, that the slope of the best re-
sponse of player 2 at the 45° line is positive for p < [, nil for p = @, and negative
for p > f. Moreover, we know from Lemma 1 that the best response functions are
quasi-concave. In addition, the best response of player 2 is independent of fi. We can
therefore deduce that for any i > u, and provided p > fi, the best response of player 1

intersects the best response of player 2 below the 45° line where a{ > ag*

and where
the best response of player 2 has a negative slope. Hence, for u > [, dag* /dii < 0, and
dE(U{ (af*,al"; 1)) /dji > 0.

For p < [i, the slope of the best response of player 2 is positive on the 45° line,
in which case an increase in ji leads to an increase in a2 when the slope of the best
response of player 2 is positive at equilibrium. Consequently, we are unable to determine
the effect of i on the equilibrium perceived expected utility of player 1 in such instances.
Case (iii): 6.0y > 1. Observe first that from Proposition 3 part (iii) we know that
01,0y > 1 implies aé < a1 *V/0r.05 which in turn, thanks to Lemma 3 implies %ﬁ‘{*)

0. If we then consider p = {1 as above, it follows that E[Uf (a1 ,ag*, @)]/di > 0. For u <
i, the slope of the best response of player 2 is positive above the 45° line, and any increase
in /i will then result in reductions of al*. Hence, for p < i, dE[U{ (af*,ad*; 0)]/dji > 0.

Last for p > [i, for similar reasons to the ones in Case (ii), the effect of fi on the equi-

librium expected utility of player 1 us undetermined.

Proof of Proposition 6: Observe that the perceived expected utility of the newcomer
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in the final is a function of i, and that it depends on p only through its effect on
the players’ equilibrium efforts. By the Envelope theorem, we therefore deduce that
AE[U (o], ")) du Z 0 i daf* Jdyu = 0.

From the first-order condition (17) we know that Rf (a%c ) is independent of p, for a
fixed ji. Therefore dal 3/dp S0 & OR} (al) /Ou = 0. Using the first-order condition of
player 2 as given by (18), we deduce that the sign of 8R£ (al) /Ou is given by:

wn { OR}(af )} S

op (Omal +a)2  (Opal +al)?

which is given by:

sgn{0m(Oral +al)* — 0r(Omal +al)*} = sen{(0n07 — 020%)(a])* + (0 — 01)(a})*}

= sgn{(0n — 0.)((a})? — 00 (a])?)}.

Hence, if af < af /0,04, then dR](a])/0p < 0. However, if a} > af\/0.05, then
AR} (al)/du > 0. We can then consider the three cases (i)-(iii).

Case (i): If 0,0y = 1, al* = a*, and therefore AR (al*)/0p = 0.

Case (ii): 01,0y € (0,1). Observe first that from Proposition 3 part (ii) we know that
0.0y € (0,1) implies ay” > al 01,0, which in turn implies 5‘R£(a{*)/a/¢ > 0.

Case (iii): 0,0y > 1. Observe that from Proposition 3 part (iii) we know that 0,0y > 1
implies ag < al “v0r0g which in turn implies 8Rf( *)/0u < 0.

Second-order conditions of the semifinal with an overconfident newcomer
when 0,05 = 1: The first derivative of the newcomer’s perceived expected utility in

the semifinal is:

GH—l 8[,6
O +1 8(11

fil v+ Pi(a,af) —

dE[U;] 9P} 1 \° 6y-—
da; a5 |\ Om +1 9H+1

The second derivative is therefore given by:
2 .
1 9 -1 P50 1 O —1 2
H il v +25 19 — 3# H 0% h
O +1 9H +1

O*EUF] _ 0Py N )
da Oy +1 8&1 Y +1 (da5)?

(9af)* — (Da})?
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. %P . L . o
Since W < 0, this expression is a fortiori negative if:
1

o*Py 0P} O ~, O%h | Og—1
st 22— == | ——v <0.
das)? das das 0as)2 | Oy + 1
(0a3) ai oaj (Oaf) H -

>

We thus need to show that the term inside squared brackets is negative. Substituting
for the appropriate terms, and simplifying, we can show that the term inside squared
brackets is given by: ,
2w0%,a3
“Onaitagp <
Hence, the second-order condition for the newcomer is satisfied. It is immediate to verify

that the second-order condition for the incumbent is also satisfied.

Proof of Lemma 4: Using the definitions of fi and p as given in (16) and (4), respec-

tively, we have:

A
Oas 0as
(1l —m) (1 —7)

= — ~ GLQH(QH - QL)aS.
[0L0ka5 + (0 + 70y —01)) a5 [000mas + (0, +7(0n — 1)) a3]? 3

Observe that the expression inside square brackets can be seen as a difference of the

same function evaluated at two different arguments, = and 7. Denote this function by

h(y), i.e.
(1 —7)
[0r0ma; + (0 + (0 — 0r))a3]?

Note that h(y) = 0 for v = {0,1}. We then have:

h(v) =

QL(QH(Ii + ag) — (2&‘;91{01, + ag(GL + QH)")/)
[0L0ma; + (0L + (0 — 01))as)?

() =

We thus have that h'(y) = 0 for:

HL (GHa{ + a§)
=7(aj,a3) = .
V=) = 0+ a3(0r + On)
Next one can easily show that J(a$, aj) € (0, 1).
Moreover, observe that function h(7) is quasi-concave on « € [0, 1], since it is imme-
diate to see that h”(y) < 0 when evaluated at v = J(af,a}). Summarizing, h(y) is a

function that starts in 0 is monotonically increasing in v up to 4 and then monotonically
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decreases in «y until is reaches 0 for v = 1.

We can then deduce that if 7 > 4, then h(7) > h(7), and hence for any = > (a3, a3),
obf /0a; > 0. Furthermore, for any 0 < m < (a3, a$), there exists a bias b such that
Vb > b%, h(mr) > h(7) so that Obf /0a; > 0. Likewise, for Vb* < b*, h(m) < h(7) so that
bt /9as < 0.

Proof of Proposition 7: Computing each term of (22) separately, we have:

OP; _ 9Pf(ai,a;7) { fra3 7~T( Ora3 0105
_ ;

a3 o 0as (Oras + a3)? (Oas + af)? - (Ora + a

Imposing 0, = 1/0y, this reads as:

oP; _ O aj - Ouai  Oua
dai | (ai +0maj)? (Orai +a3)*  (af +6pna3)?
Evaluating this expression at af = a5 = a, this expression becomes:

P On

da;  a(0g +1)%

Turning next to the squared-bracketed term of expression (22), since ag * is indepen-

dent of posterior beliefs, the first multiplicative term is then nil. Focusing next on the

last term of expression (22), we have that when evaluated at a = a§ = a, then:

oE[UT] on ( bn 0L ) #(1 = 7)0L0m (0 — 01
o “oa; ~  \bm+1 6, r1 (0061 + 704 + (1 —7)0;]a
C fu 1 w0y 1)
Ot 1y 4 w02 +(1—7)a
#(1—7)0y (0 — 1)
[0 +70% + (1—7)]a
#(1— 705 (0 — 1)
(O + D2(1 — 7 + 70m)2a

The first-order condition of player 1 when evaluated at af = a§ = a is then equal to:

0 1—7+ 763 -7+ 70y 71— 000y —1)>
alg +102 0 + 12 (1—7+70m)  O0m+1 (O +1)2(1—7+70m)2a O
or
0 1—7+ 763 On #(1—7)(0g — 1)2
v =c,

a0 + 12 (0g + 12 (1—7+70)  0g+1(05+1)2(01 -7+ 70n)a
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or
0n (1 -7 +70%)
(Om +1)*

v
a

We next explore the first-order condition of player 3 which, when evaluated at af =

a3 = a, is given by:
O

v
40 +1)2a ©

Using the first-order derivatives, we can next express ¥(7) evaluated at af = a3 = a

as:

OE[U; (a3, a3; )] _ OE[U3 (a3, a3)]

W (7 =
() oaj Oaj
af=aj=a af=a3=a
B oH(l—frJrﬁei,)_ On v
N (O + 1)4 40 +1)2 | a
_ _QH(OHfl) [0}14’3747?(91{4’1)]3
o 4(91—1 + 1)4 a’

with ¥(7) E 0 & aj* z a3*. It follows that ¥(7) = 0 when

O +3
40 +1)

’ﬁ':

So, when the prior belief of the overconfident player 1, 7, is higher than 7, he
exerts more effort than the rational rival in the semifinal. Note that 8y > 1 implies

7 € (1/4,1/2) and that the higher is 0y the closer is 7 to 1/4.

Proof of Proposition 8: To prove this result, we first show that Pf*Plf* is monoton-
ically increasing in the ratio aj*/a$*, and we then show that this ratio is monotonically
increasing in b°.

Making use of equations (23) and (24), the newcomer’s ex-ante true probability of

winning the elimination contest is given by:

GHCLf*
Opas* + as*

+(1—-m)

af*/9H+a§* Oy +1

)

which after substituting for p as given by Equation (4) becomes:

HHa‘l"’*

T4 (1-7
Opas* + as* ( )

0 5% /0y +al*
ai*/aH :| 1—|— = H(a1 /0u as ))ag* (aH— 1)

‘15*+(7T‘9H+(177T)/6H
as* /0y + a5

PPl =
1 4 { 0 +1
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Rewritting the above expression as a function of x = af/aj, we obtain:

PPl = {WGH +(1—7T)] [1 0 (x/0g +1)(0n —1)] =

Opr+1 x40y x+ (Mg + (1 —m)/0p) ]| 0 +1
Opxr+70% + (1 —m) [Ogz +70% + (1 —7) + 70 (z + 0 ) (0 — 1) x

(Ogz+1)(z +0p) [ O+ w07 + (1 — ) O +1
(1-—m) Oz +1)+m0}(z+0y) =

Opz+1)(x+0n) O +1
T Oz 1
{( " e on +W0H0Hx+1} Op + 1

Since the two terms inside the squared brackets are increasing in x, we deduce that
Ps*Pl* is equally increasing in z.

We next prove that dz/db® > 0. At optimality, the first order conditions of both
players 1 and 3 ought to be simultaneously satisfied. The first order condition of player
1 is given by:

[ﬁ Oras” (1A — a5" /6 _ } ( 1 )2+ O =1 (ot /0n+ai) |
(GHai*—kag*)Q (ai*/ﬂH—i—ag*)Q 0y +1 0H+1ai*+(770H+(1—7r)/9H)a§*
B |:~ QHaf* af*/@H :| 0H*1 7?(177?)(91{71/9}[)(15*

_HN L (1-F
fnar+ay T e e | O 1 [a5* + (70 + (1 — 7) /0 )ag"]?

Rewritting this condition as a function of x, we obtain:

O
. -
[”(aHH Ry eneye] B L O + 1z + 70y + (1 —7) /04 | a3’

as

l:N QHLE .CE/QH :|0H1 77((177?)(0}171/9}[) v

S R
Oz +1 /0 + 1] 0n + 1[4+ 70y + (1 —7)/0y)" a5

1/0y H( 1 )2+9H_1 705 (/05 + 1) ]v

+(1—7)
Proceeding likewise for player 3, we obtain:

Opas* ai* /0y v
1 -— —e -_—=
[” O+ T @ o a1

Oz . x/0n vo_.
[“(eﬂxﬂv”l ><w/oH+1>2] 1w ©

Combining these two first-order conditions, we obtain:

[ bm . 1/6m 1\’ Op—1  #g(x/0g+1)
Alz) = _W(QHI+1)2+(1_7T(z/@HJrl)?] <9H+1) 0 + 1o+ 70 + (1 —7)/0n
. _ﬁ' GH.r —|—(1—7~T) x/GH :|9H_1 7~T(1—7~T)(9H—1/0H)
| Opz+1 /0 +1] 0u + 1]z + 70y + (1 —7)/0u)
. -ﬂ' (9Hl‘ g Z‘/GH 1_
"+ T )(x/oHH)?] 1
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This expression can be re-written as:

Or 3 2
= — = O
AW = G T D O + r F o o)t (18 e Fertal =0,

where:

= mA2m0y + 0% +2(1 — )03 + (1 — 7)oy

o = 20g(6% +1)

c3 = 8y — 60y —2m0y — 7 + 0% + 2103 + w03 — 8703 + 1
s = —4(1 —7+7n0%)

Observe that the fraction in A(x) is always positive, thence implying that the first-
order conditions are satisfied if B(x) = ;23 + c22? + c32 + ¢4 = 0, thence implying that
this condition defines the equilibrium value of x. We are interested in the sign of da/db*
which is the same to the sign of dz/d7. Applying implicit differentiation to B(z), we

have:

de B 4205a(1 - 03) +1 -0}
i 8?9555) - 36127 1 2097 + C3 .

The sign of the numerator is negative, thence implying that the sign of the entire ex-
pression is given by the sign of the denominator. Exploiting the fact that B(z) = 0

implies:
cq + cla:3 + 02952
. .

C3 =

Substituting for ¢z in the denominator of the above expression, we deduce that dz/d7 >
0 if:

2

Cq
3c12? + 2com — - iz —coxr > 0.

Since = > 0, simplifying the above expression and multiplying by z, we deduce that
dz/dm > 0 if:

2011‘3 + 02962 —cq >0,

which is necessarily true since ¢; > 0, co > 0, and ¢4 < 0.
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