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Abstract

This paper studies how overconfidence shapes behavior in a two-stage elimina-

tion contest with incomplete information. An overconfident newcomer, uncertain

about his ability, overestimates his ex-ante probability of being high ability. Condi-

tional on a first stage victory, the newcomer and his rival update their beliefs about

the newcomer’s ability using Bayes’ rule. We show that a first stage win amplifies

the newcomer’s overconfidence when his ex-ante probability of being high ability

is low, and dampens it otherwise. Overconfidence can raise the newcomer’s equi-

librium effort in both stages and thus increase his chance of winning the contest.

The model clarifies when success feeds further overconfidence and helps explain

why overconfident individuals so frequently attain top position in organizations.

JEL Codes: 60; D69; D91

Keywords: Learning, Overconfidence, Elimination Contest.
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1 Introduction

Organizations typically staff open positions by promoting from within or by drawing

on the external labor market (Bidwell and Keller, 2014). In such cases, the promotion

contest sets a newcomer whose ability is largely untested against incumbents whose

ability is already known. Early victories in these contests not only advance the outsider

but also reshape beliefs: both incumbents and the newcomer update their assessments

of the latter’s true talent.

Examples abound. Consider an external hire in a law firm who, after joining mid-

career, must compete with long-tenured associates for a partnership slot in an up-or-out

promotion contest. The partners can rely on years of information about their incumbent

associates, whereas the newcomer enters with uncertain prospects (Rebitzer and Taylor,

2007). Promotions to CEO positions often display a similar dynamic: boards weigh

candidates from inside the firm, whose past performance is well documented, against

external recruits whose ability to lead the organization remains largely untested (Parrino,

1997; Zhang and Rajagopalan, 2004). In politics, two-round elections—where candidates

first compete in their party for party leadership before facing off a leader from a rival

party in the general election—often place a political newcomer, uncertain about how

voters perceive her abilities, against seasoned opponents whose reputations are already

well established (Crutzen et al., 2010; Andreottola, 2021). Similarly, in academic grant

applications, junior faculty face funding tournaments alongside senior faculty whose

publication records and expertise are broadly known (Azoulay et al., 2011). In each

case, the eliminatory nature of the process creates settings where early successes affect

expectations about an unknown entrant.

Crucially, this uncertainty about an newcomer’s true ability opens the door to over-

confidence. When individuals face incomplete information about how their skills com-

pare to others’, initial victories can inflate their beliefs about their own competence

beyond what is objectively warranted. Indeed, overconfidence is most likely to emerge

precisely when the contestant’s type is uncertain (Benôıt and Dubra, 2011).

Does earning a promotion increase a newcomer’s overconfidence? How does overcon-

fidence shape contestants’ efforts across the successive stages of a promotion contest?

Are overconfident newcomers more likely to win the contest than their rational rivals?

These questions matter since, for instance, empirical studies show that approximately

40 percent of CEOs of companies listed in the Standard & Poor’s 1500 index are over-

confident (Malmendier and Tate, 2015).
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To address these questions, we develop a formal model that embeds overconfi-

dence—defined as an overestimation of the probability of being high ability—within

a two-stage elimination contest with incomplete information. In the first stage (semifi-

nal stage), four players are matched pairwise, and each pair competes in one semifinal.

The semifinal winners go on to the second stage and compete in the final. In each

pairwise interaction the players choose their efforts simultaneously and their winning

probabilities are determined by their efforts and abilities via a Tullock contest success

function. We consider a winner-take-all contest where players’ utility of the prize is v

and their constant marginal cost of effort is c ∈ [1, v).

Player 1, the newcomer, can have either low, θL, or high, θH , ability, with 0 ≤

θL < 1 < θH . The ex-ante probability player 1 has high ability is π ∈ (0, 1), and this

is common knowledge. We sequentially analyze two scenarios. In the first scenario,

the newcomer is rational, while in the second he is overconfident. A rational newcomer

holds the correct prior belief that his ability is high with probability π. An overconfident

newcomer holds the mistaken prior belief that his ability is high with probability π̃ =

π + bs, where bs is the newcomer’s semifinal stage bias which satisfies bs ∈ (0, 1 − π].

Players 2, 3, and 4, the incumbents, possess identical ability normalized to 1, and this

value is common knowledge. The incumbents know the newcomer’s ability is θH with

ex-ante probability π and θL with ex-ante probability 1− π, and that an overconfident

newcomer perceives his ability is θH with probability π̃ and θL with probability 1 − π̃.

Hence we are considering an incomplete information setup where players hold no private

information.

A semifinal win prompts the newcomer to update his self-belief via Bayes’ rule, while

the incumbent who reaches the final also updates her belief about the newcomer’s type

via Bayes’ rule. A rational newcomer’s posterior belief is denoted by µ and that of an

overconfident one by µ̃. Posterior beliefs about the newcomer’s ability are determined

by the equilibrium semifinal efforts and prior beliefs.1Accordingly, an overconfident new-

comer’s final-stage bias bf is determined endogenously and equals bf = µ̃−µ. Given the

resulting posterior beliefs, the semifinal winners choose their efforts in the final. Com-

paring bs to bf reveals whether a semifinal victory amplifies or attenuates the newcomer’s

overconfidence.

Our main findings are as follows. First, a semifinal victory amplifies the newcomer’s

overconfidence bias when his ex-ante probability of being high ability is low: bf > bs

1At equilibrium with incomplete but symmetric information about ability, semifinal efforts do not
need to be observable for finalists to form posterior beliefs about ability as semifinal efforts are perfectly
anticipated through the equilibrium strategy.
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whenever π is small. Conversely, the same win dampens the newcomer’s overconfidence

bias when his ex-ante probability of being high ability is high: bf < bs for large π.

Thus an early victory in an elimination contest can either heighten or temper a player’s

overconfidence depending on the ex-ante likelihood of being high ability. The mechanism

behind this unexpected result is straightforward once beliefs are traced. When π is close

to zero, the incumbent’s posterior hardly moves if the newcomer wins his semifinal. On

the other hand, following a semifinal victory, an overconfident newcomer significantly

upgrades his self-belief because π̃ = π + bs shifts appreciably away from zero: this

unexpected win is mistakenly attributed in the newcomer’s mind to a significantly higher

probability he is of high type. By contrast, when π is near one, both players already

regard the newcomer as almost certainly high-ability, leaving little scope for further

upward revision, so the bias naturally contracts. Overall, a semifinal victory amplifies

overconfidence in players with lower expected ability, while attenuating it in those with

higher expected ability.

Second, in a final between a rational newcomer and an incumbent, our first scenario,

both players select the same effort at equilibrium regardless of how the newcomer’s

possible abilities compare to that of the incumbent.2 In contrast, in our second scenario

where the final involves an overconfident newcomer and an incumbent, the players’ efforts

at equilibrium are sensitive to the ability comparison: the newcomer’s effort exceeds the

incumbent’s only when the product of the newcomer’s possible abilities θLθH lies below

the incumbent’s ability (normalized to 1). The intuition behind this result is as follows.

When θLθH ∈ (0, 1), the overconfident newcomer attributes a higher weight than the

incumbent to a scenario where the gap between the players’ abilities is not too large.

This in turn incentivizes the overconfident newcomer to invest more effort than the

incumbent. The opposite happens when θLθH > 1 and the overconfident newcomer

attributes a higher weight than the incumbent to a scenario where the gap between the

players’ abilities is large. This in turn incentivizes him to invest less effort than the

incumbent. Moreover, the overconfident newcomer’s equilibrium effort as well as his

true probability of winning the final rise monotonically with his bias in the final, bf .

Third, in a semifinal between a rational newcomer and an incumbent, our first sce-

nario, the identity of the higher-effort player hinges on the ex-ante probability π that

the newcomer is high ability: when π is small the rational newcomer expends less effort

2This is a well known result in Tullock contests with complete information. With identical linear
costs, heterogeneous abilities cancel out in the first-order conditions, forcing identical effort. In our
model with a rational newcomer, where both players hold the same posterior beliefs, they can be seen
as optimizing a weighted average of two complete information contests.
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than the incumbent at equilibrium, but when π is large he expends more. The intuition

for this result can be grasped by considering the two extreme cases where π is either

close to 0 or to 1. If π is close to 0, the incentives for the newcomer to invest in the

semifinal are very low, since both the likelihood of winning the semifinal (for any effort)

and the expected utility of the final are low. The incumbent is equally incentivized to

invest little effort in the semifinal, yet, she will invest more than the newcomer since

both her winning probability and expected utility of the final are much higher. Com-

bined, this implies that for low values of π the incumbent invests higher effort in the

semifinal. When π is close to 1, the incentives of the newcomer and the incumbent are

reversed since the newcomer holds both a high probability of winning the semifinal (for

a given effort) and has a higher expected utility of the final compared to the incum-

bent. Accordingly, for high values of π the rational newcomer exerts higher effort in the

semifinal.

Fourth, in our second scenario where the semifinal is played between an overconfident

newcomer and an incumbent, an increase in the newcomer’s semifinal stage bias bs raises

his prior belief π̃ which has similar effects as an increase in π in the rational newcomer

case. In addition, an increase in bs changes the wedge between the newcomer’s posterior

belief µ̃ and the incumbent’s posterior belief µ as previously described. This introduces

a new linkage between the semifinal and the final whereby, the overconfident newcomer’s

choice of effort in the semifinal affects bf which, in turn, affects the newcomer’s rival

choice of effort in the final. The complexity of the problem prevents us from deriving

general results for any value of θL and θH . However, imposing θLθH = 1 we are able to

characterize the equilibrium of the semifinal since the final stage equilibrium efforts are

identical and unaffected by the newcomer’s final stage bias bf . We find that when π is low

and the bias bs is large enough, an overconfident newcomer exerts higher semifinal effort

than the incumbent whereas, in our first scenario, for such low values of π a rational

newcomer exerts lower semifinal effort than the incumbent. Indeed, when π is low, a

rational newcomer anticipates a low expected utility from winning the semifinal. By

contrast, an overconfident newcomer misattributes a semifinal victory to his own ability,

thereby reinforcing his overconfidence and making advancement to the final appear more

attractive. This in turn incentivizes the overconfident newcomer to exert higher effort

than his rival in the semifinal.

Fifth, we demonstrate that overconfidence raises the newcomer’s true equilibrium

probability of winning the elimination contest when θLθH = 1. An increase in the over-

confident newcomer’s semifinal stage bias bs raises the newcomer’s semifinal equilibrium
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relative effort as1/a
s
3. This raises the newcomer’s true equilibrium probability of win-

ning the semifinal. However, the increase in the newcomer’s semifinal relative effort also

lowers µ which, in turn, reduces the newcomer’s true equilibrium probability of wining

the final. Still, we are able to show that the increase in the probability of winning the

semifinal dominates the drop in the probability of winning the final.

The rest of the paper proceeds as follows. Section 2 discusses related literature.

Section 3 sets-up the model. Section 4 studies the elimination contest with a ratio-

nal newcomer. Section 5 considers the case of an overconfident newcomer. Section 6

concludes the paper. All proofs can be found in the Appendix.

2 Related Literature

Our paper contributes to three strands of the literature: elimination contests, the dy-

namics of overconfidence, and the effect of overconfidence in contests and tournaments.

First, our contribution to elimination contests is most closely related to Rosen (1986)

and Chen and Santos-Pinto (2025).3 The main focus of Rosen (1986) is to explain why

contest organizers set increasingly larger prizes as players advance in an elimination

contest. Although most of the analysis is performed under complete information, Rosen

(1986) also discusses the extension of his model to an incomplete information elimination

contest. Unlike Rosen, we focus on the effect of overconfidence on effort provision and

winning probabilities in elimination contests. Rosen (1986) finds that uncertainty about

ability is a force that dampens incentives to perform in the early stages since it creates

incentives to experiment to discover own strength. In our setup we have the same

effect. However, we find that uncertainty about ability coupled with overconfidence can

instead induce an overconfident player to invest more in the early stage of the elimination

contest, thereby revealing that overconfidence can totally flip the results.

Chen and Santos-Pinto (2025) provide the first analysis of overconfidence in elim-

ination contests. They show that in the second stage the overconfident player always

exerts less effort than a rational rival, and if the prize spread is large and confidence

moderate, may exert more effort in the first stage. In their model there is no uncertainty

and so the overconfidence bias remains fixed across stages. In our framework instead,

there is uncertainty about the overconfident player’s ability, and as a consequence the

3Related analyses of elimination contests examine aspects of optimal design and organization, such as
rent-seeking structures (Gradstein and Konrad, 1999), information revelation (Zhang and Wang, 2009),
optimal seeding (Groh et al., 2012), multi-stage design (Fu and Lu, 2012), and sabotage (Klunover,
2021).
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overconfidence bias changes endogenously from the first to the second stage.4 We show

that winning the first stage amplifies the bias when the player’s true prior probability

of being high-ability is low and dampens it otherwise. This novel mechanism yields

new predictions for efforts and outcomes. In the second stage, when θLθH ∈ (0, 1), the

equilibrium effort of the overconfident newcomer is larger than his rational rival, and

both his effort and true winning probability increase with his bias. The opposite result

obtains if θLθH ≥ 1. In addition, we show that the overconfident player’s true probabil-

ity of winning the contest, measured as the product of the first and second stages true

winning probabilities, can increase with his first stage bias.

Second, we also contribute to the literature on the emergence and evolution of

overconfidence. Gervais and Odean (2001) show that initial success increases poste-

rior assessments of one’s ability because agents apply a self-serving weighting to out-

comes—successes receive greater subjective weight as evidence of skill than failures do

as evidence of low ability—producing upward-biased belief updating.

In Compte and Postlewaite (2004), confidence—shaped by recalled past successes and

failures—affects the actual probability of success, and overconfidence arises from a biased

recollection of past events. They find that this type of overconfidence can have positive

welfare implications and that overconfidence decreases with experience. In contrast, our

model assumes that while overconfident players begin with biased priors about their

abilities, they perfectly recall past performance and update beliefs in accordance to

Bayes’ rule. Our findings are also more nuanced, since we find that an overconfident

newcomer who is successful early on (i.e. wins in the semifinal) will either dampen

or amplify his overconfidence bias depending on the ex-ante true probability of being

high ability. Interestingly, when the newcomer is initially highly overconfident, an early

success will induce him to attribute a higher probability he is of a high type, thereby

reducing his overconfidence bias.

In Bénabou and Tirole (2002) a time-inconsistent agent, with imperfect knowledge

about his ability, may choose to remain ignorant about his ability to induce a future

self to work harder. Likewise in our model, that is admittedly very different, the over-

confident newcomer can influence both knowledge about his ability and his final stage

overconfidence via the choice of semifinal stage effort. We show that players may con-

tain their efforts at the semifinal stage to increase everyone’s belief that they are of

4Another fundamental difference between the two studies is that in Chen and Santos-Pinto (2025)
the players’ winning probabilities are determined by Alcalde and Dahm’s (2007) contest success function
while here we consider a Tullock contest success function. This is important given the prevalence and
wide use of the Tullock CSF in multistage contests.
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a high ability, thereby increasing their expected payoff from the final. We also find

that depending on the newcomer’s ex-ante true probability of being high ability, victory

increases the true likelihood the player is of high ability, and it can either amplify or

dampen his overconfidence bias. Our results do not rely on time-inconsistency.

Last, Zábojńık (2004) and Benôıt and Dubra (2011) develop Bayesian decision-

theoretic learning models where agents might end up rationally overestimating their

abilities. We instead assume that some agents are overconfident, and study how confi-

dence biases evolve endogenously through agents’ choice of effort in a dynamic elimina-

tion contest.

Third, we contribute to the literature that explores the role of overconfidence in

contests and tournaments. Santos-Pinto (2010) studies how a principal chooses prizes

in static tournaments featuring players overestimating their abilities. Ludwig et al.

(2011), model overconfidence in a static contest as an underestimation of the cost of

effort, and conclude that it leads to higher equilibrium efforts. Santos-Pinto and Sekeris

(2023, 2025) demonstrate that the results are totally reversed when players overestimate

their abilities in contests, while the results are shown to be more nuanced in tournaments

(Santos-Pinto and Sekeris 2025). This paper shows that overconfidence in the presence

of uncertainty can result in the overconfident player exerting lower or high effort than a

rational rival even in a static contest.

Denter et al. (2022) explore how one-sided asymmetric information about the marginal

cost of effort affects effort levels in a contest. They assume that prior to competing in

the contest, a newcomer–the informed player–can signal his type to an incumbent–the

uninformed player–through a costly signal. They find that only newcomers who have a

very low marginal cost of effort, relative to the incumbent, benefit from disclosing their

type in equilibrium. In addition, they allow the newcomer to be overconfident as we

do. Our study differs from Denter et al. (2022) in at least two main dimensions. First,

we assume information is symmetric whereas they assume it is asymmetric. Second, we

study a two-stage elimination contest whereas they allow for costly signaling prior to

competing in a one shot contest. We show that the newcomer must take into account

that, everything else constant, higher effort in the semifinal lowers his posterior belief

of having high ability in final.

Last, our paper is related to the literature on learning in dynamic contests and

tournaments. In Altmann et al. (2012), Kubitz (2023), Barbieri and Serena (2025), and

Catepillán et al. (2025), each player has private information about either his ability, cost

of effort, valuation of the prize, or more generally objective function. We instead as-
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sume that nobody (including the newcomer himself) knows the newcomer’s ability. This

distinction is essential, since unlike private information setups where players attempt

signaling or concealing their known identity, in our setup the newcomer’s first stage

effort influences everyone’s beliefs about his ability at the start of the second stage.

Indeed, an early victory achieved with little effort lead to a sharper updating of beliefs,

since such success is more likely attributed to the winner’s unknown — and potentially

high — ability than it would be if the effort had been greater. Such behaviour therefore

potentially trumps everyone, the newcomer included, and may confer a strategic advan-

tage to the newcomer if he reaches the subsequent round. This mechanism is highlighted

in Krähmer (2007) in a repeated contest with symmetric incomplete information about

players’ abilities. In contrast to Krähmer (2007), we focus on the role of overconfidence

in an elimination contest.

3 Set-up

Consider a two-stage elimination contest where players 1 and 3 compete in one semifinal

and 2 and 4 in the other semifinal. The semifinal winners move on to the final. Player

1, the newcomer, can have either low, θL, or high, θH , ability, with 0 ≤ θL < 1 < θH .

The ex-ante probability player 1 has high ability is π ∈ (0, 1). The abilities of players

2, 3, and 4 are common knowledge, identical, and normalized to 1. Players 2, 3 and 4

know that the ex-ante probability player 1 has high ability is π.

The utility of the winning prize is v and the utility of the losers’ prize is normalized

to 0. Player i’s cost of exerting effort ai is equal to C(ai) = cai, with c ∈ [1, v). We

assume that the ratio v/c is large enough to ensure that in both stages of the elimination

contest the game admits interior pure-strategy equilibria.

The players’ winning probabilities in any pairwise interaction are determined ac-

cording to a Tullock contest success function. Moreover, the probability player i’s wins

against player j when player i has ability θi and player j has ability θj is as follows:

Pi(ai, aj ; θi, θj) =
θiai

θiai + θjaj
, (1)

where θ1 ∈ {θL, θH}, θ2 = θ3 = θ4 = 1, and j ̸= i.

Player 1 is rational when his prior belief of having high ability is equal to π. To model

overconfidence, we assume player 1 has a (subjective) prior belief of having high ability

equal to π̃ = π + bs, where bs ∈ (0, 1 − π] is the overconfidence bias in the semifinal.
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Player 1’s rivals know that player 1 is overconfident, that is they know bs, but think,

correctly, player 1 is mistaken.

We work with the perfect Bayesian equilibrium concept (PBE) and solve the game

by backwards induction. A semifinal victory prompts the newcomer to update his belief

about his own type via Bayes’ rule, while an incumbent who also reaches the final also

updates her belief about the newcomer’s type via Bayes’ rule. The players’ posterior

beliefs are a function of their prior beliefs and the semifinal efforts. Given the posterior

beliefs, we derive the Bayesian-Nash equilibrium (BNE) of the final and compute the

corresponding equilibrium payoffs (continuation values). Finally, given the continuation

values, we then solve for the BNE of each semifinal. The resulting strategy profile and

belief system jointly satisfy the requirements of a PBE for the two-stage elimination

contest.

To be able to compute the equilibrium taking into account that players can hold

mistaken beliefs we assume: (i) a player who faces a biased opponent is aware that

the latter’s perception is mistaken, (ii) each player thinks that his own perception is

correct, and (iii) both players have a common understanding of each other’s beliefs,

despite their disagreement on the accuracy of their opponent’s beliefs. Hence, players

agree to disagree about their perceptions. This approach follows Squintani (2006).5

4 Rational Newcomer

In this section we analyze the model under the assumption that the newcomer is rational.

We proceed backward in time. First, we derive the equilibrium efforts in a final between

a rational newcomer and an incumbent. Second, using the final stage solution, we

characterize the equilibrium efforts in the semifinal between a rational newcomer and

an incumbent.

4.1 Final

We study the final between the rational newcomer, player 1, and the incumbent player

2, without loss of generality. The expected utility of player i = 1, 2 in the final is

E[Uf
i (ai, aj)] = P f

i (ai, aj)v − cai.

5These assumptions are consistent with the psychology literature on the “Blind Spot Bias” according
to which individuals believe that others are more susceptible to behavioral biases than themselves
(Pronin et al. 2002, Pronin and Kugler 2007).
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Player 1’s expected utility in the final is therefore

E[Uf
1 (a1, a2)] =

[
µ

θHa1
θHa1 + a2

+ (1− µ)
θLa1

θLa1 + a2

]
v − ca1, (2)

and player 2’s expected utility in the final is

E[Uf
2 (a1, a2)] =

[
µ

a2
θHa1 + a2

+ (1− µ)
a2

θLa1 + a2

]
v − ca2, (3)

where µ is the players’ common posterior belief that player 1 has high ability, given by

µ =
πP s

1 (a
s
1, a

s
3; θH)

πP s
1 (a

s
1, a

s
3; θH) + (1− π)P s

1 (a
s
1, a

s
3; θL)

=

π
θHas1

θHas1 + as3

π
θHas1

θHas1 + as3
+ (1− π)

θLa
s
1

θLas1 + as3

=
πθH

(
θLa

s
1 + as3

)
θLθHas1 +

[
πθH + (1− π)θL

]
as3

. (4)

Note that µ is decreasing with as1 since

∂µ

∂as1
= − π(1− π)θLθH(θH − θL)a

s
3[

θLθHas1 +
[
πθH + (1− π)θL

]
as3
]2 < 0, (5)

and µ is increasing in as3 since

∂µ

∂as3
=

π(1− π)θLθH(θH − θL)a
s
1[

θLθHas1 +
[
πθH + (1− π)θL

]
as3
]2 > 0. (6)

The first-order conditions of players 1 and 2 in the final are given by

[
µ

θH
(θHa1 + a2)2

+ (1− µ)
θL

(θLa1 + a2)2

]
a2v = c, (7)

and [
µ

θH
(θHa1 + a2)2

+ (1− µ)
θL

(θLa1 + a2)2

]
a1v = c. (8)

It follows from the first-order conditions that the final has a unique pure-strategy

equilibrium. Our first result characterizes the equilibrium of the final.

Proposition 1. In a final between a rational newcomer and an incumbent, the equilib-
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rium efforts are symmetric and given by:

af1 = af2 = af =

[
µ

θH
(θH + 1)2

+ (1− µ)
θL

(θL + 1)2

]
v

c
. (9)

The proof of Proposition 1 follows directly from the combination of first-order con-

ditions (7) and (8). Note that the equilibrium effort (i) is unaffected by µ when

θLθH ∈ {0, 1}, (ii) increases in µ for θLθH ∈ (0, 1), and (iii) decreases in µ when

θLθH > 1. The intuition of this result is the following. In any complete information

Tullock contest with linear costs and asymmetric abilities, equilibrium efforts are sym-

metric across players. Moreover, the higher the asymmetry in abilities, the lower the

equilibrium efforts (see e.g. Corchón 2000). In our setup where there is incomplete

information about the newcomer’s ability, players can be seen as optimizing a weighted

average of two complete information Tullock contests with linear costs, where the weights

are given by the posterior beliefs µ and (1−µ). Accordingly, the players will invest equal

efforts at equilibrium.

Second, observe that with probability (1 − µ), the newcomer has an ability of θL

and the incumbent an ability of 1. Alternatively, by dividing the numerator and the

denominator of the Tullock contest success function by θL, one can re-interpret this

as the newcomer having an ability of 1 and the incumbent having an ability of 1/θL.

Therefore if θH = 1/θL, this implies that the players invest the same equilibrium efforts

in the two “degenerate” cases where µ = 0 and µ = 1. Consequently, for any probability

µ the players invest these same equilibrium efforts as explained above in point (i).

Extending this logic, we deduce that θH < 1/θL implies that when µ = 1 equilib-

rium efforts are higher than when µ = 0. Hence, equilibrium efforts are monotonically

increasing in µ when θLθH ∈ (0, 1), as stated above in point (ii). Likewise we deduce

observation (iii) according to which equilibrium efforts are monotonically decreasing in

µ when θLθH > 1.

It follows from (9) that player 1’s equilibrium probability of winning the final is

P f
1 (a

f
1 , a

f
2 ) = µ

θH
θH + 1

+ (1− µ)
θL

θL + 1
.

Hence, player 1 has a higher chance of winning the final at equilibrium when

µ >
1

2
+

1− θLθH
2(θH − θL)

.

12



It also follows from (9) that player 1’s equilibrium expected utility of the final is

E[Uf
1 (a

f
1 , a

f
2 )] =

[(
θL

θL + 1

)2

+ µχ

]
v, (10)

where χ =
(

θH
θH+1

)2

−
(

θL
θL+1

)2

.

From equation (10) we can determine how a change in µ affects payer 1’s equilibrium

expected utility of the final. We have

∂E[Uf
1 (a

f
1 , a

f
2 )]

∂µ
= χv > 0

Hence, E[Uf
1 (a

f
1 , a

f
2 )] is increasing with µ. It follows from (9) that player 2’s equilibrium

expected utility of the final is

E[Uf
2 (a

f
1 , a

f
2 )] =

[(
1

θL + 1

)2

− µ

[(
1

θL + 1

)2

−
(

1

θH + 1

)2
]]

v (11)

From equation (11) we can determine how a change in µ affects payer 2’s equilibrium

expected utility of the final. We have

∂E[Uf
2 (a

f
1 , a

f
2 )]

∂µ
= −

[(
1

θL + 1

)2

−
(

1

θH + 1

)2
]
v < 0

Hence, E[Uf
2 (a

f
1 , a

f
2 )] is decreasing with µ. We see that the rational newcomer has a

strategic incentive to lower his semifinal effort in a way that boosts the common posterior

belief µ. This result is intuitive. If the rational newcomer wins the semifinal without

putting a lot of effort, this persuades incumbent 2 that the rational newcomer has high

ability with high probability. This is beneficial to the rational newcomer as it gives him

a strategic advantage in the final.

4.2 Semifinal

We now consider the semifinal between the rational newcomer and the incumbent player

3. Observe that in the semifinal opposing incumbents 2 and 4, the players’ expected

utility of reaching the final is a weighted average of their expected utility when facing

either player 1 or player 3. Yet, given the symmetry of incumbents 2 and 4, their

continuation value is identical, and their equilibrium semifinal effort as well. Although

their equilibrium efforts eventually depend on their expectation of whom they will meet
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in the final, the identity of the winner is irrelevant, and we can then focus on the semifinal

opposing players 1 and 3.

Player 1’s expected utility of the semifinal is

E[Us
1 (a1, a3)] = P s

1 (a1, a3)E[Uf
1 (a

f
1 , a

f
2 )]− ca1

=

[
π

θHa1
θHa1 + a3

+ (1− π)
θLa1

θLa1 + a3

][(
θL

θL + 1

)2

+ µχ

]
v − ca1,

where µ is the posterior belief that player 1 has high ability and is given by:

µ =
πθH

(
θLa1 + a3

)
θLθHa1 +

[
πθH + (1− π)θL

]
a3

.

Player 3’s expected utility of the semifinal is

E[Us
3 (a1, a3)] = P s

3 (a1, a3)E[Uf
3 (a

f
3 , a

f
2 )]− ca3

=

[
π

a3
θHa1 + a3

+ (1− π)
a3

θLa1 + a3

]
v

4
− ca3.

If player 3 reaches the final and the opponent is player 2, then both players exert effort

af = v/4c and player 3’s equilibrium expected utility of the final is E[Uf
3 (a

f
3 , a

f
2 )] = v/4.

The first-order conditions of players 1 and 3 in the semifinal are

∂P s
1

∂a1
E
[
Uf
1 (a

f
1 , a

f
2 )
]
+ P s

1 (a1, a3)
dE[Uf

1 (a
f
1 , a

f
2 )]

dµ

∂µ

∂a1
= c, (12)

and
∂P s

3

∂a3
E[Uf

3 (a
f
3 , a

f
2 )] = c, (13)

respectively. The first term in the left-hand side of equation (12) captures the effect

of an increase in the rational newcomer’s semifinal effort on his probability of winning

the semifinal, which is positive. The second term in the left-hand side of equation (12)

captures the effect of an increase in the rational newcomer’s semifinal effort on the

posterior belief µ. This second effect is negative since, everything else constant, a higher

effort by the rational newcomer is interpreted as a negative signal of ability (“a truly

strong player would not need to try so hard”), thereby lowering the posterior belief µ

which, in turn, reduces the rational newcomer’s expected utility of the final. Hence, the

rational newcomer’s semifinal effort choice has a public-signaling component that affects

both his and incumbent 2’ posterior belief µ, that, in our setting, is negative—greater
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effort is interpreted as bad news about ability.

To show existence of a pure-strategy equilibrium we demonstrate in the Appendix

that the second-order conditions are verified whenever the first-order conditions are

satisfied. The assumption that v/c is sufficiently large ensures that both players attain

strictly positive expected utilities for these strategy profile.

Proposition 2. In the semifinal between a rational newcomer and an incumbent of

a two-stage elimination contest, there exists a unique value π̄ ∈ (0, 1) for the ex-ante

probability π that the newcomer has high ability such that when π ⋚ π̄, the players’

equilibrium efforts satisfy as1 ⋚ as3.

Four distinct forces govern how π shapes a rational newcomer’s equilibrium effort in

the semifinal. The first one, the contest-sensitivity effect, captures how an increase in π

changes the rational newcomer’s marginal probability of winning the semifinal. It’s sign

is determined by

∂2P s
1

∂a1∂π
=

(θH − θL)a3
(θHa1 + a3)2(θLa1 + a3)2

(a23 − θLθHa21).

Hence, the newcomer’s marginal probability of winning the semifinal rises with π as long

as a1 < a3/
√
θLθH , is zero at a1 = a3/

√
θLθH and falls with π when a1 > a3/

√
θLθH .

Everything else equal, this effect produces a inverted U-shaped response of as1(π) to π.

The second one, the encouragement effect, captures how an increase in π changes the

rational newcomer’s expected utility of the final E[Uf
1 (a

f
1 , a

f
2 )]. This effect is positive

since an increase in π raises the posterior belief µ (∂µ/∂π > 0) and an increase in

the posterior belief, in turn, raises the rational newcomer’s expected utility of the final

(∂E[Uf
1 (a

f
1 , a

f
2 )]/∂µ > 0). This effect pushes as1(π) upward with π.

The third one, the public signal effect, captures how an increase in π raises the

probability the rational newcomer reaches the final and makes him more exposed to the

negative signal of ability. This effect is negative since an increase in π raises the rational

newcomer’s probability of advancing to the final as

∂P s
1

∂π
=

(θH − θL)a1a3
(θHa1 + a3)(θLa1 + a3)

> 0.

and higher semifinal effort leads to a lower posterior belief, ∂µ/∂a1 < 0. This effect

pushes as1(π) downward with π.

The fourth one, the posterior-sensitivity effect, captures how an increase in π changes
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the marginal posterior belief ∂µ/∂a1. It’s sign is determined by

∂2µ

∂a1∂π
=

π [2θL(θHa1 + a3) + (θH − θL)a3]− θL(θHa1 + a3)[
θLθHa1 +

[
πθH + (1− π)θL

]
a3
]3 .

Hence, ∂µ/∂a1 falls with π as long as π < π∗, is zero at π = π∗, and rises with π when

π > π∗, where π∗ = θL(θHa1 + a3)/[2θL(θHa1 + a3) + (θH − θL)a3]. Everything else

equal, this effect produces a U-shaped response of as1(π) to π. The intuition behind this

effect is rooted in the fact that both with very low or very high π, the posterior belief µ

will not be very sensitive to the newcomer’s effort as1. Indeed, with a very low ex-ante

probability of being a high type π, whether the newcomer wins by exerting low or high

effort, the posterior probability µ will be high, hence µ is not very sensitive to effort as1.

Likewise, if π is high, then there is little room for improvement in beliefs, thereby again

implying that µ is not very sensitive to effort as1. For intermediate cases, however, a

victory with higher effort as1 tends to significantly reduce µ.

Let us now turn to the incumbent. Her ability and the value of reaching the final

are fixed and hence a change in π only affects the incumbent’s semifinal effort through

a contests-sensitivity effect which has the opposite sign than the one of the newcomer.

To then better grasp Proposition 2, we first consider the two extreme cases where

π is either close to 0 or to 1. If π is close to 0, the incentives for the newcomer to

invest in the semifinal are very low, since both the likelihood of winning the semifinal

(for any effort) and the expected utility of the final are low. The incumbent is equally

incentivized to invest little effort in the semifinal, yet, she will invest more than the

newcomer since both her winning probability and expected utility of the final are much

higher. Combined, this implies that for low values of π the incumbent invests higher

effort in the semifinal.

Consider next a situation where π is close to 1. In such instances the incentives of

the newcomer and the incumbent are reversed since the newcomer holds both a high

probability of winning the semifinal (for a given effort) and has a higher expected utility

of the final compared to the incumbent. Accordingly, for high values of π the newcomer

exerts higher effort in the semifinal.

The four effects described above for the newcomer together with the effect of a

change in π on the incumbent’s incentives to invest effort in the semifinal allow us to

better comprehend how equilibrium relative efforts in the semifinal depend on π. For

low values of π we know that, since as1/a
s
3 < 1, the incumbent’s incentives to invest in

effort in the semifinal will drop with π. On the other hand, the two first effects will be
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positive for the newcomer. Our findings therefore suggest that the two negative effects

(public signal and posterior-sensitivity) are not strong enough to overturn the positive

contest-sensitivity and encouragement effects. Moreover, although for values of π > π̄

the newcomer invests higher effort in the semifinal, potentially flipping the contest-

sensitivity effect for both the incumbent and the newcomer, we demonstrate that the

encouragement effect is strong enough to secure that at equilibrium the newcomer invest

more effort than the incumbent.

5 Overconfident Newcomer

This section analyzes the model with an overconfident newcomer. First, we characterize

the equilibrium efforts in a final between the newcomer and an incumbent. Second, we

analyze the first-order conditions that determine the equilibrium efforts in the semifinal

between the newcomer and an incumbent. Third, we specialize the model to the case

θLθH = 1 which allows us study how overconfidence affects winning probabilities.

5.1 Final

The perceived expected utilities of players 1 and 2 in the final are given

Ẽ[Uf
1 (a1, a2)] = P̃ f

1 (a1, a2)v − ca1 =

[
µ̃

θHa1
θHa1 + a2

+ (1− µ̃)
θLa1

θLa1 + a2

]
v − ca1, (14)

and

E[Uf
2 (a1, a2)] = P f

2 (a1, a2)v − ca2 =

[
µ

a2
θHa1 + a2

+ (1− µ)
a2

θLa1 + a2

]
v − ca2. (15)

In equation (14), µ̃ is player 1’s perceived posterior belief of having high ability given

by

µ̃ =
π̃θH

(
θLa1 + a3

)
θLθHa1 +

[
π̃θH + (1− π̃)θL

]
a3

. (16)

Likewise, in equation (15), µ designates player 2’s posterior belief that player 1 has

high ability and is given by:

µ =
πθH

(
θLa1 + a3

)
θLθHa1 +

[
πθH + (1− π)θL

]
a3

. (17)

Define player 1’s final stage overconfidence bias as bf = µ̃ − µ. Note that whereas

the semifinal stage bias bs is exogenous, the final stage bias bf is endogenous because
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it depends on the posterior beliefs µ̃ and µ which are determined by the equilibrium

efforts exerted in the semifinal. Furthermore, since µ̃ is a function of π̃, which itself is

influenced by the semifinal stage bias bs, and the semifinal equilibrium efforts depend

on bs, the final stage bias bf depends on bs as well. Comparing player 1’s overconfidence

biases in the two stages, bs and bf , we can make the following observation.

Result 1. There exists a unique value π̂ ∈ (0, 1) for the ex-ante probability π the

newcomer has high ability such that when π ⋚ π̂ then bf ⋛ bs.

This results says that in an elimination contest, winning the semifinal amplifies the

overconfidence bias of a player whose ex-ante probability of being high ability is low,

and dampens it otherwise. First observe that when the overconfident player 1 wins the

semifinal, both player 1 and his rival in the final, player 2, revise upwards their beliefs

about player 1 having high ability, i.e., µ̃ > π̃ and µ > π. Given that both players revise

their beliefs upwards, we wish to understand what makes either player revise his beliefs

the most. When π is close to 0—meaning the rational player is almost certain that

his opponent has low ability—a win by player 1 in the semifinal does little to change

player 2’s belief. The strong prior prevents the rational player to significantly revise

his expectations. For intermediate values of π,—meaning the rational player is very

uncertain about his opponent’s ability—a win by player 1 in the semifinal leads to a

large upwards revision in the beliefs of player 2. Last, when π is close to 1, there is little

room for further increasing players’ beliefs. The overconfident player mistakenly assigns

a higher probability to having high ability. This, in turn, leads the overconfident player

to update upwards his beliefs by a large amount when π is low. Consequently, for low

values of π the update from the overconfident player will be larger that the one from

the rational player. For intermediate values of π, the overconfident player believes his

probability of being a high type is very high, and the update of beliefs will therefore be

small. Accordingly, it will be the rational player who will update his beliefs the most

for such priors.

Optimizing (14) and (15), we obtain the two following first-order conditions:

[
µ̃

θH
(θHa1 + a2)2

+ (1− µ̃)
θL

(θLa1 + a2)2

]
a2v = c, (18)

and [
µ

θH
(θHa1 + a2)2

+ (1− µ)
θL

(θLa1 + a2)2

]
a1v = c. (19)

From these expressions, we can derive the next two Lemmas:
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Lemma 1. The players’ best response functions in the final are quasi-concave.

Lemma 2. The final admits a unique pure strategy equilibrium.

Having shown that the final admits a unique pure strategy equilibrium, we can

establish the next proposition.

Proposition 3. In a final between an overconfident newcomer and an incumbent, the

equilibrium efforts depend on the product of the newcomer’s possible abilities as follows:

(i) If θLθH ∈ {0, 1}, then af1 = af2 ;

(ii) If θLθH ∈ (0, 1), then af1 > af2 ;

(iii) If θLθH > 1, then af1 < af2 .

Proposition 3 shows that whether the overconfident newcomer invests more than the

incumbent in the final depends on how the incumbent’s fixed ability, which equals 1,

compares with the product of the newcomer’s possible abilities, θLθH . Interestingly,

the posterior beliefs that the newcomer is of high ability, µ and µ̃, are irrelevant in

determining which player exerts higher effort at equilibrium. Indeed, following the

reasoning underlying Proposition 1, we know that when θH = 1/θL, the players can be

seen as optimizing a weighted average of two Tullock contests where the most able player

is either the newcomer with an ability θH , or the incumbent with an ability 1/θL = θH .

Hence, the highest ability player will always have the same ability for any weights µ or

µ̃. Accordingly, for any weighing (µ and µ̃) the equilibrium efforts will be the same for

both players, and equal to the efforts they would invest if information was complete.

When θLθH = 0, the newcomer can only reach the final is he has high ability,

consequently the posterior beliefs are µ̃ = µ = 1 (there is certainty in the final), and

both players choose the same effort.

When θH < 1/θL, since µ̃ > µ, the newcomer puts more weight than the incumbent

on the scenario where his relative ability is θH , while the incumbent puts more weight

than the newcomer where his own relative ability is 1/θL. Yet, we know that the more

unequal the abilities of the player, the lower their equilibrium efforts in a complete

information setup. Consequently, when θH < 1/θL, the newcomer puts more weight

on the scenario where players invest higher equilibrium efforts, whereas the incumbent

puts more weight on the scenario where the players invest lower equilibrium efforts.

Accordingly, at equilibrium the newcomer will invest more effort than the incumbent.

When θLθH > 1 the opposite holds true. In such instances, the newcomer puts more

weight on the scenario where the players invest lower equilibrium efforts, since θH is
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indeed higher to 1/θL. Therefore, at equilibrium the newcomer will invest less effort

than the incumbent.

Proposition 3 uncovers a striking result: in a one-shot Tullock contest, an overcon-

fident player may expend more effort than his rational rival. This finding differs from

earlier work on overconfidence on Tullock contests that predicts lower effort by the over-

confident player in one-shot Tullock contests with complete information (Santos-Pinto

and Sekeris, 2025; Chen and Santos-Pinto, 2025). The divergence arises from how the

bias is specified: whereas Santos-Pinto and Sekeris (2025) and Chen and Santos-Pinto

(2025) assume an overconfident player overestimates his deterministic ability, we treat

the overconfident player as uncertain about his ability and prone to exaggerating the

chance that it is high.

The next result describes how a change in the newcomer’s final stage bias bf affects

his equilibrium effort, af1 , his true equilibrium probability of winning the final

P f
1 = µ

θHaf1

θHaf1 + af2
+ (1− µ)

θLa
f
1

θLa
f
1 + af2

,

and his perceived equilibrium probability of winning the final

P̃ f
1 = µ̃

θHaf1

θHaf1 + af2
+ (1− µ̃)

θLa
f
1

θLa
f
1 + af2

.

Proposition 4. In a final between an overconfident newcomer and an incumbent, the

newcomer’s equilibrium effort increases with his bias bf if and only if θLθH ∈ (0, 1).

Therefore, the newcomer’s true equilibrium probability of winning the final, P f
1 , increases

with his bias bf if and only if θLθH ∈ (0, 1). Moreover the newcomer’s perceived equi-

librium probability of winning the final, P̃ f
1 , increases with his bias bf if θLθH ∈ (0, 1],

while the effect is undetermined otherwise.

When the newcomer’s downside prospect of being low ability looms large, θLθH ∈

(0, 1), an increase in the newcomer’s final stage bias bf raises his equilibrium effort

and this, in turn, increases his true and perceived equilibrium probabilities of winning

the final. In contrast, when the newcomer’s upside potential of being high ability is

pronounced, θLθH > 1, an increase in bf , lowers the newcomer’s equilibrium effort

which, in turn, reduces his true equilibrium probability of winning the final. Note that

in this case the impact of an increase in bf on the newcomer’s perceived probability of

winning the final is undetermined since µ̃ goes up but the newcomer’s effort goes down.

Lemma 3. An increase in the newcomer’s posterior belief µ̃ leads to a contraction of
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his best response function in the final, ∂Rf
1 (a2)/∂µ̃ < 0, for a2 < a1

√
θLθH , and to an

expansion of his best response function in the final otherwise.

We next explore the effect of the newcomer’s posterior belief µ̃, taking the incum-

bent’s posterior belief µ fixed, on the incumbent’s equilibrium effort and on the new-

comer’s equilibrium perceived expected utility of the final denoted by Ẽ[Uf
1 (a

f
1 , a

f
2 )].

Proposition 5. Consider a final between an overconfident newcomer and an incumbent

and fix the incumbent’s posterior belief, µ. The incumbent’s equilibrium effort, and

the newcomer’s equilibrium perceived expected utility vary with the newcomer’s posterior

belief µ̃, as follows:

(i) If θLθH = 1, then daf2/dµ̃ = 0, and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ̃ > 0.

(ii) If θLθH ∈ (0, 1), and µ > µ̄, then daf2/dµ̃ < 0, and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ̃ > 0.

Otherwise, if µ < µ̄, then daf2/dµ̃ > 0 and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ̃ is undetermined.

(iii) If θLθH > 1, and µ < µ̄, then daf2/dµ̃ < 0, and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ̃ > 0. Otherwise,

if µ > µ̄, then daf2/dµ̃ > 0 and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ̃ is undetermined.

A change in the newcomer’s posterior belief, µ̃, for fixed µ (a change in bf ) has two

effects on his equilibrium perceived expected utility. First, there is a direct positive effect

of the biased posterior belief on the equilibrium perceived expected winning probability.

Second, there is a strategic effect of the biased posterior belief going through the effort

provision of the rival player. If the strategic effect is positive, then the overall effect is

unambiguously positive as well. However, if player 2 increases his equilibrium effort in

response to a higher posterior belief of player 1, then the overall effect is undetermined.

Observe first that when θLθH = 1, the equilibrium efforts are equal and unaffected

by the newcomer’s posterior belief. In such cases, only the direct positive effect of

the biased posterior belief on the equilibrium perceived expected winning probability

matters. When θLθH ∈ (0, 1), i.e. the newcomer’s downside prospect of being low ability

looms large, and the incumbent’s posterior belief is high, µ > µ̄, an increase in the final

stage bias bf makes the final more attractive to the newcomer. In such instances, higher

levels of overconfidence incentivize player 1 to increase his equilibrium effort, while also

pushing player 2 to reduce his equilibrium effort, i.e. the strategic effect is positive.

In contrast, if the incumbent’s posterior belief is low, µ < µ̄, the strategic effect is

negative, and the overall effect is therefore undetermined. Finally, when θLθH > 1, i.e.

the newcomer’s upside potential of being high ability is pronounced, and the incumbent’s

posterior belief is low, µ < µ̄, an increase in final stage bias bf makes the final more

attractive to the newcomer.
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We now study the effect of the incumbent’s posterior belief µ, taking the newcomer’s

posterior belief µ̃ fixed, on the incumbent’s equilibrium effort and on the newcomer’s

equilibrium perceived expected utility.

Proposition 6. Consider a final between an overconfident newcomer and an incumbent

and fix the newcomer’s posterior belief, µ̃. The incumbent’s equilibrium effort, and the

newcomer’s equilibrium perceived expected utility vary with the incumbent’s posterior

belief µ, as follows:

(i) If θLθH = 1, then daf2/dµ = 0, and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ = 0.

(ii) If θLθH ∈ (0, 1), then daf2/dµ > 0, and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ < 0.

(iii) If θLθH > 1, then daf2/dµ < 0, and dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ > 0.

In Proposition 6 we isolate the effect of a change in the posterior belief of an in-

cumbent in the final, µ, on her equilibrium effort af2 , as well as on the overconfident

newcomer’s perceived expected utility of the final. When θLθH = 1, only the direct

positive effect of the posterior belief matters, for the same reason as in Proposition 5(i).

When θLθH ∈ (0, 1), an increase in the posterior belief µ incentivizes the incumbent

to invest lower effort at equilibrium, thence resulting in a higher equilibrium perceived

expected utility for the overconfident newcomer. In contrast, when θLθH > 1, the in-

cumbent is incentivized to increase his equilibrium effort, thereby leading to a reduction

of the newcomer’s payoff.

5.2 Semifinal

Player 1’s perceived expected utility of the semifinal is

Ẽ[Us
1 (a1, a3)] = P̃ s

1 (a1, a3)Ẽ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]− ca1

=

[
π̃

θHa1
θHa1 + a3

+ (1− π̃)
θLa1

θLa1 + a3

]
Ẽ[Uf

1 (a
f
1 , a

f
2 ; µ̃)]− ca1,

where af1 = h1(µ̃, µ), a
f
2 = h2(µ̃, µ), µ̃ is given by equation (16) and µ by equation (17).

The first-order condition of player 1 in the semifinal is

∂P̃ s
1

∂a1
Ẽ
[
Uf
1

]
+ P̃ s

1 (a1, a3)

[
dẼ[Uf

1 ]

dµ

∂µ

∂a1
+

dẼ[Uf
1 ]

dµ̃

∂µ̃

∂a1

]
= c. (20)

To show existence of a pure-strategy equilibrium we demonstrate in the Appendix

that the second-order conditions are verified whenever the first-order conditions are

satisfied for the specific case θLθH = 1. By continuity of the players’ perceived expected
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utilities in θL and θH it follows that there is an interval [Θ, Θ̄], with Θ < 1 and Θ̄ > 1,

such that for any Θ = θLθH in that interval the second-order conditions are verified.

The assumption that v/c is sufficiently large ensures that both players attain strictly

positive expected utilities for these strategy profile.

We can re-express the equilibrium perceived utility of player 1 in the final Ẽ[Uf
1 ], as

a function of the updated beliefs in the final µ and the bias bf , rather than as a function

of µ and µ̃. Accordingly, define Ẽ[Ûf
1 (b

f , µ)] ≡ Ẽ[Uf
1 (µ̃, µ)] and re-write (20) as:

∂P̃ s
1

∂a1
Ẽ
[
Ûf
1

]
+ P̃ s

1 (a1, a3)

[
dẼ[Ûf

1 ]

dµ

∂µ

∂a1
+

dẼ[Ûf
1 ]

dbf
∂bf

∂a1

]
= c. (21)

The above first-order condition equates the perceived marginal benefit of effort in

the semifinal to the constant marginal cost c. The perceived marginal benefit of effort is

itself composed of three terms. The first two terms are directly comparable to the ones

obtained in the previous section with a rational newcomer. The third term is new and

is related to the newcomer’s overconfidence bias. Combined, these three effects shape

the overconfident newcomer’s behavior in the semifinal.

The first term captures the fact that increasing effort in the semifinal raises the

newcomer’s perceived probability of winning the semifinal. The sign of the first term in

(21) is positive since an increase in semifinal effort raises the perceived probability of

winning.

The second term in (21) describes how a change in the newcomer’s semifinal ef-

fort affects the incumbent’s posterior belief µ, which in turn affects the efforts of the

newcomer and the incumbent in the final, thereby modifying the newcomer’s perceived

expected utility of the final. Bearing in mind that ∂µ/∂a1 < 0 (Equation (5)), the sign

of the second term is directly determined by Proposition 6. Indeed, we know that higher

semifinal effort reduces the rival’s posterior belief. Moreover, for a fixed posterior belief

of the newcomer, we know from Proposition 5 that an increase in the rival’s posterior

belief µ raises the rival’s effort in the final when θLθH ∈ (0, 1), in turn leading to a

lower perceived expected utility for the newcomer in final. Conversely, for θLθH > 1

an increase in µ will generate the opposite effects. Combined, these effects imply that

for θLθH < 1, the second term is negative, thence providing the newcomer with lower

incentives to invest in the semifinal effort. If, on the other hand, θLθH > 1, the effect is

reversed.

Lastly, the third effect in (21) captures how a change in semifinal effort impacts

the (endogenous) final stage overconfidence bias for a given posterior belief µ, which
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in turn affects the efforts of the newcomer and the incumbent in the final, thereby

modifying the newcomer’s perceived expected utility of reaching the final. This effect

is the product of two terms. The sign of the first multiplicative term, dE[Ûf
1 ]/db

f , is

described in Proposition 5. The sign of the second multiplicative term, ∂bf/∂a1, the

effect of semifinal effort on the newcomer’s final stage bias bf , is described in the next

lemma.

Lemma 4. There exists a value γ̄(a1, a3) ∈ (0, 1) such that for any π > γ̄(a1, a3),

∂bf/∂a1 > 0, and for any π < x̄(a1, a3), ∂bf/∂a1 > 0 if bs > b̄s ∈ (0, 1 − π), and

∂bf/∂a1 < 0 otherwise.

This lemma states that an increase in semifinal effort raises the newcomer’s final

stage bias bf if the ex-ante probability the newcomer is of high ability, π is large enough.

Moreover, this is also true for a small π provided the newcomer’s semifinal stage bias,

bs, is sufficiently high. For low π and bs, an increase in semifinal effort lowers the

newcomer’s final stage bias bf .

We see that the overconfident newcomer’s semifinal effort choice has two informa-

tional consequences: a public-signaling component that affects incumbent 2’s posterior

belief µ, and a self-signaling component that affects the newcomer’s posterior belief µ̃.6

In both cases greater semifinal effort is interpreted as bad news about ability.

Observe that if the newcomer’s final stage bias were exogenous and independent of

the semifinal stage bias, we would be able to gauge the effect of bf on the equilibrium

semifinal efforts and winning probabilities. Yet, since bf is endogenous to players’ semi-

final efforts, which in turn depend on bs, we are not in a position to derive general

results for any value of θL and θH . However, by imposing θLθH = 1, we are able to

derive closed-form solutions for the final stage efforts, and this in turn allows us to derive

additional results in the next section.

5.3 The Model with θLθH = 1

When θLθH = 1, we know that af1 = af2 , which using player 1’s first-order condition is

shown to equal:

af =

[
µ̃

θH
(θH + 1)2

+ (1− µ̃)
θL

(θL + 1)2

]
v

c

Substituting for θL = 1/θH , this expression reads as:

af =
θH

(θH + 1)2
v

c

6We use the term self-signaling in a similar way as Bodner and Prelec (2003).
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The equilibrium perceived expected utility of the final to player 1 is then equal to:

Ẽ[Uf
1 (a

f
1 , a

f
2 ; µ̃)] =

[
µ̃

θH
θH + 1

+ (1− µ̃)
1

θH + 1

]
v − ca

=

[(
1

θH + 1

)2

+
θH − 1

θH + 1
µ̃

]
v,

where, imposing θL = 1/θH , we have

µ̃ =
π̃θH

(
a1 + θHa3

)
θHa1 +

[
π̃θ2H + (1− π̃)

]
a3

.

In the semifinal, the first-order condition of the overconfident newcomer is then:

∂P̃ s
1

∂a1
Ẽ
[
Uf
1

]
+ P̃ s

1 (a1, a3)

[
∂Ẽ

[
Uf
1

]
∂a2

(∂af2
∂µ̃︸︷︷︸
=0

∂µ̃

∂a1
+

∂af2
∂µ︸︷︷︸
=0

∂µ

∂a1

)
+

∂Ẽ
[
Uf
1

]
∂µ̃

∂µ̃

∂a1

]
= c. (22)

Observe that by focusing on the specific case where θLθH = 1, the players’ equilibrium

efforts in the final are independent of µ. Consequently, when modifying his effort in

the semifinal, the overconfident newcomer is aware that his rival in the final will not

subsequently adapt her effort, as shown in Propositions 5(i) and 6(i). This result explains

why the two terms in (22) are equal to 0. Consequently, when deciding his semifinal

effort, the overconfident newcomer accounts for the effect of his effort on the expected

utility of the final only through the effect of µ̃ on the perceived probability of winning

the final. Equation (22) then simplifies to

∂P̃ s
1

∂a1

[(
1

θH + 1

)2

+
θH − 1

θH + 1
µ̃

]
v + P̃ s

1 (a1, a3)
θH − 1

θH + 1
v
∂µ̃

∂a1
= c. (23)

Using the incumbent’s first-order condition in equation (13), alongside the overcon-

fident newcomer’s first-order condition in equation (23), we can state the next result.

Proposition 7. In the semifinal between an overconfident newcomer and an incumbent

of a two-stage elimination contest where θLθH = 1, there exists a unique value

π̌ =
θH + 3

4(θH + 1)

for the ex-ante probability π the newcomer has high ability such that:

(i) For π < π̃ < π̌, both a rational and an overconfident newcomer exerts less effort than

the incumbent at equilibrium in the semifinal.
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(ii) For π < π̌ < π̃, an overconfident newcomer exerts more effort than the incumbent

at equilibrium in the semifinal, while a rational newcomer exerts less effort.

(iii) For π̌ < π < π̃, both a rational and an overconfident newcomer exerts more effort

than the incumbent at equilibrium in the semifinal.

When θLθH = 1 we have the following three scenarios. First, when the newcomer’s

ex-ante probability of having high ability is low and his biased prior belief π̃ is smaller

than the threshold value, π < π̃ < π̌, both a rational and an overconfident newcomer

exert less effort at equilibrium in the semifinal than the incumbent. This is intuitive, the

small bias leads to a small change in effort provision and both a rational and an overcon-

fident newcomer exert less effort than the incumbent for the same reasons highlighted

after Proposition 2 in Section 4.2.

Second, when the newcomer’s ex-ante probability of having high ability is low and

his biased prior belief π̃ is greater than the threshold value, π < π̌ < π̃, an overconfident

newcomer exerts more effort at equilibrium in the semifinal than the incumbent whereas

a rational newcomer exerts less effort. In this case the higher bias leads to a large effort

provision since the newcomer overestimates his probability of winning the semifinal as

well at his expected utility of the final. Consequently the overconfident newcomer exerts

more effort than the incumbent when a rational newcomer would have exerted less effort

than the incumbent.

Third, when the newcomer’s ex-ante probability of having high ability is greater than

the threshold value, π̌ < π < π̃, both a rational and an overconfident newcomer exert

more effort at equilibrium in the semifinal than the incumbent.

Last we analyze the impact of the newcomer’s semifinal bias bs on his true equilibrium

probabilities of winning the final and semifinal, P f
1 and P s

1 , respectively. This allows

us to determine how the semifinal bias bs changes the newcomer’s true equilibrium

probability of winning the elimination contest P s
1P

f
1 .

Proposition 8. In a two-stage elimination contest where θLθH = 1, the overconfident

newcomer’s true equilibrium probability of winning the final, P f
1 , decreases in his over-

confidence bias bs, and his true equilibrium probability of winning the semifinal, P s
1 ,

increases in bs. His true equilibrium probability of winning the contest, P s
1P

f
1 , increases

in his overconfidence bias bs.

When θLθH = 1, the newcomer’s true equilibrium probability of winning the final is

given by

P f
1 =

1 + µ(θH − 1)

θH + 1
, (24)
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where

µ = π

as
1

as
3
+ θH

as
1

as
3
+ πθH + (1− π)/θH

.

Since

∂µ/∂(as1/a
s
3) = − (1− π)(θH − 1/θH)

(as1/a
s
3 + πθH + (1− π)/θH)2

< 0,

and since P f
1 is increasing in µ, it follows that the newcomer’s true equilibrium proba-

bility of winning the final is decreasing in as1/a
s
3.

The newcomer’s true equilibrium probability of winning the semifinal is given by

P s
1 = π

θHas1
θHas1 + as3

+ (1− π)
as1/θH

as1/θH + as3
, (25)

and we immediately observe that P s
1 is increasing with as1/a

s
3. Consequently, a change

in the equilibrium semifinal relative effort induces P f
1 and P s

1 to move in opposite di-

rections. We show, in the proof of Proposition 8, that an increase in the newcomer’s

semifinal bias bs raises the semifinal equilibrium relative effort as1/a
s
3. Hence, an increase

in the newcomer’s semifinal bias bs lowers his true equilibrium probability of winning

the final while it raises his true equilibrium probability of winning the semifinal. We

demonstrate in Proposition 8 that the net effect of the increase in P s
1 dominates.

Figure 1 illustrates Proposition 8. It depicts P s
1 , P

f
1 , and their product as a function

of bs when π = 1/4, θL = 1/2, θH = 2, v = 10, and c = 1.
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Figure 1: Newcomer’s true winning probabilities in the elimination contest.
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6 Conclusion

This paper analyzes how overconfidence shapes behavior and winning probabilities in a

two-stage elimination contest with incomplete information. We start by showing that

following a first stage victory the newcomer’s overconfidence bias is boosted when his

ex-ante probability of having high ability is low, otherwise the bias is dampened. Next,

we demonstrate that an overconfident newcomer can exert high effort in the final of the

elimination contest than his rival when the downside prospect of having low ability looms

large. We also show that an increase in the semifinal stage bias can lead the overconfident

newcomer to increase his effort in the semifinal of the elimination contest. Finally,

we demonstrate that an overconfident newcomer’s chances of winning the elimination

contest can increase withe the size of the his bias. Our results clarify under which

conditions success breeds further overconfidence or tames it. They also provide an

explanation for why overconfident individuals can attain the upper levels of hierarchical

promotion contests
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7 Appendix

Second-order conditions of the semifinal with a rational newcomer: The first

derivative of the newcomer’s expected utility in the semifinal is:

∂E[Us
1 ]

∂a1
=

∂P s
1

∂a1

[(
θL

θL + 1

)2

+ µχ

]
v + P s

1χv
∂µ

∂a1
− c.

The second derivative is therefore given by:

∂2E[Us
1 ]

∂a21
=

∂2P s
1

∂a21

[(
θL

θL + 1

)2

+ µχ

]
v + 2

∂P s
1

∂a1
χv

∂µ

∂a1
+ P s

1χv
∂2µ

∂a21
.

Since
∂2P s

1

∂a2
1

< 0, this expression is a fortiori negative if:

[
∂2P s

1

∂a21
µ+ 2

∂P s
1

∂a1

∂µ

∂a1
+ P s

1

∂2µ

∂a21

]
χv︸︷︷︸
>0

< 0.

We thus need to show that the term inside squared brackets is negative. Substituting

for the appropriate terms, and simplifying, the term inside squared brackets is given by:

− 2πθ2Ha3
(θHa1 + a3)3

< 0.

Hence, the second-order condition for the newcomer is satisfied. It is immediate to

verify that the second-order condition for the incumbent is also satisfied.

Proof of Proposition 2: To prove this result, we consider an effort level of a player

that maximizes his semifinal payoff. Accordingly, that effort level must satisfy his first-

order condition. We next fix the other player’s effort at the same level, i.e. a1 = a3, and

deduce that as1 ⋚ as3 ⇔ ∂E[Us
1 (a1, a3)]/∂a1 ⋚ ∂E[Us

3 (a1, a3)]/∂a3, for a1 = a3 = a > 0.

More specifically, we define the difference of the players’ first order derivatives when

evaluated at a1 = a3 as Ψ(π), and we show that Ψ(0) < 0, Ψ(1) > 0, and Ψ′(π) > 0

on π ∈ [0, 1], thence implying that there is a unique ex-ante probability the newcomer

has high ability π̄ for which players 1 and 3 exert the same equilibrium effort in the
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semifinal.

We start by simplifying the first-order condition of player 1 given by equation (12):

∂P s
1

∂a1
E
[
Uf
1 (a

f
1 , a

f
2 )
]
+ P s

1 (a1, a3)χv
∂µ

∂a1
= c.

We know that
∂P s

1

∂a1
=

∂P s
3

∂a3

a3
a1

.

Using this last equation, the first-order condition of player 3 given by equation (13)

becomes
∂P s

1

∂a1

a1
a3

v

4
= c.

Using these first-order conditions, we can next express Ψ(π) as:

Ψ(π) =
∂E[Us

1 (a1, a3)]

∂a1

∣∣∣∣∣
a1=a3

− ∂E[Us
3 (a1, a3)]

∂a3

∣∣∣∣∣
a1=a3

=

{
∂P s

1

∂a1
E
[
Uf
1 (a

f
1 , a

f
2 )
]
+ P s

1 (a1, a3)χv
∂µ

∂a1
− ∂P s

1

∂a1

a1
a3

v

4

} ∣∣∣∣∣
a1=a3

=

{
∂P s

1

∂a1

[
E
[
Uf
1 (a

f
1 , a

f
2 )
]
− a1

a3

v

4

]
+ P s

1 (a1, a3)χv
∂µ

∂a1

} ∣∣∣∣∣
a1=a3

.

We have

P s
1 (a1, a3) = π

θHa1
θHa1 + a3

+ (1− π)
θLa1

θLa1 + a3
.

So, we have
∂P s

1

∂a1
= π

θHa3
(θHa1 + a3)2

+ (1− π)
θLa3

(θLa1 + a3)2

Observe that when imposing a1 = a3 = a, we have:

P s
1 (a1, a3)

∣∣∣∣∣
a1=a3=a

=
θL

1 + θL
+ π

(
θH

1 + θH
− θL

1 + θL

)
,

∂P s
1

∂a1

∣∣∣∣∣
a1=a3=a

=

[
θL

(θL + 1)2
+ π

(
θH

(θH + 1)2
− θL

(θL + 1)2

)]
1

a
,

E[Uf
1 (a

f
1 , a

f
2 )]

∣∣∣∣∣
a1=a3=a

=

[(
θL

θL + 1

)2

+
πθH

(
θL + 1

)
θLθH + πθH + (1− π)θL

χ

]
v,

and
∂µ

∂a1

∣∣∣∣∣
a1=a3=a

= − π(1− π)θLθH(θH − θL)[
θLθH + πθH + (1− π)θL

]2
a
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.

Substituting in Ψ for the appropriate terms we then obtain:

Ψ(π) =

[
θL

(θL + 1)2
+ π

(
θH

(θH + 1)2
− θL

(θL + 1)2

)]
1

a

[[(
θL

θL + 1

)2

+
πθH

(
θL + 1

)
θLθH + πθH + (1− π)θL

χ

]
− 1

4

]
v

−
[

θL
1 + θL

+ π

(
θH

1 + θH
− θL

1 + θL

)]
χv

π(1− π)θLθH(θH − θL)[
θLθH + πθH + (1− π)θL

]2
a

After some manipulations we obtain

Ψ(π) =
−θL(θH + 1)4(1 + 2θL − 3θ2L) +

[
θH(θL + 1)4(3θ2H − 2θH − 1) + θL(θH + 1)4(1 + 2θL − 3θ2L)

]
π

(θH + 1)4(θL + 1)4
v

a

Setting Ψ(π) = 0, and solving for π, we obtain:

π̄ =
θL(θH + 1)4(1 + 2θL − 3θ2L)

θH(θL + 1)4(3θ2H − 2θH − 1) + θL(θH + 1)4(1 + 2θL − 3θ2L)
.

Proof of Result 1: There exists a unique prior belief π̂ ∈ [0, 1] which is such that

when π ⋚ π̂ then bf ⋛ bs.

bf − bs = (µ̃− µ)− (π̃ − π)

= (µ̃− π̃)− (µ− π)

= π̃

[
P s
1 (a

s
1, a

s
3; θH)

π̃P s
1 (a

s
1, a

s
3; θH) + (1− π̃)P s

1 (a
s
1, a

s
3; θL)

− 1

]
− π

[
P s
1 (a

s
1, a

s
3; θH)

πP s
1 (a

s
1, a

s
3; θH) + (1− π)P s

1 (a
s
1, a

s
3; θL)

− 1

]
= π̃(1− π̃)

P s
1 (a

s
1, a

s
3; θH)− P s

1 (a
s
1, a

s
3; θL)

π̃P s
1 (a

s
1, a

s
3; θH) + (1− π̃)P s

1 (a
s
1, a

s
3; θL)

− π(1− π)
P s
1 (a

s
1, a

s
3; θH)− P s

1 (a
s
1, a

s
3; θL)

πP s
1 (a

s
1, a

s
3; θH) + (1− π)P s

1 (a
s
1, a

s
3; θL)

Thence, the sign of bf − bs is given by:

sgn
{
bf − bs

}
= sgn{(1− π̃)(1− π)P s

1 (a
s
1, a

s
3; θL)− ππ̃ P s

1 (a
s
1, a

s
3; θH)}

= sgn{(1− π − bs)(1− π)P s
1 (a

s
1, a

s
3; θL)− π(π + bs)P s

1 (a
s
1, a

s
3; θH)}

= sgn
{
−
[
P s
1 (a

s
1, a

s
3; θH)− P s

1 (a
s
1, a

s
3; θL)

]
π2

−
[
2 + (P1(a1, a3; θH)− P s

1 (a
s
1, a

s
3; θL))

]
bs π

+ (1− bs)P s
1 (a

s
1, a

s
3; θL)

}
.

Since for π = 0 the above expression is always positive, for π = 1 it is always neg-

ative, and given the quadratic nature of the expression there exists a unique threshold

π̂ ∈ (0, 1) such that π ⋚ π̂ ⇔ bf ⋛ bs.
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Proof of Lemma 1: To show that the best response functions of players in the fi-

nal, Rf
i (a−i), i ∈ {1, 2}, are quasi-concave, we focus on the best response of the

overconfident player, player 1, and the reasoning extends to the rival player 2. We

show that (i) the slope of player 1’s best response function is strictly positive for

a2 = 0, i.e. (∂Rf
1/∂a2)

∣∣
a2=0

> 0, (ii) that it it strictly negative for a2 → ∞, i.e.

(∂Rf
1/∂a2)

∣∣
a2→∞ < 0, and (iii) that whenever ∂Rf

1/∂a2 = 0, then ∂2Rf
1/∂a

2
2 < 0.

By implicit differentiation of the first-order condition of player 1 as given by equation

(18), we deduce that the sign of the slope of player 1’s best response is given by:

sgn

{
∂Rf

1

∂a2

}
= sgn

{
∂2E[Uf

1 (a1, a2)]

∂a1a2

}
= sgn

{
µ̃θH(θHa1 − a2)

(θHa1 + a2)3
+

(1− µ̃)θL(θLa1 − a2)

(θLa1 + a2)3

}
.

(26)

Points (i) and (ii) are immediately deduced upon observing the above expression.

Turning next to (iii), define first ϕ(a2) = ∂2E[U(a1,a2)]
∂a1a2

. To establish (iii) it is then

sufficient to show that when ϕ(a2) = 0, then ϕ′(a2) < 0. We thus compute ϕ′(a2) which

is given by:

ϕ′(a2) = − µ̃θH
(θHa1 + a2)3

− 3µ̃θH(θHa1 − a2)

(θHa1 + a2)4
− (1− µ̃)θL

(θLa1 + a2)3
− 3(1− µ̃)θL(θLa1 − a2)

(θLa1 + a2)4
.

Substituting for ϕ(a2) = 0, we can show that the above expression can be re-

expressed as:

ϕ′(a2) =
µ̃θH

(θHa1 + a2)3

(
(θH − θL)a1
θLa1 − a2

− 3(θHa1 − a2)

(
1

θHa1 + a2
− 1

θLa1 + a2

))
,

or,

ϕ′(a2) =
µ̃θH4(θH − θL)a1

(θHa1 + a2)3(θLa1 − a2)
< 0,

with the sign following from the observation that to have ϕ(a2) = 0, it is necessary that

θLa1 − a2 < 0.

Proof of Lemma 2: To prove uniqueness, we show that the contraction mapping

∂Rf
1 (a2)/∂a2.∂R

f
2 (a1)/∂a1 is smaller to 1. The slopes of Rf

1 (a2) and Rf
2 (a1) are respec-

tively given by:

∂Rf
1 (a2)

∂a2
=

µ̃θH(θHa1−a2)
(θHa1+a2)3

+ (1−µ̃)θL(θLa1−a2)
(θLa1+a2)3

2a2

[
µ̃θ2

H

(θHa1+a2)3
+

(1−µ̃)θ2
L

(θLa1+a2)3

] ,
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and,

∂Rf
2 (a1)

∂a1
= −

µθH(θHa1−a2)
(θHa1+a2)3

+ (1−µ)θL(θLa1−a2)
(θLa1+a2)3

2a1

[
µθH

(θHa1+a2)3
+ (1−µ)θL

(θLa1+a2)3

] .

Observe first that if θLa1 ≥ a2, then
∂Rf

1 (a2)
∂a2

> 0 and
∂Rf

2 (a1)
∂a1

< 0. Next, observe that if

θHa1 ≤ a2, then
∂Rf

1 (a2)
∂a2

< 0 and
∂Rf

2 (a1)
∂a1

> 0. In both cases the product of the slopes of

the best responses is negative and the contraction mapping is smaller to 1. A necessary

condition for the slopes of the best responses at equilibrium to be of equal sign is that

θHa1 − a2 > 0 > θLa1 − a2. (27)

We now demonstrate that at equilibrium it is impossible for both best responses to be

negatively sloped. Denote ΨK = θK(θKa1−a2)
(θKa1+a2)3

, K = {H,L}. Since at equilibrium a1

and a2 cannot be negative, when condition (27) holds we have ΨH > 0 and ΨL < 0.

Accordingly, the sign of the slope of Rf
1 (a2) is given by the sign of µ̃ΨK+(1− µ̃)ΨL, and

the sign of the slope of Rf
2 (a1) is given by the sign of µΨK + (1− µ)ΨL. Assume then

that the sign of the slope of Rf
2 (a1) is negative. For this to be the case when ΨH > 0

and ΨL < 0 we must have −ΨH

ΨL
> 1−µ

µ . Thence, for Rf
1 (a2) to also be negative when

ΨH > 0 and ΨL < 0, we need that −ΨH

ΨL
< 1−µ̃

µ̃ . For both these inequalities to hold, we

need that 1−µ̃
µ̃ > 1−µ

µ , which contradicts µ̃ > µ. Hence, at equilibrium it is impossible

for both best responses to be negatively sloped.

We are left with the case where at equilibrium both best responses are positively

sloped. To next show that the contraction mapping is smaller to 1, this is equivalent to

inquiring whether the following inequality is true:

(
µ̃θH(θHa1 − a2)

(θHa1 + a2)3
+

(1− µ̃)θL(θLa1 − a2)

(θLa1 + a2)3

)(
µθH(θHa1 − a2)

(θHa1 + a2)3
+

(1− µ)θL(θLa1 − a2)

(θLa1 + a2)3

)
+4a1a2

(
µ̃θ2H

(θHa1 + a2)3
+

(1− µ̃)θ2L
(θLa1 + a2)3

)(
µθH

(θHa1 + a2)3
+

(1− µ)θL
(θLa1 + a2)3

)
> 0.

We then drop from the above expression the following two positive terms:(
µ̃ θH(θHa1 − a2)

(θHa1 + a2)3
+

(1− µ̃) θL(θLa1 − a2)

(θLa1 + a2)3

)
µ θH(θHa1 − a2)

(θHa1 + a2)3

+ 4a1a2

(
µ̃ θ2H

(θHa1 + a2)3
+

(1− µ̃) θ2L
(θLa1 + a2)3

)
µ θH

(θHa1 + a2)3
.
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The original expression is then necessarily true if:

(
µ̃θH(θHa1 − a2)

(θHa1 + a2)3
+

(1− µ̃)θL(θLa1 − a2)

(θLa1 + a2)3

)
(θLa1 − a2) + 4a1a2

(
µ̃θ2H

(θHa1 + a2)3
+

(1− µ̃)θ2L
(θLa1 + a2)3

)
> 0.

or,

µ̃θH
(θHa1 + a2)3

((θHa1 − a2)(θLa1 − a2) + 4a1a2θH) +
(1− µ̃)θL

(θLa1 + a2)3
(
(θLa1 − a2)

2 + 4a1a2θL
)
> 0.

It is then sufficient to prove that the first expression is true, or:

θLθHa21 + a22 − θLa1a2 + 3a1a2θH > 0,

and this expression is always true since θH > θL.

Proof of Proposition 3: Let ϕK = θK
(θKa1+a2)2

, K = {L,H}. The first-order conditions

become

[µ̃ϕH + (1− µ̃)ϕL] a2v = c,

and

[µϕH + (1− µ)ϕL] a1v = c.

Let us study the sign of

Ξ = [µ̃ϕH + (1− µ̃)ϕL]− [µϕH + (1− µ)ϕL]

= µ̃(ϕH − ϕL)− µ(ϕH − ϕL)

= (µ̃− µ)(ϕH − ϕL)

= (µ̃− µ)(θH − θL)
a22 − θLθHa21

(θHa1 + a2)2(θLa1 + a2)2

If we know the sign of Ξ, then we know which player exerts higher effort as Ξ = 0

implies af1 = af2 , Ξ > 0 implies af1 > af2 , and Ξ < 0 implies af1 < af2 . Note that π̃ > π

implies µ̃− µ > 0. Hence, to determine the sign of Ξ we only need to consider the sign

of the numerator of the third term. To do that we consider three possible situations: (i)

θLθH ∈ {0, 1}; (ii) θLθH ∈ (0, 1); and (iii) θLθH > 1.

Consider case (i): θLθH ∈ {0, 1}. When θLθH = 0, then we must have θL = 0.

Substituting θL = 0 in the expressions for the posterior beliefs we have µ̃ = µ = 1, and

hence Ξ = 0 and af1 = af2 = vθH/c(θH + 1)2. When θLθH = 1, the sign of Ξ is given by
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a22 − a21. If a2 = a1, then Ξ = 0 and both first-order conditions are satisfied. If a2 > a1,

then Ξ > 0, and the first-order conditions are violated. If a2 < a1, then Ξ < 0, and

the first-order conditions are violated. Hence, when θLθH = 1 the equilibrium satisfies

af1 = af2 = vθH/c(θH + 1)2.

Consider case (ii): θLθH ∈ (0, 1). The sign of Ξ is given by a22 − θLθHa21. If a2 = a1,

then Ξ > 0, and the first-order conditions are violated. If a2 > a1, then Ξ > 0, and

the first-order conditions are violated. For a2 < a1 there are three subcases: (a) if

θLθHa21 < a22 < a21, then Ξ > 0, and there will exist values of a1 and a2 that satisfy the

first-order conditions; (b) if a22 = θLθHa21, then Ξ = 0, and the first-order conditions are

violated; (c) if a22 < θLθHa21, then Ξ < 0, and the first-order conditions are violated.

Hence, when θLθH ∈ (0, 1) the equilibrium satisfies af1 > af2 .

Consider case (iii): θLθH > 1. The sign of Ξ is given by a22 − θLθHa21. If a2 = a1,

then Ξ < 0, and the first-order conditions are violated. If a2 < a1, then Ξ < 0, and

the first-order conditions are violated. For a2 > a1 there are three subcases: (a) if

a22 < θLθHa21, then Ξ < 0, and there will exist values of a1 and a2 that satisfy the

first-order conditions; (b) if a22 = θLθHa21, then Ξ = 0, and the first-order conditions are

violated; (c) if a22 > θLθHa21, then Ξ > 0, and the first-order conditions are violated.

Hence, when θLθH > 1 the equilibrium satisfies af2 > af1 .

Proof of Proposition 4: Observe first that the bias bf does not affect the best response

of player 2 as implicitly defined in (19). Second, we can show by implicit differentiation

that the best response function of player 1, as implicitly defined in (18), is shifting

outwards with the bias bf if and only if the sign of the following expression is positive:

θH

(θHaf1 + af2 )
2
− θL

(θLa
f
1 + af2 )

2
.

In the proof of Proposition 2 we demonstrate that the sign of this expression is positive

if and only if θLθH ∈ (0, 1). Consequently, if θLθH ∈ (0, 1), then an increase in bf shift

outwards the best response of player 1, thence resulting in a higher equilibrium effort

af1 , and, given the quasi-concavity of player 2’s best response function, the true as well

as the perceived equilibrium winning probability of player 1 increases. If θLθH > 1,

the equilibrium effort of player 1 as well as his true winning probability will therefore

decrease with the bias bf . Yet, the effect on player 1’s perceived equilibrium probability

is undetermined in this case since, even though the bias raises the perceived equilibrium

winning probability, the change in players’ efforts pushes the perceived equilibrium win-
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ning probability in the other direction.

Proof of Lemma 3: The sign of ∂Rf
1 (a2)/∂µ̃ is given by the sign of ∂2Ẽ[Uf

1 (a1, a2)]/∂a1∂µ̃,

which is given by:

sgn{θH(θLa1 + a2)
2 − θL(θHa1 + a2)

2} = sgn{(θHθ2L − θLθ
2
H)a21 + (θH − θL)a

2
2}

= sgn{(θH − θL)(a
2
2 − θLθHa21)}.

Hence, if a2 < a1
√
θLθH , then ∂Rf

1 (a2)/∂µ̃ < 0. However, if a2 > a1
√
θLθH , then

∂Rf
1 (a2)/∂µ̃ > 0.

Proof of Proposition 5: Making use of the Envelope theorem, we deduce that the

effect of the newcomer’s posterior belief µ̃ on his equilibrium perceived expected utility

is given by:

dẼ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]

dµ̃
=

∂Ẽ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]

∂µ̃
+

∂Ẽ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]

∂a2

daf2
dµ̃

=

[
θHaf1

θHaf1 + af2
− θLa

f
1

θLa
f
1 + af2

]
︸ ︷︷ ︸

>0

v −

[
µ̃

θHaf1

(θHaf1 + af2 )
2
+ (1− µ̃)

θLa
f
1

(θLa
f
1 + af2 )

2

]
︸ ︷︷ ︸

>0

v
daf2
dµ̃︸︷︷︸
?

(28)

Case (i): θLθH = 1. From Proposition 3 part (i), we know that if θLθH = 1, then

af1 = af2 . Substituting for θL = 1/θH and af = af1 = af2 in the first-order condition (18),

we obtain:

af =
θHv

c(1 + θH)2
.

We thus obtain that the players’ equilibrium efforts are independent of their beliefs,

which necessarily implies that dẼ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]/dµ̃ > 0.

Case (ii): θLθH ∈ (0, 1). Observe first that from Proposition 3 part (ii) we know

that θLθH ∈ (0, 1) implies af2 > af1
√
θLθH , which in turn, thanks to Lemma 3 implies

∂Rf
1 (a

f
2 )/∂µ̃ > 0.

Assume that µ̃ = µ, which implies that af1 = af2 . Using Lemma 2, the sign of the

slope of the best response of player 2 at equilibrium, ∂Rf
2 (a

f
1 )/∂a1, is given by:

sgn

{
Rf

2 (a
f
1 )

∂a1

}
= − sgn

{
µ
θH(θHaf1 − af2 )

(θHaf1 + af2 )
3

+ (1− µ)
θL(θLa

f
1 − af2 )

(θLa
f
1 + af2 )

3

}

= − sgn

{
µ
θH(θH − 1)

(θH + 1)3
+ (1− µ)

θL(θL − 1)

(θL + 1)3

}
.
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Observe that the above expression is decreasing in µ since θH > 1 > θL. Moreover

for µ = 0, the expression is positive, and for µ = 1 it is negative. We can then deduce

that there exists a unique µ = µ̄, such that for µ ⋚ µ̄, ∂Rf
2 (a

f
1 )/∂a1 ⋛ 0. This µ̄ is

defined as:

µ̄ =

θL(1−θL)
(θL+1)3

θL(1−θL)
(θL+1)3 + θH(θH−1)

(θH+1)3

=
θL(1− θL)(θH + 1)3

θL(1− θL)(θH + 1)3 + θH(θH − 1)(θL + 1)3
.

It follows that for µ = µ̄, dẼ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]/dµ̃ > 0.

Consider next any µ̃ > µ. We know from above, that the slope of the best response

of player 2 at the 45o line is positive for µ < µ̄, nil for µ = µ̄, and negative for µ > µ̄.

Moreover, we know from Lemma 1 that the best response functions are quasi-concave.

In addition, the best response of player 2 is independent of µ̃. We can therefore deduce

that for any µ̃ > µ, and provided µ > µ̄, the best response of player 1 intersects the best

response of player 2 below the 45o line where af1 > af2 and where the best response of

player 2 has a negative slope. Hence, for µ > µ̄, daf2/dµ̃ < 0, and dẼ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]/dµ̃ >

0.

For µ < µ̄, the slope of the best response of player 2 is positive on the 45o line, in

which case an increase in µ̃ leads to an increase in af2 when the slope of the best response

of player 2 is positive at equilibrium. Consequently, we are unable to determine the effect

of µ̃ on the equilibrium perceived expected utility of player 1 in such instances.

Case (iii): θLθH > 1. Observe first that from Proposition 3 part (iii) we know that

θLθH > 1 implies af2 < af1
√
θLθH which in turn, thanks to Lemma 3 implies ∂Rf

1 (a
f
2 )/∂µ̃ <

0. If we then consider µ = µ̄ as above, it follows that E[Uf
1 (a

f
1 , a

f
2 ; µ̃)]/dµ̃ > 0. For

µ < µ̄, the slope of the best response of player 2 is positive above the 45o line, and any in-

crease in µ̃ will then result in reductions of af2 . Hence, for µ < µ̄, dẼ[Uf
1 (a

f
1 , a

f
2 ; µ̃)]/dµ̃ >

0. Last for µ > µ̄, for similar reasons to the ones in Case (ii), the effect of µ̃ on the

equilibrium expected utility of player 1 us undetermined.

Proof of Proposition 6: Observe that the perceived expected utility of the newcomer

in the final is a function of µ̃, and that it depends on µ only through its effect on

the players’ equilibrium efforts. By the Envelope theorem, we therefore deduce that

dẼ[Uf
1 (a

f
1 , a

f
2 )]/dµ ⋛ 0 if daf2/dµ ⋚ 0.

From the first-order condition (18) we know that Rf
1 (a2) is independent of µ, for a

fixed µ̃. Therefore daf2/dµ ⋚ 0 ⇔ ∂Rf
2 (a1)/∂µ ⋚ 0. Using the first-order condition of

player 2 as given by (19), we deduce that the sign of ∂Rf
2 (a1)/∂µ is given by:
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sgn

{
∂Rf

2 (a1)

∂µ

}
=

θH
(θHa1 + a2)2

− θL
(θLa1 + a2)2

,

which is given by:

sgn{θH(θLa1 + a2)
2 − θL(θHa1 + a2)

2} = sgn{(θHθ2L − θLθ
2
H)a21 + (θH − θL)a

2
2}

= sgn{(θH − θL)(a
2
2 − θLθHa21)}.

Hence, if a2 < a1
√
θLθH , then ∂Rf

2 (a1)/∂µ < 0. However, if a2 > a1
√
θLθH , then

∂Rf
2 (a1)/∂µ > 0. We can then consider the three cases (i)-(iii).

Case (i): If θLθH = 1, af1 = af2 , and therefore ∂Rf
2 (a1)/∂µ = 0.

Case (ii): θLθH ∈ (0, 1). Observe first that from Proposition 3 part (ii) we know that

θLθH ∈ (0, 1) implies af2 > af1
√
θLθH , which in turn implies ∂Rf

2 (a
f
1 )/∂µ > 0.

Case (iii): θLθH > 1. Observe that from Proposition 3 part (iii) we know that θLθH > 1

implies af2 < af1
√
θLθH which in turn implies ∂Rf

2 (a
f
1 )/∂µ < 0.

Second-order conditions of the semifinal with an overconfident newcomer

when θLθH = 1: The first derivative of the newcomer’s perceived expected utility in

the semifinal is:

∂Ẽ[Us
1 ]

∂a1
=

∂P̃ s
1

∂a1

[(
1

θH + 1

)2

+
θH − 1

θH + 1
µ̃

]
v + P̃ s

1 (a1, a3)
θH − 1

θH + 1
v
∂µ̃

∂a1
− c.

The second derivative is therefore given by:

∂2Ẽ[Us
1 ]

∂a21
=

∂2P̃ s
1

∂a21

[(
1

θH + 1

)2

+
θH − 1

θH + 1
µ̃

]
v + 2

∂P̃ s
1

∂a1

θH − 1

θH + 1
v
∂µ̃

∂a1
+ P̃ s

1

θH − 1

θH + 1
v
∂2µ̃

∂a21
.

Since
∂2P̃ s

1

∂a2
1

< 0, this expression is a fortiori negative if:

[
∂2P̃ s

1

∂a21
µ̃+ 2

∂P̃ s
1

∂a1

∂µ̃

∂a1
+ P̃ s

1

∂2µ̃

∂a21

]
θH − 1

θH + 1
v︸ ︷︷ ︸

>0

< 0.

We thus need to show that the term inside squared brackets is negative. Substituting

for the appropriate terms, and simplifying, we can show that the term inside squared

brackets is given by:

− 2π̃θ2Ha3
(θHa1 + a3)3

< 0.
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Hence, the second-order condition for the newcomer is satisfied. It is immediate to verify

that the second-order condition for the incumbent is also satisfied.

Proof of Lemma 4: Using the definitions of µ̃ and µ as given in (16) and (17),

respectively, we have:

∂bf

∂a1
=

∂(µ̃− µ)

∂a1

=

[
π(1− π)

[θLθHa1 + (θL + π(θH − θL)) a3]
2 − π̃(1− π̃)

[θLθHa1 + (θL + π̃(θH − θL)) a3]
2

]
θLθH(θH − θL)a3.

Observe that the expression inside square brackets can be seen as a difference of the

same function evaluated at two different arguments, π and π̃. Denote this function by

h(γ), i.e.

h(γ) =
γ(1− γ)

[θLθHa1 + (θL + γ(θH − θL))a3]2

Note that h(γ) = 0 for γ = {0, 1}. We then have:

h′(γ) =
θL(θHa1 + a3)− (2a1θHθL + a3(θL + θH)γ)

[θLθHa1 + (θL + γ(θH − θL))a3]3
.

We thus have that h′(γ) = 0 for:

γ = γ̄(a1, a3) =
θL(θHa1 + a3)

2a1θLθH + a3(θL + θH)
.

Next one can easily show that γ̄(a1, a3) ∈ (0, 1).

Moreover, observe that function h(γ) is quasi-concave on γ ∈ [0, 1], since it is imme-

diate to see that h′′(γ) < 0 when evaluated at γ = γ̄(a1, a3). Summarizing, h(γ) is a

function that starts in 0 is monotonically increasing in γ up to γ̄ and then monotonically

decreases in γ until is reaches 0 for γ = 1.

We can then deduce that if π ≥ γ̄, then h(π) > h(π̃), and hence for any π > γ̄(a1, a3),

∂bf/∂a1 > 0. Furthermore, for any 0 < π < γ̄(a1, a3), there exists a bias b̄s such that

∀bs > b̄s, h(π) > h(π̃) so that ∂bf/∂a1 > 0. Likewise, for ∀bs < b̄s, h(π) < h(π̃) so that

∂bf/∂a1 < 0.

Proof of Proposition 7: Computing each term separately, we have:

∂P̃ s
1

∂a1
=

∂P̃ s
1 (a1, a3; π̃)

∂a1
=

[
θLa3

(θLa1 + a3)2
+ π̃

(
θHa3

(θHa1 + a3)2
− θLa3

(θLa1 + a3)2

)]
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Imposing θL = 1/θH , this reads as:

∂P̃ s
1

∂a1
=

[
θHa3

(a1 + θHa3)2
+ π̃

(
θHa3

(θHa1 + a3)2
− θHa3

(a1 + θHa3)2

)]

Evaluating this expression at a1 = a3, this expression becomes:

∂P̃ s
1

∂a1
=

θH
a(θH + 1)2

.

Turning next to the squared-bracketed term of expression (23), since af2 is indepen-

dent of posterior beliefs, the first multiplicative term is then nil. Focusing next on the

last term of expression (23), we have that when evaluated at a1 = a3, then:

∂Ẽ
[
Uf
1

]
∂µ̃

∂µ̃

∂a1
= −

(
θH

θH + 1
− θL

θL + 1

)
π̃(1− π̃)θLθH(θH − θL)[

θLθH + π̃θH + (1− π̃)θL
]2
a
v

= −θH − 1

θH + 1

π̃(1− π̃)θH(θ2H − 1)[
θH + π̃θ2H + (1− π̃)

]2
a
v

= − π̃(1− π̃)θH(θH − 1)2[
θH + π̃θ2H + (1− π̃)

]2
a
v

= − π̃(1− π̃)θH(θH − 1)2

(θH + 1)2(1− π̃ + π̃θH)2a
v

The first-order condition of player 1 when evaluated at a1 = a3 = a is then equal to:

θH
a(θH + 1)2

1− π̃ + π̃ θ3H
(θH + 1)2 (1− π̃ + π̃ θH)

v − 1− π̃ + π̃θH
θH + 1

π̃(1− π̃)θH(θH − 1)2

(θH + 1)2(1− π̃ + π̃θH)2a
v = c,

or

θH
a(θH + 1)2

1− π̃ + π̃ θ3H
(θH + 1)2 (1− π̃ + π̃ θH)

v − θH
θH + 1

π̃(1− π̃)(θH − 1)2

(θH + 1)2(1− π̃ + π̃θH)a
v = c,

or
θH

(
1− π̃ + π̃ θ2H

)
(θH + 1)4

v

a
= c

We next explore the first-order condition of player 3 which, when evaluated at a1 =

a3, is given by:
θH

4(θH + 1)2
v

a
= c.

42



Using the first-order derivatives, we can next express Ψ(π̃) evaluated at a1 = a3 as:

Ψ(π̃) =
∂Ẽ[Us

1 (a1, a3; π̃)]

∂a1

∣∣∣∣∣
a1=a3

− ∂E[Us
3 (a1, a3)]

∂a3

∣∣∣∣∣
a1=a3

=

[
θH

(
1− π̃ + π̃ θ2H

)
(θH + 1)4

− θH
4(θH + 1)2

]
v

a

= −θH(θH − 1) [θH + 3− 4π̃(θH + 1)]

4(θH + 1)4
v

a
,

with Ψ(π̃) ⋛ 0 ⇔ as1 ⋛ as3. It follows that Ψ(π̃) = 0 when

π̌ =
θH + 3

4(θH + 1)

So, when the prior belief of the overconfident player 1, π̃, is higher than π̌, he

exerts more effort than the rational rival in the semifinal. Note that θH > 1 implies

π̌ ∈ (1/4, 1/2) and that the higher is θH the closer is π̌ to 1/4.

Proof of Proposition 8: To prove this result, we first show that P s
1P

f
1 is monotonically

increasing in the ratio as1/a
s
3, and we then show that this ratio is monotonically increasing

in bs.

Making use of equations (24) and (25), the newcomer’s ex-ante true probability of

winning the elimination contest is given by:

P s
1P

f
1 =

[
π

θHas1
θHas1 + as3

+ (1− π)
as1/θH

as1/θH + as3

]
1 + µ(θH − 1)

θH + 1
,

which after substituting for µ as given by Equation (17) becomes:

P s
1P

f
1 =

[
π

θHas1
θHas1 + as3

+ (1− π)
as1/θH

as1/θH + as3

] 1 +
πθH(as

1/θH+as
3)

as
1+(πθH+(1−π)/θH)as

3
(θH − 1)

θH + 1
.

Rewritting the above expression as a function of x = as1/a
s
3, we obtain:

P s
1P

f
1 =

[
πθH

θHx+ 1
+

(1− π)

x+ θH

] [
1 +

πθH(x/θH + 1)(θH − 1)

x+ (πθH + (1− π)/θH)

]
x

θH + 1

=
θHx+ πθ2H + (1− π)

(θHx+ 1)(x+ θH)

[
θHx+ πθ2H + (1− π) + πθH(x+ θH)(θH − 1)

θHx+ πθ2H + (1− π)

]
x

θH + 1

=
(1− π)(θHx+ 1) + πθ2H(x+ θH)

(θHx+ 1)(x+ θH)

x

θH + 1

=

[
(1− π)

x

x+ θH
+ πθH

θHx

θHx+ 1

]
1

θH + 1
.

Since the two terms inside the squared brackets are increasing in x, we deduce that
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P s
1P

f
1 is equally increasing in x.

We next prove that dx/dbs > 0. At optimality, the first order conditions of both

players 1 and 3 ought to be simultaneously satisfied. The first order condition of player

1 is given by:

[
π̃

θHas3
(θHas1 + as3)

2
+ (1− π̃)

as3/θH
(as1/θH + as3)

2

] [(
1

θH + 1

)2

+
θH − 1

θH + 1

π̃θH(as1/θH + as3)

as1 + (π̃θH + (1− π̃)/θH)as3

]
v

−
[
π̃

θHas1
θHas1 + as3

+ (1− π̃)
as1/θH

as1/θH + as3

]
θH − 1

θH + 1

π̃(1− π̃)(θH − 1/θH)as3

[as1 + (π̃θH + (1− π̃)/θH)as3]
2 v = c

Rewritting this condition as a function of x, we obtain:

[
π̃

θH
(θHx+ 1)2

+ (1− π̃)
1/θH

(x/θH + 1)2

][(
1

θH + 1

)2

+
θH − 1

θH + 1

π̃θH(x/θH + 1)

x+ π̃θH + (1− π̃)/θH

]
v

as3

−
[
π̃

θHx

θHx+ 1
+ (1− π̃)

x/θH
x/θH + 1

]
θH − 1

θH + 1

π̃(1− π̃)(θH − 1/θH)

[x+ π̃θH + (1− π̃)/θH ]
2

v

as3
= c.

Proceeding likewise for player 3, we obtain:

[
π

θHas1
(θHas1 + as3)

2
+ (1− π)

as1/θH
(as1/θH + as3)

2

]
v

4
= c[

π
θHx

(θHx+ 1)2
+ (1− π)

x/θH
(x/θH + 1)2

]
v

4as3
= c.

Combining these two first-order conditions, we obtain:

A(x) =

[
π̃

θH
(θHx+ 1)2

+ (1− π̃)
1/θH

(x/θH + 1)2

] [(
1

θH + 1

)2

+
θH − 1

θH + 1

π̃θH(x/θH + 1)

x+ π̃θH + (1− π̃)/θH

]

−
[
π̃

θHx

θHx+ 1
+ (1− π̃)

x/θH
x/θH + 1

]
θH − 1

θH + 1

π̃(1− π̃)(θH − 1/θH)

[x+ π̃θH + (1− π̃)/θH ]
2

−
[
π

θHx

(θHx+ 1)2
+ (1− π)

x/θH
(x/θH + 1)2

]
1

4
= 0.

This expression can be re-written as:

A(x) = − θH
4(θH + 1)2(θHx2 + θ2Hx+ x+ θH)2

[
c1x

3 + c2x
2 + c3x+ c4

]
= 0,
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where:

c1 = π + 2πθH + θ2H + 2(1− π)θ3H + (1− π)θ4H

c2 = 2θH(θ2H + 1)

c3 = 8π̃θH − 6θH − 2πθH − π + θ2H + 2πθ3H + πθ2H − 8π̃θ3H + 1

c4 = −4(1− π + πθ4H)

Observe that the fraction in A(x) is always positive, thence implying that the first-

order conditions are satisfied if B(x) = c1x
3 + c2x

2 + c3x+ c4 = 0, thence implying that

this condition defines the equilibrium value of x. We are interested in the sign of dx/dbs

which is the same to the sign of dx/dπ̃. Applying implicit differentiation to B(x), we

have:

dx

dπ̃
= −

∂B(x)
∂π̃

∂B(x)
∂x

= −4(2θHx(1− θ2H) + 1− θ4H)

3c1x2 + 2c2x+ c3
.

The sign of the numerator is negative, thence implying that the sign of the entire ex-

pression is given by the sign of the denominator. Exploiting the fact that B(x) = 0

implies:

c3 = −c4 + c1x
3 + c2x

2

x
.

Substituting for c3 in the denominator of the above expression, we deduce that dx/dπ̃ >

0 if:

3c1x
2 + 2c2x− c4

x
− c1x

2 − c2x > 0.

Since x > 0, simplifying the above expression and multiplying by x, we deduce that

dx/dπ̃ > 0 if:

2c1x
3 + c2x

2 − c4 > 0,

which is necessarily true since c1 > 0, c2 > 0, and c4 < 0.
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