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Abstract

In applied empirical work, statistical inference with spatial or network data is challenging

since unobserved heterogeneity can be correlated across neighboring observational units.

We develop a novel estimator for the variance-covariance matrix (VCV) in OLS and 2SLS

settings that can accommodate, in a flexible way, dependence of the errors across arbitrary

clustering structures (in space, in a network), and across time periods. In Monte Carlo sim-

ulations that use real data on U.S. metropolitan areas, or on co-authors in Economics, we

find that our arbitrary clustering estimator of the VCV yields inference at the correct signif-

icance level in moderately sized samples, and it always dominates other commonly used

approaches to inference. We provide guidance to the applied practitioners on (i) when the

arbitrary clustering correction is necessary; (ii) whether to include potentially correlated

control variables; and (iii) how to set the adequate correction bandwidth for the estimator

in absence of prior knowledge about the Data Generating Process. Our companion sta-

tistical package (acreg) enables users to adjust the OLS and 2SLS coefficient’s standard

errors to account for arbitrary clustering dependence.
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1 INTRODUCTION

Recent years have witnessed a tremendous surge of empirical studies with data endowed with

a topology, such as spatial data or network data. In these data, unobserved shocks can be cor-

related across neighboring observational units, where the neighborhood refers to the physical

space or to the network structure. In both settings, inference is challenging because the sam-

pling structure of the data and of the VCV matrix exhibits overlapping clusters — a feature that

is vastly ignored by applied econometricians.1 Indeed, a common practice with spatial data

consists of considering non-overlapping clusters (typically administrative units) defined at a

level of aggregation that encompasses the scale of the resolution of the data by several orders

of magnitude — e.g., standard errors are clustered at the region level, while observational units

typically correspond to 0.5o×0.5o grid cells.2 In addition to the loss of efficiency when it turns

to estimation, such a practice is subject to caution for observational units that are located close

to the frontier between two clusters and are likely to be correlated. In the case of network data,

the practice is even more rudimentary, as many studies simply do not correct for the potential

correlation of unobserved shocks across neighbors.

We develop a novel and flexible approach to obtain reliable inference in spatial and net-

work settings with any type of arbitrary topological and temporal dependence between ob-

servational units in large samples. Arbitrary here refers to the way units are correlated with

each other in space/network and time. We impose no restrictions so that our approach can

be used with a wide range of data. Our estimator for the variance-covariance (VCV) matrix

of the estimated parameters builds on the seminal insight by White (1980) who showed that a

sandwich-type VCV can be estimated by constructing a consistent estimator of the VCV of the

parameters. Specifically, the estimator uses estimated regression errors and knowledge of the

clustering structure to estimates the unknown elements of the sandwich formula. In a network

setting, the clustering structure is derived from the network structure itself (i.e. links between

observational units); in space, our approach follows Conley (1999): A circle around each unit

specifies how distance dependence is likely to reach, allowing for decay or not. This type of

clustering structure is well known in spatial data, and statistical packages are available online

only for ordinary least squares (OLS) estimations (Conley, 1999; Hsiang, 2010).

We foresee three main domains of application of this flexible inference method. The first

1Multiway clustering is somewhat more flexible than one-way clustering, allowing errors to correlate, for in-
stance, within units over time and across time periods (Cameron et al., 2011). However, multiway clustering
assumes regularity in the clustering structure that may not hold in real-life settings with spatial and network
data.

2For example, see the GAEZ v3.0 Global Agro-ecological Zones dataset of FAO: http://www.gaez.iiasa.ac.at/
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one relates to a clustering structure allowing for spatial and temporal decays with geocoded

data. Indeed, empirical work has been fueled by the growing availability of geocoded data and

the integration of geographic information systems (GIS) in the toolkit of applied economists.

From development and urban economics to economic history, big data at a high level of spa-

tial resolution enable researchers to move the analysis within countries and to craft compelling

empirical designs (e.g., RDD, DiD), for the purpose of causal analysis, as various endogeneity

concerns are alleviated by exploiting fine-grained variations and discontinuities in the vari-

ables of interest.3 We extend the Conley approach to two-stages least squares (2SLS) estima-

tions. The second type of application relates to all clustering structures that are based on a

metric that is not spatial distance (i.e., Euclidean or geodesic) such as a measure of contiguity

(e.g. neighboring countries) or a travel distance (flight, road, or walking). More specifically,

consider a scholar interested in studying economic outcomes at the county level in the U.S.

In such a scenario, it is likely that contiguous counties are affected by common shocks and

this should be reflected in the clustering structure. The issue here is that counties have differ-

ent sizes (much larger in the West; see the map in Figure 3), preventing the researcher from

imposing the same spatial kernel (as in Conley (1999)) across the entire sample. The third ap-

plication relates to network topology. Consider a scholar interested in violence between rebel

groups in Africa (König et al., 2017, e.g.). These groups are affected by common shocks not

only in the physical space through their location but also in the cultural/social space through

their ethnic affiliations. Groups that are ethnically close tend to be affected by similar shocks.

Hence, it is important that the clustering structure accounts for ethnic (or genetic or linguistic)

relatedness.

In the paper we provide results from extensive Monte Carlo simulations based on real-

life data to document our arbitrary clustering approach. A first set of simulations relates to

spatial clustering in real data on U.S. metropolitan areas. We construct environments where

OLS or 2SLS regressions with robust standard errors clustered at the administrative level re-

ject the null hypothesis of no effect in approximately 10% of all cases when the significance

level of the test is set at 5%. Inference using conventional methods does not improve as the

sample size increases, suggesting that these methods produce inconsistent estimates of the

variance-covariance matrix. By adopting the arbitrary clustering estimator, we find that the

null-rejection rate is approximately 8% for small samples (about 150 counties) and approaches

the true significance level of 5% in larger samples (from 300 counties on). This pattern suggests

that the arbitrary clustering correction produces consistent estimates of the VCV, which dom-

3For a survey, see Michalopoulos and Papaioannou (2017).
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inate those of other approaches, thereby enabling applied econometricians to conduct robust

inference in the presence of spatial correlation. Our second Monte Carlo study deals with net-

work clustering in data of co-authors in Economics from IDEAS RePEc. Here, we again find

that applied econometricians adopting conventional inference using robust standard errors

that neglect the network correlation in both regressors and outcomes would severely overstate

the precision of their estimates. By contrast, inference that allows for arbitrary clustering yields

rejection rates close to the correct 5% threshold.

We design several Monte Carlo simulations to provide guidance to the applied researcher

on (i) when the arbitrary clustering correction is necessary; (ii) whether to include potentially

correlated control variables; and (iii) how to set the adequate correction bandwidth for the

estimator in absence of prior knowledge about the Data Generating Process. All our analyses

can be readily implemented with our companion statistical package. Our acreg command

enables Stata users to estimate panel OLS/2SLS models with arbitrary correlation structures,

e.g. in space or across a network. We provide a user-friendly introduction to the command

and hope this can ensure access to all empirical researchers who are interested in using the

new estimator.4

This paper is related to several strands in the literature. First, our approach to conduct-

ing inference is inspired by White (1980)’s seminal work on consistent estimation of the VCV.

Subsequent work by White (1984) and Arellano (1987) developed an estimator, the cluster-

corrected estimator (CCE), that allows for robust inference when data are clustered, e.g., in

random samples of units observed over multiple time periods. Bertrand et al. (2004) discuss

how to implement the CCE in a difference-in-differences design. Cameron et al. (2011) ex-

tended this CCE approach to clustering in multiple dimensions. Recent contributions discuss

the performance of the CCE estimators in situations where there are few heterogeneous clus-

ters and propose robust test statistics (Wooldridge, 2003; Ibragimov and Müller, 2016).

Second, a large body of literature on spatial econometrics discusses inference approaches.

Conley (1999) develops robust inference in settings where shocks to spatial units are spatially

dependent, also allowing for decays. Conley (1999)’s approach extends White (1980)’s main

idea to use estimated residuals along with a hypothesis of the correlation structure to construct

an estimator of the VCV.5 Hsiang (2010) further extends Conley (1999)’s approach to panel data

4Please see a guideline providing a set of instructions and examples using the following link:
https://acregstata.weebly.com/uploads/2/9/1/6/29167217/faq_acreg_01_20.pdf

5The different strand in the spatial econometrics literature takes a somewhat different approach. Kelejian
and Prucha (1998, 1999) develop estimators in a spatial setting with spatial dependence in both the dependent
variable and the regressors.
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with HAC decay in temporal dimension and provided a code to the research community. Kelly

(2019) criticizes the applied empirical literature for failing to address the complex nature of

spatial dependence, perhaps because no guidelines regarding how to implement corrections

for spatial correlation was formerly available.6

Third, an extensive body of literature examines behavior of individuals as it is shaped by

friends or peers in their social networks. Fafchamps and Lund (2003) study whether villagers

in the Philippines can self-insure using their social network. Calvó-Armengol et al. (2009) as-

sess peer effects in education in the U.S. In both settings, the unexplained parts of behavior,

captured by residuals, might be connected along the network. Both studies address network

dependence by introducing network-level clusters. Allowing for more flexible correlation pat-

terns, Fafchamps and Gubert (2007) consider clusters that are correlated across all dyads, and

Lalive et al. (2018) address clustering along adjacent regional passenger rail lines.7

We complement this literature by allowing for arbitrary forms of clustering. The recent

surge in availability of data with complex spatial or network dependence structures creates un-

precedented demand for flexible modeling in order to ensure unbiased inference in complex

settings. Our approach can deal with spatial distance, travel distance, travel costs, contiguity,

as well as any concept of distance in a network. We allow users to implement instrumental

variables (IV) or two-stage least squares (2SLS), procedures that specify outside instruments,

a requirement that is very important for applied papers but that seems overlooked or not dis-

cussed in the more theory-driven spatial econometrics literature. Finally, our simulations re-

sults are based on real data. And we show that the main results from Kelly (2019), who studies

inference problems in spatial studies using artificial data, are actually specific to the nature

and the structure of his data.

We discuss the econometric background that allows for arbitrary clustering in the next sec-

tion. Section 3 presents Monte Carlo evidence on the effect of within-cluster correlation on

inference for a spatial setting (U.S. counties) and a network setting (coauthors in economics)

Section 4 concludes.

6A similar literature discusses inference in shift-share designs. A shift-share design combines information on
an aggregate shift with local information on shares to build an instrument. This design induces correlation across
space trough a highly correlated spatial regressor, the shift-share or Bartik instrument. Adão et al. (2019) discuss
how to address inference in the shift-share setting.

7Bramoullé and Fortin (2010) discuss the econometrics of social networks.
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2 A MODEL WITH CROSS-SECTION AND TIME DEPENDENCE

The purpose of this section is to present the estimator of the variance-covariance (VCV) matrix

of the parameters that allows for arbitrary clustering. Specifically, we expose the structure of

the estimator of the VCV both in situations without endogeneity and with endogeneity. We

also discuss that the arbitrary clustering estimator is a straightforward extension of the one-

way or multi-way clustering (Cameron et al., 2011). Our core objective is to assess the quality

of the inference — in particular, the likelihood of Type 1 error — produced with the estimates

of the VCV through Monte Carlo simulations, which we present in Section 3.

Our key focus is on inference with arbitrary dependence of error terms across observations

and over time. We have in mind a setting where each observation’s error term may depend on

other observations’ error terms, and this dependence may change with time, or distance in

arbitrary ways. Information on the pattern and strength of cross-observation correlations in

errors is encoded in pattern matrix that we call S. In the spatial context, S is normally built

from information on the geographic distance between spatial units, e.g., regions, cities, and

countries. In a social network context, S reflects the direct links of each person, information

that is capture in the so-called adjacency matrix. Entries of the S matrix range from 0 to 1,

allowing for weights reflecting the strength of each link over time t . We also always include

unit self-links in S, so its main diagonal contains ones.

Consider n observations at each t instant of time T from the following linear model:

y = Xβ+ε

where we observe each unit i several times in different periods t . y is a dependent vari-

able, and X is a matrix of k linearly independent components that could include a long list of

dummies for each unit, in case we are interested in the within estimates. We can write the OLS

estimator as:

bOLS = (X ′X )−1X ′y

and the theoretical VCV of the bOLS is:

V CV (bOLS) = (X ′X )−1X ′ΩX (X ′X )−1

whereΩ≡ E(εε′|X ) is the unknown VCV of ε.

Building on the seminal insight from White (1980) and following the multiway cluster-
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robust estimator structure designed by Cameron et al. (2011), we propose the following sand-

wich estimator for the VCV based on the estimated residuals e ≡ y −X bOLS :

�V CV (bOLS) = (X ′X )−1X ′(S × (ee ′))X (X ′X )−1

where S is the pattern matrix, capturing how each observation’s error term depends on

other observations’ error terms, and × is element-by-element matrix multiplication. The key

element of this estimator is the "meat" in the sandwich:

X ′(S × (ee ′))X =
n∑

i=1

T∑
t=1

n∑
j=1

T∑
s=1

xi t ei t e j s x ′
j s si t j s

where xi t is the (column) vector of regressors, and x ′
i t is the row i t in matrix X . This estimator

of the VCV departs from an estimator that assumes independence across observations in time

if both regressors xi t and residuals ei t are correlated across units, or time, or both (Moulton,

1990).

This framework can also be used in situations with endogeneity. We consider the linear

two-stage least squares with a number of instruments greater or equal than the number of

endogenous regressors: once the endogeneity is taken into account and the causal effect of

the explanatory variable on the dependent variable is uncovered through instruments, the

procedure to estimate the VCV is qualitatively equivalent to the OLS case.

We consider the same linear model as before, where we add that m of the k components

of X are endogenous and a set of o ≥ m excluded instruments for a total of p ≤ k exogenous

variables that form the matrix Z . We can write the first stage as:

X̂ = (Z ′Z )−1Z ′X Z

Then, the 2SLS estimator is:

b2SLS = (X̂ ′X̂ )−1X̂ ′y

Under standard regularity conditions b2SLS is asymptotically normal with the following theo-

retical estimated variance matrix:

V CV (b2SLS) = (X̂ ′X̂ )−1X̂ ′ΩX̂ (X̂ ′X̂ )−1
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Moreover, the core part X̂ ′ΩX̂ can be estimated as before by the following:

X̂ ′(S × (uu′))X̂ =
n∑

i=1

T∑
t=1

n∑
j=1

T∑
s=1

x̂i t ui t u j s x̂ ′
j s si t j s (1)

where the estimated residuals now refer to the 2SLS estimator: u ≡ y −X b2SLS .

Arbitrary clustering extends one-way clustering and multi-way clustering by allowing for

a flexible structure of the pattern matrix S. Consider a situation where a researcher studies

earnings in counties, nested in states. In this context, there is reason to suspect that counties

located in the same state may be affected by common shocks. One-way clustering specifies a

pattern matrix S that is block diagonal with element in row i t and column j s equal to one if i

and j are located in the same state, and equal to zero otherwise.

The multi-way clustering approach provides for more flexibility (Cameron et al., 2011). The

peculiarity of the multi-way clustering environment is the presence of several dimensions of

clustering with non-overlapping clusters in each dimension, and each observation belonging

to cluster in each dimension. Specifically, observations may share a cluster called state, and a

second cluster called time, thereby allowing for correlation within state and year. With multi-

way clustering, the row i t and column j s element of the S matrix is equal to one if observation

i t and observation j s refer to counties located in the same state, or observed in the same year,

and equal to zero otherwise. Multiway clustering is more flexible than one-way clustering but

it has some drawbacks. Multi-way clustering imposes that if unit i is assumed to be correlated

with unit j and l , then unit j and l must also be correlated. In addition, if the unit i is assumed

to depend on unit j at time t , then they must also be dependent at time s. In many real-life

settings, like the ones we present in the next section, this particular clustering structure does

not hold.

Arbitrary clustering further relaxes assumptions on the shape of the pattern matrix. Units

can be correlated among them in any possible way, without any kind of imposed structure.

Simply, the row i t and column j s-th component of the matrix S can be zero, one or any other

number in between, depending on the imposed strength of the dependence between errors of

observations i and j . The flexibility of our structure allows for both cross-sectional and time

dependence. In addition, it allows for changes in the strength of the correlation generated by

alterations in the link structure over time or any kind of decay between two points in time. The

flexibility offered by arbitrary clustering is an asset in many empirical applications. We next

discuss two classes of applications in which only flexible arbitrary clustering offers reliable

statistical inference.
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3 SIMULATION STUDY

In this section we conduct various Monte Carlo experiments to illustrate how spatial or net-

work correlation between neighboring observational units affects the quality of statistical in-

ference. We focus on the likelihood of Type 1 errors and measure the quality of inference as the

extent to which the rejection rate of the null hypothesis of no effect (of a random shock) ap-

proaches the nominal rejection rate of the test. We compare several procedures of correcting

standard errors across different data environments. We show that the arbitrary clustering esti-

mator provides better inference than estimators that correct for heteroscedasticity or clusters,

two standard procedures commonly used in the applied literature. We now briefly describe the

overarching structure of our simulation study and get into the details in the next sub-sections.

Our approach is pretty standard and draws on Bertrand et al. (2004) and Cameron et al.

(2011). In all experiments, the Data Generating Process (DGP) starts by retrieving an outcome

variable and covariates from real-life data, i.e., geocoded data on U.S. counties for the spatial

setting and co-authorships from IDEAS RePEc for the network setting. Then, in each Monte

Carlo draw, we generate fake policy/productivity shocks, shocki , that are randomly assigned

to some of the observational units i .8 Depending on the experiment, the DGP is engineered

such as to generate an environment where (i) the shocks correlate (or not) between neigh-

boring units; (ii) where the shocks are endogenous, namely they spuriously correlate with the

outcome variable under consideration.

Equipped with the generated data, we then regress with OLS or 2SLS the outcome variable

on the fake policy/productivity shocks using alternative options for correcting standard errors

(heteroskedasticity robust, non-overlapping clusters, arbitrary clusters):

Yi =α+βshocki +X ′
iγ+εi (2)

Then, pooling together all Monte Carlo draws, we compare across the estimators the aver-

age rejection rate of the null hypothesis of no effect (β = 0) at the 5% significance level. With

an appropriate estimator and for a sufficiently large sample size, the rejection rate is expected

to converge to 5% as the number of Monte Carlo draws increases.

8We refer to this variable as policy in the spatial environment and productivity in the network environ-
ment.
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3.1 SPATIAL SETTING

We now present in more detail the Monte Carlo experiments in a spatial setting. We first ex-

plain how the DGP is designed. Then, we report and comment the results. And finally, we

conclude with a list of recommendations for the applied practitioner.

3.1.1 THE DATA GENERATING PROCESS IN THE SPATIAL SETTING

We extract tabular information on median earnings, education level, age, race, and gender

aggregated at the county level for 2000 from the National Historical Geographic Information

System (NHGIS) database (Manson et al., 2017). The NHGIS is a part of the Integrated Public

Use Microdata Series (IPUMS) project of the University of Minnesota and provides tabular U.S.

Census data and GIS boundary files. Our observational units i consist in the 3,141 counties

that are covered in our sample.

When considering equation (2), the outcome variable Yi is the natural log of median earn-

ings in county i in 2000 and Xi is a vector of county-level controls, which comprises the share

of population with tertiary education, share of females, share of blacks, median age and its

square, and natural log of total population in 2000. In this setting the random shock shocki

is equal to a binary variable policyi indicating whether county i receives a policy shock. We

now explain the various ways of generating this policy shock.

SCENARIO 1: NO SPATIAL CORRELATION. In the most simple experiment, in each Monte

Carlo iteration, we draw an iid random variable, ũi , from a standardized normal distribution

(with cdfΦ), for each county. Then, we select the counties that are in the top quarter of the dis-

tribution of this random variable as counties that receive a fake policy shock: IIDpolicyi = 1

iffΦ(ũi ) > 0.75 (and 0 otherwise). Panel (a) of Figure 1 visualizes an example of the distribution

of the IIDpolicy variable drawn at random.

SCENARIO 2: SPATIAL CORRELATION. Next, we impose spatial correlation between neighbor-

ing counties when generating the policy shock. Specifically, we compute bilateral distances

between counties’ centroids. Then, we define a distance cutoff and construct an indicator

variable, hi j , that codes for the spatial cluster of each county: hi j = 1 if the distance between

county i and county j is lower than the cutoff and hi j = 0 otherwise. We set the cutoff at 56 kms

in our baseline analysis in order to have on average five counties in spatial clusters.9 For each

9Note that we adopt a uniform spatial decay kernel in our simulations. We have explored Bartlett-type kernels
as well and find that results are fairly comparable to those we present here.
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county i , we then compute the share of neighboring counties within its spatial cluster that

are affected by the policy shocks, SCsharei ≡ ∑
j hi jIIDpolicy j /

∑
j hi j . We define the spa-

tially correlated policy shock as the sum of the idiosyncratic policy shock and the share of the

neighboring counties that are also affected by the shock: SCpolicyi = IIDpolicyi +SCsharei .

Panel (b) of Figure 1 visualizes the distribution of SCpolicy built on the underlying policy

shocks IIDpolicy displayed in panel (a). While we observe no spatial pattern in panel (a),

the panel (b) is marked with spatial correlation across counties that are in close proximity.

As will be discussed in-depth in section 3.1.4, spatial correlation is susceptible to deteriorate

the quality of inference only when both the explanatory variable (SCpolicy) and the outcome

variable (log median earning) are spatially correlated. This is the case in this setting as shown

by the spatial distribution of log median earnings in 2000 at the county level in Figure 2: We

clearly see a pattern of spatial correlation between close counties.

ENDOGENEITY. We design an environment with endogeneity by generating fake policy shocks

that are correlated with the outcome variable: ENDpolicy ∈ {0,1}. We do so by forcing the

counties that receive a policy shock to be randomly drawn only among the subsample of

wealthy counties, all poor counties getting no shock. Importantly, we rely on the same ran-

dom variable ũi we use to define the iid policy shock IIDpolicyi .10 Thus, IIDpolicyi is a

valid instrument of ENDpolicyi when estimating a 2SLS version of the econometric model

(2). Note that the exclusion restriction is also met by construction because the instrument

IIDpolicy is uncorrelated with the outcome variable. Panel (a) of Figure 3 depicts an exam-

ple of the spatial distribution of a randomly drawn ENDpolicy. Visual inspection confirms

that it correlates with the county-level distribution of log median earnings in 2000 as depicted

in Figure 2. We then factor in spatial correlation also into this endogenous environment by

generating a spatially correlated endogenous policy shock, SCENDpolicy, in the same way we

generate spatially correlated exogenous policy shocks in scenario 2.11

3.1.2 RESULTS

We run Monte Carlo simulations with 10,000 iterations. In each Monte Carlo draw, the DGP

produces the random policy variables according to the two aforementioned scenarios. Us-

10More precisely, we select as ENDpolicyi = 1 the counties that are in the top half of the distribution of ũi

conditional on being a wealthy county (i.e. above the median log earnings). In this way, both IIDpolicy and
ENDpolicy take the value of 1 exactly for one quarter of the counties. Formally we set: ENDpolicyi = 1 iff
ΦW (ũi ) > 0.5 whereΦW is the cdf of the standardized normal distribution conditional on being wealthy.

11Formally, we define SCENDpolicyi ≡ ENDpolicyi + SCENDsharei where SCENDsharei ≡∑
j hi jENDpolicy j /

∑
j hi j .
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ing this set of fake data, we estimate the model (2) and test for the null hypothesis β = 0 for

three types of standard error corrections (heteroskedasticity robust, state-level clustering, and

arbitrary clustering).

Panel A of Table 1 displays the results in a setting with no endogeneity. The model is es-

timated with OLS. Each row corresponds to a particular combination of scenario-correction

while each column refers to different estimation samples of counties; and each row-column

cell displays the average rejection rate across Monte Carlo iterations of the null hypothesis of

no effect at the 5% significance level. We start, in column 1, with the estimation results based

on the full sample of counties (N=3,141). As a benchmark, we consider in the first row the

scenario 1, in which the policy shock is iid across observational units. We estimate the model

computing heteroscedasticity-robust standard errors. As expected, the null-rejection rate is

close to 5%. We then consider the scenario 2, in which the DGP allows for spatial correlation

in the regressor SCpolicy. We first estimate the model with the same robust correction as in

scenario 1, row (2). The null-rejection rate jumps to 9.1%. When standard errors are clustered

at the state-level in row (3), the null-rejection rate decreases to 6.8%. This improvement stems

from the fact that the DGP is designed such that many of the counties that are in the same spa-

tial cluster are also in the same state; therefore, clustering at the state level approximates the

existing spatial correlation structure to a certain extent. Finally, we correct for the presence of

spatial correlation across counties using our acreg estimator. We obtain a null-rejection rate

of 5.5% in row (4).12

To highlight the role of clusters separated by state-lines, we replicate the analysis after

splitting the sample into two mutually exclusive subsamples of within-state and cross-state

spatial clusters; they are made of counties which are treated by the DGP as belonging to spa-

tial clusters never separated by a state border (column 2) and clusters separated by a state

border (column 3), respectively. The null-rejection rates are lower in the sample of clusters

that are located within a state compared to the sample with clusters that are separated by a

state: 8.2% vs 10.4% with robust standard errors and 6.9% vs 9.2% with state-level clustering.

State-level clustering correction approximates the underlying "true" spatial correlation struc-

ture of the DGP better for clusters that are located within a state than clusters separated by

state lines. More importantly, our acreg estimator always performs substantially better than

the state-level clustering correction — and this is the case in both subsamples — producing

12Note that our estimator requires as input a distance cutoff for setting the radius of the spatial clusters (below
which all observations are considered as being located in the same cluster). In this baseline analysis, we select a
cutoff equal to the "true" radius, i.e., the one used in the DGP. We discuss below, in section 3.1.4, situations where
the practitioner has to set a cutoff without prior knowledge of the DGP.
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null-rejection rates of approximately 5.5% to 5.8% for the spatially correlated random shocks.

As seen in Figure 2, the outcome variable is not uniformly correlated across all counties within

the same state. The correlation is greater across counties that are closer to one another within

the same state. Therefore, taking into account the physical distance between counties (spatial

units) performs much better than applying the same statistical treatment to all units within

the same state (the greater administrative unit).

ENDOGENEITY. We now redo the whole analysis in a setting where the main regressor is en-

dogenous. Hence, we switch to ENDpolicyi for the (endogenous policy) shock and estimate

the model (2) through 2SLS, using IIDpolicyi as an instrumental variable. Panel B of Table

1 displays the results. The conclusions are unchanged with respect to the OLS environment.

Firstly, the average null-rejection rate in the scenario with no spatial correlation (row 5) is close

to 5% for all three estimation samples. Secondly, the scenario with spatial correlation is con-

sidered in rows (6) to (8) for various standard error corrections. We see that the null-rejection

rate follows a pattern identical to the one in panel A. In particular, the arbitrary clustering cor-

rection provides rejection rates that are closer to the nominal rejection rates of the test than

the other approaches.

SAMPLE SIZE. We next assess how the performance of our arbitrary clustering estimator is

affected by sample size. The manipulation of the sample size is engineered in a simple way. In

each Monte Carlo draw we retain the n largest counties in each state (excluding Washington

D.C.), with n ∈ {3,4, ...,20}, to obtain a filtered map of the US. Then, the DGP scenarios are sim-

ulated on this map. Figure 4 displays the null-rejection rates by sample size for the OLS and

2SLS settings (panels a and b respectively).13 Each connected curve corresponds to a different

scenario-estimation pair: no spatial correlation and robust correction (black); spatial corre-

lation and robust correction (red); spatial correlation and state-clustering correction (green);

spatial correction and arbitrary clustering (blue). Visual inspection confirms the better perfor-

mance of the arbitrary clustering estimator at any level of the sample size, i.e., the correspond-

ing null rejection rates being always the closest to the theoretical benchmark of 5%. It also It

also shows that a larger sample size does not alleviate the inference problem when correcting

for heteroskedasticity robust or state-level clustering.

13To ensure enough predictive power of the instrument in the first stage, even in the case of small sample sizes,
we run 10,000 Monte Carlo iterations but report the average null-rejection rates only for the top half of the Monte
Carlo draws in terms of F-statistics of the first stage.
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3.1.3 ALTERNATIVE APPROACH - ARTIFICIAL DATA.

Kelly (2019) recently argued that many important empirical works using spatial data suffer

from serious inference flaws. His main argument – Section 2 in Kelly (2019) – is based on Monte

Carlo simulations using exclusively artificially generated data. By contrast, our approach fol-

lows Bertrand et al. (2004) and Cameron et al. (2011) in using real data for outcome and covari-

ates; only the policy variable is artificially generated. We now show that the choice of simulat-

ing with real vs fake data affects results. To this purpose, we replicate our Monte Carlo analysis

of Figure 4 with a set of artificial data as done in Kelly (2019). Figure 5 reports the average

rejection rates of the null hypothesis β = 0 in equation 2 when regressing a randomly gener-

ated outcome on randomly generated policy shocks and covariates.14 We see that artificial

data lead to much larger null-rejection rates, up to a fourfold increase, compared to the ones

obtained with real data in Figure 4. We conjecture that this explosion is mechanically driven

by a severe spatial correlation between artificial variables: Indeed, they are all generated by

the same DGP, with the same spatial kernel. Hence, conclusions drawn on the exclusive use

of artificial data tend to exaggerate the extent of the inference problem encountered with real

data, and should hence be interpreted with caution.

In spite of this important caveat, it is reassuring to see that our arbitrary clustering es-

timator delivers higher quality inference, i.e., rejection rates that are closer to the nominal

ones, as soon as there is spatial correlation in the sample. Quite reassuringly, the quality of

inference increases with sample size and the null-rejection rate converges toward the theo-

retical benchmark 5%. For a sample size of 3,141 counties, our proposed estimator reduces

the null-rejection rates in the presence of spatial correlation from 27.4% (heteroskedasticity-

robust standard errors) to 6.5% in the OLS setting and from 27.1% to 5.4% in the 2SLS set-

ting. These results point toward the robustness of our estimator when dealing with alternative

dataset (even entirely artificial).

14We generate random variables, Y and X , that are independent and identically distributed (iid): Y , X =
~N (0,1). To introduce spatial correlation to these variables, we impose a Bartlett kernel decay across obser-
vations within the same cluster. In other words, we spread the random variables across observations within
the cluster as an inverse function of the distance between them. Then, we sum them up. Formally: Yi ,sc =∑N

j 6=i [1 − (di sti j /di stcut )]× Y j and Xi ,sc = ∑N
j 6=i [1 − (di sti j /di stcut )]× X j , where N is the number of obser-

vations in the cluster of observation i , di sti j is the distance between observations i and j , and di stcut is the
distance cuttoff. To introduce endogeneity to the model, we define an endogenous variable, End , as a function
of Y , X , and IV . IV is a random variable and iid to Y and X : IV = ~N (0,1). Then, we instrument End with IV .
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3.1.4 UNDERSTANDING SPATIAL CORRELATION: A PRACTITIONER’S GUIDE

We designed further Monte Carlo simulations to shed light on several ways of improving the

quality of inference in presence of spatial correlation in the model. We document first the role

played by spatial correlation in the outcome variable. Then, we investigate whether or not

potentially correlated regressors should be included. Last, we come up with practical recom-

mendations on how to set the radius of the arbitrary spatial clusters when correcting standard

errors without any prior knowledge of the true DGP.

SPATIAL CORRELATION IN BOTH OUTCOME VARIABLE AND REGRESSOR. The results presented

previously show that in the absence of spatial correlation in the treatment variable, policy, the

null-rejection rates are close to the theoretical 5% despite the presence of spatial correlation in

the outcome variable. This finding suggests that spatial correlation increases the likelihood of

Type 1 error if unaccounted for, only when both the outcome variable and the variable of inter-

est exhibit spatial correlation. We highlight this point with a variant of the DGP that suppresses

spatial correlation in the outcome variable by randomly reshuffling log median income across

counties.

Table 2 presents the average null-rejection rates obtained from 10,000 Monte Carlo simu-

lations with the data generating process as described in section 3.1.1. Column 1 presents the

baseline results obtained using observed log median income as the outcome variable, whereas

column 2 presents those obtained using the randomized outcome variable, i.e., reshuffled

across counties. In the absence of spatial correlation in the outcome variable (column 2),

neither spatial correlation in the policy variable nor correction for it substantially affects the

null-rejection rates; they all remain in the vicinity of the theoretical 5% benchmark. Column

3 considers an intermediate case where we re-inject spatial correlation affecting the outcome

variable. We start from the randomized outcome variable and spread it across observations

within a given spatial cluster as an inverse function of the distance between them (using a

bartlett kernel decay). The result shows that re-injecting spatial correlation into the outcome

variable leads to an increase in the null-rejection rates only when the policy variable also ex-

hibits spatial correlation.

Our findings confirm that the quality of inference is deteriorated only when spatial correla-

tion affects both the outcome variable and the regressor of interest. An important implication

is that we should refrain from testing for the presence of spatial autocorrelation in residuals

as a diagnostic against the possibility that a model suffers from inflated t-statistics, as sug-

gested by Kelly (2019). The simple reason for being cautious here is that spatial correlation of
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residuals is compatible with only one of the variables (outcome or regressor) being spatially

correlated. We recommend instead to test for the presence of spatial correlation separately

in the outcome variable and in the regressor of interest. If the test is inconclusive for at least

one of the two, the practitioner could safely conclude that inference is unlikely to suffer from

inflation of t-statistics because of spatial correlation.

INCLUDING CONTROL VARIABLES. In Table 3, we investigate how the control variables in the

model 2 affect null-rejection rates. In column 1, we report the baseline null-rejection rates.

Column 2 shows that, in presence of spatial correlation, the average null-rejection rates in-

creases when the controls are not included. Column 3 shows that controlling for state fixed

effects in addition to the controls yields a quality of inference that is as good as the one in the

baseline case. Our interpretation is that the quality of inference tends to improve with the in-

clusion of additional control variables that exhibit a spatial kernel comparable to the one of

the outcome variable and/or that of the regressor of interest.

OPTIMAL CORRECTION RADIUS - A SIMPLE RECOMMENDATION. We now investigate how the

practitioner should set the radius of the arbitrary spatial clusters when correcting standard er-

rors without any prior knowledge of the true DGP. Actually, to our best knowledge, no clear-cut

procedure currently exists to define the potential optimal correction radius using observa-

tional data.

We start with setting the true distance radius in the DGP at 168 kilometers, such that there

are on average 50 counties by spatial clusters. Then, we generate the data over 10,000 Monte

Carlo iterations. In each iteration, using the arbitrary clustering estimator, we correct for spa-

tial correlation in the data using different correction radiuses, namely: 56 kms (one-third of the

true threshold, 5 counties on average), 82 kms (~half of the threshold, 12 counties on average),

117 kms (~two-thirds of the threshold, 25 counties on average), 168 kms (the true threshold),

242 kms (~1.5 times the threshold, 100 counties on average), 327 kms (~twice the threshold,

175 counties on average), and 478 kms (~three times the threshold, 350 counties on average).

Figure 6 reports the average null-rejection rate corresponding to each correction radius.

Panel (a) considers the baseline case (i.e. a single policy treatment as in equation 2). For the

sake of benchmarking, we note that when spatial correlation is present in the policy variable

the (non-reported) null-rejection rate amounts to 11.9% with heteroskedasticity-robust stan-

dard errors; it drops to 7.5% with state-level clustering. Correcting for spatial correlation using

small radiuses such as 56 kms and 82 kms or a very large one such as 478 kms, already outper-
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forms robust standard errors (with rates between 9.1% and 10.5%); however, performance is

worse than with state-level clustering. Using a correction radius closer to the real one, from 117

kms to 327 kms, yields null-rejection rates between 5.9% and 7.4% — all being below the aver-

age null-rejection rate obtained with state-level clustering. Crucially, we observe a U-shaped

pattern in the null-rejection rates when spanning across correction radiuses, with a minimun

(the best performance, close to the theoretical benchmark of 5%) that is reached when the

correction radius is set exactly at the value of the true DGP radius. This evidence suggests a

rule of thumb for setting the correction radius: In absence of prior knowledge of the true DGP,

the practitioner should (i) estimate standard errors for a large range of potential correction ra-

diuses; (ii) check for the presence of a non-linear pattern; and (iii) retain the correction radius

that yields the most conservative standard errors.

How to generalize the previous guideline in a context where the researcher is interested in

estimating and inferring more than one parameter of the model? We shed some light on this

question by looking for the optimal correction radius in a variant of equation 2 with two policy

variables. To this purpose, we consider a DGP augmented with a second random policy vari-

able that is also spatially correlated, but with a true distance radius of 242 kilometers (keeping

168 kms for the first variable). In other words, the spatial kernels of the two policy variables

differ, as it likely to be the case with real-life applications. Panel (b) of Figure 6 presents the

average null-rejection rates for each policy variable across the range of correction radiuses

spanning from 56kms to 478kms. Note that our arbitrary clustering estimator imposes the

same correction radius to the two variables. Here again, we find, for each variable, a U-shaped

pattern in null-rejection rates with the lowest rate (6.2% and 6.5% respectively) reached when

the correction radius is set at its true level in the DGP –a level that is specific to each variable.

This graphical evidence makes clear that there is no universal correction radius that limits

the inflation of t-statistics for all regressors in a given econometric specification. The practical

consequence is that the researcher may want to apply the previous rule of thumb separately for

each of the regressors of interest. This procedure would yield a set of correction radiuses, each

one corresponding to the optimal radius for a given regressor. And then the researcher could

report for each parameter of interest all the set of standard errors sequentially estimated with

the set of radiuses. A more compact alternative could also be to report the most conservative

standard error obtained for each variable of interest.

OPTIMAL CORRECTION RADIUS WITH MIXTURE OF SPATIAL KERNELS. So far, the DGP was de-

signed to impose the same true distance radius for all observational units when generating
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spatially correlated policy variables. However, with real-life observational data, it may happen

that the size of spatial clusters differs across space and observations. For example, surface

area of the counties in the Northeast, Midwest, and South regions of the US are substantially

smaller than those in the West (see Figure 2). Similarly, clusters of low median income and

high median income counties also tend to be smaller in size in these regions than they are in

the West. We now investigate the consequence of this mixture of spatial kernels for setting the

correction radius in practice.

We consider a variant of the DGP that allows the size of spatial clusters to vary across ob-

servations. To this purpose, we rank counties in terms of surface areas. We then set the true

distance radius of the smallest county at 168 kilometers (corresponding to 50 counties per

cluster on average) and that of the largest county at twice of it — 336 kilometers. We set the

true distance radius for each county in between with a proportionality rule according to its

rank and end up with a uniform distribution of cluster radiuses. Panel (a) of Figure 7 presents

the histogram of the true cluster radiuses defined as such. Then, the model is estimated using

our arbitrary clustering procedure with different correction radius, namely: 56 kms (5 coun-

ties on average), 82 kms (12 counties on average), 117 kms (25 counties on average), 168 kms

(50 counties), 208 kms (75 counties on average), 242 kms (100 counties on average), 287 (138

counties on average), 327 kms (175 counties on average), 398 (250 counties on average) and

478 kms (350 counties) on average). Panel (b) of Figure 7 presents the average null-rejection

rates obtained from using each of these correction radiuses over 10,000 Monte Carlo draws.

Remarkably, we keep on observing a U-shaped profile of null-rejection rates, that is admittedly

flatter than the one obtained with a unique spatial kernel in Figure 6. Correction radiuses be-

tween 168 kms and 336 kms yield very similar null-rejection rates (around 7.4%) that are all

below the rate obtained with heteroskedasticity-robust standard errors (11.7%) or state-level

clustering (8.5%). According to this finding, our simple rule of thumb for setting the correction

radius can also be applied in presence of a mixture of spatial kernels in the underlying DGP.

In that case, the procedure is likely to select the correction radius that overlaps with the true

distance radius of a greater number of observations.

Finally, we explore a DGP that allows for continuous distribution of spatial bandwidths.

With respect to the previous DGP, this variant allows us to generate cluster radius sizes that are

correlated with the surface area of counties — a likely feature in observational data. Specif-

ically, we set the true distance radius of the median county in terms of surface area at 168

kilometers. For all other counties, their true radius is defined as 168 times the square root of

the ratio of their surface area over that of the median county. Panel (a) of Figure 8 presents
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the resulting distribution of true cluster radius sizes.15 The cluster radiuses are concentrated

around the radius assigned to the median county — 168 kms. Then, we estimate the model

with our arbitrary clustering procedure using the same set of correction radiuses than in the

previous approach. Average null-rejection rates are reported in Panel (b) of Figure 8 and the

evidence is qualitatively and quantitatively very comparable. An additional insight relates to

the fact that the null-rejection rates follow a distribution similar to that of the cluster radiuses:

We obtain lower null-rejection rates with correction radiuses around which the true cluster ra-

dius of a greater number of counties fall. Importantly, our simple rule of thumb will select the

correction radius that matches the radius of the median county in terms of surface area (i.e.

168 kms), around which the cluster radiuses are concentrated.

IMPLICATIONS. As shown by our simulations, the presence of spatial correlation, if unac-

counted for, can lead to inflated t-statistics only if both the outcome variable and the regressor

of interest are spatially correlated. Controlling for covariates (that follow a similar spatial ker-

nel) and clustering standard errors at a greater administrative unit can help with addressing

the inflation in t-statistics. However, a more compelling approach is to explicitly model the

spatial correlation structure with our arbitrary clustering estimator.

When deciding on how to set the correction radius in absence of prior knowledge about the

underlying DGP, as Cameron and Miller (2015) put it: “You need to think carefully about the

potential for correlations in your model errors, and how that interacts with correlations in your

covariates.” Our Monte Carlo simulations in a controlled environment suggest a simple rule of

thumb for setting the optimal correction radius for each parameter of interest. Practitioners

should correct standard errors with varying correction radiuses (and potentially using different

distance metrics) and select as the baseline the radius that provides the largest standard errors

for a given model. In the presence of multiple outcomes of interest, we advise selecting a

correction radius that provides the largest standard errors for most of the variables of interest

as the baseline. Overall, we recommend that researchers, as a healthy practice, be transparent

about their choice of baseline correction radius and report the robustness of their findings to

correcting the standard errors in their models using a wide range of correction radiuses.

In practice, however, it is possible that the correlation structure in the data cannot be ap-

proximated by spatial clusters defined as circles with a given radius. For example, topographic

features such as mountain ranges could generate variations in the distribution of the outcome

15The histogram is scaled with counties radiuses between 56 kilometers and 478 kilometers, corresponding to
96% of the full sample.
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variable and covariates across spatial units that are in close proximity in terms of Euclidean

distance. To help address this issue, our proposed estimator’s companion statistical package

(acreg) allows users to provide a bilateral-distance matrix of any metric between observations.

Then, the distance radius used for error correction can be defined as effective distance between

observations in terms of time or cost of travel (flight, road, or walking) distance.

3.2 NETWORK SETTING

We now present the Monte Carlo experiments conducted in a network setting. The analysis

follows closely the one conducted in the spatial part. As before, we first explain how the DGP

is designed, we then report and comment the results. We conclude with a list of recommenda-

tions for the applied practitioner.

3.2.1 THE DATA GENERATING PROCESS IN THE NETWORK SETTING

We extract information on author characteristics from IDEAS RePEc and complement it with

information on coauthorship links between researchers coming from RePEc genealogy.16 We

start from the “Top 5% Authors, Number of Citations, as of October 2019” list of IDEAS RePEC.17

We collect information on the primary affiliation of the listed authors — name of the institu-

tion they are affiliated to, the country and city where it’s located — the year in which they

obtained their PhD degree and from which school, in addition to the number of citations their

work has received. We only consider researchers who are currently alive, affiliated with an in-

stitution, and whose coauthor network is observed in the RePEc genealogy. Our observational

units i is one of the 1,637 researchers in economics that are covered in our sample. For each

researcher, we only consider the part of her network of coauthors who are also in this sample.

When considering equation (2), the outcome variable Yi is the log number of citations au-

thor i received. the vector of author-level controls Xi is empty in our baseline analysis but

comprises fixed effects for affiliation and degree school and year of PhD graduation in ad-

ditional analysis. In this setting the random shock is a variable productivityi indicating

whether author i receives a fake productivity shock. We now explain how we construct this

shock in the two different scenarios: with and without network correlation.
16https://genealogy.repec.org/
17This list is updated monthly. The most up-to-date version can be accessed using the following link:

https://ideas.repec.org/top/top.person.nbcites.html
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SCENARIO 1: NO NETWORK CORRELATION. Similar to the approach used in the spatial set-

ting, we draw in each iteration an iid random variable, ũi , from a standardized normal distri-

bution (with cdf Φ), for each author in the sample. Then, we select the authors who are in the

top quarter of the distribution of this random variable as those who receive a fake productiv-

ity shock: IIDproductivityi = 1 iff Φ(ũi ) > 0.75 (and 0 otherwise). This productivity shock

is unrelated to the author’s actual number of citations (outcome variable) and is uncorrelated

with the productivity shock of her co-authors. As an example, panel (a) of Figure 9 visualizes

the distribution of the IIDproductivity variable drawn at random in one of the Monte Carlo

draws.

SCENARIO 2: NETWORK CORRELATION. In this scenario, we impose network correlation while

generating the productivity shocks. Specifically, for each author, we construct an indicator that

identifies a co-authorship connection between two researchers i and j in the sample: gi j = 1 if

authors i and j coauthored at least one paper and gi j = 0 otherwise. For each author i , we then

compute the share of their first degree coauthors who are affected by the productivity shocks,

i.e., NCsharei =∑
b gi jIIDproductivity j /

∑
j gi j .18 Then, we define the correlated productiv-

ity shocks as the sum of the idiosyncratic productivity shock and the share of the author’s co-

authors hit by a productivity shock, i.e., NCproductivityi = NCproductivityi +NCsharei . As

an example, panel (b) of Figure 9 displays the distribution of the correlated productivity shock,

NCproductivity, in the same Monte Carlo draw used for panel (a). Given the high number

of observations, the figures in panels (a) and (b) do not provide a useful representation of the

mechanism that builds the correlated productivity shock. Panels (c) and (d) of Figure 9 shows

the distribution of the variables IIDproductivity and NCproductivity, respectively, for a

subsample of the 250 most cited authors in the sample. While this subsample is not represen-

tative of the full sample, it is effective in showing how the random productivity shock dissipates

across observations in the network. Among the nodes with a null random shocks (blue dots in

panel (c)), the ones that are not connected to any affected node receive also a null correlated

productivity shock (blue dots in panel (d)), while the ones that are connected to affected nodes

get a value of shocks between zero and one. The highest value of the correlated shock (red dots

in panel (d)) are reported by nodes that are affected by the random shock (red dots in panel

(c)) and are connected to other affected nodes.

18We adopt a setting where shocks are correlated in coauthor neighborhoods of degree 1. Larger neighborhoods
and decay in shocks can be accommodated in our estimator as well.
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ENDOGENEITY. We introduce endogeneity into the model by generating a random produc-

tivity shock that is correlated with the outcome variable, i.e., log number of citations. Au-

thors who receive an endogenous productivity shock, ENDproductivity, are randomly se-

lected among highly cited authors, i.e., those who are in the top half of distribution of the log

number of citations. We rely on the same random variable ǔi used to define the exogenous

productivity shock IIDproductivityi .19 Consequently, ENDproductivity is correlated with

the exogenous productivity shock, IIDproductivity, making the latter a valid instrument for

the former when estimating a 2SLS version of the econometric model (2). Note that the ex-

clusion restriction is also met by construction because the instrument IIDproductivity is

uncorrelated with the outcome variable. We also factor in network correlation in this setting

by creating an endogenous productivity shock that is correlated within the coauthorship net-

work, NCENDproductivity, in the same way we generate an exogenous productivity that is

correlated within coauthorship networks.20

3.2.2 RESULTS

We run Monte Carlo simulations with 10,000 iterations. In each Monte Carlo draw, the DGP

produces random productivity variables according to the aforementioned scenarios. We use

these generated datasets to assess the performance of our arbitrary clustering estimator when

testing for the null hypothesis β = 0 in equation 2. Our main objective is to compare various

types of standard error corrections across different scenarios.

Panel A of Table 4 presents the results in a setting with no endogeneity where the log num-

ber of citations is regressed on the exogenous random productivity shocks. Each row corre-

sponds to a particular combination of DGP scenario and correction; each column refers to

different specifications with respect to the control and outcome variables used. Each row-

column cell displays the average rejection rate across Monte Carlo iterations of the null hy-

pothesis of no effect at the 5% significance level. In column 1, we consider the full sample of

authors (N=1,367) and a univariate model with no controls. In row (1), we start, as a bench-

mark, with iid productivity shocks from scenario 1 and heteroscedasticity-robust standard er-

rors. As expected, the average null-rejection rate is close to 5%. Then, we move to scenario

19We select as ENDproductivityi = 1 the authors who are in the top half of the distribution of ǔi , conditional
on being a more-productive author (i.e. above median in terms of log number of citations). In this way, both
IIDproductivity and ENDproductivity take the value of 1 exactly for a quarter of the authors. Formally we
set: ENDproductivityi = 1 iff ΦMP (ǔi ) > 0.5 where ΦMP is the cdf of the standardized normal distribution con-
ditional on being a more productive author.

20Formally, we define NCENDproductivityi ≡ ENDproductivityi + NCENDsharei where NCENDsharei ≡∑
j gi jENDproductivity j /

∑
j gi j .
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2 that imposes correlation in the productivity shocks across first-degree connections in coau-

thorship networks. Heteroscedasticity-robust standard errors, row (2), produce average null-

rejection rate of 9.8%. Next, we attempt to address network clustering using clusters at a level

where coauthorship-network formation and productivity of authors correlate. Natural candi-

dates for the clustering level correspond to institutions authors are affiliated with (row 3, 611

clusters), the city of location of these institutions (row 4, 259 clusters), the schools they grad-

uated from (row 5, 202 clusters) and the city of location of these schools (row 6, 135 clusters).

None of these non-overlapping clustering structures reduces substantially the null-rejection

rates. If anything, we obtain null-rejection rates that are inflated compared to those derived

under heteroskedasticity-robust standard errors. Finally, we correct standard errors using our

arbitrary clustering estimator in row (7). To account for correlation across authors linked in

coauthorship networks, we use information on all links between co-authors to form the pat-

tern matrix required for arbitrary clustering.21 The average null-rejection rate falls down sub-

stantially, to 5.6%, close to the theoretical prediction of 5%. This finding clearly indicates that,

in presence of network correlation, arbitrary clustering provides null-rejection rates that are

closer to nominal levels than standard correction procedures based on non-overlapping clus-

ters.

ENDOGENEITY. In panel B, rows (8)–(14) of Table 4, we turn to a setting with endogenous

productivity shocks and estimate the econometric equation 2 through 2SLS, using the exoge-

nous productivity shock as an instrumental variable. The sequence of specifications follows

the same logic as the one of panel A, rows (1)–(7). We see that the conclusion does not change

with respect to the OLS case, with null-rejection rates following a comparable pattern. The av-

erage null-rejection rate in the iid scenario reported in row (8) is again 4.8% and it goes up to

9.8% in row (9) with network correlation and heteroskedasticity-robust standard errors. Here

also, various methods based on non-overlapping clusters do not help in reducing the bias, aug-

menting rather than decreasing the null-rejection rates as shown in rows (10–13). Ultimately,

the arbitrary clustering correction keeps on being the best performer producing null-rejection

rates of 5.7% in row (14).

21Specifically, we collect information on links gi j between author i and j into a matrix, which yields the ad-
jacency matrix G , whose i j element is gi j . The adjacency matrix does not contain self-links, while the pattern
matrix S always does. So the pattern matrix that we use in the arbitrary clustering calculations is S = I +G where
I is the identity matrix. We use this matrix in equation 1.
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SAMPLE SIZE. We next assess how the performance of the arbitrary clustering estimator is

affected by sample size. To engineer changes in size, we retain only the top n authors with the

highest number of coauthors within the sample, with n ∈ {150,200, ...,1000}. The other aspects

of the Monte Carlo simulation are unchanged. Figure 10 reports average null-rejection rates

for different sample sizes, both in a OLS setting (panel a) and a 2SLS setting (panel b). Each

connected line corresponds to a specific scenario-estimation pair: no network correlation and

heteroskedastisity-robust standard errors (black); network correlation and heteroskedastisity-

robust standard errors (red); network correlation and arbitrary clustering (blue).22 Visual in-

spection reveals that the performance of the arbitrary clustering estimator improves as the

sample size increases with a null-rejection rate approaching the theoretical benchmark 5%.

Quite importantly, this graphical evidence confirms that, in presence of network correlation, a

larger sample size does not alleviate inference problem when correcting for heteroskedasticity-

robust standard errors.

3.2.3 NETWORK CORRELATION: SOME GUIDELINES

In the following section, we aim at providing guidelines to the practitioner interested in esti-

mating the standard errors in presence of network correlation in the model. Here again, the

analysis closely follows the one conducted with spatial data. Thus, we tend to skip the techni-

cal details and go to the essentials.

The results presented in panel A, row 1 of Table 4, show that in the absence of network cor-

relation in the regressor of interest (productivity shock), the average null-rejection rate is close

to the theoretical 5% despite the presence of network correlation in the outcome variable, i.e.,

log number of citations. Hereafter we assess whether the presence of network correlation in

the variable of interest leads to an increase in the likelihood of making a Type 1 error (if unac-

counted for) when the outcome variable is not correlated across authors within the same net-

work. In each Monte Carlo draw, we first suppress network correlation in the outcome variable

through a random reshuffling of the log number of citations across authors; then we test for

the null hypothesis of no effect at the 5% significance level. Column 2 of Table 4 presents the

average null-rejection rates obtained from 10,000 Monte Carlo simulations using the reshuf-

fled outcome variable. In all rows, whatever the correction method and the estimator (OLS in

panel A, 2SLS in panel B), the null-rejection rate remains in the vicinity of the theoretical 5%.

22To ensure that the first stage has enough predictive power even in the case of small sample sizes, we run
10,000 Monte Carlo simulations in each iteration but report the average null-rejection rates for the top half of the
Monte Carlo draws in terms of F-statistics of the first stage.
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This finding indicates that the likelihood of wrongly rejecting the null hypothesis is inflated

only if network correlation affects both the outcome variable and the regressor of interest.

This confirms an important insight that emerged also in the analysis conducted with spatial

data.

We also investigate how the inclusion of control variables in the model affects the quality

of inference. We proceed by assessing how different types of controls, taken separately, impact

null-rejection rates. We consider author characteristics that are likely to be correlated with

coauthorship networks and productivity of authors. In columns 3, 4, and 5 of Table 4, we

control for affililation-country fixed effects, degree-school fixed effects, and linearly by the year

in which authors received their PhD degree, respectively. Controlling for affiliation-country

fixed effects and degree-school fixed effects decreases the average null-rejection rate obtained

when network correlation is not corrected for from 9.8% to 9.3% and 8.9% in the OLS setting

(and from 9.6% to 9.2% and 8.8% in the 2SLS setting). In contrast, controlling for the year in

which authors received their PhD degree increases the average null-rejection rates obtained

when network correlation is not accounted for to 10.3% in both the OLS and 2SLS settings.

Our arbitrary clustering estimator performs equally well in all of these specifications. This

result suggests that the magnitude of t-statistics inflation due to network correlation depends

on the degree of network correlation in the residual variation left in the outcome variable and

variable of interest, conditional on the set of covariates.23

RECOMMENDATIONS. Our analysis shows that researchers should correct for network corre-

lation when estimating the standard errors for parameters of interest. In this endeavor, our

arbitrary clustering estimator tends to outperform existing alternative correction procedures

(robust, non-overlapping clusters) in making inference. When implementing arbitrary clus-

tering in a network context, the VCV matrix should be corrected using the adjacency matrix.

Our findings also show that the quality of inference tends to improve with the inclusion of ad-

ditional control variables that exhibit a level of network correlation comparable to the one of

the outcome variable and/or of the regressor of interest.

4 CONCLUSION

We implement a novel approach to obtain an asymptotically valid inference in settings with

spatial or network topology, allowing for any type of dependence between observation units.

23Adão et al. (2019) present inference in shift-share designs in terms of residual variation left in the regressors.
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Our proposed variance-covariance matrix (VCV) estimator, accompanied by a companion sta-

tistical package acreg for Stata, allows researchers to obtain cluster-robust inference in OLS

and 2SLS settings with arbitrary dependence across observations and over time. Arbitrary here

refers to the way units could be correlated with each other in space and time. Our approach

allows units to be correlated with each other in any possible way: The estimator can account

for indirect links in the cross-sectional dependence, time dependence and alteration in the

correlation structure over time. This allows our estimator to be suitable for many applications.

Our empirical validation approach is to compare the quality of inference based on arbi-

trary clustering to conventional estimators, e.g., one-way clustering and the heteroscedastic-

consistent estimator. Our Monte Carlo simulations use real-life data on U.S. counties and co-

authorship in Economics. We find three key results. First, arbitrary clustering inference domi-

nates inference based on conventional estimators, i.e., the rejection rate of the null hypothesis

of no effect is always closer to its nominal size (of 5% in our simulations) for the arbitrary clus-

tering estimator compared to conventional estimators. Second, arbitrary clustering inference

improves as the sample size gets larger, while inference based on conventional estimators does

not improve. Third, we show that the main source of biased inference is simultaneous pres-

ence of (spatial or network) correlation in both the outcome residuals and the regressors. We

obtain this pattern of results both in spatial data on U.S. counties and in data on co-author

networks in Economics.

These results suggest that accounting for arbitrary clustering appears to be important in

spatial or network data. Conventional estimators of standard errors are not flexible enough

to address correlations across state borders or across co-authors from different PhD programs

or affiliated with different institutions. Granted, a key requirement for the arbitrary cluster-

ing procedure is the bandwidth choice, which reflects the maximum distance in which units

are thought to be correlated. We designed simulations to guide applied work on choosing the

right bandwidth. We find that estimated standard errors are largest, and rejection rates clos-

est to nominal size, when the bandwidth chosen by the researcher is close to the true (DGP)

bandwidth. These simulations offer practical guidance for implementation in one of the chal-

lenging problems of spatial research.
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Figure 1: Illustration of data generation process: exogenous shocks in U.S. counties

(a) Random policy shock

Policy, exogenous
0
1
State borders

(b) Spatially correlated policy shock
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Notes: Data source for the county boundaries: NHGIS (Manson et al., 2017). The values

of the exogenous policy shocks represented are randomly generated with the algorithm

described in section 3.1.1.
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Figure 2: Log median earnings across US counties in 2000
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Notes: Data source for the county boundaries and log median earnings in 2000: NHGIS

(Manson et al., 2017).
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Figure 3: Illustration of data generation process: endogenous shocks in U.S. counties

(a) Random endogenous policy shock

Policy, endogenous
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(b) Spatially correlated endogenous policy shock
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Notes: Data source for the county boundaries: NHGIS (Manson et al., 2017). The values

of the endogenous policy shocks represented are randomly generated with the algorithm

described in section 3.1.1.
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Figure 4: Null-rejection rate in the presence of spatial correlation: U.S. counties

(a) OLS
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(b) 2SLS
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Notes: The red horizontal line represents the benchmark null-rejection rate of

5%. The vertical axis represents the rejection rate of the average null-rejection

over 10,000 Monte Carlo simulations. Each point in the figure represents a dif-

ferent Monte Carlo simulation× estimation pair. The horizontal axis represents

the sample size.
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Figure 5: Null-rejection rate in the presence of spatial correlation: U.S. counties with fake data

(a) OLS
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(b) 2SLS
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Notes: The red vertical line represents the benchmark null-rejection rate of 5%.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations. Each point in the figure represents a different

Monte Carlo simulation × estimation pair. The horizontal axis represents the

sample size.
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Figure 6: Spatial setting: Optimal distance threshold and null-rejection rates

(a) Single policy treatment
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Notes: The red vertical line represents the benchmark null-rejection rate of %5.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations on a sample of 3,141 counties. Each point in

the figure represents a different Monte Carlo simulation uses a different dis-

tance threshold used for error correction.
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Figure 7: Spatial setting: Varying cluster radiuses following a uniform distribution

(a) Histogram of the cluster radiuses sizes
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(b) Null-rejection rates by different Conley correction thresholds
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Notes: The red vertical line represents the benchmark null-rejection rate of %5.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations on a sample of 3,141 counties. Each point in

the figure represents a different Monte Carlo simulation uses a different dis-

tance threshold used for error correction.
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Figure 8: Spatial setting: Varying cluster radiuses following a nonuniform distribution

(a) Histogram of the cluster radiuses sizes
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(b) Null-rejection rates by different Conley correction thresholds
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Notes: The red vertical line represents the benchmark null-rejection rate of %5.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations on a sample of 3,141 counties. Each point in

the figure represents a different Monte Carlo simulation uses a different dis-

tance threshold used for error correction.
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Figure 9: Illustration of data generation process: exogenous shocks in coauthorship networks

Full Sample

(a) Productivity shocks

Shock = 0 Shock = 1

(b) Productivity shocks with network correlation

Shock = 0 Shock = (0, 0.66] Shock = (0.66, 1.33] Shock = (1.33, 2]

Subsample of the 250 most cited authors

(c) Productivity shocks

Shock = 0 Shock = 1

(d) Prod. shocks with network correlation

Shock = 0 Shock = (0, 0.66] Shock = (0.66, 1.33] Shock = (1.33, 2]

Notes: The figure maps the coauthorship links between authors. The sample consists of the authors indexed

in the “Top 5% Authors, Number of Citations, as of October 2019”, list of IDEAS RePEc (N = 1,637). The values

of the exogenous productivity shocks represented are randomly generated with the algorithm described in

section 3.2.1. Panels (a) and (b) refer to the full sample, panels (c) and (d) refer to a subsample of the top

250 authors in terms of number of citations.
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Figure 10: Null-rejection rate in the presence of network correlation: Top-cited authors

(a) OLS
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(b) 2SLS
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Notes: The red vertical line represents the benchmark null-rejection rate of 5%.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations. Each point in the figure represents a different

Monte Carlo simulation × estimation pair. The horizontal axis represents the

sample size.
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Table 1: Null-rejection rates in the spatial setting

Unit: U.S. counties

Sample: All Within-state Cross-state

Sample size: N=3,141 N=2,126 N=1,015

Data Generating Process Estimation

Endogeneity Spatial corr. Estimator Correction Null-rejection rate

(1) (2) (3)

Panel A: Baseline Model

(1) OLS robust 5.2% 5.1% 5.1%

(2) X OLS robust 9.1% 8.2% 10.4%

(3) X OLS cluster 6.8% 6.9% 9.2%

(4) X OLS acreg 5.5% 5.8% 5.6%

Panel B: Endogeneity

(5) X 2SLS robust 5.1% 5.1% 5.0%

(6) X X 2SLS robust 9.0% 8.2% 10.1%

(7) X X 2SLS cluster 6.6% 6.9% 8.8%

(8) X X 2SLS acreg 5.3% 5.5% 5.6%

Note: This table reports the average null-rejection at the 5% level for Monte Carlo simulation exper-

iments for different environments and sample sizes. The number of replications is 10,000 for each

simulation. Panel A refers to a model with no endogeneity in which the β coefficients are estimated

with OLS; Panel B refers to a model with endogeneity in which the β coefficients are estimated with

2SLS. Each column-row pair represents a different environment (data generating process and error

correction) and sample pair. The outcome variable is log median earnings. In column 1 the whole

sample is used; in column 2 only counties that are not at the state-border are considered; in column

3, we use only counties at the border. The data generating process simulates two different models: a

baseline model without any spatial correlation in the policy treatment variable across units and an-

other model imposing a spatial correlation in the policy treatment variable among the units within

an arbitrary cluster. Each row indicates the model and the way we estimate it. Unit of observation is

U.S. counties.

39



Table 2: Null-rejection rates in the spatial setting: Spatial correlation in the outcome

Unit: U.S. counties, N=3,141

Spatial correlation in the outcome: Observed Random Fake

Data Generating Process Estimation

Endogeneity Spatial corr. Estimator Correction Null-rejection rate

(1) (2) (3)

Panel A: Baseline Model

(1) OLS robust 5.2% 5.5% 4.8%

(2) X OLS robust 9.1% 5.1% 8.8%

(3) X OLS cluster 6.8% 6.1% 6.2%

(4) X OLS acreg 5.5% 5.2% 5.1%

Panel B: Endogeneity

(5) X 2SLS robust 5.1% 5.5% 4.7%

(6) X X 2SLS robust 9.0% 5.0% 8.7%

(7) X X 2SLS cluster 6.6% 5.7% 5.4%

(8) X X 2SLS acreg 5.3% 5.0% 4.9%

Note: This table reports the average null-rejection at the 5% level for Monte Carlo simula-

tion experiments for different environments and sample sizes. The number of replications

is 10,000 for each simulation. Panel A refers to a model with no endogeneity in which the

β coefficients are estimated with OLS; Panel B refers to a model with endogeneity in which

the β coefficients are estimated with 2SLS. Each column-row pair represents a different envi-

ronment (data generating process and error correction) and different outcome. The outcome

variable in column 1 is the observed log median earnings; in column 2, the outcome variable

is the observed log median earnings randomly reshuffled across counties; in column 3, we im-

pose spatial correlation to the randomly shuffled log median earnings used in column 2. The

data generating process simulates two different models: a baseline model without any spatial

correlation in the policy treatment variable across units and another model imposing a spatial

correlation in the policy treatment variable among the units within an arbitrary cluster. Each

row indicates the model and the way we estimate it. Unit of observation is U.S. counties.
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Table 3: Null-rejection rates in the spatial setting: Controls

Unit: U.S. counties, N=3,141

Controls: Baseline No controls State FEs

Data Generating Process Estimation

Endogeneity Spatial corr. Estimator Correction Null-rejection rate

(1) (2) (3)

Panel A: Baseline Model

(1) OLS robust 5.2% 4.9% 5.1%

(2) X OLS robust 9.1% 12.8% 8.4%

(3) X OLS cluster 6.8% 7.2% 6.2%

(4) X OLS acreg 5.5% 5.7% 5.6%

Panel B: Endogeneity

(5) X 2SLS robust 5.1% 4.9% 5.0%

(6) X X 2SLS robust 9.0% 12.7% 8.3%

(7) X X 2SLS cluster 6.6% 6.8% 5.8%

(8) X X 2SLS acreg 5.3% 5.6% 5.5%

Note: This table reports the average null-rejection at the 5% level for Monte Carlo simulation ex-

periments for different environments and sample sizes. The number of replications is 10,000 for

each simulation. Panel A refers to a model with no endogeneity in which the β coefficients are

estimated with OLS; Panel B refers to a model with endogeneity in which the β coefficients are es-

timated with 2SLS. Each column-row pair represents a different environment (data generating pro-

cess and error correction) and models. The outcome variable is log median earnings. The model in

column 1 is the baseline one; in column 2, controls are omitted; in column 3, state Fixed effects are

added to the regression. The data generating process simulates two different models: a baseline

model without any spatial correlation in the policy treatment variable across units and another

model imposing a spatial correlation in the policy treatment variable among the units within an

arbitrary cluster. Each row indicates the model and the way we estimate it. Unit of observation is

U.S. counties.
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Table 4: Null-rejection rates in the network setting

Unit: Authors, N = 1,637

Network correlation in the outcome: Observed Random Observed Observed Observed

Data Generating Process Estimation

End. Network corr. Estimator Correction Null-rejection rate

(1) (2) (3) (4) (5)

Panel A: Baseline Model

(1) OLS robust 4.8% 5.1% 4.8% 5.5% 4.7%

(2) X OLS robust 9.8% 5.2% 9.3% 8.9% 10.3%

(3) X OLS cluster, affiliation 9.6% 5.2% 9.4% 9.0% 9.9%

(4) X OLS cluster, affiliation city 10.4% 5.6% 10.1% 9.8% 10.7%

(5) X OLS cluster, degree school 11.0% 6.7% 10.9% 10.2% 11.3%

(6) X OLS cluster, degree city 12.0% 7.2% 12.1% 11.3% 12.6%

(7) X OLS acreg 5.6% 5.3% 5.6% 6.2% 5.4%

Panel B: Endogeneity

(8) X 2SLS robust 4.8% 5.0% 4.7% 5.5% 4.6%

(9) X X 2SLS robust 9.6% 5.0% 9.2% 8.8% 10.3%

(10) X X 2SLS cluster, affiliation 9.6% 5.0% 9.3% 8.9% 10.0%

(11) X X 2SLS cluster, affiliation city 10.6% 5.4% 10.4% 10.2% 11.1%

(12) X X 2SLS cluster, degree school 11.2% 6.5% 11.1% 10.2% 11.6%

(13) X X 2SLS cluster, degree city 12.2% 7.0% 12.3% 11.3% 12.8%

(14) X X 2SLS acreg 5.7% 5.1% 5.7% 6.2% 5.5%

Affiliation country No No Yes No No

Degree school No No No Yes No

PhD obtention year No No No No Yes

Note: This table reports the average null-rejection at the 5% level for Monte Carlo simulation experiments for different environ-

ments and sample sizes. The number of replications is 10,000 for each simulation. Panel A refers to a model with no endogeneity

in which the β coefficients are estimated with OLS; Panel B refers to a model with endogeneity in which the β coefficients are

estimated with 2SLS. Each column-row pair represents a different environment (data generating process and error correction)

and models. The outcome variable in columns 1,3,4,5 is the observed log citation score; in column 2, the outcome variable is the

observed log citation score randomly reshuffled across authors. In columns 1,2, no additional covariates are added to the model;

in columns 3,4,5 we controls for two distinct sets of covariates separately. The data generating process simulates two different

models: a baseline model without any network correlation in the productivity treatment variable across units and another model

imposing a network correlation in the productivity treatment variable among the units within an arbitrary cluster. Each row indi-

cates the model and the way we estimate it. Unit of observation is authors indexed in the “Top 5% Authors, Number of Citations,

as of October 2019”, list of IDEAS RePEc.
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