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Abstract. We present acreg, a new command that implements the arbitrary
clustering correction of standard errors proposed in Colella et al. (2019, IZA dis-
cussion paper 12584). Arbitrary here refers to the way observational units are
correlated with each other: we impose no restrictions so that our approach can be
used with a wide range of data. The command accommodates both cross-sectional
and panel databases and allows the estimation of ordinary least-squares and two-
stage least-squares coefficients, correcting standard errors in three environments:
in a spatial setting using units’ coordinates or distance between units, in a network
setting starting from the adjacency matrix, and in a multiway clustering frame-
work taking multiple clustering variables as input. Distance and time cutoffs can
be specified by the user, and linear decays in time and space are also optional.
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1 Introduction
Thanks to increasing computational power, databases have become more complex in the
past decades. They now embed convoluted correlation structures between observational
units that were not common before. For example, fueled by the growing availability of
geocoded data and the integration of geographic information systems in the toolkit of
economists, empirical works using spatial data are proliferating in fields like development
economics, urban economics, and economic history. Other examples of new correlation
structures pertain to network data: individuals are linked, and these links are now
measurable through social networks, mobile data, coworking relations, or coauthorships.

Statistical inference in these environments is challenging because the underlying
data-generating process is often unknown and researchers need to make assumptions
about the relationship between observations. Available methods to address the correla-
tion between objects build on the sandwich-type variance–covariance (VCV) estimator
proposed byWhite (1980). The most common approach is standard clustering (Cameron
and Miller 2015), which defines clusters as groups of linked observations that share a
common characteristic. With spatial data, a frequently used approach has been de-
veloped by Conley (1999), who considers a circle around each unit, within which the
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strength of the dependence between the unit and the surrounding ones is specified. In
the case of network data, the practice is less developed; many studies simply do not
correct for the potential correlation of unobserved shocks across linked observations.

In our companion article Colella et al. (2019), we explore pitfalls and provide guide-
lines for conducting inference in complex settings, allowing for any type of topological
and temporal dependence between observational units in large samples. Our arbitrary
clustering approach builds on the seminal insight by White (1980), using estimated re-
gression errors and knowledge on the clustering structure to reconstruct estimates of
the unknown elements of the sandwich formula. We perform extensive Monte Carlo
simulations for both spatial and network data structures, for example, U.S. counties
and coauthorship in economics. Our simulation results show that arbitrary clustering
inference dominates inference based on conventional estimators.

In this article, we present our new community-contributed command acreg, which
implements the arbitrary clustering correction of standard errors proposed in Colella
et al. (2019). We also provide several examples of how to use it. Our command accom-
modates ordinary least-squares (OLS) and two-stage least-squares (2SLS) estimations
and is designed to deal with several clustered covariance matrix estimators, including
multiway clustering (Cameron, Gelbach, and Miller 2011), spatial clustering (Conley
1999; Bester, Conley, and Hansen 2011), network clustering, and heteroskedasticity-
and autocorrelation-consistent (HAC) (Newey and West 1987).

In network settings, to the best of our knowledge, there is no Stata command de-
signed to correct standard errors starting from the knowledge of the binary links between
observations.

In spatial settings, three community-contributed commands are available (Conley
1999; Hsiang 2010; and Fetzer 2015): however, they suit only OLS estimation. In addi-
tion, they all have preset options that are not desirable in all settings. In particular, the
commands by Conley (1999) and Fetzer (2015) impose a linear decay in the correlation
structure between units (Bartlett), while Hsiang (2010) and Fetzer (2015) set a time
decay (HAC) as the default.1 Compared with those commands, acreg is more flexible
because it enables the user to freely set the type of correlation structure and decay across
observations and time. Moreover, in the presence of multiple cross-sectional observa-
tional units sharing the same geolocation, our command provides consistent standard
errors, replicating the heteroskedasticity-robust standard errors from ivreg2 (Baum,
Schaffer, and Stillman 2003) when the distance correction is set to zero, while the
programs by Conley (1999), Hsiang (2010), and Fetzer (2015) do not. Stata 15 intro-
duced a series of commands named sp to model spatial relations between objects using
spatial autoregressive models. These models allow for spatial lags of the dependent
variable, which modifies point estimates, or for spatial autocorrelation in the errors.
The command closest to ours, spregress, allows only for heteroskedasticity-robust and
asymptotic maximum-likelihood theory-driven standard errors. Conversely, acreg does
not modify the point estimates but improves inference by computing standard errors
corrected for spatial correlation.

1. Conley (1999) allows correction only for cross-sectional dependence and not time dependence.
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Concerning multiway cluster–robust standard errors, ivreg2 and xtivreg2 (Schaffer
2005) allow the user to specify up to two cluster variables (that is, two-way clustering).
The community-contributed command by Gelbach and Miller (2009), cgmreg, instead
accommodates multiway clustering but suits only OLS estimation and does not allow
for the estimation of 2SLS models. acreg instead can be used to estimate both OLS and
2SLS coefficients, correcting standard errors for an infinite number of cluster dimensions.

The rest of this article is organized as follows. In section 2, we review the arbitrary
clustering method proposed in Colella et al. (2019). In section 3, we provide a detailed
description of the syntax of acreg. In section 4, we offer an illustration of our command
with several examples in the spatial and the network settings: we show how options of
our command can be used to suit many models of correlation structure. Finally, in
section 5, we conclude.

2 Estimator for the VCV matrix
Here we present the estimator of the VCV proposed in Colella et al. (2019). The pro-
posed estimator builds on the seminal insight from White (1980) and can be seen as an
extension of the one-way or multiway clustering (Cameron, Gelbach, and Miller 2011)
that also includes spatial clustering (Conley 1999; Bester, Conley, and Hansen 2011).2

In our setting, each observation can be correlated to any other, and the strength of
their correlation is a function of both time and distance. We define a matrix S, named
pattern matrix, containing information on cross-observation correlations in errors. With
spatial data, S is built from information on the geographic distance between spatial
units, for example, regions, cities, and countries; in a network context, it reflects the
direct links between observations at different degrees. acreg computes the matrix S
starting from the position of objects in space, using their coordinates, or from the link
structure in a network; it also allows the user to define the matrix S to accommodate
more complex correlation structures. Entries of the S matrix range from 0 to 1: this
measure represents the strength of the correlation between two units and is inversely
proportional to their distance. The diagonal of S is a vector of ones, reflecting the
self-links.

Consider n observations at each t instant of time T from the linear model

y = Xβ + ε

where we observe each unit i several times in different periods t. y is a dependent
variable, and X is a matrix of k linearly independent components. X could include a

2. We do not provide any theoretical or empirical validation of our approach here. In Colella et al.
(2019), we show results of extensive Monte Carlo simulations based on real-life data on U.S.
metropolitan areas or on coauthors in economics. We show that our arbitrary clustering esti-
mator of the VCV yields inference at the correct significance level in moderately sized samples
and that it always dominates other commonly used approaches to inference. We provide guidance
to the applied practitioners on how to cluster and to make reasonable assumptions on the error
distribution in absence of prior knowledge about the data-generating process.
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long list of dummies for each unit in case we are interested in the within estimates in a
panel dataset. The OLS estimator can be written as

bOLS = (X′X)−1X′y

and the theoretical VCV of the bOLS is

VCV(bOLS) = (X′X)−1X′ΩX(X′X)−1

where Ω ≡ E(εε′|X) is the unknown VCV of ε.

The VCV is estimated by the sandwich estimator (White 1980)

V̂CV(bOLS) = (X′X)−1X′ {S× (ee′)}X(X′X)−1

where e ≡ y−XbOLS represents the vector of residuals, S is the pattern matrix, and ×
is element-by-element matrix multiplication. The key element of this estimator is the
middle part X′{S× (ee′)}X:

X′ {S× (ee′)}X =

n∑
i=1

T∑
t=1

n∑
j=1

T∑
s=1

xiteitejsx
′
jssitjs

xit is the (column) vector of regressors, and x′
it is the row it in matrix X.

This framework can also be used in situations with endogeneity. We refer the reader
to our article (Colella et al. 2019) for an illustration of the 2SLS version of the estimator.

3 The acreg command
acreg requires the installation of the latest versions of ranktest, ivreg2 (Baum, Schaf-
fer, and Stillman 2003), and hdfe (Correia 2016). It is possible to check whether the
most up-to-date versions of these packages are installed (and to install them if they are
not) by typing acregpackcheck after having installed acreg.

3.1 Syntax

acreg depvar
[

varlist1
] [

(varlist2 = varlist_iv)
] [

if
] [

in
] [

weight
][

, id(idvar) time(timevar) spatial latitude(latitudevar)
longitude(longitudevar) dist_mat(varlist_distances) distcutoff(#)

lagcutoff(#) network links_mat(varlist_links) cluster(varlist_cluster)
weights(varlist_weights) hac bartlett nbclust(#) pfe1(fe1var)
pfe2(fe2var) correctr2 dropsingletons storeweights storedistances

]
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depvar is the dependent variable.

varlist1 is the list of exogenous variables.

varlist2 is the list of endogenous variables.

varlist_iv is the list of exogenous variables used with varlist1 as instruments for varlist2.

fweights and pweights are allowed; see [U] 11.1.6 weight.

3.2 Options

3.2.1 Panel

id(idvar) specifies the cross-sectional unit identifier named idvar; id() is required in a
panel setting.

time(timevar) specifies the time unit variable named timevar; time() is required in a
panel setting.

The model is assumed to be cross-sectional if id() and time() are not specified.

3.2.2 Spatial environment

spatial specifies that the environment is a spatial one; spatial is not required if
arbitrary cluster correction is not performed or if the weights(), cluster(), or
network option is specified.

latitude(latitudevar) sets the variable named latitudevar, which contains the latitude
of each observation in decimal degrees: range[−180.0, 180.0].

longitude(longitudevar) sets the variable named longitudevar, which contains the lon-
gitude of each observation in decimal degrees: range[−180.0, 180.0].

dist_mat(varlist_distances) sets the N variables, listed in varlist_distances, contain-
ing bilateral distances between observations. In the spatial environment, bilat-
eral distance is the spatial distance between observations, for example, physical
or travel distance between two locations. If dist_mat() is specified, latitude()
and longitude() may not be used.

distcutoff(#) specifies the distance cutoff, beyond which the correlation between the
error terms of two observations is assumed to be zero; distcutoff() is required
if latitude() and longitude() are specified or if dist_mat() is specified. The
distance cutoff is in kilometers if latitude() and longitude() are specified. It can
be in any other meaningful metric if bilateral distances are specified. # may be an
integer or a float.

lagcutoff(#) specifies the time lag cutoff for those observations with the same idvar;
lagcutoff() is not required in the cross-sectional environment. The default in the
panel environment is lagcutoff(0), that is, when the id() and time() options are
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specified. In the panel environment when lagcutoff(#) is not specified, standard
errors are clustered at idvar × timevar level. # must be an integer.

3.2.3 Network environment

network specifies that the environment is a network one; network is not required if
arbitrary cluster correction is not performed and if the weights(), cluster(), or
spatial option is specified.

links_mat(varlist_links) sets the N dummy variables, listed in varlist_links, specifying
the links between observations, that is, the adjacency matrix. The links between two
units can change over time. However, if distcutoff() is set to be greater than one,
only the first observation in time of each individual will be used as input to compute
the bilateral distance between two nodes.

dist_mat(varlist_distances) sets the N variables, listed in varlist_distances, contain-
ing bilateral distances between observations. In the network environment, bilateral
distance is the network distance between observations, that is, the number of links
along the shortest path between two nodes. If dist_mat() is specified, links_mat()
may not be used.

distcutoff(#) specifies the distance cutoff (geodesic paths), beyond which the corre-
lation between error terms of two observations is assumed to be zero; distcutoff()
is required if dist_mat() is specified; it is optional if links_mat() is specified. The
default is distcutoff(1) in the network environment. When links_mat() is speci-
fied and distcutoff() is greater than 1, acreg automatically computes the bilateral
distance between two nodes. # may be an integer or a float.

lagcutoff(#) specifies the time lag cutoff for those observations with the same idvar.
lagcutoff() is not required in the cross-sectional environment. The default in a
panel environment is lagcutoff(0), that is, when the id() and time() options are
specified. In the panel environment when lagcutoff(0) is not specified, standard
errors are clustered at idvar × timevar level. # must be an integer.

3.2.4 Multiway clustering environment

cluster(varlist_cluster) sets the variables, listed in varlist_cluster, to use for multiway
clustered standard errors. cluster() is not required if arbitrary cluster correction
is not performed and if the spatial, network, or weights() option is specified.

3.2.5 Arbitrary clustering environment

weights(varlist_weights) sets the N ×T variables, listed in varlist_weights, containing
the weights that will be used for error correction; weights() is not required if the
spatial, network, or cluster() option is specified. The N × T variables need to
follow the same order of the observations.



F. Colella, R. Lalive, S. O. Sakalli, and M. Thoenig 125

3.2.6 Correlation structure

hac reports HAC standard errors; lagcutoff() will be the temporal decay; hac requires
id(), time(), and lagcutoff().

bartlett imposes a distance linear decay between observations within the cutoff in the
correlation structure.

nbclust(#) sets the number of clusters used to compute the Kleibergen–Paap statistic
in case of arbitrary cluster correction; the default is nbclust(100).

3.2.7 High-dimensional fixed effects

pfe1(fe1var) sets the categorical variable named fe1var, which identifies the first high-
dimensional fixed effects to be absorbed.

pfe2(fe2var) sets the categorical variable named fe2var, which identifies the second
high-dimensional fixed effects to be absorbed.

correctr2 reports the R2 of the overall model when pfe1() or pfe2() is specified,
that is, the R2 obtained before partialing out the high-dimensional fixed effects.
The default reported R2 is the R2 of the within model when pfe1() or pfe2()
is specified, that is, on the “partialed-out sample”. correctr2 is not allowed with
fweights.

dropsingletons drops singleton groups when pfe1() or pfe2() is specified.

3.2.8 Storing

storeweights stores the computed weights used to correct the VCV for arbitrary cluster
correlation as a matrix under the name weightsmat, which may be used as input
for the option weights(); storeweights is optional only if the spatial, network,
or cluster() option is specified.

storedistances stores the computed distances used to correct the VCV for arbitrary
cluster correlation as a matrix under the name distancesmat, which may be used as
input for the option dist_mat(); storedistances is optional only if the spatial
option or network option is specified and dist_mat() is not specified.
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3.3 Stored results

acreg stores the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares (centered)
e(mssu) model sum of squares (uncentered)
e(rss) residual sum of squares
e(tss) total sum of squares (centered)
e(tssu) total sum of squares (uncentered)
e(r2) centered R2 (1− e(rss)/e(tss))
e(r2u) uncentered R2

e(widstat) Kleibergen–Paap rk Wald F statistic
Matrices

e(b) coefficient vector
e(V) corrected VCV matrix of the estimators

Functions
e(sample) marks estimation sample

4 Examples
We illustrate the use of our command in five environments: spatial and network set-
tings in both cross-sectional and panel contexts, and multiway clustering. In every
environment, we estimate the same equation imposing different assumptions on the er-
ror correlation structure: independent and identically distributed, standard clustering,
and arbitrary clustering.

4.1 Spatial environment, cross-sectional setting

For this example, we use the data on the homicides in southern states of the United
States. homicide_1960_1990.dta is available at the Stata website. The data contain,
among others, the county-level homicide rate per year per 100,000 persons (hrate), the
population in logs (ln_population), the logarithm of the average income (ln_income),
the unemployment rate (unemployment), and the average age (age). This dataset is an
extract of the data originally used by Messner et al. (1999) and concerns four different
periods (1960, 1970, 1980, and 1990). We consider only the cross-sectional database for
1990, and we estimate the effect of income on homicide rate, controlling for population
and age. For the sake of illustration, we claim that income is endogenous, and we assume
that unemployment is a valid instrument for it. Figure 1 shows the spatial dependency
of the outcome variable, the endogenous regressor, and the instrument.
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(14.28,64.26]
(9.78,14.28]
(6.89,9.78]
(4.18,6.89]
[0.00,4.18]

(a) Homicide rate

(10.34,11.04]
(10.20,10.34]
(10.09,10.20]
(9.97,10.09]
[9.30,9.97]

(b) Income

(9.29,25.49]
(7.27,9.29]
(6.11,7.27]
(4.82,6.11]
[0.00,4.82]

(c) Unemployment

Figure 1. Homicide rate, log income, and unemployment in 1990 for southern U.S.
counties
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We first fit the model assuming that observations’ errors are uncorrelated.3

. webuse homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. acreg hrate ln_population age (ln_income=unemployment)
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 990.487

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 1.35491 -6.51 0.000 -11.47766 -6.166507
ln_population 1.404433 .2769494 5.07 0.000 .861622 1.947244

age -.281615 .050726 -5.55 0.000 -.381036 -.1821939
_cons 94.4605 12.42859 7.60 0.000 70.10091 118.8201

We then fit the model above clustering standard errors by state.4

. acreg hrate ln_population age (ln_income=unemployment), cluster(sfips)
MULTIWAY CLUSTERING CORRECTION
Cluster variable(s): sfips
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 143.959

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 1.801762 -4.90 0.000 -12.35347 -5.290693
ln_population 1.404433 .3090553 4.54 0.000 .7986955 2.01017

age -.281615 .1303804 -2.16 0.031 -.5371558 -.0260741
_cons 94.4605 17.89048 5.28 0.000 59.3958 129.5252

3. This is equivalent to using ivreg2 (Baum, Schaffer, and Stillman 2003) and the following syntax:
ivreg2 hrate ln_population age (ln_income=unemployment), robust.

4. This is equivalent to using ivreg2 (Baum, Schaffer, and Stillman 2003) and the following syntax:
ivreg2 hrate ln_population age (ln_income=unemployment), cluster(sfips). We are aware
that the number of states (clusters) is small and inference would suffer from it, but this is irrelevant
to the scope of this exercise.
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We also now fit the model above using a spatial correction following Conley (1999),
with a threshold of 100 kilometers and without imposing a linear decay in the spatial
correlation between units. This means that the error of each county is assumed to be
correlated with the counties that are located within a radius of 100 kilometers.

. acreg hrate ln_population age (ln_income=unemployment),
> spatial latitude(_CX) longitude(_CY) distcutoff(100)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 0
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 112.917

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 2.357644 -3.74 0.000 -13.44298 -4.201183
ln_population 1.404433 .4689154 3.00 0.003 .4853754 2.32349

age -.281615 .109112 -2.58 0.010 -.4954706 -.0677594
_cons 94.4605 21.86325 4.32 0.000 51.60932 137.3117

4.1.1 Additional options

Thresholds. If we want to account for correlation between counties at a greater distance,
we can increase the distance cutoff using the distcutoff() option. In the following
example, we allow for a radius of 200 kilometers.

. acreg hrate ln_population age (ln_income=unemployment),
> spatial latitude(_CX) longitude(_CY) distcutoff(200)

(output omitted )
. estimates store sp1

Bartlett. In previous examples, the matrix used for the computation of the VCV matrix
is binary: for each county pair, it contains 1 if they are located within the distance
threshold from each other and 0 otherwise. acreg allows for weights in the matrix to
linearly decrease as the distance between units increases. To do that, we need to add
only the option bartlett to the syntax.

. acreg hrate ln_population age (ln_income=unemployment),
> spatial latitude(_CX) longitude(_CY) distcutoff(200) bartlett

(output omitted )
. estimates store sp2
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Partial out high-dimensional fixed effects. acreg allows for adding high-dimensional
fixed effects and partialing them out, using the hdfe command by Correia (2016). Up
to two fixed-effects variables can be specified through the options pfe1() and pfe2().
In the example below, we fit the previous model by adding state fixed effects.

. acreg hrate ln_population age (ln_income=unemployment),
> spatial latitude(_CX) longitude(_CY) distcutoff(100) pfe1(sfips)

(output omitted )
. estimates store sp3

The following code (Jann 2007, 2014) reports the results of the three estimations in this
subsection:

. esttab sp1 sp2 sp3, cells(b se) keep(ln_income ln_population age)
> mtitles(spatial bartlett FE)

(1) (2) (3)
spatial bartlett FE

b/se b/se b/se

ln_income -8.822082 -8.822082 -13.88229
2.733507 2.313018 1.835268

ln_populat~n 1.404433 1.404433 1.649735
.4834539 .4388646 .4000578

age -.281615 -.281615 -.178832
.1223503 .1015135 .0960779

N 1412 1412 1412

4.2 Spatial environment, panel setting

Here we use the database we used in the previous section: homicide_1960_1990.dta.
We again estimate the effect of income on homicide rate, controlling for population and
age, and we assume that unemployment is a valid instrument for it. Compared with
the previous section, here we use all four waves of the dataset.
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4.2.1 Pooled model

We first consider a pooled model in which we do not include any random or fixed effects.
We first fit the model assuming that observations’ errors are uncorrelated.5

. webuse homicide_1960_1990, clear
(S.Messner et al.(2000), U.S southern county homicide rate in 1960-1990)
. acreg hrate ln_population age (ln_income=unemployment)
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 289.132

Number of obs = 5648
Total (centered) SS = 286387.1082 Centered R2 = -0.0447
Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
Residual SS = 299188.6495

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income 3.83872 .7815313 4.91 0.000 2.306947 5.370494
ln_population -.4411802 .1968992 -2.24 0.025 -.8270955 -.055265

age -.4626917 .0637006 -7.26 0.000 -.5875425 -.3378408
_cons -7.265041 4.126029 -1.76 0.078 -15.35191 .8218268

We then fit the same model, but we use the panel feature of acreg to account for
autocorrelation between observations from the same county over time.6 We assume no
correlation across counties. We specify the option id() with the county ID, the option
time() with the year variable, and the option lagcutoff() with a number equal to or
greater than the maximum lag between observations, which in this case is 30.7

5. This is equivalent to using ivreg2 (Baum, Schaffer, and Stillman 2003) and the following syntax:
ivreg2 hrate ln_population age (ln_income=unemployment), robust.

6. The estimation of the betas does not change with respect to the previous model. acreg is used only
to compute the standard errors.

7. This is equivalent to using ivreg2 (Baum, Schaffer, and Stillman 2003) and the syntax ivreg2 hrate
ln_population age (ln_income=unemployment), cluster(_ID) or, alternatively, using acreg and
the syntax acreg hrate ln_population age (ln_income=unemployment), cluster(_ID).
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. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(30)
TEMPORAL CORRECTION
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 210.438

Number of obs = 5648
Total (centered) SS = 286387.1082 Centered R2 = -0.0447
Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
Residual SS = 299188.6495

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income 3.83872 .921289 4.17 0.000 2.033027 5.644414
ln_population -.4411802 .2513095 -1.76 0.079 -.9337379 .0513774

age -.4626917 .0787756 -5.87 0.000 -.617089 -.3082943
_cons -7.265041 4.832603 -1.50 0.133 -16.73677 2.206687

We then extend the model above, which accounts for autocorrelation over time, by
adding the spatial correction proposed by Conley (1999), with a threshold of 100 kilo-
meters. This means that the error term of each county at a given year is assumed
to be correlated with those of all the counties that are located within a radius of 100
kilometers from it observed at the same year while simultaneously correcting for auto-
correlation over time for each county. We assume the correlation between near counties
but observed at different points in time to be zero.

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(30) spatial latitude(_CX) longitude(_CY) distcutoff(100)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 24.838

Number of obs = 5648
Total (centered) SS = 286387.1082 Centered R2 = -0.0447
Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
Residual SS = 299188.6495

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income 3.83872 1.810937 2.12 0.034 .2893488 7.388092
ln_population -.4411802 .3871668 -1.14 0.254 -1.200013 .3176528

age -.4626917 .1425257 -3.25 0.001 -.742037 -.1833464
_cons -7.265041 9.814094 -0.74 0.459 -26.50031 11.97023
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4.2.2 Fixed-effects model

In the following example, we replicate the previous model, accounting for both spatial
and temporal correlation, but we add the county fixed effects to the specification using
the option pfe1().

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(30) spatial latitude(_CX) longitude(_CY) distcutoff(100) pfe1(_ID)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
Absorbed FE: _ID
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 49.605

Number of obs = 5648
Total (centered) SS = 144755.2058 Centered R2 = 0.0175
Total (uncentered) SS = 144755.2058 Uncentered R2 = 0.0175
Residual SS = 142223.0274

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income .2588154 1.149746 0.23 0.822 -1.994645 2.512276
ln_population -1.630949 1.740873 -0.94 0.349 -5.042997 1.781099

age .1466193 .2006033 0.73 0.465 -.2465559 .5397944
_cons -1.31e-17 .1743959 -0.00 1.000 -.3418097 .3418097

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2
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We also add time fixed effects to the previous model, using the option pfe2().

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(30) spatial latitude(_CX) longitude(_CY) distcutoff(100) pfe1(_ID)
> pfe2(year)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
Absorbed FE: _ID and year
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 3.895

Number of obs = 5648
Total (centered) SS = 136166.339 Centered R2 = -0.0793
Total (uncentered) SS = 136166.339 Uncentered R2 = -0.0793
Residual SS = 146961.8234

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -13.30126 17.5969 -0.76 0.450 -47.79055 21.18803
ln_population -1.602695 2.253785 -0.71 0.477 -6.020033 2.814642

age .0038921 .0937463 0.04 0.967 -.1798472 .1876314
_cons -1.11e-15 .128699 -0.00 1.000 -.2522454 .2522454

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

4.2.3 Additional options

Thresholds. In the next example, we account for spatial correlation between observa-
tions of the same year without accounting for any temporal correlation. We do this
with lagcutoff(0).8

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(0) spatial latitude(_CX) longitude(_CY) distcutoff(100)

(output omitted )
. estimates store spp1

Then, we account for spatial correlation between observations of the same year and also
for temporal correlation between observations from the same county, but only between
neighbor decades; that is, two observations from the same county are assumed to be
correlated only if they are observed with a 10-year or less difference.9 We do that by
setting lagcutoff(10).

8. The result differs from the one obtained in the cross-sectional environment (acreg
hrate ln_population age (ln_income=unemployment), spatial latitude(_CX) longitude(_CY)
distcutoff(100)) because the spatial correlation is assumed to be present only between observa-
tions from the same year.

9. This would allow an observation’s error term to be correlated with all other observations within
10-year lags and 10-year leads from the same county.
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. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(10) spatial latitude(_CX) longitude(_CY) distcutoff(100)

(output omitted )
. estimates store spp2

HAC. In the previous examples, the matrix used for the computation of the VCV matrix
is binary. We can use the option hac to have a linear decay in time and compute HAC
standard errors, following Newey and West (1987).

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year)
> lagcutoff(30) spatial latitude(_CX) longitude(_CY) distcutoff(100) hac

(output omitted )
. estimates store spp3

The following code reports the result of the three estimations in this subsection.

. esttab spp1 spp2 spp3, cells(b se) keep(ln_income ln_population age)
> mtitles(lag0 lag10 hac)

(1) (2) (3)
lag0 lag10 hac
b/se b/se b/se

ln_income 3.83872 3.83872 3.83872
1.743993 1.801373 1.785354

ln_populat~n -.4411802 -.4411802 -.4411802
.3542752 .377059 .3727145

age -.4626917 -.4626917 -.4626917
.1347804 .1403627 .139132

N 5648 5648 5648

4.3 Network environment, cross-sectional setting

In this section, we use a dataset of cooffending in a London-based youth gang. Data
were collected by James Densley and Thomas Grund. The data have been used in
Grund and Densley (2012, 2015). Information on 54 individuals is reported, and 2 in-
dividuals are recorded to be linked if they committed at least one crime together. The
data contain, among others, the age (Age), the birthplace (Birthplace), the number
of arrests (Arrests), the number of convictions (Convictions), and the position in the
gang’s internal hierarchy (Ranking). The symmetric binary links constituting the coof-
fending network are stored in 54 variables (_net2_1–_net2_54). Figure 2 presents the
distribution of the variables Arrest and Ranking within the network. In this example,
we want to estimate the effect of ranking on arrests, controlling for age, residence, and
birthplace fixed effects.
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(a) Arrest (b) Ranking

Figure 2. Gang network. notes: In panel (a), dark dots represent arrested people. In
panel (b), darker dots identify a greater position in the ranking.

The code below is necessary to load the dataset (webnwuse gang), load the network
(nwload gang), and replace the diagonal of the adjacency matrix with ones (the loop),
which is needed because the original database does not contain self-links. webnwuse and
nwload were written by Grund (2015).

. webnwuse gang, clear
Loading successful
(4 networks)

gang_valued
gang
gang_valued_1
gang_1

. nwload gang

. forvalues j = 1(1)54 {
2. quietly replace _net2_`j' = 1 in `j'
3. }
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We first fit the model assuming that observations’ errors are uncorrelated.10

. acreg Arrest Ranking Age Residence i.Birthplace
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: Ranking Age Residence 1b.Birthplace 2.Birthplace
> 3.Birthplace 4.Birthplace

Number of obs = 54
Total (centered) SS = 2196.537037 Centered R2 = 0.2442
Total (uncentered) SS = 7497 Uncentered R2 = 0.7786
Residual SS = 1660.198039

Arrests Coefficient Std. err. z P>|z| [95% conf. interval]

Ranking -2.168476 .8207074 -2.64 0.008 -3.777033 -.5599192
Age .7665194 .3094139 2.48 0.013 .1600793 1.372959

Residence -1.534665 1.561649 -0.98 0.326 -4.59544 1.526111

Birthplace
Caribbean 0 (empty)

East Africa -.2523035 2.869505 -0.09 0.930 -5.87643 5.371822
UK .7012659 2.228246 0.31 0.753 -3.666016 5.068548

West Africa .8171717 2.012521 0.41 0.685 -3.127297 4.76164

_cons 2.317286 7.506876 0.31 0.758 -12.39592 17.03049

We now fit the same model using the standard error correction proposed in our article
(Colella et al. 2019). We assume that the error term of each observation is correlated
with that of another if they are linked in the network. To implement this in acreg,
we provide the variables containing the adjacency matrix as input in the links_mat()
option and set distcutoff(1).

10. This is equivalent to ivreg2 Arrest Ranking Age Residence i.Birthplace, robust.
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. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*)
> distcutoff(1)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 0
No HAC Correction
No Absorbed FEs
Included instruments: Ranking Age Residence 1b.Birthplace 2.Birthplace
> 3.Birthplace 4.Birthplace

Number of obs = 54
Total (centered) SS = 2196.537037 Centered R2 = 0.2442
Total (uncentered) SS = 7497 Uncentered R2 = 0.7786
Residual SS = 1660.198039

Arrests Coefficient Std. err. z P>|z| [95% conf. interval]

Ranking -2.168476 .7132431 -3.04 0.002 -3.566407 -.7705455
Age .7665194 .3730319 2.05 0.040 .0353904 1.497648

Residence -1.534665 1.618858 -0.95 0.343 -4.707568 1.638239

Birthplace
Caribbean 0 (empty)

East Africa -.2523035 2.258789 -0.11 0.911 -4.679449 4.174842
UK .7012659 2.984775 0.23 0.814 -5.148785 6.551317

West Africa .8171717 2.260143 0.36 0.718 -3.612627 5.24697

_cons 2.317286 7.825902 0.30 0.767 -13.0212 17.65577

4.3.1 Additional options

Accounting for degree greater than one. Each node of a network has a certain number
of links that connects it to other nodes. This number is called the degree k of a node.
acreg allows the user to account for correlation between two observations that are not
necessarily directly linked but are linked through other observations. Starting from the
same 0–1 adjacency matrix used in the previous example, we also want to allow for
correlation between individuals that are linked through another individual (degree 2).
To do that, we will use the same syntax but change distcutoff(2).

. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*)
> distcutoff(2)

(output omitted )
. estimates store ne1

Bartlett. In previous examples, the matrix used for the computation of the VCV matrix
is binary: it contains values 1 for each pair of individuals that are first- or second-degree
linked, and 0s otherwise. acreg allows for weights in the matrix to linearly decrease as
the network distance increases. To do that in our sample, that is, having 1 for first-
degree linked observations and 0.5 for second-degree linked observations, we will use the
option bartlett.
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. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*)
> distcutoff(2) bartlett

(output omitted )
. estimates store ne2

Partial out high-dimensional fixed effects. acreg allows for adding high dimensional
fixed effects and partial them out, using the hdfe command by Correia (2016): up to
two fixed-effects variables can be specified through the options pfe1() and pfe2().
In the example below, we fit the previous model partialing out birthplace fixed effects
instead of adding them as dummies in the main regression.

. acreg Arrest Ranking Age Residence, network links_mat(_net2_*) distcutoff(1)
> pfe1(Birthplace)

(output omitted )
. estimates store ne3

The following code reports the result of the three estimations in this subsection.

. esttab ne1 ne2 ne3, cells(b se) keep(Ranking Age Residence)
> mtitles(degree2 bartlett FE)

(1) (2) (3)
degree2 bartlett FE

b/se b/se b/se

Ranking -2.168476 -2.168476 -2.168476
.4801238 .7688551 .7132431

Age .7665194 .7665194 .7665194
.4001636 .3427023 .3730319

Residence -1.534665 -1.534665 -1.534665
2.138931 1.590511 1.618858

N 54 54 54

4.4 Network environment, panel setting

In this section, we use an ad hoc database, which can be downloaded from our com-
mand’s website. It is a balanced panel dataset of 1,000 observations (NT ) referring
to 100 (N) individuals at 10 (T ) points in time. Individuals are identified through
the variable id, while time is identified through the variable time. The database
also contains, among others, the following variables: Y_it, X1_it, End_it, and IV_it.
The symmetric binary links constituting the network are stored in 100 (N) variables
(clus_1–clus_100). In this example, we want to estimate the effect of End_it on Y_it,
controlling for X_it. We claim that End_it is endogenous, and we assume that IV_it
is a valid instrument for it.
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4.4.1 Pooled model

We first consider a pooled model in which we do not include any random or fixed effects.
We first fit the model assuming that observations’ errors are uncorrelated.11

. use https://acregstata.weebly.com/uploads/2/9/1/6/29167217/acregfakedata.dta,
> clear
. acreg Y_it X1_it (Z_it=IV_it)
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 37.874

Number of obs = 1000
Total (centered) SS = 2834382.139 Centered R2 = 0.4913
Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563
Residual SS = 1441795.144

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.02863 .2409828 4.27 0.000 .5563128 1.500948
X1_it 1.228864 .3320382 3.70 0.000 .5780809 1.879647
_cons 11.61852 3.013075 3.86 0.000 5.713007 17.52404

We then fit the same model accounting for correlation between errors from observations
of the same individual (id). We still assume that there is no correlation between in-
dividuals and do not consider the network structure yet. To do this, we use the panel
features (options id() and time()), and we set the lagcutoff() option to be equal to
or greater than the maximum distance in time between observations, which in this case
is 10.12

11. This is equivalent to using ivreg2 (Baum, Schaffer, and Stillman 2003) and the syntax ivreg2 Y_it
X1_it (End_it=IV_it), robust.

12. This is equivalent to clustering by individuals using ivreg2 (Baum, Schaffer, and Stillman 2003)
and the syntax ivreg2 Y_it X1_it (End_it=IV_it) cluster(id), or acreg: acreg Y_it X1_it
(End_it=IV_it), cluster(id).
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. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(10)
TEMPORAL CORRECTION
No HAC Correction
No Absorbed FEs
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 30.295

Number of obs = 1000
Total (centered) SS = 2834382.139 Centered R2 = 0.4913
Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563
Residual SS = 1441795.144

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.02863 .2720916 3.78 0.000 .4953406 1.56192
X1_it 1.228864 .3779895 3.25 0.001 .4880181 1.96971
_cons 11.61852 3.042037 3.82 0.000 5.656242 17.58081

We further fit the model above adding to the temporal correlation the correction for
network links, as proposed in our article (Colella et al. 2019). We assume that the
error term of each individual is correlated with that of another individual observed in
the same year if they are linked in the network while accounting for autocorrelation
between errors from observations of the same individual over time. To implement this
in acreg, we provide the variables containing the adjacency matrix as input in the
links_mat() option and set distcutoff(1).13 The correlation between individuals
that are linked but observed at different points in time is still assumed to be null.

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(10)
> network links_mat(clus*) distcutoff(1)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
No Absorbed FEs
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 22.720

Number of obs = 1000
Total (centered) SS = 2834382.139 Centered R2 = 0.4913
Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563
Residual SS = 1441795.144

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.02863 .3842782 2.68 0.007 .2754589 1.781802
X1_it 1.228864 .4495232 2.73 0.006 .3478147 2.109913
_cons 11.61852 4.743084 2.45 0.014 2.32225 20.9148

13. The total number of observations in the database is T (1,000), but the total number of individuals
is N (100). Because we are using the panel feature, acreg will require a link matrix formed by N
variables, not NT .
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4.4.2 Fixed-effects model

In the following example, we replicate the previous model, accounting for both spatial
and temporal correlation, but we add to the specification the individual fixed effects
using the option pfe1().

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(10)
> network links_mat(clus*) distcutoff(1) pfe1(id)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
Absorbed FE: id
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 38.899

Number of obs = 1000
Total (centered) SS = 2331112.842 Centered R2 = 0.4938
Total (uncentered) SS = 2331112.842 Uncentered R2 = 0.4938
Residual SS = 1180104.818

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.368636 .346849 3.95 0.000 .6888244 2.048448
X1_it .7942328 .3663375 2.17 0.030 .0762245 1.512241
_cons 1.10e-17 1.266864 0.00 1.000 -2.483007 2.483007

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

We now also add time fixed effects to the previous model, using the option pfe2().

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(10)
> network links_mat(clus*) distcutoff(1) pfe1(id) pfe2(time)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
Absorbed FE: id and time
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 39.988

Number of obs = 1000
Total (centered) SS = 2226516.365 Centered R2 = 0.4935
Total (uncentered) SS = 2226516.365 Uncentered R2 = 0.4935
Residual SS = 1127664.807

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.327506 .3119844 4.26 0.000 .7160278 1.938984
X1_it .8232877 .3574087 2.30 0.021 .1227796 1.523796
_cons -7.43e-17 .9797572 -0.00 1.000 -1.920289 1.920289

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2
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4.4.3 Additional options

Thresholds. In the next example, we still account for network correlation between ob-
servations of the same year, but we do not account for any kind of temporal correlation.
We do that by setting lagcutoff(0).

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(0)
> network links_mat(clus*) distcutoff(1)

(output omitted )
. estimates store nep1

Next we account for network correlation between observations of the same year, and
also for temporal correlation between observations from the same individual, but only
if they are observed with a difference of three years or less. We do that by setting
lagcutoff(3).

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(3)
> network links_mat(clus*) distcutoff(1)

(output omitted )
. estimates store nep2

HAC. In the previous examples, the matrix used for the computation of the VCV matrix
is binary. We can use the option hac to have a linear decay in time and compute HAC
standard errors, following Newey and West (1987).

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lagcutoff(3)
> network links_mat(clus*) distcutoff(1) hac

(output omitted )
. estimates store nep3

The following code reports the result of the three estimations in this subsection.

. esttab nep1 nep2 nep3, cells(b se) keep(X1_it Z_it) mtitles(lag0 lag10 hac)

(1) (2) (3)
lag0 lag10 hac
b/se b/se b/se

Z_it 1.02863 1.02863 1.02863
.3629168 .3783906 .3756538

X1_it 1.228864 1.228864 1.228864
.4116362 .4578899 .4442984

N 1000 1000 1000

4.5 Multiway clustering

In this section, we illustrate the multiway clustering environment. acreg allows for
the traditional one-dimension clustering, two-way clustering, and multiway cluster-
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ing; in the last two scenarios, two observations are considered to be correlated if
they share at least one cluster dimension (Cameron and Miller 2015). For this ex-
ample, we again use the data on the homicides in southern states of the United States.
homicide_1960_1990.dta is available at the Stata website. As in section 4.1, we con-
sider only the cross-sectional database for 1990, and we estimate the effect of income on
homicide rate, controlling for population and age. For the sake of illustration, we claim
that income is endogenous, and we assume that unemployment is a valid instrument for
it.

4.5.1 Two-way clustering

In this first example, we cluster standard errors following two dimensions: state and
age.

. webuse homicide1990.dta, clear
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. acreg hrate ln_population age (ln_income=unemployment), cluster(sfips age)
MULTIWAY CLUSTERING CORRECTION
Cluster variable(s): sfips age
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 141.918

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 1.818954 -4.85 0.000 -12.38717 -5.256998
ln_population 1.404433 .2960066 4.74 0.000 .8242705 1.984595

age -.281615 .1315389 -2.14 0.032 -.5394265 -.0238035
_cons 94.4605 17.95901 5.26 0.000 59.26148 129.6595

4.5.2 Multiway clustering

The example above can also be replicated using the ivreg2 command by simply typ-
ing ivreg2 hrate ln_population age (ln_income=unemployment), cluster(sfips
age). However, ivreg2 accommodates a maximum of two cluster variables, while acreg
allows for clustering any number of variables.14 In the following and last example, we
cluster standard errors following three dimensions: state, age, and homicide count.

14. The cgmreg command developed by Collin Cameron allows for multiway clustering but is not
suitable for 2SLS estimation.
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. acreg hrate ln_population age (ln_income=unemployment),
> cluster(sfips age hcount)
MULTIWAY CLUSTERING CORRECTION
Cluster variable(s): sfips age hcount
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 128.582

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 2.240027 -3.94 0.000 -13.21245 -4.431709
ln_population 1.404433 .7062929 1.99 0.047 .0201242 2.788741

age -.281615 .1261689 -2.23 0.026 -.5289014 -.0343285
_cons 94.4605 21.90178 4.31 0.000 51.53379 137.3872

5 Conclusion
In this article, we presented the acreg command, a new community-contributed com-
mand that allows for standard error correction in OLS and 2SLS estimation of models
with complex correlation structures. acreg can flexibly accommodate dependence of
the errors between units in space or in a network and across time. This command
includes most of the standard options present in previous commands to estimate regres-
sion coefficients. The correlation structure can be inputted by the user in a matrix form
or built from information on the geographic distance between spatial units or from the
links between observations. We also provided a broad collection of examples with both
cross-section and panel data.

6 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1

. net install st0703 (to install program files, if available)

. net get st0703 (to install ancillary files, if available)

Our statistical package (acreg) can be installed directly from the Statistical Software
Components Archive by typing ssc install acreg. Complementary material may be
found at the dedicated website: https://acregstata.weebly.com.

https://acregstata.weebly.com
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