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Abstract

We investigate the impact of climate shocks on farmer-herder violence, using ge-

olocalized data on conflict events for Africa, 1997-2014. We find that a one degree 

temperature increase yields a 54% increase in conflict probability in mixed areas pop-

ulated by both farmers and herders (versus 17% in non-mixed areas). Quantifying the 

impact of projected climate change in 2040, we find that –when factoring in the mag-

nifying effect of mixed settlements– annual conflicts are predicted to rise by a third. 

Drawing on a fine-grained analysis of groups’ mobility patterns, we show that resource 

competition is a major driver of farmer-herder violence.

Keywords: Violence, farmer-herder conflict, climate change, temperature, no-

madic, resource competition, Africa, Sahel.

JEL Classification: D74, N47, O13, Q34, Z13.



1 Introduction

Abel became a herder of sheep while Cain was a tiller of the soil. (...) And Cain said to Abel

his brother, ”Let us go out to the field,” and when they were in the field Cain rose against

Abel his brother and killed him. Bible, Genesis 4:1-18.

Many conflicts around the world have their roots in clashes between farmers and herders.1

In recent years, these conflicts have flamed up with intensity and scope, leading observers

to point out that the “Sahel is on fire” –both in terms of heat waves and armed fighting–

as illustrated by the Tuareg rebellions for over five decades in Mali, the Mauritania-Senegal

Border War, the recent fighting in Darfur, or the violence between nomadic herders from

northern Nigeria and sedentary agrarian communities in the central and southern zones.

A multitude of recent NGO reports and newspaper articles provide anecdotal evidence that

climatic stress magnifies competition over resources between farmers and herders, accounting

1Conflicts between sedentary groups and herders are as old as mankind, and even appear in the Old

Testament of the Bible in the account of Cain the settler killing his brother Abel the herder. Historical

examples are as diverse as the conquests of settlements by the nomadic Akkadians in ancient Mesopotamia,

the invasions of the nomadic White Huns into the Indian Gupta empire (featuring complex agriculture

and manufacture), the clashes between Attila’s nomadic Huns and the settlers of the Roman Empire, or

the centuries lasting conflict between Han Chinese and nomadic groups such as the Xiongnu, Mongols and

Tartars (culminating in the famous attacks led by Genghis Khan, and triggering the building of the Great

Wall of China) (see e.g. Bai and Kung, 2011).
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for a very substantial share of climate-related violence.2,3 A typical pattern is the one of

nomadic groups experiencing their economic base threatened by drought and having to move

beyond the borders of their traditional homelands, and thereby infringing in territories of

other ethnic groups, resulting in often very violent clashes.

Beyond case study evidence, this gloomy observation of the salience of farmer-herder

conflict is also supported by large-scale data. As described in detail below, roughly a third

of fatalities (30.6%) observed over the 1997-2014 period in Africa happen in areas populated

by both nomadic and sedentary groups, despite they represent only slightly above a tenth

of areas (13.4%). Given these magnitudes it is very surprising that hardly any quantitative

evidence exists on farmer-herder violence and that the related channels and policy responses

remain mostly unexplored.

In this paper we investigate the impact of climate shocks on violence between herders

and farmers by using geolocalized data on conflict events for all African countries over the

1997-2014 period. Our empirical analysis is based on the combination of newly merged

ethnic groups’ historic mode of settlement with the Armed Conflict Location Events Data

(ACLED), containing information on the location and type of conflict events and the in-

volved actors. The units of analysis are cells of 0.5×0.5 degree latitude and longitude

(approximately 55 km × 55 km at the equator). The core of the analysis consists in es-

timating a model of conflict occurrence at the local level and showing how the impact of

temperature shocks on violence are magnified in cells with mixed settlements (i.e. populated

2See Olsson and Siba (2013), International Crisis Group (2017) and also the coverage by CNN [Link], as

well other articles in The Economist including [Link] and [Link]. For example, as related by The Economist

of the 28th April 2018, “An attack on a church in Nigeria left at least 19 people dead, including two priests,

in the latest incident of violence between nomadic herders and farmers in the country’s volatile middle belt.

The escalating conflict is now claiming more lives than an insurgency in the north-east of the country by

jihadist groups, including Boko Haram”.

3See e.g. Middle East Eye [Link].
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by herders and farmers). The use of georeferenced information enables causal identification.

Including country-year fixed effects and cell fixed effects, we exploit in most of our economet-

ric specifications within-cell panel variations in violence due to exogenous changes in local

temperature.

Our baseline result is that a one degree increase in temperature leads to a 54% higher

conflict frequency in cells with mixed settlement, compared to 17% in non-mixed cells. The

effect is present even when controlling for the interaction between temperature and ethnic

polarization at the local level. Hence this piece of evidence uncovers a specific logic of the

herder-farmer interaction that goes beyond the standard ethnic polarization channel. This

finding is robust to alternative estimation techniques, disaggregation levels, and coding op-

tions of the climatic, conflict and ethnic variables. We then perform a quantification exercise

to gauge the magnitude of the effect at the macro-level. To this purpose, we forecast future

conflict likelihoods, drawing on cell-level projections of global warming until 2040. When

aggregated at the continental level, we find that, in absence of mixed settlements, climate-

induced conflicts would increase by 26 percent; this number goes up to 33 percent when

factoring in the magnifying effect of mixed settlements. Zooming in on the Sahel zone, these

numbers become even larger, respectively 40 percent (ignoring settlement patterns) and 54

percent (taking them into account). In summary, for both Africa and Sahel, the quantifi-

cation results show that the presence of mixed cells with nomads and settlers magnifies

climate-induced conflict risk by roughly one third (i.e. from 26 to 33 percent and from 40 to

54 percent). Note that these projections are based on intermediate global warming scenarios,

and that more decisive worldwide action against climate change and behavioral adaptations

could attenuate the estimated effects.

In the second part of the paper we show that conflicts between herders and farmers are

much more prevalent at the fringe between rangeland and farmland –a geographic buffer of

mixed usage that is suitable for both cattle herding and farming but is particularly vulner-

able to climate shocks. Our interpretation is that violence tends to be driven by economic
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competition over resources rather than being solely due to a clash of cultural norms leading

to ethnic hostility and raids, driven by coordination problems, difficulty of communication

and ancient hatred. It is important to notice, however, that even when accounting for the

fringe location of cells (and controlling for batteries of geological characteristics), mixed

settlements of farmer and herder groups continue to matter – which means that our mixed

settlement variable is not just picking up soil characteristics. In sum, we find a synergy

between mixed settlements and fringe location, pointing out that the joint presence of both

factors disproportionately increases the conflict risk under heat stress.

We also look at the diffusion over space of climate-induced violence, a question of central

importance for understanding how climate shocks drive the escalation of violence from local

into regional or national conflicts. More specifically, we show that spikes in temperature in

the ethnic homeland of a nomadic group tend to increase the spatial distance between its

fighting operations and its homeland. We find that this spatial spread of violence is magnified

in the case of events (i) being reported in the ACLED dataset as linked to disputes over

resources; (ii) taking place in cells with water supply or suitable for agriculture. Altogether,

this evidence is compatible with the view that heat shocks trigger mobility of nomadic groups

leading to violent competition for the remaining fertile lands.

In the last part of the paper we investigate how formal institutions are able to mitigate

climate-induced conflicts. The idea is that, in many places, informal arrangements between

ethnic groups traditionally regulate the management of common resources and settle disputes

over property rights. In times of disruptions, climate-induced migrations perturb these

fragile arrangements, harm cooperation and lead to an escalation of violence. By contrast,

formal institutions can provide a greater resilience to climate and migration shocks. We find

evidence that coherent democratic institutions, and in particular the protection of property

rights and land dispute resolution mechanisms are key factors attenuating the conflict-fuelling

effect of heat shocks. These results are in line with the Coasian logic of property rights’

attribution eliminating externalities, and thereby curbing the scope for conflict.
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Our findings speak to the fast-growing literature on climate security and the effects of

global warming on political stability which has documented a strong causal link between

temperature and conflict (see the surveys in Dell, Jones and Olken, 2014; Burke, Hsiang and

Miguel, 2015). Worries about the adverse effects of climate change appear with increasing

frequency on the front page of major newspapers, and in recent years research on climate

change and armed conflict has multiplied and received increasing public attention.4 However,

there is a substantial gap in our understanding of the underlying mechanisms linking heat to

hate or of the remedies available to reduce the political footprint of global warming. Unsur-

prisingly, Burke, Hsiang and Miguel (2015, p. 577) in their recent survey and meta-analysis

piece listed as first research priority the “better understanding of the mechanisms linking

climate to conflict”, while the review article of Dell, Jones and Olken (2014, p. 790) stresses

that ”there are plausibly important channels that have, to date, received comparatively little

study” and that “carefully understanding the specific mechanism would help target potential

intervention”. These are exactly the issues we investigate in the current paper.

Some candidate mechanisms have been emphasized in the literature. First, in an im-

portant and recent contribution, McGuirk and Burke (2020) provide compelling empirical

evidence on the prominent role played by the opportunity cost of fighting. Hence, it is highly

plausible that at least part of the impact of adverse weather shocks is transmitted through

lower agricultural productivity and a reduced opportunity cost of soldiering for producers

(see e.g. Miguel, Satyanath and Sergenti, 2004; Hidalgo et al., 2010; Fetzer, 2020). While

our analysis is consistent with the role played by agricultural productivity, we will emphasize

the major magnifying effect of a particular type of ethnic cleavage driving much of the role

of agricultural productivity in our sample.

A second proposed channel of transmission in the literature relates to adverse weather

4See for example the survey of Burke, Hsiang and Miguel (2015) and the recent overview piece in The

Economist [Link].
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shocks shrinking the economy, hence reducing the fiscal capacity of the government and

eventually its state capacity. This results in weaker governments that are more likely to be

swept aside in a coup in the event of adverse weather shocks (see Burke and Leigh, 2010;

Brückner and Ciccone, 2011; Chaney, 2013). While this channel of transmission is not at

odds with our findings, we control for it through the inclusion of country-year fixed effects.

In fact, our coefficient of interest is barely affected when accounting for country-year fixed

effects, which may indicate that country-level shocks such as regime change are not be the

dominant force at work for our sample.

A third potential mechanism concerns psychological channels of transmission of heat

fuelling crime, which may partly be linked to heat-induced alterations of biological processes

(see e.g. Jacob, Lefgren and Moretti, 2007; Ranson, 2014; Burke, Hsiang and Miguel, 2015;

Almås et al., 2019). Again, while it is plausible that part of the effects of climate shocks can

indeed be attributed to such psychological factors, we would expect such processes rooted

in human biology to be universally present throughout the sample, and hence picked up by

our batteries of fixed effects.

While the above mechanisms can surely explain part of the impact of climate on conflict,

another channel has received very little attention: The role of ethnic group migration and

ensuing clashes between different ethnic groups.5 International media have at length dis-

cussed climate-related movements of nomadic groups and violent massacres between farmers

and herders, but it has oddly received only little attention in academia. This is surprising,

as indeed there is a sizeable literature showing that adverse climate shocks lead to popu-

lation movements (Barrios, Bertinelli and Strobl, 2006; Feng, Krueger and Oppenheimer,

2010; Marchiori, Maystadt and Schumacher, 2012; Bohra-Mishra, Oppenheimer and Hsiang,

5See also the literature studying conflict between ethnic groups (which does not focus on climate-related

issues) (see e.g. Montalvo and Reynal-Querol, 2005a; Esteban, Mayoral and Ray, 2012; Rohner, Thoenig and

Zilibotti, 2013; Esteban, Morelli and Rohner, 2015; Özak and Depetris-Chauvin, 2020), as well as the recent

survey by Rohner (2022).
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2014), and one would intuitively expect that nomadic and settler ethnic groups disputing

the same plot of land may lead to tensions and violent disputes.

The existing literature on settler-nomad conflicts largely consists of findings in anthropol-

ogy, and most contributions focus on case study evidence (see the survey of Fratkin, 1997).

An example is the seminal work of Scott (2017). There is only limited quantitative evidence

such as Bai and Kung (2011) on China, Theisen (2012) on Kenya, Olsson and Siba (2013)

on Darfur and Ralston (2013) and Meier, Bond and Bond (2007) on the Karamoja border

region between Uganda and Kenya. Somewhat related is also the paper by Schleussner et al.

(2016) that studies whether disasters coincide with armed conflict in ethnically fractionalized

areas. 6

Given that our channel studies resource competition between rival production methods

(crop farming versus cattle herding), recent empirical work on agriculture and conflict is also

relevant (Harari and La Ferrara, 2018; Grosfeld, Sakalli and Zhuravskaya, 2020; Berman,

Couttenier and Soubeyran, 2021; Iyigun, Nunn and Qian, 2017). Theoretical work on pro-

duction technology, capital and labor-intensiveness, and conflict is also pertinent to our

research (Grossman, 1991; Dal Bó and Dal Bó, 2011; Botticini and Eckstein, 2014). Ul-

timately, our work is embedded in the growing literature that links ethnic cultural norms

and local institutions to conflict (Michalopoulos and Papaioannou, 2013; Grosjean, 2014;

Moscona, Nunn and Robinson, 2020; Rohner and Zhuravskaya, 2023).

6The Schleussner et al. (2016) data and methodology are very different from ours: They focus on disasters

(the magnitude of which may depend endogenously on a series of country characteristics, such as e.g. state

capacity) while we focus on (arguably more exogenous) temperature shocks. Further, contrary to Schleussner

et al. (2016), who compare the coincidence rate of conflict after a disaster with the pooled baseline risk for a

group of several countries and years, we control for time-invariant local characteristics using cell fixed effects

and for any shocks hitting a country in a given year through the inclusion of country-year fixed effects.

Their work is complementary to ours, and we find, consistently with them, some (small) impact of ethnic

diversity in general, but uncover very strong effects of heat shocks in the particular context of areas with

mixed settler-nomad population which is the novel angle we examine.
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As far as the methodological approach is concerned, our contribution is embedded in

the growing recent literature that uses fine-grained geo-localized data and leverages spatio-

temporal variations in local economic shocks. While some papers focus on local price shocks

(e.g., Berman et al. (2017) or McGuirk and Burke (2020)), the most relevant antecedents

to our current paper are the articles that examine the impact of local weather shocks, such

as Hsiang, Burke and Miguel (2013), Burke, Hsiang and Miguel (2015), or Iyigun, Nunn

and Qian (2017). Of particular relevance to our study is the work of Harari and La Ferrara

(2018) which investigates heterogeneous effects and spillovers of weather shocks, among other

factors.

The closest work to ours is by McGuirk and Nunn (2021), who link rainfall to transhu-

mant pastoralism and conflicts. Their analysis features several similarities with ours. In

particular, both papers study how adverse weather conditions fuel the scope for conflict be-

tween ethnic groups that differ with regard to settlement patterns and modes of production.

However, there are also some key differences. Their work focuses on transhumance rather

than nomadism, specifically on pastoralist groups moving early to farmlands in the wet sea-

son when facing adverse rainfall shocks, which challenges previous informal agreements on

seasonal land sharing. Their approach allows them to disentangle the roles of wet and dry

seasons and plant biomass growth and to provide evidence on the mechanism and mitigating

factors (in their case, representation in government). In contrast, our current paper stud-

ies the impacts of temperature shocks on conflict between nomadic pastoralist and farmer

groups that border each other. We provide evidence that these shocks amplify the move-

ment of nomadic pastoralists during heat stress (i.e., increasing the radius of migration),

but overall conflict is mitigated by country institutions, including property rights protec-

tion. Our framework also allows us to forecast how the effects of future global warming on

conflict depend on the group composition of local areas. Relative to the existing literature,

our paper provides novel insights on both the mechanism linking climate to conflict, as well

as adaptations or moderating factors that could help break the link between climate and
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conflict. Thus, in a nutshell, their paper and ours are complementary. While the two papers

investigate a similar topic, they use different exposures (rainfall versus temperature), some

different data, and different moderating factors.

In summary, our contribution to the literature is manifold. Firstly, our study is the

first to examine farmer-herder conflicts in the face of temperature shocks in the context of

ethno-economic conflict. Secondly, we cover an entire continent, Africa, which adds a broad

geographic scope to our analysis. Thirdly, our research provides evidence on the mecha-

nisms underlying these conflicts. Specifically, we highlight the significant role of magnified

migration patterns under climate stress, leading to violent competition over resources. Our

findings suggest that this configuration can account for approximately one-third of fatal con-

flicts in Africa and can amplify the impact of temperature shocks threefold. Furthermore,

our analysis enables the formulation of a series of policy recommendations. We emphasize

the importance of strengthening formal institutions for property rights protection and land

dispute resolution. These measures can substantially mitigate the risk of tensions between

farmers and herders during periods of heat stress, where economic disruptions jeopardize

traditional arrangements.

The remainder of the paper is organized as follows. Section 2 presents the data. Section

3 explains our identification strategy, and displays our baseline results, as well as a battery

of robustness checks. The mechanism driving the results is investigated in Section 4 and

policies mitigating the conflict are addressed in Section 5. Finally, Section 6 concludes.

2 Data

We organize our empirical analysis around a geo-referenced, annual panel dividing Africa

into equally-sized grid cells of .5 × .5 decimal degrees (corresponding to 55×55 km around
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the equator).7 Relying on cells rather than on administrative boundaries may attenuate

endogeneity concerns, and yields the further advantage that cells can be matched exactly

to the spatial unit of the weather data, which is our main source of variation across time.8

Since the prolonged droughts of the 1970s and 1980s in the Sahel, precipitation levels have

recovered and there is little to no evidence suggesting a large-scale desertification of the region

(Higginbottom and Symeonakis, 2014; Giannini, 2015; Sheen et al., 2017). In fact, some of

the main climate security threats in the Sahel have been centered around climate variability

rather than level changes in temperature and precipitation.9 Our cell-level analysis therefore

appears suitable to capture local year-to-year variability in local temperature. The unit of

observation in most of our analysis is cell × year.

7As mentioned earlier, this approach has become increasingly popular in recent years. Examples of recent

papers employing a similar methodology as ours include, among others, Michalopoulos and Papaioannou

(2013), Harari and La Ferrara (2018), Berman et al. (2017), Iyigun, Nunn and Qian (2017), Burgess et al.

(2017) and McGuirk and Burke (2020).

8This is ideal for two reasons: First, using exactly overlapping spatial units reinforces data precision,

because there is no need to average multiple cells for large administrative units that potentially could smooth

extreme weather events. Second, the temporal variation in temperature remains comparable across cells,

whereas differently sized administrative units may smooth the within standard deviation for larger units. For

example, calculating the average temperature for two countries that vastly vary in size (e.g. large Algeria vs.

small Togo) may smooth the data for Algeria, resulting in a smaller within-cell standard deviation. This may

be misinterpreted as differences in sensitivity to variations in temperature. Put differently, if large Algeria

were to display a lower impact of temperature on conflict this could be spuriously due to variation being

smoothed out.

9Such as climate insecurity in the Lake Chad region (Vivekananda et al., 2019).
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2.1 Data sources

Conflict data. The Armed Conflict Location and Event dataset (ACLED) by Raleigh

et al. (2010) is used to generate the main dependent variable for our analysis. ACLED

collects conflict event data from multiple accounts commonly published by regional and

national media, NGOs and humanitarian organizations. The data is available for the years

since 1997 for the African continent, which determines the starting point of our panel. The

date and geographic location (longitude and latitude) of each event are reported, which allows

us to assign each event to a cell-year pair. We build conflict, a binary variable coding

for conflict incidences that is equal to 1 when at least one ACLED event has occurred in a

given cell and year. Since information on events is based on media report, some regions may

receive a larger (lower) coverage than others, and consequently are over- (under-)represented

in ACLED. Our empirical design accounts for this issue with the inclusion of cell-fixed effects,

absorbing systematic coverage bias. Moreover, we show that our results are similar when

focusing on major, violent types of events for which over- or under- reporting is unlikely.

A desirable feature of ACLED is the availability of information on the type of conflict.

We exploit this information and only consider events categorized as “battles”, “violence

against civilians” or “riots”, thereby excluding less violent events. We prefer to restrict con-

flict events by type rather than by a fatality threshold, as the latter is subject to substantial

missing observations and is generally less reliable. The fighting actors are also identified

for each conflict event in ACLED. We exploit this information by matching actors to their

ethnic origins, hence allowing us to trace back rebel groups’ ethnic affiliations. As a ro-

bustness exercise, we also carry out our baseline analysis using an alternative data source

for georeferenced conflict events, the UCDP Georeferenced Event Dataset (GED) (Sundberg

and Melander, 2013).

Settlement mobility, herders, farmers. We measure ethnicities’ settlement mobility

with the variable “Settlement Patterns” (v30) from the Ethnographic Atlas (Murdock,
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1967).10 The Ethnographic Atlas comprises over 100 variables on historic ethnic traits and

cultural norms. While the data was published over 60 years ago, they are still considered

an accurate record of ethnic traits and have been used frequently in recent research.11 The

variable “Settlement Patterns” is categorically ordered with values ranging from 1 to 8, with

decreasing mobility in settlement as values increase.12 We assign to a group the status No-

mad equal to 1 if Settlement Patters are in category 1 or 2 (“Nomadic or fully migratory” or

“Seminomadic”), otherwise 0. In contrast, groups of lesser mobility in their settlement within

the categories 3 to 8 (“Semisendentary” to “Complex settlements”) are assigned the status

Settler equal 1, otherwise 0. We investigate alternative coding options in the sensitivity

analysis (Section 3.4).

In the rest of the paper, we consider these historical mobility characteristics, Nomad

and Settler, as proxies for ”herder” and ”farmer” groups, respectively. As shown below

in Figure 2, being classified as a historical settler group is strongly associated with living in

areas suitable for crop farming, while having been historically nomadic correlates strongly

with inhabiting soils that are infertile for farming, but suitable for herding.

Pre-sample location of ethnic groups. We exploit information on the geolocation of

the ethnic groups listed in the “Geo-referencing of Ethnic Groups” (GREG) dataset (Weid-

mann, Rod and Cederman, 2010). GREG is the geo-referenced version of the 1964 “Soviet

10The dataset was later digitalized by Gray (1999).

11Recent examples include Nunn (2008); Nunn and Wantchekon (2011); Michalopoulos and Papaioannou

(2013).

12In particular, a score of 1 = Nomadic or fully migratory; 2 = Seminomadic; 3 = Semisendentary; 4 =

Compact but impermanent settlements; 5 = Neighborhoods of dispersed family homesteads; 6 = Separated

hamlets, forming a single community; 7= Compact and relatively permanent settlements; 8 = Complex

settlements.
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Atlas Narodov Mira”, and covers 929 ethnic groups world wide, of which 221 are located

in Africa. We match its African sub-sample with the 401 ethnic groups retrieved from of

the Ethnographic Atlas, which leaves us with 216 groups after the data cleaning process.

For all these groups, we assemble information on their mobility patterns and location.13 In

particular, we generate a dummy Mixed settlement that codes for the coexistence of

nomads and settlers in a given cell. In other words, if at least one nomadic group and at

least one settler group are located in a cell, then Mixed settlement equals 1, otherwise

0. Our results are shown to be robust to selecting alternative thresholds for distinguishing

nomads and settlers, as well as to controlling for population density. Since the settlement

dummies are cross-sectional and pre-date our sample, they are taken as constant throughout

our sample period. We focus on pre-sample data and do not account for potential changes

in settlements caused by migration, since migration is potentially endogenous to conflict.

Note that ignoring changes in settlements introduces some imprecision, which may lead to

attenuation bias, making our results appear weaker than they are. As shown below, com-

paring data on settlements and historical homelands of ethnic groups at different points in

time reveals a high persistence in group location patterns. Little has changed over time and

transhumant pastoralism remains the most common cattle husbandry practice in the Sahel,

with 70-90 percent of herds being moved in line with the seasonal availability of grazings and

13The aforementioned Ethnographic Atlas can be linked to the ethnic groups in “The Tribal Map of

Africa” (Murdock, 1959). The map is generally considered as a record of historic homelands and was geo-

referenced by Nunn (2008) and later matched to the Ethnographic Atlas by Michalopoulos and Papaioannou

(2013). Nunn and Wantchekon (2011) show that the map is still fairly accurate today with a .55 correlation

between the location of ethnicities in the Tribal Map and geo-referenced individual ethnicity data in 2005

from Afrobarometer. Nevertheless, to minimize attenuation bias due to potential migration, we prefer to

retain a more recent map of Africa’s ethnic groups: This is the reason why we focus on the (pre-sample)

spatial projection of the African sub-sample of GREG. Unlike in Murdock’s map, the geographic extent of

groups in GREG can overlap (i.e. more than one group in a location) and ethnic groups can occur in more

than one location.
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water (Toure et al., 2012). Cattle herds tend to be moved northward (southward) during

rain (dry) season, usually operating within a 100 to 200 kilometers radius. For example in

Guinea, internal migratory routes can cover distances from as little as 20 kilometers up to

100 kilometers and more across localities (Higazi and Abubakar Ali, 2018).

Weather data. We focus on temperature shocks for two reasons. First, according to

the existing literature, temperature has a particularly strong impact on conflict and is –if

anything– measured more precisely than other weather variables (see the surveys of Dell,

Jones and Olken, 2014; Burke, Hsiang and Miguel, 2015). Second, and more substantially,

temperature is an input factor for both crop farmers and livestock herders, because heat

shocks reduce crop and plant yields (Grosfeld, Sakalli and Zhuravskaya, 2020) and increase

evaporation in seasonal floodplains, hence hitting crop farmers and herders alike and fuel-

ing resource competition between them.14 Various publicly available weather datasets have

been constructed using a variety of underlying methods, each one with its strengths and

weaknesses (an assessment of the different methods can be found in the two aforementioned

surveys). We retain monthly temperature data from the Climate Research Unit at the Uni-

versity of East Anglia (Jones and Harris, 2008). This dataset records monthly temperature

per grid cell, which we then average across time to achieve annual observations. The data

belong to the class of “gridded” weather data sets, which means that missing values in areas

without ground station coverage are interpolated based on a statistical procedure. This re-

sults in a balanced panel and makes the data set a popular choice among economists. A first

14In Appendix B.5 we also explore the impact of rainfall variations. One reason for which we prefer to use

temperature shocks in the baseline analysis is that, in the literature, the impact of rainfall has been found to

be less universally clear-cut than temperature with rain having greater importance for some countries than

for others, and the quality of rainfall data has been more often challenged. Moreover, the impact of rainfall

is typically non-monotonic (absence of rain causes drought, whereas a lot of rain causes flooding), while for

our African sample heat shocks have been found to have a monotonically detrimental impact.
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potential issue could be a lack of spatial precision caused by interpolation. However, the

spatial variation of temperature is relatively low, attenuating concerns about data precision

(Mitchell and Jones, 2005). Another potential issue could be the existence of spurious corre-

lation between the interpolation scheme of the temperature data and conflict. To minimize

this risk, we cross-validate our analysis with other temperature data.

Data on agriculture and pastoralist production. We rely on crop suitability data

from the Globcover dataset version 2.3 built by the European Space Agency (Bontemps

et al., 2011). We define a variable capturing agricultural suitability that includes land-use

classes 11, 14, 20 and 30. Soil infertility (bare land) is defined by the land-use class 200 of

Globcover. For each variable, the cell share is calculated. To measure livestock production,

we use data from the Gridded Livestock of the World (GLW) by FAO (Robinson, Franceschini

and Wint, 2007), which rely on sub-national censuses for several types of livestock for the

year 2005. Second, the Harmonized world soil database (HWSD) (Nachtergaele et al., 2008)

provides us with information on a range of inherent and dynamic soil properties that are

relevant for crop production.

Other data. For the analysis of heterogeneous effects and policy implications, we also in-

clude country-level data on institutional features from the Database of Political Institutions

(DPI) (Beck et al., 2001) and the Polity IV project (Marshall, Gurr and Jaggers, 2012).

Information on land dispute resolution is derived from the Ease of Doing Business Report

(World Bank, 2018) and information on political corruption is from the Varieties of Democ-

racy (V-Dem) Project (Coppedge et al., 2018). Information on federal systems is based on

data from Pippa Norris’ Democracy Time-series Dataset (Norris, 2009).

2.2 Descriptive statistics

Figure 1, left panel, displays the spatial distribution of the different settlement characteris-

tics. Out of a total of 9,687 sample cells, 3,579 (36.8%) are inhabited only by nomads, 4,854
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(49.8%) only by settlers and 1,308 (13.4%) are subject to mixed settlement. Mixed cells are

spatially clustered at the transitional outskirts of deserts. The line of mixed settlement cells

runs horizontally along the semi-arid Sahel zone that divides the Southern border of the Sa-

hara desert from increasingly humid areas towards the continent’s center. At the aggregate

level, twenty-seven African countries contain cells with settler-nomadic coexistence.

Figure 2 further provides insights into the geographic/agricultural characteristics facil-

itating each mobility mode. This log-scaled figure shows that agricultural suitability, the

Normalized Difference Vegetation Index (NDVI, a remotely-sensed measure of vegetation

strength, averaged from monthly data between 1997-2014) and soil infertility (agricultural

suitability and soil fertility based on the average of six two-month observations throughout

2009), are powerful predictors of mobility modes: Barren lands tend to be populated by

nomads while settlers are located in fertile areas with high crop suitability. Interestingly,

for each geographical feature, mixed cells lie in the intermediate range between nomadic

and settler areas. This observation shows that most mixed settlement cells correspond to

transition zones, at the fringe between geographical units –a pattern that we exploit for

the purpose of our empirical analysis in Section 4.2. Finally, these findings inform us on

the accuracy of the procedure building our main variable of interest, Mixed settlement,

that is based on pre-1970 historical data on ethnic groups and the matching of two different

datasets (settlement patterns and location). In this respect, the high correlation between

characteristics related to physical geography and human geography is a reassuring validity

check.

The spatial distribution of violence in Africa is depicted in the right panel of Figure 1, with

darker shadings indicating cells with a higher share of sample years with conflict incidence.

Conflict events are spread throughout the continent, with particularly important incidence

around the Sahel and in the Great Lakes region. Across all countries in our sample, 83,724

conflict events have been reported between 1997 and 2014, which we aggregate to 13,929

cell-year conflict incidents. Strikingly, the 13.4% of cells that have mixed settlement account
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for 17.6% of conflicts events and 30.6% of fatalities.

Figure 3 presents both between- and within- cell evidence of temperature variations in

Africa. The left panel shows large spatial variations in average temperatures across cells in

Africa. However, in our empirical design, the sources of identification are residual spatio-

temporal variations in temperatures after filtering out cell-level fixed effects. In this respect,

visual inspection of the right panel reassuringly suggests that within-cell variations in tem-

peratures are also substantial.

We supplement the previous graphical analysis with some descriptive statistics of our

main variables of interest in Table 1. Contrasting cells with mixed settlement and those

inhabited by either nomads or settlers only (No mix) indicates that mixed settlement cells

are significantly more prone to conflict, experience higher average temperatures and are

populated by a larger number of ethnic groups.

3 Empirical Analysis

In this section we discuss our identification strategy and present the baseline results. Then,

we provide a series of alternative specifications assessing the robustness of the results.

3.1 Identification strategy

Assessing the causal impact of mixed settlement on violence involves a range of method-

ological challenges. The most obvious one relates to omitted factors that drive a long-run

correlation between population admixture and latent proneness to conflict. Likely candi-

dates are terrain characteristic (soil quality, mining area, etc.). This is not a minor concern,

as the direction of this bias is most likely positive: Fertile and valuable lands tend to be

historically more contested between ethnic groups in the long run, leading to contempora-

neous conflict and potentially spatial co-existence of nomads and settlers. To address these

endogeneity concerns, our empirical design follows the identification strategy, developed in

17



Figure 1: Spatial and temporal Heterogeneity of Violence and Settlement

Settlement Patterns
Mixed settlement
Settlers only
Nomads only
Missing data

Conflict Frequency
0.00
0.00 - 0.25
0.25 - 0.50
0.50 - 0.75
0.75 - 1.00
Missing data

Notes: Left Panel: Spatial distribution of settlement patterns, based on settlement mobility data from Mur-
dock’s Ethnographic Atlas matched on to geolocation information from the Geo-referencing of Ethnic Groups
dataset (GREG). Green (blue) cells represent regions inhabited by sedentary (nomadic) ethnic groups only.
Red cells represent regions in which settlers and nomads coexist. Grey areas indicate missing data. Right
Panel: Spatial distribution of conflict, 1997-2014. Darker shadings indicate cells with a higher proportion of
years with at least one conflict incident, based on data from the Armed Conflict Location and Event Data
Project (ACLED).
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Figure 2: Resource Availability, Mobility and Settlement Style
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Notes: The sample includes 9,687 cells and considers average values over the period 1997-2014. This figure
depicts box plots, dividing the data into three mobility categories: Cells with nomads only, mixed settlement
and settlers only. The vertical axis measures the cell average (agricultural suitability and infertile soil) /
Value multiplied by 100 (NDVI) in each category in a logarithmic scale for presentation purposes. The
median is indicated by the red dot; the 25th (75th) percentile is indicated by the lower (upper) bound of
the box; the lower (upper) adjacent value is indicated by the limits of the lower (upper) whisker. The first
set of box plots uses land cover data by Globcover to depict the average land share suitable for agriculture.
The second set of box plots uses the Normalized Difference Vegetation Index (NDVI), derived from data by
NOAA (Vermote et al., 2014) to approximate the average vegetational strength in cells. The third set of
box plots uses land cover data by Globcover to depict the average land share of bare soil.
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Figure 3: Spatial and Temporal Heterogeneity of Temperature

Average Temperature
> 27.50
25.00 - 27.50
22.50 - 25.00
20.00 - 22.50
< 20.00
Missing data

Cell-SD Temperature
> 0.55
0.45 - 0.55
0.35 - 0.45
0.25 - 0.35
< 0.25
Missing data

Notes: Left Panel: Cell-level average in temperature in degree Celsius, over the sample period 1997-2014.
Blue (red) color indicates areas with low (high) average temperature. Grey areas indicate missing data.
Right Panel: Cell-level standard deviation in annual temperature in degree Celsius, over the sample period
1997-2014. Blue (red) color indicates areas with low (high) variability in temperature over time. Temperature
data is from the Climatic Research United (CRU).
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Table 1: Averages and Differences of the Types of Settlement

Mixed settlement No mix Total Mean difference (Mix - No mix)

P(Conflict > 0) 0.090 0.078 0.080 0.011a

(0.286) (0.269) (0.271) (0.002)

Battles 0.056 0.041 0.043 0.015a

(0.229) (0.197) (0.202) (0.001)

Riots 0.031 0.029 0.029 0.002c

(0.172) (0.167) (0.167) (0.001)

Violence against civilians 0.048 0.044 0.044 0.005a

(0.214) (0.204) (0.206) (0.001)

Temperature (◦C) 24.972 24.740 24.771 0.232a

(3.654) (3.418) (3.451) (0.024)

Number of tribes 4.210 3.628 3.706 0.582a

(2.825) (3.143) (3.108) (0.022)

Share - Mixed settlement 0.134

Share - Nomads only 0.367

(sd) (sd) (sd) (se)

Notes: The sample includes 9,687 cells for the years 1997-2014. Columns 1-3: Summary statistics. Columns
1-2 divide cells along mobility patterns, based on settlement mobility data from Murdock’s Ethnographic
Atlas matched onto geolocation information from the Geo-referencing of Ethnic Groups dataset (GREG).
Column 1 depicts the average (standard deviation) of cells inhabited by at least one settled and at least one
nomadic group (“Mixed settlement”); column 2 identifies cells inhabited by either settlers or nomads (“No
mix”). Column 3 considers the complete sample. Column 4 performs a difference of mean test between
mixed and non-mixed settlement cells, with the following significant levels: c significant at 10%; b significant
at 5%; a significant at 1%. Conflict indices are based on data by the Armed Conflict Location and Event
dataset (ACLED); annual temperature averages are derived from monthly temperature data by the Climatic
Research United (CRU).
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recent conflict literature, which exploits spatial variations in rainfall shocks or commodity

price shocks (Miguel, Satyanath and Sergenti, 2004; Dube and Vargas, 2013; Berman et al.,

2017). While we instead consider temperature shocks, the basic idea remains similar, as we

interact those shocks with local characteristics of the cell to identify our main effects. The

potential confounders and omitted variables are absorbed by a rich structure of fixed effects

(notably cell fixed effects). Many methodological aspects of the estimation procedure are

discussed in Berman et al. (2017).

To account for local determinants of violence and for the sake of exogeneity, we exploit

the variations in local temperatures and estimate a specification of the following form:

conflictkt = α× Tkt + β × Tkt ×Mixed settlementk + FEk + FEit + Ckt
′δ + εkt, (1)

where (k, t, i) denote respectively cell, year, and country. The dependent variable, conflictkt

is a variable measuring the incidence of conflict events at the cell-year level, i.e., a binary

variable coding for non-zero events in the ACLED dataset on civil conflicts. Alternative

measures of violence are considered in the sensitivity analysis. FEk are cell fixed effects,

FEit are country×year fixed effects, and Ckt is a vector of other potential determinants

of conflicts. The vector of cell fixed effects picks up all time-invariant unobserved hetero-

geneity, such as land quality, ethnic polarization, mountainous terrain or being in a mining

region. Country-year fixed effects filter out all country-wide shocks affecting violence such

as a recession, an election year, a collapse of the rule of law or changes in property rights.

The main explanatory variable, Mixed settlementk is a binary variable coding for

mixed settlement in cell k. The variable Tkt corresponds to the average temperature in

degree Celsius in cell k and year t. Our sensitivity analysis investigates alternative coding

rule for Mixed settlementk and Tkt (Section 3.4). In equation (1) we focus primarily

on the estimates of β, the coefficient of the interaction term between temperature and the
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mixed settlement dummy. This coefficient can be interpreted as the impact on local vi-

olence of an exogenous local heat shock (i.e. increase in local temperature with respect

to its long-run average) in cells where nomads and settlers co-exist. Given the inclusion

of cell fixed effects, the identifying variations stem from within-cell across-year changes in

temperature.15 Our identification assumption relies on the exogeneity of the interaction

term, Tkt × Mixed settlementk with respect to the local determinants of conflict. As

for temperature, this assumption is natural; and as far as the (time-invariant) mixed settle-

ment measure is concerned, we include cell fixed effects (which filter out all time-invariant

variation).

Due to the high-dimensional battery of fixed effects (i.e. more than 880 country×year

fixed effects and 9000 cell fixed effects in most specifications), we estimate equation (1)

using a Linear Probability Model in our baseline specifications. Spatial correlation must

be taken into account, given the high spatial resolution of the data. In all specifications

we estimate standard errors with a spatial HAC correction allowing for both cross-sectional

spatial correlation and location-specific serial correlation, drawing on the method developed

by Conley (1999) and recently applied in König et al. (2017). We use the acreg command

developed by Colella et al. (2019). No constraint is imposed on the temporal decay for

the Newey-West/Bartlett kernel that weights serial correlation across time periods. In the

spatial dimension we retain a radius of 500 km for the spatial kernel, close to the median

internal distance in our sample of African countries according to the CEPII geodist dataset.

3.2 Baseline results

Table 2 reports the baseline estimation results of equation (1). In panel A, the dependent

variable refers to the incidence of conflict events for all types of violence (i.e. battles, violence

15In other words, equation (1) is equivalent to a model where Tkt is de-trended by its cell-specific time-

average T̄k in both the linear and interaction terms.
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against civilians, riots). In panel B, it refers to the incidence of land-related violence only.

We start with panel A. In column 1 we first assess the impact of temperature shocks on

conflict and then compare our results to the existing evidence. To this purpose we estimate

a partial version of the model where only the linear term of temperature is included. We

find that a local heat shock (average temperature being filtered out by cell fixed effects)

increases the likelihood of local conflict incidence. Reassuringly for the quality of our data

and scrutinized sample of countries, this is in line with the literature, both qualitatively and

quantitatively: Our point estimate implies that a 1 degree (1σ within) increase in tempera-

ture translates into a 25% (8.7%) increase in conflict probability, while the meta-analysis by

Burke, Hsiang and Miguel (2015) finds an average effect of 13.2% per 1σ increase in temper-

ature. Note that temperature could have a non-monotonic effect on conflict, as extremely

cold regions may economically benefit from years with milder temperatures. However, mod-

ern Africa is highly unlikely to benefit from heat shocks, with an average temperature of

24.7 degree Celsius throughout our sample. Additionally, the existing literature finds that

heat shocks fuel violence in hot regions (see Dell, Jones and Olken, 2014; Burke, Hsiang and

Miguel, 2015).

In column 2 we turn to the estimation of the full version of the model. The interaction

term between temperature and population mixture, our coefficient of interest, is positive

and significant at the 1 percent level. Thus, a spike in temperature increases conflict risk in

cells where nomads and settlers co-exist. This difference is quantitatively large. A 1 degree

Celsius increase in temperature leads to an increase in conflict frequency with respect to the

sample mean equal to 17.5% in non-mixed cells (= 0.014/0.080) versus 53.8% in mixed cells

(= (0.014 + 0.029)/0.080).

A candidate mechanism for explaining this finding is ethnic polarization (e.g. Montalvo

and Reynal-Querol, 2005b; Esteban, Mayoral and Ray, 2012). As previously mentioned,

mixed settlement cells are inhabited by two or more ethnic groups (i.e. at least one nomad

and one settler group), hence such cells are more likely to be polarized, which could poten-
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Table 2: Mixed Settlement and Conflict

Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

Panel A. Baseline regressions

T 0.020a 0.014c 0.013 0.010 0.016
(0.007) (0.007) (0.009) (0.008) (0.015)

T × Mixed settlement 0.029a 0.028a 0.058a

(0.010) (0.010) (0.021)

T × Polarization 0.012 0.007 0.024
(0.009) (0.009) (0.018)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Dep. var. mean .080 .080 .080 .080 .108
Cell FE X X X X X
Country × Year FE X X X X X

Panel B. Dependent variable: land-related violence

T 0.001 -0.001 -0.000 -0.001 -0.002
(0.003) (0.003) (0.004) (0.004) (0.004)

T × Mixed settlement 0.010b 0.010b 0.008c

(0.004) (0.004) (0.005)

T × Polarization 0.003 0.001 0.001
(0.004) (0.003) (0.004)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Dep. var. mean .014 .014 .014 .014 .014
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells
for the years 1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with
both settlers and nomads; Polarization measures cell-level polarization. Dependent variables - Panel A:
incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year;
ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. Dependent variables
- Panel B: Conflict events are restricted to events related to land-related key words via variable ”notes” in
ACLED. The list of key phrases is: land dispute, dispute over land, control of land, over land, clash over
land, land grab, farm land, land invaders, land invasion, land redistribution, land battle, over cattle and land,
invade land, over disputed land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture, cow,
cattle, farm, crop, harvest. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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tially be a driver of violence. We investigate this question in the next two columns, which aim

to demonstrate a specificity of the farmer-herder interaction that goes beyond the standard

polarization channel. In column 3 we replicate the previous specification with ethnic polar-

ization substituting to mixed settlements in the interaction term. In line with the existing

literature we find that polarization magnifies the conflict risk. However, when we include

both the interaction terms with mixed settlements and with polarization simultaneously in

column 4, we observe that our coefficient of interest (i.e. temperature shocks interacted with

mixed settlements) retains a highly statistically significant effect with a magnitude that is

comparable to the one of column 2 (while the interaction with ethnic polarization is not

statistically significant). This confirms that the conflict-proneness of farmer-herder admix-

ture has a logic that is different from the one of ethnically polarized areas. Column 4 is our

preferred specification.

In column 5 we extend this analysis by looking at the intensive margin. To this purpose

we replicate column 4 with an alternative measurement of the dependent variable, namely

the log(number of conflict events + 1) rather than a binary incidence variable. The additive

shifter +1 is a standard procedure to cope with the very large number of zeros on the left-

hand side (92% of observations). The benefit is that non-violent cells are not dropped from

the estimation sample, a desirable feature given the very large number of fixed-effects to

be estimated. However, this functional form is distorting the distribution of the variable

and this potentially affects the point estimates. We investigate alternative coding options

and specifications in our robustness analysis. Generally, we find a positive and statistically

significant coefficient of the interaction term. This shows that heat shocks magnify not only

the incidence (column 4) but also the intensity of violence (column 5) in areas where nomads

and settlers co-exist.

In panel B of Table 2, we look more closely at fighting over resources. To this purpose,

we make use of fine-grained information on the nature of each violent event, a key feature

of the ACLED dataset. More precisely, we code as “land-related violence” the incidence of
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events whose description in ACLED contains at least one word from a list of key words that

pertain to resources and competition.16 The sample mean of land-related violence is 0.014,

thus amounting to roughly one fifth of overall violence (sample mean of 0.08). Equipped with

this new dependent variable, we replicate the specifications of panel A. Again, we see that

the coefficient of the interaction term is positive and statistically significant in all columns.

In comparison to panel A, the magnitude of this coefficient, though smaller in level, is in fact

larger in relative terms (with respect to the sample mean). For example, in column 2, panel

B, a 1 degree Celsius increase in temperature leads to an increase in land-related conflict

frequency equal to 71.4% in mixed cells (= 0.010/0.014); its counterpart in panel A is equal

to 53.8%. Hence, temperature shocks tend to increase land-related violence to a relatively

larger extent than general violence. This finding is our first piece of evidence supporting the

view that farmer-herder violence is closely related to fighting over resources.

3.3 Quantification: Climate change and future farmer-herder con-

flicts

Based on the baseline estimates of Table 2, column 2, we now report a quantification exercise

of how climate change may exacerbate the risk of conflict by 2040. Data and methodology

are discussed in greater details in Appendix A.

Our procedure draws on existing projections of expected global warming at the cell level.

We use forecasting data on monthly surface air temperature at the 50km spatial resolu-

tion from the Coordinated Regional Downscaling Experiment (CORDEX) (Gutowski et al.,

2016); this multi-institutional project endorsed by the World Climate Research Programme

16The list of key words is: land dispute, dispute over land, control of land, over land, clash over land, land

grab, farm land, land invaders, land invasion, land redistribution, land battle, over cattle and land, invade

land, over disputed land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture, cow, cattle,

farm, crop, harvest.
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produces data and studies that are regularly reported by the Intergovernmental Panel on

Climate Change (IPCC). In line with existing work (see e.g. Burke et al. (2009)), we do not

rely on a single projection, but instead perform a multi model ensemble by calculating the

arithmetic mean across four climate model temperature outputs. There remains of course

much uncertainty for every forecast given the wide range of policy choices available to govern-

ments that will impact on global warming. We focus on the intermediate emission scenario

RCP4.5, which assumes the stabilization of the radiative forcing level and is considered as

one of the more likely outcomes (Thomson et al., 2011; Pachauri et al., 2014).

For each cell, we compute the prospective temperature in 2040 as the cross-model arith-

metic mean averaged over the 2030-2049 period (to limit weight on a potential ”outlier” year).

To allow valid comparisons, retrospective temperature in 1995 must also be model-generated

and thus is computed as the cross-model arithmetic mean averaged over the 1985-2004 pe-

riod. Note that 1995 has been chosen as reference year because it is close to the starting year

of our sample period (1997) and the CORDEX data are available only up to 2005. The cell-

level change in temperature between 1995 and 2040 is simply built as the difference between

prospective and retrospective temperatures. Finally, this cell-level temperature change is

multiplied by the estimated coefficient of 0.014 for non-mixed cells and 0.043 (=0.014 +

0.029) for mixed cells (Table 2 and col.2). We then obtain the projected change in violent

incident likelihood associated with climate change for each cell.

The projected conflict increases due to global warming are depicted below in Figure 4,

both at the local and national levels. The left panel displays the surge in conflict scaled as a

change in violent incident likelihood for each cell. Strikingly, particularly large numbers are

found in the Sahel region. Two factors drive this pattern: First, this region is estimated to

experience particularly large temperature increases, and second, the presence of many mixed

settlements magnifies the effect. In the right panel, climate-induced increase in conflict

incidents is reported for the ten most violent Sub-Saharan countries over 1997-2014 with

at least 1% share of mixed cells. Our quantification procedure allows us to disentangle the
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purely ”meteorological” effect of rising temperatures from its interaction with the ”political”

magnifying effect of mixed settlements. We accordingly report the share of the overall impact

that is due to the temperature shock only (dark gray) and its interaction with the presence

of mixed settlements (light gray) on the right panel. The complete results at the country

level for all African countries are reported in the Appendix Table A1.

Aggregating over all cells, we are able to compute a projected number of conflicts for the

whole of Africa. We find that, when ignoring the effect of mixed settlements, conflicts are

predicted to increase by 26 percent due to global warming, while this number goes up to 33

percent when taking into account the magnifying effect of mixed settlements.17 These results

are comparable to the existing quantification of Burke et al. (2009) who also use climate

projections to predict a 54% increase in armed conflicts incidence by 2030. A noticeable

difference is that our approach factors in the heterogeneity of the effect with respect to

ethnics politics and farmer-herder tensions. When zooming in on the Sahel zone – which

is an area often pinpointed in policy debates – these numbers become even larger. Global

warming is projected to increase conflicts in Sahel by 40 percent when ignoring settlement

patterns, and by 54 percent when taking the magnifying effect of mixed settlements into

account. In summary, the quantification results show that the presence of mixed cells with

nomads and settlers magnifies climate-induced conflict risk by roughly one third (from 26 to

33 percent and 40 to 54 percent respectively), for both Africa and the Sahel.

17In an average year during our sample period there are 773 incidences of conflict, which is projected

to increase by 200 events on average when ignoring the magnifying effect of mixed cells (i.e. applying the

estimated coefficient of 0.014 from Table 2, col.2, for all cells ), while it increases by 259 events when taking

into account the magnifying effect (applying the augmented coefficient of 0.014 + 0.029 = 0.043 for mixed

cells).
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Figure 4: Climate Change and Projected Violence
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Notes: Left Panel: For each cell, the map depicts the projected change in conflict probability associated
with climate change by 2040 (based on estimates in Table 2, col. 2). Temperature forecast data come from
CORDEX. Right Panel: For each country, the bar represents climate-driven projected change in conflict
incidents in 2040 with respect to its 1997-2014 average. Dark gray section of the bar depicts the change that
is attributable to temperature variations only (ignoring mixed settlement patterns) and light gray section is
the additional effect resulting from the interaction of temperature variations and mixed settlement patterns.
The list of countries shown is restricted to the ten most violent Sub-Saharan countries between 1997-2014,
with at least 1% share of mixed cells.
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3.4 Sensitivity analysis

In this section, we perform a battery of sensitivity checks to test for the robustness of the

baseline estimates of column 4, Table 2. In what follows, we report only a summary of

the main results; all tables and a detailed discussion are relegated to the Online Appendix

section B.

Types, intensity and persistence of conflicts. In Table B1 we study the impact of

temperature shocks in mixed settlements on different types and intensities of conflict events.

The purpose of this exercise is to assess whether the baseline findings are driven by particular

conflict types, and whether they also hold when focusing on battles and high-intensity events,

for which reporting bias is least likely. We find that our baseline results continue to hold for

all conflict types considered, i.e. for battles, riots and violence against civilians, and that

the effect of temperature shocks in mixed settlements is stronger for large-scale events. This

analysis attenuates concerns about reporting bias and highlights the great policy relevance

of tackling such conflicts. In Table B2 we take into account the potential persistence of

violence, by controlling for conflict in the past. In such a dynamic panel setup, however, it is

well-known (Nickell, 1981) that the results need to be interpreted with caution. Nevertheless,

our coefficient of interest retains statistical significance and remains of a similar magnitude.

Interpretation of the mixed settlement variable. Table B3 aims at controlling for the

influence of nomadic presence, addressing potential concerns that, in the baseline analysis,

the variable mixed settlement could simply pick up the impact on violence of groups with

greater geographical mobility. In this table, we find that temperature shocks interacted with

nomadic presence –if anything– reduces the conflict risk, and that it is indeed the co-existence

of nomadic and sedentary groups in the same location that magnifies the violent impact of

temperature shocks. Additionally, in Table B4 we control for the presence of a series of

possible confounders (interacted with temperature shocks) that may correlate with mixed
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settlements. With respect to its baseline counterpart, the point estimate is unaffected when

controlling for population density, the number of ethnic groups, and ethnic fractionalization.

Last but not least, we show that our findings continue to hold when controlling for a battery

of fine-grained ethnic polarization and fractionalization measures that take into account

the extent of linguistic differences between ethnic groups in a given cell. These results are

reported in Figure B5.

Definition of settlement patterns. In Table B5 we investigate the sensitivity of our

results to the use of alternative coding rules for categorizing ethnic groups into nomads

and settlers. We continue to detect strong and robust effects– independently of the applied

definition. Furthermore, we look at whether the results are driven by a specific subset of

countries. As detailed in the Online Appendix Section B, one stark feature of our group

matching algorithm is that Egypt is coded as having mixed cells across the whole country.

In Table B6 we show that our results persist when Egypt is removed from the estimation

sample. Next, in the second half of the same table, we restrict the sample to countries

bordering the Sahel zone, which is motivated by the observation that farmer-herder conflicts

appear to be particularly pronounced in this region. Our baseline results prove to be robust

to all of these sensitivity exercises.

Country borders. In Table B7 we investigate whether the presence of a country border

in a given cell could represent a confounding factor. It is found that neither excluding border

cells from the sample, nor controlling for the distance to the closest border affect our baseline

results.

Measurement of weather shocks. We also explore alternative options for measuring our

main source of exogenous variations, which are weather shocks. We begin by investigating

alternative functional forms and weighting of temperature shocks in Table B8. The findings

indicate that our baseline results are not sensitive to how a temperature shock is defined.
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Next, in Table B9, we control for the role of precipitation (rain) and its interaction with

temperature shocks. Although we do not observe an effect of rainfall shocks, we continue to

find a strong and robust effect of the explanatory variable of interest, temperature shocks,

in mixed settlement cells. Additionally, we examine whether rainfall shocks have a distinct

impact in cells with mixed settlement in Table B10. Overall, the interaction term between

temperature and mixed settlement maintains its sign, magnitude, and statistical significance

across all specifications. However, we do not detect any short-run effect of rainfall shocks in

mixed settlement.

Further investigation into this question is conducted by estimating the effect of drought.

Importantly, droughts have medium-run effects that extend beyond short-run temperature

and rainfall shocks. They are frequent in parts of Sub-Saharan Africa, particularly in the Sa-

hel and the Horn of Africa, where farmers and herders share land. Our analysis in Table B11

reveals that the most severe form of drought increases violence in mixed cells. Reassuringly,

even after controlling for drought, the coefficient of the interaction term between temper-

ature and mixed settlement remains statistically significant, indicating the robustness of

this result. However, it is noteworthy that its magnitude slightly decreases, suggesting that

persistent drought may exert some influence on the baseline effect.

Climate zones, biomes and soil properties. In Tables B12 and B13 we exclude the

possibility that our results are driven by underlying climate zones or areas with particular

vegetation (so-called biomes). We also check in Table B14 that our results are robust to

controlling for underlying soil stress.

Lags and Leads. Another key check is an analysis of the leads and lags, which we perform

in Figure B6. This investigation shows that reassuringly there appears no pre-trend, and

that the effect fades away after one period. Further, as expected, we show that also in this

setting the treatment has a larger effect in mixed cells than in non-mixed ones, providing

further support for our hypothesis.
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Further robustness exercises. We also replicate our baseline analysis using alternative

conflict data from the UCDP georeferenced Event Dataset (Sundberg and Melander, 2013)

that focuses on violence perpetrated by larger-scale and more structured groups. Given that

part of farmer-herder violence corresponds to localized fighting by informal (non-structured)

actors, we expect weaker results for such a more restrictive actor definition (that leads to a

drop in observed fighting events by 50 percent). Our findings, as presented in Table B15 ,

are as follows: While the results are qualitatively consistent, the coefficients are less precisely

estimated. Another sensitivity check focuses on an alternative temperature source issued by

the University of Delaware (UDEL) (Matsuura and Willmott, 2012). As depicted in Table

B16, the coefficient of interest remains positive and highly significant, although of smaller

magnitude. Further, in Table B17, we study whether we also find an association between

mixed settlements and conflict in a cross-sectional setting (refraining from using temperature

shocks). Our findings indeed document a positive association between mixed settlement and

conflict. Finally, in Table B18 we control for basin-specific trends and Table B20 allows for

spatial and serial correlation in standard errors. For both exercises, the coefficient of interest

retains its statistical significance.

4 Mechanisms at work

As mentioned in the introduction, several mechanisms may be at work for explaining our

findings: Economic competition for access to resources (land), long-run grievances, or dif-

ferences in social norms and informal institutions. In this section, we focus specifically on

the economic competition channel, and provide various pieces of evidence suggesting that it

is empirically relevant. The main objective of this section is to test for this mechanism by

exploiting the various dimensions of our data (i.e. time-series, geolocation, and the identity

of the perpetrators). We first provide a verbal theory highlighting how climate-induced mo-

bility of nomads harms local social arrangements on the management of common land and
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resources, and can trigger conflicts. We then revisit our main findings in the spirit of disen-

tangling the competition channel from other channels of transmission. Finally, we document

climate-induced mobility of nomadic groups.

4.1 Conceptual framework

Competition channel. Nomads and settlers differ in a variety of dimensions. The main

difference is in terms of production technology, as they typically operate in areas with dif-

ferent soil characteristics. Nomads make an extensive use of low quality open rangeland for

cattle herding, while settlers focus on cultivating enclosed tracts of better quality farmland

for both crop farming and grazing.18 Hence, in most instances, they do not compete for

the same land. However, as well documented in the literature, adverse climatic and weather

shocks put pressure on grasslands (Gibson and Newman (2019)) and result in a sizeable de-

cline of agricultural yields. This exacerbates the potential for resource competition between

farmers and herders. As reported in many case studies (see e.g. Benjaminsen, Maganga and

Abdallah, 2009; Olsson and Siba, 2013; Olaniyan and Okeke-Uzodike, 2015; International

Crisis Group, 2017), conflicts arise in areas of mixed usage, typically at the fringe between

rangelands and farmlands. There, nomads may be tempted to bring their cattle on cultivated

lands and competition on scarce resources leads to conflicts. In essence, this economic “Com-

petition” channel states that heat shocks lead to property right disputes between nomads

and settlers over the remaining fertile land at the fringe between rangeland and farmland.

This results in conflicts being driven both by the motivation to grab a scarce resource and

the lower opportunity costs resulting from a lower productivity in droughts.

18In modern times, almost all nomadic tribes operate cattle herding, only few of them are hunter/gatherers

(see Dyson-Hudson and Dyson-Hudson, 1980); by contrast, crop farming leads to sedentary life because the

time horizon of the investment in farming is long (Goldstein and Udry, 2008). That being said, settlers also

practice cattle herding but in that case it is mostly operated in enclosed pastures.
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Institutions regulating the commons. This issue is magnified by the lack of formal

institutions aiming at establishing and enforcing property rights (see the classic argument

by Coase (1960) which he incidentally illustrates with conflicts between herders and crop

farmers). In these (often) remote territories, state capacity is weak and regulation by central

authorities is absent. However, as shown e.g. Ostrom (1990, 2009), Williamson (2009) or

Nyborg et al. (2016), informal institutions and social norms may emerge with time and

substitute to the lack of formal institutions. The idea is that repeated interactions between

nomads and settlers at the fringe between rangeland and farmland enable users of this

territory to establish rules for how the commons (e.g water) and land (e.g. pastures) have

to be cared for and used in a way that is both economically and ecologically sustainable.

From a game-theoretic standpoint, these arrangements rely on the perspective that fu-

ture interactions discipline current compliance to the rule and cooperation. Hence, they

are naturally vulnerable to short-run changes in population composition: migration inflows

of individuals originating from far-distant groups, with different habits and norms, reduce

information and memory of the game; migration outflows mechanically reduce the time hori-

zon of the game and unravel cooperation (see e.g. the experimental evidence of Duffy and

Ochs (2009) that cooperation is easier to sustain in repeated games with fixed pairs than

with random matching).

Finally, the last element of our argument is that the portability of the productive asset

of nomads and settlers differs. Transhumant pastoralism follows the seasonal availability of

fodder. For instance in Mali, cattle herds move North during the rain season and return

South when resources shrink during dry season (Toure et al., 2012). In time of climatic

hardship farmers cannot relocate their asset (land) but herders can move their cattle to

more fertile areas. The larger the temperature shock is, the more likely nomads are to move

to new areas far from their traditional territory of transhumance. And this comes at the risk

of being confronted to new ethnic/social groups and destabilized local social arrangements

in the management of the commons. In other words, when climate change forces nomads to
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migrate, this tends to erode informal institutions and trigger conflict on land and resources

both at destination and origin.

Cultural channel. An alternative explanation for farmer and herder clashes could be the

differences in social norms between different ethnic groups, which may make communication

and dispute resolution harder. As Marxists would put it, the infrastructure (production

technology) influences the superstructure (community politics and social norms). Thus,

over centuries, differences in social organization and norms of behavior may have emerged

between nomadic and sedentary groups and within these categories. Hence, according to

this “persistent culture” explanation (see the recent survey by Voth et al. (2020)), clashing

cultural norms lead to ethnic hostility and raids, driven by coordination problems, difficulty

of communication and ancient hatred.

4.2 Competition vs Culture

We now aim at disentangling the economic competition channel from the cultural persistence

channel. Our empirical strategy exploits the long-run spatial evolution (potentially driven

by climate change) of the fringe between rangeland and farmland. Places that are not

located at the fringe anymore, but used to be in the past, tend to be populated nowadays by

descendants of former settlers and former nomads. In these places, culture-driven conflicts

may potentially keep on bursting; by contrast, the competition motive is likely to exert no

influence anymore (because the fringe has moved).

The main challenge consists in tracing the time evolution of the fringe. With this respect,

we build fringe, a binary variable coding for cells currently located at the fringe between

rangeland and farmland. By contrast, we interpret Mixed settlement, that is based on

pre-1970 data on settlement patterns, as a variable coding for cells that were historically

located at the fringe. In detail, we define fringe as cells featuring an above-median share

of agricultural land and at the same time an above median share of bare land, based on data
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issued by Globcover for the year 2009. The combination of cropland, farmland and infertile

soil in close proximity to each other allows us to identify the agricultural frontier, i.e. farm

land facing open range land. Indeed, fringe cells following our definition scatter along the

Southern border of the Sahara, as shown in Figure C7 in the Appendix.

Our verbal theory predicts that a heat shock in cell k in year t tends to: (i) increase

the likelihood of conflict in k [various channels discussed in the survey literature]; (ii) even

more so in cells historically populated by nomads and settlers [Culture Channel]; (iii) and

even more so in cells populated by nomads and settlers and currently located at the fringe of

rangeland and farmland [Competition Channel]. Note that we also expect to observe more

conflicts in cells at the fringe in general, whatever the population composition [Vulnerability

Channel]. The reason is that agricultural productivity may be more vulnerable to tempera-

ture shocks in these areas.19 We accordingly estimate our baseline model after including the

triple interaction between fringe and our variable of interest Tkt ×Mixed settlementk

(note that for completion, the double interaction Tkt × fringek is also included). We inter-

pret the coefficient of Tkt ×Mixed settlementk as an indication of the cultural channel

and the coefficient of the triple interaction as capturing the competition channel. For ex-

ample, if we find that temperature shocks in mixed settlements are statistically significant

but not the triple interaction, this could be interpreted as an indication that farmer-herder

conflict may be mostly due to cultural differences; while if we find a strong impact of the

triple interaction term, we can conclude that not only the historical group presence matters

but also the actual resource competition of these two modes of production today.

19According to USGS (2020) (Link), “these transition zones have very fragile, delicately balanced ecosys-

tems. Desert fringes often are a mosaic of microclimates”. The heightened vulnerability of transition zones

to climate shocks has been well-documented for the Sahel zone (Ben Mohamed, Van Duivenbooden and Ab-

doussallam, 2002; Van Duivenbooden, Abdoussalam and Ben Mohamed, 2002; Roudier et al., 2011; Sultan

et al., 2013). These studies have revealed that the decline in agricultural yields in the Sahelian region is

particularly severe.
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This empirical strategy is sensitive to measurement errors on both current population

composition at the cell-level and on the exact location of the fringe between rangeland and

farmland. When studying whether nomadic-settler production technology competition may

be partly responsible for clashes between ethnic groups, one would obviously have to first

investigate whether historical group locations and methods of production are still relevant

today. It turns out they are. First, the ethnic group homeland borders are quite stable (as

shown in Figure C8). Second, the use of production technologies is very persistent, as shown

in Figure 2 above. In fact, 65 percent of the African labor force is still in agriculture and it

represents 32 percent of the GDP (Al-Amin et al., 2008), and in the Sahel region, livestock

accounts for 40 percent of the agriculture (Kamuanga et al., 2008). Table C1 shows that

nomadic homelands are still linked to production features associated with nomadic cattle

herding, while areas settled by sedentary groups feature much more agriculture and more

fertile soils today.

Table 3 below displays the main results on the mechanisms at work. While the variable

T ×Mixed settlement captures, as before, the impact of temperature shocks in histor-

ically mixed settlements, the variable T × fringe picks up the heat shock effect in areas

that are today both suitable for agriculture and for cattle herding, and where current re-

source competition should be greater. In columns 1 and 2, we find that both variables are

statistically significant and of expected sign. In column 3 we then include the interaction

T ×Mixed settlement×fringe. While this interaction is highly statistically significant,

the variable T×Mixed settlement ceases to be statistically significant. This is consistent

with the interpretation that historical cultural differences in ethnic groups only matter today

when economic competition in production is still present. Our findings do not imply that

culture does not matter, but highlights the fact that the impact of cultural differences is reac-

tivated only in contexts in which actual economic competition for scarce resources is present.

Column 4 shows that this result prevails when controlling for polarization, while column 5

reveals robustness to focusing on the intensive rather than extensive margin of conflict. The
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fact that the coefficient of T ×fringe remains positive and statistically significant across all

specifications offers compelling empirical support for the vulnerability channel. This finding

suggests that, following a given temperature shock, cells located at the fringe are more sus-

ceptible to violence compared to other cells. Importantly, this pattern holds true regardless

of the population composition, which we control for using the triple interaction term with

Mixed settlement in Columns 3-6. Therefore, the positive coefficient of the double in-

teraction term indicates a general fragility of the cells located at the fringe, while it is the

inclusion of the triple interaction term that provides support for the competition channel

between farmers and herders.

Tables C2, C3 and C4 in the Appendix show that these results are robust to alternative

definitions of resource competition and the joint presence of both production technologies.

Table C2 is based on alternative data sources from different reference years for the construc-

tion of fringe cells. Solely relying on land cover data from a single reference year potentially

runs the risk to induce measurement error, as land cover may have changed over time, e.g.

due to desertification and climate change. Panel A consults land use data for the year 1992

by the Center for Sustainability and the Global Environment (SAGE) and Panel B uses

data for the year 2014 by Fao (GLC-SHARE). Results in both cases are robust and in line

with Table 3. In Table C3 we focus on cattle output as proxy for the nomadic production

technology, which leads to a similar picture: conflict concentrates at the conjunction of both

production technologies (crop farming and cattle herding).20 While cattle output is arguably

less exogenous to conflict than our fringe variable, the results at hand emphasize the central

role of competing production functions for the occurrence of farmer-herder conflicts. Table

C4 uses alternative definitions of fringe. Unlike the main specification, here the agricultural

frontier does not rely on remotely-sensed information, but on soil properties that are con-

20Here, fringe is defined as cells with an above-median share of crop and bare land and an above-median

cattle density, measured with data from the Gridded Livestock of the World (GLW3) dataset by Fao for the

year 2005 and available for Sub-Saharan Africa.
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Table 3: Channels: Competition Versus Culture

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.014c 0.008 0.011 0.007 0.010
(0.007) (0.007) (0.007) (0.008) (0.015)

T × Mixed settlement 0.029a 0.024a 0.010 0.008 0.011
(0.010) (0.009) (0.008) (0.009) (0.018)

T × Fringe 0.045a 0.024b 0.024b 0.051a

(0.011) (0.010) (0.010) (0.018)

T × Mixed set. × Fringe 0.064a 0.064a 0.163b

(0.022) (0.022) (0.069)

T × Polarization 0.007 0.024
(0.009) (0.017)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells
for the years 1997-2014. Fringe indicates cells with an above median share of agricultural land (total of
crop and grass land) and an above-median share of bare soil; data is derived from Globcover 2009, and
correspond to categories 11, 14 ,20, 30 and 200, respectively. T measures temperature in degree Celsius;
Mixed settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization.
Dependent variables: Incident indicates conflict incidence and is equal one if at least one conflict event occurs
in a cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. The
regressions control for cell and country-year fixed effects. Coefficients are reported with spatially clustered
standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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sidered crucial for growing capacities of vegetation.21 We find similarly-sized coefficients of

the triple interaction, whereas the initial interaction of mixed settlement and temperature

remains. This might be due to the fact that a soil’s properties are one of many input fac-

tors necessary for agricultural production, thus being less precise in predicting production

functions correctly (e.g. a poor nutrient endowment may be compensated for with fertilizers

or effective crop rotation scheme, hence not necessarily result in bare land). Finally, Table

C5 shows that the results are robust to controlling for NDVI and Table C6 confirms that

conflicts are limited to cells with both agricultural and bare land (i.e. fringe cells). Neither

agriculture, nor bare soil alone drive our results, underlining that conflict only occurs if both

production functions are feasible (i.e. herding and farming).

4.3 Climate-induced spread of violence

So far the emphasis of our empirical analysis has lied on local violence, i.e. in the immediate

surroundings of mixed-settlement areas. We shall now investigate another element of our

conceptual framework, namely that heat shocks trigger mobility of nomadic groups, which

leads to competition and conflict for more fertile lands. Studying this question is key because

it informs on how climate shocks drive the spatial spread of violence.

A detailed analysis is reported in Online Appendix D. It reveals that temperature shocks

in the ethnic homeland of a nomadic group tend to increase the spatial distance between its

fighting operations and its homeland. Further, this spatial spread of violence is magnified

in the case of events (i) being reported in the ACLED dataset as linked to disputes over

resources; (ii) taking place in cells with water supply or suitable for agriculture. Taken

together, these findings are in line with the view that heat shocks trigger mobility of nomadic

21To construct our fringe variable in this setting, remotely-sensed data on bare soil is exchanged for soil

property data. In detail, fringe is defined as cells with an above-median share of crop and grass land and an

above-median share of constrained soil.
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groups leading to violent competition for the remaining fertile lands.

5 Resilience through Formal Institutions and Policies

As discussed above, heat shocks may perturb fragile informal arrangements of coopera-

tion between groups. While relying on social norms and informal institutions works well

in environments that are characterised by stability and repeated interactions, in times of

disruptions (e.g. due to climate shocks), coherent formal institutions can provide greater re-

silience to shocks (see the discussion in Besley and Persson, 2011). In particular, democratic

governance and rule of law guarantee property rights protection, contract enforcement and

dispute resolution mechanisms, which we expect to limit the potential for conflict escalation

after adverse shocks, in line with the logic of the Coase Theorem (Coase, 1960). We also hy-

pothesize that decentralization and institutions fostering local-level cooperation and conflict

resolution imply that rulings and political decisions are taken based on detailed knowledge

of local conditions and hence may have the potential to curb the scope for dispute. Thus, we

expect federalism to potentially reduce the conflict-fueling effect of adverse climatic shocks.

In Table 4 we focus on four dimensions of formal institutions that represent promising

ways of absorbing shocks. In particular, in column 1 we interact our benchmark variable

of Tkt × mixed settlementk with a binary measure of democracy, high polity: This

variable takes a value of 1 in cells with an above-median value in the Polity variable of

the Polity 4 Project in 1996 (pre-sample), and 0 otherwise.22 As expected, we find that in

democratic environments there is a greater resilience to temperature shocks in mixed cells,

22In all columns we obviously also always control for all combinations of the variables included in the triple

interaction of interest. In particular, we have in column 1 as control variable the interaction of temperature

with high polity, as well as the baseline effect of Tkt × mix settlementk. Note that both high polity

and mixed settlementk are time invariant, hence their interaction is captured by the battery of cell fixed

effects.
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and the adverse effects of heat waves on political stability are attenuated.

Democracy has some features, like e.g. free elections, that may be less relevant for our

question of coping with climate shocks than those closely linked to the resolution of land

disputes. Hence, in column 2, we dig deeper into the most relevant features of democratic

rule of law in our context, namely we interact our benchmark variable of Tkt × mixk with

a binary measure of land dispute resolution, which takes a value of 1 for cells with

an above-median degree of immovable property rights and access to land dispute resolution

mechanism (from the World Bank’s Ease of Doing Business Report), and 0 otherwise. As

expected, we find that the coefficient of interest has a statistically significant negative sign,

indicating that indeed sound property rights protection and land dispute resolution strongly

reduce the scope for harmful conflict effects of heat shocks in cells with mixed settlement.23

While the indicators included in these first two columns are, in our view, the most impor-

tant policy parameters for our purpose, we also provide results for two further governance

and institutional variables below. First, we interact Tkt × Mixed settlementk with a

measure of good governance. In particular, we rely on the variable low corruption (from

the Varieties of Democracy (V-Dem) Project) which takes a value of 1 for cells with a below-

median degree of political corruption in 1996 (pre-sample). The underlying idea is that

efficient property rights protection and land dispute resolution require a reliable administra-

tion respecting the rule of law and putting in place high-quality governance, which is linked,

among others, to an environment without endemic corruption. As expected, we find that

low corruption environments are more resilient to adverse stability effects of heat shocks.

23The land dispute variable is a composite of property rights and judicial resolution mechanisms. In Table

E1, we further disentangle which of the two dimensions drives the negative coefficient. Columns 1 and 2

of Table E1 find a negative association between settler-nomad conflict and both stable property rights and

judicial systems, respectively. Including both dimensions in the same regression however shows that property

rights appear to play a more pronounced role than judicial resolution mechanisms, as depicted in column 3

of Table E1.
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In column 4, we focus on a final institutional feature that we predict would be of im-

portance in our context: Federalism. Our binary variable federalism takes a value of 1 in

cells located in countries with federal systems in 1996 (pre-sample); the indicator is based

on data from Pippa Norris’s Democracy Time-series Dataset.24 Federalist organization leads

to power devolved to the local level, which may favor decision-making that appropriately

takes into account local conditions. We hence expect federalist states to be better at solving

local land disputes. Our coefficient of interest, i.e. the interaction of the baseline variable of

Tkt×Mixed settlementk with federalism, has indeed the expected negative sign, implying

that the heat-turned-hate nexus is less strong in federalist countries.

Column 5 includes all the four aforementioned interactions simultaneously. We continue

to find for all four policy variables the negative sign of the coefficient of interest, albeit only

statistically significant for our two main policy variables, namely High polity and High

land dispute resolution.

One limitation to our analysis is that countries are rather large entities spread over a huge

continent (Africa). Hence, comparing heterogenous effects across different countries involves

comparing places that are potentially thousands of kilometers apart, and may differ in various

other dimensions than just the policy variables we are interested in. To address such concerns,

we have built in the appendix two Tables (E2 and E3) where we limit comparisons to places

that are in the same local environment but on two opposite sides of a border. In particular,

in Table E2 we continue to study the interaction of Tkt × Mixed settlementk with the

same battery of institutional and policy characteristics as in Table 4, but restricting the

sample to areas within 75 kilometers of borders (panel A) and in addition include border-

year specific fixed effects (panel B). This amounts to compare places in the same border area

24We prefer the data source of “Pippa Noris’s Democracy Time Series Data” over available alternatives

for the following reasons: First, the data covers all African nations for the year 1996. Second, the data not

only defines federal and unitary states, but also identifies hybrid (confederate) states. This distinction is

important, as we are interested in capturing the effect of fully federal systems.
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Table 4: Resilience Through Formal Institutions and Policies

(1) (2) (3) (4) (5)
Incident Incident Incident Incident Incident

T 0.009 0.008 0.021c 0.014c 0.035b

(0.010) (0.008) (0.012) (0.008) (0.016)
T × Mixed settlement 0.046a 0.041a 0.039a 0.034a 0.059a

(0.012) (0.013) (0.014) (0.010) (0.022)
T × High polity 0.002 0.008

(0.012) (0.013)
T × Mixed set. × High polity -0.059a -0.048a

(0.015) (0.017)
T × High land dispute resolution 0.019 0.024c

(0.014) (0.013)
T × Mixed set. × High land dispute resolution -0.066a -0.050b

(0.019) (0.020)
T × Low corruption -0.018 -0.049a

(0.013) (0.015)
T × Mixed set. × Low corruption -0.036b -0.011

(0.016) (0.018)
T × Federal states -0.003 0.005

(0.019) (0.019)
T × Mixed set. × Federal states -0.082a -0.021

(0.028) (0.032)
Cells 8200 8050 9588 9588 6894
Observations 147600 144900 172584 172584 124092
Sample share - interaction group .44 .42 .51 .1 .92
Mix share - interaction group .1 .1 .1 .11 .11
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The table tests heterogeneity across
relevant country-wide institutional features that have been argued to potentially mitigate settler-nomad
conflict. The sample includes the years 1997-2014 and the number of included cells in each column varies
with the data availability of the test heterogeneity. High polity indicates cells with an above-median value
in the Polity variable of the Polity 4 Project in 1996 (pre-sample); the indicator is derived from country-
level data. High land dispute resolution indicates cells with an above-median degree of immovable property
rights and access to land dispute resolution mechanism in 2014 (post-sample, since no pre-sample data
available); the indicator is derived from country-level data of the World Bank’s Ease of Doing Business
Report, variable Land Dispute Resolution index accessed via the Quality of Government data collection.
Low corruption indicates cells with a below-median degree of political corruption in 1996 (pre-sample); the
indicator is derived from country-level data of the Varieties of Democracy (V-Dem) Project, variable Political
Corruption Index accessed via the Quality of Government data collection. Federalism indicates cells located
in countries with federal systems in 1996 (pre-sample); the indicator is based on data from Pippa Norris’s
Democracy Time-series Dataset, variable Unitary or Federal State, accessed via the Quality of Government
data collection. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers
and nomads. Dependent variable: Incident indicates conflict incidence and is equal one if at least one conflict
event occurs in a cell and year. The regressions control for cell and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within
a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.
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(e.g. a location in Nigeria next to the Niger-Nigeria border with another location on the other

side of this same border), sharing the same local characteristics, but belonging to distinct

countries, and hence being exposed to a different institutional and policy setting. This very

demanding exercise is based on a much more homogeneous sample; yet, we continue to find

that institutional features matter. In particular, land dispute resolutions and federalism

continue to tend to mitigate adverse effects of temperature shocks in mixed cells. Table E3

performs the analogous analysis, but for a wider buffer of 120 kilometers, yielding similar

results as in Table E2.

Overall, we take the results of Table 4 (and the corresponding robustness results in the

Appendix) as evidence that formal democratic institutions with property rights protection

and land dispute resolution contribute to building up resilience in the face of adverse climate

shocks.

While considering the current policy implications, it is essential to approach the results

with caution. We should bear in mind that institutional characteristics are endogenous and

tend to correlate with factors such as a country’s wealth, overall governance quality, and

the provision of economic and social policies. For instance, recent research by Fetzer (2020)

demonstrates that workfare programs in India can mitigate the impact of climate shocks.

Therefore, in follow-up work, it would be highly valuable to investigate how specific features

of institutions, governance, and policies contribute to resilience in the face of adverse shocks

within our sample.

6 Conclusion

The growing literature on the climate-conflict nexus lacks an in-depth analysis of the under-

lying mechanisms and channels of transmission. This knowledge gap represents a dangerous

pitfall in our understanding of this prominent issue and impacts our ability to formulate

policy lessons. In the current contribution we have aimed at addressing this shortcoming.
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Motivated by anecdotal evidence and journalistic reports, the current study has analyzed

how heat waves translate into surges of farmer-herder violence in a fine grained dataset

covering all of Africa over the 1997-2014 period. In particular, we find that the greatest

effects are found at the fringe between rangeland and farmland where the land is suitable

for both cattle herding and farming. Relying on a specification that aims to disentangle a

pure clash of cultural norms from economic competition over resources, we conclude that

–beyond coordination and communication failure and ancient hatreds– actual resource com-

petition plays a quantitatively important role for explaining the heat-turned-hate nexus. We

also uncover evidence that nomadic groups engage into more widespread mobility patterns

in the face of heat waves that result in violent competition for the remaining fertile lands.

We complete the investigation by assessing the role of formal institutions and policies to

foster resilience against adverse shocks, concluding that democratic governance, protection

of property rights and sound institutions guaranteeing dispute resolution, are key ramparts

against heat melting away traditional arrangements and boiling inter-group hate.

One key implication of the current paper pertains to climate security and the necessity

of assessing the political vulnerability of subnational territories. Our findings highlight how

the deleterious impact of global warming is likely to be magnified by population admixture

and mobility patterns at the local level. Indeed, within Africa, we observe great differences

across space, with impacts of heat shocks on political violence being three times larger in

mixed areas populated by both nomadic and sedentary ethnic groups.

Related to this, taking into account settlements patterns also matters heavily when pro-

jecting the impact of climate change on future fighting: When aggregated at the continental

level for all of Africa, it is found that when ignoring the impact of mixed settlements, con-

flicts are predicted to surge by 26 percent, while this number goes up to 33 percent when

taking into account the magnifying effect of mixed settlements. When zooming in on the Sa-

hel region, these numbers become even larger, namely 40 percent (when ignoring settlement

patterns) and 54 percent (when taking mixed settlements into account).
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There is a substantive policy importance of the finding that the conflict risk will rise in

a particularly dramatic fashion in the Sahel region, due to the combination of large average

(projected) temperature increases and the existence of many mixed settlement areas. There

may be scope for both stepping up international peacekeeping efforts, as well as helping

the Sahel countries economically (see the recent survey of Rohner (2022)). After all, the

Sahel countries pay over-proportionally the price of global warming fuelled by excess carbon

emissions from other, typically richer nations. Helping to mitigate the detrimental effects of

climate change on the Sahel region’s political outlook is of great policy salience.
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Montalvo, José G and Marta Reynal-Querol. 2005b. “Ethnic Polarization, Potential Conflict,

and Civil Wars.” American Economic Review 95(3):796–816.

Moscona, Jacob, Nathan Nunn and James A Robinson. 2020. “Segmentary Lineage Orga-

nization and Conflict in Sub-Saharan Africa.”.

Murdock, George P. 1959. Africa: Its Peoples and their Culture History. McGraw-Hill Book

Company.

Murdock, George P. 1967. “Ethnographic Atlas: A Summary.” Ethnology 6(2):109–236.

Nachtergaele, F. O., H. van Velthuizen, L. Verelst, N. H. Batjes, J. A. Dijkshoorn, V. W. P.

van Engelen, G. Fischer, A. Jones, L. Montanarella and M. Petri. 2008. “Harmonized

World Soil Database, Version 1.0.”. Dataset (url).

Nickell, Stephen J. 1981. “Biases in Dynamic Models with Fixed Effects.” Econometrica

49(6):1417–1426.

Norris, Pippa. 2009. “Democracy Time-Series Dataset.”. Dataset (url).

Nunn, Nathan. 2008. “The Long-Term Effects of Africa’s Slave Trades.” Quarterly Journal

of Economics 123(1):139–176.

57

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://sites.hks.harvard.edu/fs/pnorris/Data/Data.htm


Nunn, Nathan and Leonard Wantchekon. 2011. “The Slave Trade and the Origins of Mistrust

in Africa.” American Economic Review 101(7):3221–3252.

Nyborg, Karine, John M. Anderies, Astrid Dannenberg, Therese Lindahl, Caroline Schill,
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A Future climate

Data and quality. The quantification exercise of Section 3 is based on temperature forecasting

data from the Coordinated Regional Downscaling Experiment (CORDEX) (Gutowski et al., 2016).

Like the Coupled Model Intercomparison Project (CMIP), CORDEX is a multi-institutional effort

endorsed by the World Climate Research Programme and the findings are reported by the Intergov-

ernmental Panel on Climate Change (IPCC). While CMIP is deeply embedded in the assessment

of climate change (e.g. the Paris Agreements), the spatial resolution of the data– ranging from

100 to 200km– is relatively low and hence less suitable for local impact studies. For that reason,

CORDEX has emerged with the last iteration of CMIP and offers data at a spatial resolution of at

least 50km. Unlike CMIP, CORDEX factors regional characteristics such as local topography into

the modeling to improve the local precision of models. Generally speaking, temperature forecasting

precision is relatively high (Masson-Delmotte et al., 2018). CORDEX provides both historic and

forecasting data at different temporal resolutions. We focus on monthly surface air temperature

(tas) at the 50km spatial resolution.

Model ensemble and emission scenarios. Multiple climate institutes around the world par-

ticipate in CORDEX with their own climate models. Each institute performs forecasts for a wide

range of climate variables, following a standardized experimental framework that allows to draw

comparisons across models. To avoid relying on a single climate model, we perform a multi model

ensemble by calculating the arithmetic mean across four climate model temperature outputs simi-

larly to Burke et al. (2009).4

Any forecast is subject to uncertainty. In the case of climate models a major source of uncer-

tainty stems from green house gas emissions associated to human activity in the future. To account

for different trajectories in the anthropogenic impact on climate change, the climate forecasting

literature developed a set of emissions scenarios, so-called Representative Concentration Pathways

(RCP). Scenarios simulate the climate under a set of green house gas emission concentrations,

ranging from substantial cuts to stark increases in global future emissions. We choose the inter-

mediate emission scenario RCP4.5, which assumes the stabilization of the radiative forcing level

and is considered as one of the more likely outcomes (Thomson et al., 2011; Pachauri et al., 2014).

Provided our relatively short forecasting horizon (2040), our results are unlikely to be sensitive to

the choice of emission scenario, because the trajectories of the main scenarios (RCP 26, 45 and 85)

mostly diverge in the second half of the century.

Data processing. For the quantification exercise of Section 3, the cell-level changes in temper-

ature by 2040 are constructed by subtracting the 1995 historic mean (1985-2004) from the 2040

4We consider only CORDEX models for which the three main RCP emission scenarios 26, 45 and 85 are available.
Calculating multi model ensembles is a common practice that can improve hindcast skill (Kim et al., 2014).



forecast mean (2030-2049).5 1995 is chosen as reference year, as it allows to construct the 20-year

average (ten-year before and after 1995), taking into account that historic model data in CORDEX

is available up to 2005. Further, 1995 appears to be a suitable reference year, as it is close to the

start of the analysis data sample period, 1997. Our final data records temperature for 1995 and

2040, based on the same underlying data, allowing us to calculate cell-level changes in temperature

over time.

5Climate models are calibrated to a long time horizon (2100 and beyond), and tend to perform poorly in modeling
year-to-year changes. A common practice is to take at least 20 years of data and derive the average to identify
difference in temperature trends. Alternatively, a class of models with time horizon of usually up to ten years, so-
called ”near-term” or decadal models, have recently gained popularity among policy makers and researchers to assess
climatic trends over a short period of year. Although these models have become more precise in recent years, they
tend to be less vetted than the long-term models participating in CMIP. Further, so-called seasonal climate models
have an even shorten time span of six month to one year.
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Table A1: Climate Forecast - Country Overview

Country Name ISO 3
∑
β1 × ∆Temp

Future

∑
β̃2 × ∆Temp

Future

∑
Incidents

∑
β̃2×∆Temp

Future∑
Incidents Share-mixed cells

Angola AGO 6.821 8.404 22.944 .366 .106
Benin BEN .802 .802 1.444 .555 0
Botswana BWA 4.342 5.992 1.611 3.719 .182
Burkina Faso BFA 1.935 2.226 5.611 .397 .069
Burundi BDI .209 .209 8.111 .026 0
Cameroon CMR 3.046 3.28 6.5 .505 .032
Central African Rep. CAF 4.275 5.195 19.389 .268 .103
Chad TCD 9.71 13.464 10.278 1.31 .191
Congo (DRC) COD 15.468 15.468 71.333 .217 0
Cote D’Ivoire CIV 2.106 2.106 13.944 .151 0
Djibouti DJI .116 .116 1.333 .087 0
Equatorial Guinea GNQ .135 .135 1.167 .116 0
Eritrea ERI .941 1.532 4.167 .368 .255
Ethiopia ETH 7.737 11.594 42.333 .274 .237
Gabon GAB 1.263 1.263 1.333 .947 0
Ghana GHA 1.579 1.579 6.5 .243 0
Guinea GIN 1.5 1.5 7.889 .19 0
Guinea-Bissau GNB .188 .188 2.667 .071 0
Kenya KEN 3.47 5.843 50.389 .116 .319
Lesotho LSO .236 .236 .667 .354 0
Liberia LBR .503 .503 8.389 .06 0
Libya LBY 10.974 12.278 10.611 1.157 .06
Madagascar MDG 3.514 3.514 9.722 .361 0
Malawi MWI .724 .724 4.944 .146 0
Mali MLI 8.76 11.238 9.056 1.241 .134
Mauritania MRT 7.02 8.255 3.944 2.093 .092
Morocco MAR 3.68 5.026 8.056 .624 .165
Mozambique MOZ 4.896 4.896 11.389 .43 0
Namibia NAM 4.078 5.195 4.556 1.14 .126
Niger NER 8.734 13.355 6.556 2.037 .255
Nigeria NGA 6.441 7.018 72.111 .097 .039
Republic of Congo COG 2.027 2.027 4.889 .415 0
Rwanda RWA .189 .189 4.333 .044 0
Senegal SEN 1.382 1.625 8.5 .191 .095
Sierra Leone SLE .484 .484 8.722 .056 0
Somalia SOM 3.752 3.752 54.667 .069 .004
South Africa ZAF 4.866 4.911 38.722 .127 .004
Sudan SDN 18.281 27.338 72.556 .377 .245
Swaziland SWZ .084 .084 1.556 .054 0
Tanzania TZA 5.407 6.648 11.778 .564 .117
The Gambia GMB .035 .035 1.5 .024 0
Togo TGO .364 .364 2.111 .172 0
Tunisia TUN 1.292 1.749 8.889 .197 .143
Uganda UGA 1.462 2.055 29.556 .07 .197
Zambia ZMB 5.018 5.018 9.444 .531 0
Zimbabwe ZWE 2.72 2.995 32.389 .092 .046

Notes:
∑
β1 ×∆Temp

Future is the projected change conflict probability by 2040 due to climate change and equals the sum
of forecasted change in temperature ∆Temp

Future, multiplied by β1 and summed across a the cells of a country, with β1

referring to the top coefficient (0.014) of Table 2, column 2 (i.e. ignoring settlement).
∑
β2 × ∆Temp

Future additionally
takes settlement pattern into account, with β̃2 equal the sum the coefficients (0.014 + 0.029) in Table 2, column
2.

∑
Incidents is the sum of conflict incidents per country and year in our sample, averaged across 1997-2014.∑

β̃2×∆
Temp
Future∑

Incidents
is the ratio between projected events and past events. ”Share-mixed cell” is the share of mixed cell in

a country.
iii



B Sensitivity analysis

In this Online Appendix section we present in depth descriptions of all robustness checks that are

very briefly summarized under subsection 3.4 in the main text.

B.1 Types, intensity and persistence of conflicts.

We start by shedding light on the exact type, scale and intensity of farmer-herder disputes. Accord-

ing to the aforementioned case studies and policy reports, farmer-herder conflict can range from

disputes between local farmers and herders to high-intensity combats between rebels and military

forces. To uncover the most relevant types of violence, we exploit the richness of ACLED dataset

and breakdown events into three categories: Battles, Riots and Violence against civilians. We then

replicate Table 2, column 4 with a dummy variable coding for each event category as dependent

variable.6 Results are reported in columns 1 to 3 of Table B1. In all specifications our coefficient

of interest (temperature interacted with mixed settlement) retains its positive sign and statistical

significance. There are two ways to assess its magnitude. In absolute terms, it is smaller than its

baseline counterpart, a direct consequence of the low sample means of battle events, riots and vio-

lence against civilians (respectively 0.04, 0.03 and 0.04, see Table 1). More relevant is its magnitude

relative to the sample mean; there we see that it is comparable to the baseline one. Finally it is

worth noting that battles are events easily reported by external observers and media sources; thus,

they are often the most precisely measured in ACLED. Hence, focusing on battles alone serves also

the purpose of addressing concerns about reporting bias and non-classical measurement errors.

In the rest of Table B1, we scrutinize violence intensity and return to the baseline approach where

all conflict events are pooled together. Column 4 considers the logarithm of the number of fatalities

plus 1 and finds that temperature drives conflict intensity, as the death toll rises with the severity

of heat shocks. Note that data on the fatalities have to be interpreted with caution, as counts

of battle-related deaths may be inaccurate. As an alternative approach we split conflict incidents

into two groups according to their degree of violence: In column 5, “large incidents” report an

above-median number of deaths (> 7) per cell and year, whereas in column 6 “small incidents”

report a below or equal median number of deaths (≤ 7). Results show that violence in mixed cells is

clearly driven by larger incidents, with a positive coefficient significant at the 5% level. By contrast,

in column 6, no statistically relevant relationship between temperature shocks in mixed cells and

small conflict incidents is detected. Quite interestingly, polarization seems to be rather associated

with small-scale events. Overall, these pieces of evidence consistently suggest that farmer-herder

conflicts are associated with large scale, high-intensity violence, highlighting the policy importance

of tackling this type of violence.

6Thus far, the dependent variable has been based on events classified as battles, riots and violence against civilians,
without considering each subtype in isolation.
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We study time persistence of violence in Table B2. To this purpose, we replicate the full baseline

Table 2 in a dynamic panel setup that controls for one-year lag in conflicts (the dependent variable)

at the cell-level. This specification could suffer from Nickell bias (Nickell, 1981) which is why we

have decided not to opt for this type of design in our baseline analysis. Although we observe some

persistence in the effect of past conflicts, it is reassuring to see that our main coefficient of interest

is robust and comparable to its baseline point estimate.

Table B1: Alternative Conflict Definitions

Dep. var.: Battle Riot Vs. civilians ln(Deaths+1) Large incid. Small incid.
(1) (2) (3) (4) (5) (6)

T 0.002 -0.001 0.008 0.033 0.008 -0.002
(0.007) (0.004) (0.007) (0.023) (0.005) (0.003)

T × Mixed set. 0.019b 0.016a 0.019b 0.073b 0.015b 0.006
(0.008) (0.006) (0.007) (0.029) (0.006) (0.003)

T × Polarization 0.009 0.005 0.008 0.032 0.005 0.010a

(0.006) (0.004) (0.008) (0.025) (0.006) (0.003)

Cells 9687 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366 174366
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables: Battle indicates battles and is equal one if at least
one battle event occurs in a cell and year; Riot indicates riots and is equal one if at least one riot event occurs
in a cell and year; Vs. civilians indicates violence against civilians and is equal one if at least one event involving
violence against civilians occurs in a cell and year; ln(Deaths+1) is the logarithm of the number of fatalities plus 1
per cell and year; Large incidents only considers the sub-sample of conflict incidents with an above-median number of
fatalities involved (i.e. more than 7 fatalities); Small incidents only considers the sub-sample of conflict incidents with
a below-median number of fatalities involved (i.e. less or equal 7 fatalities). Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table B2: Controlling for Lagged Dependent Variable

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

Lagged dependent variable 0.098a 0.098a 0.098a 0.098a 0.310a

(0.009) (0.009) (0.009) (0.009) (0.019)

T 0.020a 0.015b 0.014c 0.012 0.017
(0.008) (0.007) (0.009) (0.008) (0.014)

T × Mixed settlement 0.024a 0.022b 0.039b

(0.009) (0.009) (0.017)

T × Polarization 0.011 0.007 0.024
(0.008) (0.008) (0.015)

Cells 9687 9687 9687 9687 9687
Observations 164679 164679 164679 164679 164679
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. This table performs a dynamic regression and controls for the lagged dependent variable; T measures
temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads; Polarization measures
cell-level polarization. Dependent variables: Incident indicates conflict incidence and is equal one if at least one
conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per
cell and year. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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B.2 Interpretation of the mixed settlement variable.

The analysis thus far has focused on identifying the effect of temperature on conflict in cells with

mixed settlement (i.e. the interaction term in Equation 1) relative to a reference group composed

of cells with either nomads or settlers alone (the linear term T). We look at the consequences of

breaking down this reference group in Table B3. We start by investigating whether nomads on

their own are differently exposed to conflict than settled groups; column 1 of Table B3 controls

for cells with Nomads only, interacted with temperature. In this setting the reference group is

made of mixed cells together with settlers-only cells. With a negative coefficient significant at the

5% level, the result shows that the presence of nomads per se does not appear to drive conflict.

Column 2 augments the previous specification with our main variable of interest (temperature in-

teracted with mixed settlement); there, the linear term T captures the effect of temperature on

conflict for a reference group consisting of cells exclusively inhabited by sedentary groups. We first

see that heat shocks increase conflict in cells with settlers only, with a weakly significant coeffi-

cient of 0.016. Second, nomads on their own do not appear to be differently exposed to conflict

than settlers. Third, the main coefficient of interest capturing the effect of mixed settlement

remains comparable in magnitude to the baseline and is significant at the 5% level. Columns 3

follows the same logic after controlling for polarization. Column 4 investigates the intensive mar-

gin. Overall, our coefficient of interest remains statistically significant throughout all specifications.

As pointed out throughout this paper, nomadic lifestyles differ from sedentary ones in various di-

mensions. Hence, several population features are specific to regions of mixed settlement and could

therefore act as confounders. For example, scattered, seasonal and erratic availability of pastures

facilitates a mobile living arrangement, which directly impacts nomadic agglomeration patterns.

Further, mixed cells represent the gateway to urban areas and historically served as trading posts

across the Sahara. Among them are local economic and cultural centers such as Timbuktu in Mali,

that have been subject to terrorist attacks in recent years. This raises the question whether pop-

ulation density drives our main coefficient. We therefore control for population density with data

from the Gridded Population of the World (GPW) for the year 2000 (CIESIN, 2015), in column 1 of

Table B4. Results show that the effect of temperature on conflict in mixed cells remains unaffected

and highly significant. Moreover, summary statistics in Table 1 show that cells of mixed settlement

have by construction a higher number of groups, because they form upon the borders of ethnic ter-

ritories. In column 2, we additionally control for the number and squared number of ethnic groups

per cell. In column 3, we control for fractionalization, a commonly-applied index to approximate

ethnic diversity. The indicator is calculated at the cell level following the definition in Montalvo
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and Reynal-Querol (2005b) and based on population counts from GPW.7 Column 4 considers the

intensive margin. Note that any time-varying country-wide variation in ethnic composition (e.g.

induced by large-scale migration waves) is absorbed by the country-year fixed effects. Altogether,

the effect of fractionalization on conflict is statistically indistinguishable from zero. Overall, our

main coefficient of interest retains its significance and is of similar magnitude as in the baseline

throughout all specifications.

One dimension that has been ignored so far in the analysis is the linguistic or cultural distance

between different ethnic groups. One could imagine that maybe farmer and herder groups are

particularly different in terms of language and other cultural traits, and hence taking off the shelf

standard ethnic polarization and fractionalization measures may not constitute powerful enough

control variables. For this reason we now draw on a set of fine-grained ethnic diversity measures that

we recently put together (see Eberle et al. (2020) for data sources and methodological details). In

particular, we compute ethnic polarization and fractionalization measures that focus on different

levels of the language tree as thresholds for defining differences. While on the one end of the

scale these measures are excellent in picking up fundamental differences between the world’s great

language families (level 1, the most aggregated level of language distinction), on the other end

of the scale the ethnic diversity indices are fine-tuned to detect subtle differences in very similar

languages (level 15, the most disaggregated level of language distinction). As shown in Figure B5,

the estimated coefficient of interest (i.e. the interaction term of temperature shock with mixed

settlement) is very robust to controlling for this exhaustive range of diversity measures capturing

differences at every level of the language tree.

7GREG does not contain information on groups’ population shares in cases where ethnic territories overlap. In
such cases, we assign equal population shares to the groups on site. Further, the number of groups and all ethnicity
indices are based on the group definition of Murdock, rather than GREG (i.e. we only use Murdock for group
location). First, this is consistent with how we assign settlement patterns to groups. Second, while GREG provides
more recent group location information, the data is more aggregated (e.g. the Murdock groups Ahaggaren, Asben,
Antessar, Azjer and Ifora all belong to the Tuareg cluster in GREG). If we were to calculate ethnicity indices based
on GREG, we may miss to capture intra-group tensions among sub-groups of a larger cluster (e.g. Ahaggaren fighting
Asben in the above example).
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Table B3: Nomads’ Exposure to Conflict

Dep. var.: Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T 0.027a 0.016c 0.013 0.026
(0.009) (0.009) (0.009) (0.017)

T × Nomads only -0.018b -0.005 -0.005 -0.018
(0.008) (0.011) (0.011) (0.020)

T × Mixed settlement 0.026b 0.024c 0.047c

(0.012) (0.013) (0.027)

T × Polarization 0.007 0.025
(0.009) (0.018)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Nomads only indicates cells with nomadic groups, but no sedentary groups; Polarization measures cell-level
polarization. Dependent variables: Incident indicates conflict incidence and is equal one if at least one conflict event
occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year.
Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation
within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.
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Table B4: Correlation with Population Variables

Dep. var.: Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T 0.008 0.017c 0.017c 0.031c

(0.008) (0.010) (0.010) (0.017)
T × Mixed settlement 0.026a 0.030a 0.030a 0.063a

(0.009) (0.010) (0.010) (0.022)
T × Polarization 0.007 0.013 0.011 0.037c

(0.009) (0.009) (0.011) (0.021)
T × Population density 0.000b 0.000b 0.000b 0.000b

(0.000) (0.000) (0.000) (0.000)
T × # Tribes -0.005b -0.006 -0.015a

(0.002) (0.003) (0.006)
T × (# Tribes)2 0.000 0.000 0.001b

(0.000) (0.000) (0.000)
T × Fractionalization 0.006 0.010

(0.016) (0.026)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization; Population density measures the population per km2 with data
from the Gridded Population of the World (GPW), version 4 for the year 2000; # Tribes ((# Tribes)2) accounts for
the (squared) number of tribes per cell; Fractionalization measures cell-level fractionalization; Dependent variables:
Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1)
is the logarithm of the number of conflict events plus 1 per cell and year. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Figure B5: Controlling for Ethnic Fractionalization and Polarization
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Note: Based on data by the World Language Mapping System derived from Eberle et al. (2020). The chart depicts
the β coefficient of the T ×Mixedsettlement interaction term, as in Table 2, Panel A, column 2, and additionally
controlling for temperature interacted with ethnic fractionalization and polarization in the top and bottom panel,
respectively. Ethnicity indices are considered at 15 different aggregation levels along linguistic trees, yielding 15
different coefficient plots along the x-axis. LPM estimated with OLS. An observation is a cell and a year. The sample
includes 9687 cells for the years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates
cells with both settlers and nomads; Dependent variable: Incident indicates conflict incidence and is equal to one
if at least one conflict event occurs in a cell and year. Coefficients are reported with spatially clustered standard
errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial
correlation (Conley, 1999). The confidence intervals depicted correspond to significance at the 5 percent level.
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B.3 Definition of settlement patterns

We now investigate alternative constructions of the mixed settlement indicator. In the baseline

specifications, the variable is defined by first assigning a settlement status to groups, before iden-

tifying regions in which both settlement modes overlap (c.f. Section 2.1). Although we believe our

assignment rule is a sensible one, there exist plausible alternatives to dividing ethnic groups into

nomads and settlers. Column 1 of Table B5 replicates column 4 of Table 2 with nomads being

defined as “nomadic or fully migratory“ and “seminomadic” groups, whereas “semisedentary” and

less mobile groups receiving settler status (threshold 2).8 Column 2 now assigns “semisedentary”

groups nomad status, whereas groups with “compact but impermanent settlements” or less mobil-

ity are considered as settlers (threshold 3). Columns 3 and 4 keep on shifting the threshold further

by assigning relatively settled groups to the status nomadic, until in column 5 only “compact and

relatively permanent settlements” and “complex settlements groups” receive settler status. The

coefficients in columns 2-5 are throughout highly significant, although smaller in magnitude than

the baseline. This attenuation pattern is likely attributable to measurement errors as these defini-

tions may be less precise measures of mobility modes.

As outlined above, we match ethnic groups from Murdock’s Ethnographic Atlas to the more recent,

but more aggregated, GREG map. As a result, several Murdock groups may be matched to a single

GREG group. In most of those cases, multiple Murdock groups within the same GREG group have

the same settlement mode. One exception is Egypt, which has mixed cells across the whole country

(see Figure 1).9 While from a data matching point of view this appears to be reasonable, it may

be rather unlikely to find larger settlements in the southern regions of Egypt. In other words,

our matching procedure could induce some measurement error in the particular context of Egypt.

Columns 1 to 3 of Table B6 exclude Egypt from the sample and the results show that the effect

of mixed settlement on conflict is less strong, but remains positive and significant at the 5% and

10% level. Next, we only include countries bordering the Sahel zone in the sample. This exercise

is motivated by the casual observation that farmer-herder conflicts seem most pronounced in this

region. Further, the mobility analysis of Section 4.3 focuses on the Sahelian subsample. Again, the

results presented in columns 4-6 of Table B6 are less precisely estimated, but remain in line with

the baseline.

8For details on threshold definitions, please consult the footnote of Table B5.
9“Arabs of UAR (Egyptians)” in GREG cover all of Egypt and merge with 2 groups in Murdock, “Eqyptians”

(settlers) and “Saadi” (seminomadic). Cross-checking with sources such as Encyclopedia Britannica confirms that
the merge between groups, settlement patterns and geographic extent appears indeed correct.
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Table B5: Alternative Settlement Definitions

Dep. var.: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

T 0.010 0.010 0.010 0.010 0.011
(0.008) (0.008) (0.008) (0.008) (0.008)

T × Mixed settlement 0.028a 0.021a 0.018a 0.018a 0.014b

(0.010) (0.008) (0.007) (0.006) (0.007)

T × Polarization 0.007 0.008 0.008 0.007 0.008
(0.009) (0.009) (0.009) (0.009) (0.009)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X
Nomad-settler threshold (v30) 2 3 4 5 6

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variable: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year. Ethnic groups’ settlement characteristics are
defined according to the settlement patterns (variable 30) information in George Murdock’s Ethnographic Atlas.
Seven different settlement modes are defined: i) nomadic or fully migratory, ii) semi-nomadic, iii) semi-sedentary,
iv) compact but impermanent settlements, v) neighbourhoods of dispersed family homesteads vi) separated hamlets,
forming a single community and vii) compact and relatively permanent settlements. In our baseline setting, we define
nomads as groups in categories i) or ii) and settlers as groups in categories iii) to vii) (threshold 2). This tables tests
alternative thresholds to divide nomads and settlers, by assigning up to six mobility modes to nomadism (in that case
settlers only consists of group in category vii)). Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

Table B6: Exclude Egypt and Sahel Countries Only

Dep. var.: Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6)

T 0.014c 0.011 0.010 0.011 0.007 0.004
(0.007) (0.007) (0.008) (0.011) (0.010) (0.013)

T × Mixed settlement 0.019b 0.018c 0.019c 0.018c

(0.009) (0.010) (0.011) (0.011)

T × Polarization 0.002 0.005
(0.009) (0.012)

Sample No Egypt No Egypt No Egypt Sahel only Sahel only Sahel only
Cells 9366 9366 9366 4012 4012 4012
Observations 168588 168588 168588 72216 72216 72216
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes data for the years 1997-
2014. Columns 1-3: Sub-sample of Sahel countries (Algeria, Burkina Faso, Cameroon, Central African Republic,
Chad, Eritrea, Ethiopia, Mali, Mauritania, Niger, Senegal, South Sudan and Sudan); columns 4-6: excludes Egypt
from the sample. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variable: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year. Coefficients are reported with spatially clustered
standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite
serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.4 Country borders

We explore the role of national borders in shaping disputes between farmers and herders. It is

possible that conflict is amplified along national boundaries when local issues over land rights

coincide with national interests. For instance, the Mauritania–Senegal Border War during the late

1980s was initiated by disputes over grazing rights between herders and farmers along the Senegal

River dividing both countries. The conflict escalated into a crisis between the two nations and

resulted in large-scale displacement (Parker, 1991). To determine whether national borders act as

a confounding factor of violence in mixed settlement cells, we first omit cells ranging across national

borders. The coefficient of interest in column 1 of Table B7 remains unaffected. We then return

to the full sample and control for the distance between cells’ centroids and the closest border in

columns 2 to 4. Each of the columns uses a different methodology to calculate border distance, as

described in the table notes. Finally, we control for border cells in column 5. Overall, we observe

that farmer-herder conflict does not appear to be driven by tensions along national borders.

Table B7: Exclude Border Cells and Control for Border Distance

Dep. var.: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

T 0.006 0.016b 0.015c 0.015c 0.010
(0.009) (0.008) (0.008) (0.008) (0.008)

T × Mixed set. 0.030a 0.026a 0.026a 0.026a 0.027a

(0.011) (0.010) (0.010) (0.010) (0.010)
T × Polarization 0.009 0.006 0.006 0.005 0.007

(0.009) (0.009) (0.009) (0.009) (0.009)
T × Border dist. 1 -0.000a

(0.000)
T × Border dist. 2 -0.000a

(0.000)
T × Border dist. 3 -0.000a

(0.000)
T × Border cell 0.005

(0.007)

Sample Exclude border cells All All All All
Cells 8221 9436 9687 9687 9687
Observations 147978 169848 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Column 1: excludes cells coinciding with national borders; columns 2-4: controls for the distance in
kilometer from a cell’s centroid to national boarders, calculated in three different ways based on bdist measures
from PRIO-GRID version 2.0; column 2: distance to the nearest neighbouring nation connected via land; column 3:
distance to nearest border, irrespective if two countries are divided by water; column 4: distance to the territorial
outline a cell belongs to. T measures temperature in degree Celsius; Mixed settlement indicates cells with both
settlers and nomads; Polarization measures cell-level polarization. Dependent variable: Incident indicates conflict
incidence and is equal one if at least one conflict event occurs in a cell and year. Coefficients are reported with
spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s
centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.5 Measurement of weather shocks

This section investigates the measurement of our main source of variations, namely weather shocks.

We consider alternative measures of temperature and also look at precipitations.10 We have used

in the baseline specification the yearly average level of temperature (in degree Celsius) at the cell-

level; conditional on cell fixed effects, this variable captures the effect of deviations in temperature

from a cell’s long-term trend (see equation 1). As a first alternative, the logarithm of temperature

is considered and interacted with the mixed settlement dummy. Results in columns 1 and 2 of

Table B8 are in line with the baseline in terms of magnitude and significance. The coefficient of

mixed settlement in column 2 suggests that a +5% increase in temperature (or about 1.25 degree

Celsius) translates into a +42.1% increase in the likelihood of conflict, relative to the sample mean,

which is quantitatively comparable to the baseline effect (36.3%).

The African continent has a variety of climatic zones and the variation in local temperature across

years differs from one region to another (see right panel, Figure 3). A potential issue in measuring

temperature in levels pertains to assuming a linear impact of temperature on violence, ignoring that

the effect might differ between regions, as some of them may be better adapted to erratic climate

or extreme temperature swings. While any permanent difference across space in the adaptation

to climate is absorbed by the cell fixed effect, explicitly accounting for such local sensitiveness to

temperature is a valuable and complementary approach. With this respect, we consider locally

re-scaled temperature shocks in columns 3 and 4 of Table B8 where each temperature level is di-

vided by its cell-specific (time series) standard deviation. This approach puts less weight on cells

with extreme temperature anomalies. The main coefficient is positive and significant at the 5%

level. In degree Celsius units, the coefficient equals 0.02, which is smaller than the baseline, but re-

mains quantitatively substantial. Overall, our results are robust to alternative temperature indices.

We do prefer temperature in levels, as it fits the African context (heat shocks only) and allows a

straightforward interpretation of regressions coefficients.

Observed precipitation is an alternative candidate for measuring exogenous weather variations at

the local level. However, while the existing literature widely agrees on a positive association between

heat shocks and conflict, the picture is less clear-cut for precipitation (see the discussion on page 8

in the main text). This could be due to various reasons, including measurement error and a non-

monotonic effect of rainfall on conflict. With this caveat in mind, we test in Table B9 for the role of

rainfall and study whether there is a relationship to temperature in the data, by interacting both

indices with each other. The correlation between average temperature and the sum rainfall per year

is -0.06. We first measure rainfall in levels and as natural logarithm, and columns 1 to 4 of Table B9

show that neither rainfall itself affects conflict, nor does it change the effect of temperature in mixed

cells. The remaining columns adopt alternative measures of rainfall. Columns 5 and 6 consider

10Dell, Jones and Olken (2014) provide an overview of the most common weather indices in the literature. The ones
used in this section are (i) relevant in the African context and (ii) address potential concerns about the identification
strategy.
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rainfall anomalies and keep detecting no effect. Columns 7 and 8 focus on absolute anomalies.

The rationale is that both extremely high (floods) and extremely low (droughts) precipitation may

cause economic damage and thus conflict. Again, the results suggest that rainfall neither drives the

effect of temperature on conflict, nor is relevant on its own. To summarize, while there appears to

be no relevant relationship between precipitation and conflict in the data, the effect of temperature

on conflict in mixed cells remains robust.

Table B8: Alternative Temperature Definitions

Dep. var.: Incident Incident Incident Incident
(1) (2) (3) (4)

ln(T) 0.511a 0.293
(0.172) (0.193)

ln(T) × Mixed settlement 0.757a

(0.252)
ln(T) × Polarization 0.140

(0.205)
Tit/SDi 0.005b 0.003

(0.002) (0.003)
Tit/SDi× Mixed settlement 0.007b

(0.003)
Tit/SDi× Polarization 0.001

(0.003)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. ln(T) measures the logarithm of temperature; Tit/SDi is temperature normalized by cell standard devi-
ation; Mixed settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization.
Dependent variable: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a
cell and year. The regressions control for cell and country-year fixed effects. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

In the previous table, our focus was on examining the interaction between temperature and

rainfall shocks to explore potential interactions between them. The next logical step is to investigate

whether rainfall shocks have their own differential impact in cells with mixed settlement. To do

so, we look at a variant of Table B9, where all specifications explicitly control for the interaction

term between a measure of rainfall and mixed settlement. The purpose of this robustness exercise

is to determine whether our main effect, which is the interaction between temperature and mixed

settlement, remains robust when considering this additional control variable. The results of this

analysis are presented in Table B10. In all uneven columns, each of the four measures of rainfall

considered above are sequentially included in the specification as a linear term, along with its

interaction with the indicator variable representing mixed settlement. Even columns extend the

analysis further by introducing a triple interaction term between the measure of rainfall under

consideration, the mixed settlement indicator, and temperature. Overall, the results are reassuring,

as the coefficient of the interaction term between temperature and mixed settlement retains its
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Table B9: Controlling for Precipitation

Dep. var.: Incident Incident Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6) (7) (8)

T 0.012 0.010 0.010 0.010
(0.008) (0.008) (0.008) (0.008)

T × Mixed set. 0.027a 0.028a 0.028a 0.028a

(0.010) (0.010) (0.010) (0.010)
T × Polar. 0.007 0.008 0.007 0.007

(0.009) (0.009) (0.009) (0.009)
Rain 0.001 0.005

(0.001) (0.007)
T × Rain -0.000

(0.000)
ln(Rain) -0.003 -0.016

(0.003) (0.020)
T × ln(Rain) 0.001

(0.001)
Rainit−Meani

SDi
0.000 0.010

(0.001) (0.007)

T ×Rainit−Meani
SDi

-0.000

(0.000)
|Rainit−Meani|

SDi
-0.004b -0.006

(0.001) (0.010)

T × |Rainit−Meani|
SDi

0.000

(0.000)

Cells 9687 9687 9516 9516 9492 9492 9492 9492
Observations 174366 174366 171119 171119 170856 170856 170856 170856
Cell FE X X X X X X X X
Country × Year FE X X X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T measures temperature in degree Celsius; Rain measures total annual precipitation per cell in decime-
ter with data from the Climatic Research Unit; ln(rain) measures the logarithm annual precipitation; Rainit−Meani

SDi

measures the mean deviation in precipitation, divided by a cell’s standard deviation in precipitation (anomaly);
|Rainit−Meani|

SDi
measures the absolute mean deviation in precipitation, divided by a cell’s standard deviation in pre-

cipitation (absolute anomaly); Mixed settlement indicates cells with both settlers and nomads; Polarization measures
cell-level polarization. Dependent variable: Incident indicates conflict incidence and is equal to one if at least one
conflict event occurs in a cell and year. Coefficients are reported with spatially clustered standard errors in parenthe-
ses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.

sign, magnitude, and statistical significance across all specifications. More surprisingly, whatever

the measure used, we detect no short-run effect of rainfall shocks in mixed settlement (apart from

column 2).

Last but not least, we investigate the robustness of our analysis by taking into account the medium-

run effects of drought that go beyond short-run temperature and rainfall shocks. Droughts are

frequent in parts of Sub-Saharan Africa, particularly in the Sahel and the Horn of Africa, where

farmers and herders share land. These droughts can have devastating effects, impacting households

each year. Therefore, it is plausible to consider that conflict is driven by slowly encroaching variables

rather than inter-annual factors, as argued thus far. Droughts are generally regarded as slow-onset
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weather hazards, often caused by abnormally low seasonal rains and high temperatures, which

exacerbate evapotranspiration.

It is important to keep in mind that long-run drought propensity and desertification are generally

associated with both longer-term climatic and non-climatic factors, which should be accounted for

by the cell fixed effects. However, our baseline coefficient may still be influenced by inter-annual

droughts, such as consecutive years of climatic distress, including the ongoing severe drought in

the Easter Horn of Africa that has been wreaking havoc since 2020, possibly related to La Niña.

Therefore, relying solely on cell fixed effects might be risky, and there is a case for conducting an

extended analysis that explicitly controls for drought and its interaction with mixed cells. This is

precisely what we do in the subsequent analysis.

We estimate the baseline regression (Table 2, Column 1) by incorporating a measure of drought

and its interaction with the mixed settlement indicator variable. Consistent with common practice

(Funk and Shukla, 2020), we utilize the Palmer drought index and several of its binary variants.

The Palmer index is a well-established drought index that considers long-term temperature and

precipitation patterns to assess relative dryness. The results are presented in Table B11. Columns

(1) to (4) initially exclude fixed effects. In the first two columns, we include the continuous ver-

sion of the Palmer drought index. However, we do not find any discernible impact, neither for

the linear term (Column 1) nor for its interaction with the mixed settlement indicator (Column

2). In Columns (3)-(4), we replicate the same analysis using a binary version of the Palmer index

that categorizes the most severe form of droughts (top decile of the distribution). In this case,

we observe an impact of extreme droughts on violence in mixed cells. This effect remains robust

even after including cell fixed effects and country-year fixed effects in Column (5). Additionally,

in Column (6), we introduce our baseline variables, specifically the cell-level measure of average

temperature and its interaction with the mixed settlement indicator. While we find that the in-

teraction term between mixed settlements and drought remains statistically significant, our main

coefficient of interest throughout the paper (temperature shock interacted with mixed settlements)

also remains statistically significant, indicating the robustness of this result. It is noteworthy that

the baseline interaction with temperature remains relatively stable in magnitude, although slightly

less significant, suggesting that persistent drought may have some influence on the baseline. Lastly,

in Column (7), we examine the sensitivity of the drought result to a different threshold (consid-

ering the driest 25 percent of observations). While our baseline result regarding the interaction

of temperature and mixed settlements remains statistically significant and substantial, the signifi-

cance of the drought variable diminishes, suggesting that this finding may depend on the specific

specification used. Overall, this table supports the robustness of our main findings.

B.6 Climate zones, biomes and soil properties

The purpose of this section is to understand whether conflicts in mixed cells can be driven by cli-

matic and vegetation conditions. It is important to distinguish between “climate” and “weather”,

with the first being the long term pattern (distribution) and the latter (in our case temperature)
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being a temporal condition (observation) (Dell, Jones and Olken, 2014). Local climatic conditions

are undoubtedly related to resource availability and to whether people pursue a nomadic lifestyle.

To address the role played by climatic conditions, we retrieve information from the ERSI data that

map climate zones according to the Köppen-Geiger classification system. In this system, climate

zones define regions of similar long-term temperature and precipitation patterns. The Sahel zone

for instance is classified as a “semi-arid” band horizontally crossing Africa below the Sahara desert.

In Table B12 we control for climate zone-specific dummy variables, interacted with temperature.

The results show that none of the climate zones appear to be more prone to conflict than others.

Further, the main coefficient in mixed settlement remains unaffected. One limit of this definition of

climate zone is its focus on long-term temperature and rainfall patterns, without considering other

important factors such as soil properties or actual vegetation.

Hence, to draw a clearer picture of the role of actual vegetation, we consult data on biomes. Biomes

are based on the definition of Olson et al. (2001) and issued by the World Wildlife Fund. Biomes

define regions sharing the same predominant vegetation.11 Biome-specific dummy variables are in-

teracted with temperature of each cell-year pair and results are reported in Table B13. While some

biomes appear reactive to temperature-induced violence, the main coefficient of interest remains

comparable to the baseline. In other words, we do not find that vegetative patterns drive conflict

in mixed cells.

One important input factor for vegetation is soil. We derive data on soil properties from the

Harmonized World Soil Database (Nachtergaele et al., 2008). To identify regions subject to soil

stress, cells with an above-median share of poor soil are interacted with temperature.12 Table B14

neither finds a general pattern of soil stress and temperature shocks, nor does controlling for poor

soil affect the main coefficient of interest.

11We follow Henderson et al. (2017) and combine biomes 2 and 3 and biomes 7 and 9, due to their similarity and
because categories 3 and 9 represent very minor shares on a global scale.

12Details on the construction of the variable can be found in the table description and in the channel section.
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Table B10: Precipitation in Mixed Settlement

(1) (2) (3) (4) (5) (6) (7) (8)
Incident Incident Incident Incident Incident Incident Incident Incident

T 0.014b 0.014b 0.014c 0.013c 0.013c 0.013c 0.014c 0.014c

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
T × Mixed settlement 0.029a 0.036a 0.029a 0.031a 0.030a 0.030a 0.030a 0.029a

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Rain 0.001 0.001

(0.001) (0.007)
Rain × Mixed settlement -0.000 0.035b

(0.003) (0.017)
T × Rain 0.000

(0.000)
T × Rain × Mixed set. -0.001b

(0.001)
ln(Rain) -0.002 -0.024

(0.003) (0.020)
ln(Rain)× Mixed settlement -0.005 0.045

(0.005) (0.042)
T × ln(Rain) 0.001

(0.001)
T × ln(Rain) × Mixed set. -0.002

(0.002)
Rainit−Meani

SDi
0.000 0.006

(0.001) (0.007)
Rainit−Meani

SDi
× Mixed set. -0.000 0.023

(0.003) (0.017)

T ×Rainit−Meani
SDi

-0.000

(0.000)

T ×Rainit−Meani
SDi

× Mixed set. -0.001

(0.001)
|Rainit−Meani|

SDi
-0.004b -0.004

(0.001) (0.010)
|Rainit−Meani|

SDi
× Mixed set. -0.002 -0.023

(0.004) (0.028)

T × |Rainit−Meani|
SDi

0.000

(0.000)

T × |Rainit−Meani|
SDi

× Mixed set. 0.001

(0.001)

Observations 174366 174366 171119 171119 170856 170856 170856 170856
Cell FE X X X X X X X X
Country × Year FE X X X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T measures temperature in degree Celsius; Rain measures total annual precipitation per cell in decime-
ter with data from the Climatic Research Unit; ln(rain) measures the logarithm annual precipitation; Rainit−Meani

SDi

measures the mean deviation in precipitation, divided by a cell’s standard deviation in precipitation (anomaly);
|Rainit−Meani|

SDi
measures the absolute mean deviation in precipitation, divided by a cell’s standard deviation in pre-

cipitation (absolute anomaly); Mixed settlement indicates cells with both settlers and nomads; Polarization measures
cell-level polarization. Dependent variable: Incident indicates conflict incidence and is equal one if at least one con-
flict event occurs in a cell and year. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table B11: The Role of Drought

(1) (2) (3) (4) (5) (6) (7)
Incident Incident Incident Incident Incident Incident Incident

T 0.012 0.012
(0.009) (0.009)

T × Mixed settlement 0.026b 0.027a

(0.010) (0.011)
T × Polarization 0.004 0.004

(0.010) (0.010)
Drought (Palmer) -0.000 -0.001

(0.002) (0.002)
Drought (Palmer) × Mixed settlement 0.006

(0.005)
Severe Drought dummy (Palmer, p90) 0.009 0.001 -0.002 -0.002

(0.008) (0.008) (0.004) (0.004)
Severe Drought dummy (Palmer, p90) × Mixed settlement 0.050b 0.025b 0.022b

(0.020) (0.010) (0.010)
Severe Drought dummy (Palmer, p75) -0.003

(0.003)
Severe Drought dummy (Palmer, p75) × Mixed settlement 0.004

(0.008)

Cells 8016 8016 8016 8016 8016 8016 8016
Observations 144288 144288 144288 144288 144288 144288 144288
Cell FE X X X
Country × Year FE X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014, for which the Palmer index data are available. T measures temperature in degree Celsius; Drought(Palmer)
measures the inverse Palmer Index with data from the Climatic Research Unit; Severe Drought dummy (Palmer, p90)
is a binary variable equal to one if an observation ranks among the driest top ten percent; Severe Drought dummy
(Palmer, p75) considers the 25 percent driest conditions, following the same coding convention. Dependent variable:
Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500
km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%;
a significant at 1%.
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Table B14: Correlation with Soil Stress

Dep. var.: Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6)

T 0.008 0.008 0.007 0.013 0.009 0.009
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

T × Mixed settlement 0.028a 0.028a 0.028a 0.028a 0.028a 0.028a

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
T × Polarization 0.007 0.007 0.007 0.008 0.006 0.007

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
T × Poor nutrient availability 0.005

(0.005)
T × Poor nutrient retention cap. 0.005

(0.005)
T × Poor rooting conditions 0.006

(0.005)
T × Poor oxygen availability -0.010

(0.006)
T × High excess salts 0.008

(0.006)
T × High toxicity 0.005

(0.007)

Cells 9655 9655 9655 9655 9655 9655
Observations 173790 173790 173790 173790 173790 173790
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9655 cells for the years
1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization; interacted soil indices indicate cells with relative poor soil fertility, with
data from the Harmonized World Soil Database, version 1.2. In detail, an indicator variable takes a value of one if a
cell has an above-median combined land share in classes 4 and 5 in the respective soil quality category (soil classes
of 4 and 5 correspond to soil with very severe limitations and non-soil, such as desert sand). Dependent variable:
Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year. The
regressions control for cell and country-year fixed effects. Coefficients are reported with spatially clustered standard
errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial
correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.7 Lags and leads

Another key check is an analysis of the leads and lags that allows us to investigate the assumption

of a common trend between the treatment and control groups and observe the evolution of the effect

over time. To this purpose, we follow Autor (2003) by including a vector of both leads and lags of

temperature in the baseline regression (Table 2, Column 1). Figure B6 displays the coefficients of

the leads and lags in a regression with three lags and three leads and a sample made of non-mixed

cells only in the top chart and mixed cells only in the bottom chart. Visual inspection yields three

insights. First, reassuringly, there is no evidence of a pre-trend. Second, the effect fades away after

one period. Third, also in this setting that is more demanding from the data, we detect that the

treatment has a larger effect in mixed cells than in non-mixed ones, providing further support for

our hypothesis.

B.8 Further robustness exercises

In what follows, we draw on alternative conflict data from the UCDP georeferenced Event Dataset

(Sundberg and Melander, 2013). Unlike ACLED, a death threshold of at least 1 fatality per event

is imposed. Further, only events of active groups are considered, i.e. a group has to be associated

in at least one year with 25 deaths or more. In other words, this dataset focuses on events involving

larger-scale, and possibly more structured actors. Given that part of the farmer-herder violence

may be quite localized and may possibly not involve structured and organized militias, we expect

a weaker effect for the more restrictive UCDP data, for which the sample is downsized to 6,960

incidents. This results in a reduction of the variation in the dependent variable by 50%, compared

to ACLED. Results in Table B15 report positive, although no longer statistically significant coeffi-

cients for mixed settlement cells. The lower variation in the dependent variable is likely to account

for the less precise estimates. Only the last column, the sole non-binary (and hence less coarse)

specification, features a highly significant coefficient similar to the baseline.

Further, to demonstrate robustness across data sources with respect to the independent variable,

we next consult temperature data issued by the University of Delaware (UDEL) (Matsuura and

Willmott, 2012). The correlation coefficient between temperature data from CRU (baseline) and

UDEL is 0.93 and significant at the 1% level. The results in Table B16 show a positive and highly

significant coefficient for mixed cells, although less than half the magnitude of the baseline.

The panel analysis so far has relied on exogenous variations in temperature shocks. While desirable

from an identification point of view, the external validity of our findings may be limited, because

farmer-herder violence could be partly rooted in other causes than climatic stress. One way to test

whether farmer-herder conflict can be identified in the absence of weather shocks is to perform a

cross-sectional analysis. We therefore construct a time-invariant dependent variable measuring the

share of sample years with conflict incidence for each cell. Results reported in Table B17 docu-

ment a positive association between mixed settlement and conflict, significant at the 5% level. The

xxv



econometric specification exploits variation across cells and controls for country fixed effects. Note

that we can no longer control for cell fixed effects which bears the risk of cell-specific, constant

omitted variable bias. Although statistically less well identified, the results of the cross-section are

in line with the baseline, which reinforces the external validity of our findings.

Another potential worry is that time trends across cells may differ, which could affect the results

in a non-trivial way. We address this concern by replacing cell fixed effects with cell-specific time

trends. Table B18 reports the findings of this sensitivity check. It turns out that our baseline

results continue to hold for this specification.

Next, a salient dimension to investigate is whether our findings are purely driven by the entrench-

ment of existing conflicts, or whether temperature shocks in mixed areas may also trigger fresh

hostilities. In Columns 1-3 of Table B19, we estimate Equation (1) with conflict onset (in place of

incidence) as a dependent variable. The onset variable is equal to one if at least one new conflict

event occurs in a cell and year t and no conflict occurred in a cell in the previous year t − 1. For

sequential conflicts over multiple years, all years following the initial conflict event in a certain

cell are coded as missing. We repeat the analysis in Columns 4-6 after excluding all cells with a

conflict happening in the first sample year, 1997, to ensure that no pre-sample unobserved violence

may affect the onset coding. Overall, the estimation results indicate that heat shocks in mixed

settlements also fuel the out-break of new violence.

Finally, several regressions with alternative spatial and serial clustering are performed. In detail,

columns 1 to 4 of Panel A in Table B20 allow for a spatial correlation within 50, 100, 250 and

750 km from a cell’s centroid, respectively, while maintaining infinite serial correlation. Columns

1 to 4 of Panel B of the same table allow for a serial correlation across 0, 1, 5 and 10 periods,

respectively, while maintaining a spatial correlation of 500 km from a cell’s centroid. The results

remain statistically significant in all specifications.
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Table B15: Alternative Conflict Data: UCDP GED

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.018a 0.016b 0.016b 0.015b 0.016
(0.007) (0.006) (0.007) (0.007) (0.015)

T × Mixed settlement 0.013 0.013 0.058a

(0.009) (0.009) (0.021)

T × Polarization 0.003 0.001 0.024
(0.008) (0.009) (0.018)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables are based on data from the UCDP Georeferenced
Event Dataset (GED): Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a
cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500
km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%;
a significant at 1%.

Table B16: Alternative Weather Data: UDEL

Dep. var.: Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T (UDEL) 0.003c 0.001 -0.000 0.000
(0.001) (0.004) (0.004) (0.006)

T (UDEL) × Mixed settlement 0.013a 0.013a 0.027a

(0.005) (0.005) (0.009)

T (UDEL) × Polarization 0.004 0.004 0.008
(0.004) (0.004) (0.007)

Cells 7872 7872 7872 7872
Observations 141696 141696 141696 141696
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T (UDEL) measures temperature in degree Celsius with data from Willmott, Matsuura, and Legates
(2010) at the University of Delaware (UDEL); Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and is equal
one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict
events plus 1 per cell and year. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Figure B6: Leads and Lags, Non-Mixed Cells vs Mixed-Settlement Cells (Bottom)
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Notes: This figure reports the estimation results of the baseline regression (Table 2, Column 1), additionally con-
trolling for a vector of three leads and lags of temperature. The charts display the coefficients of the leads and lags,
together with the contemporaneous temperature shock, in the subsamples of non-mixed cells only (top chart) and
mixed cells only (bottom chart). Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table B17: Cross-Sectional Specification

Dep. var.: Conflict share Conflict share Conflict share Conflict share
(1) (2) (3) (4)

Mixed settlement 0.030b 0.030b 0.031b 0.032a

(0.012) (0.012) (0.012) (0.012)

Polarization -0.003 0.022 0.022
(0.013) (0.020) (0.018)

Fractionalization -0.044c -0.036c

(0.024) (0.021)

Population density 0.000a

(0.000)

Observations 9687 9687 9687 9687
Country FE X X X X

Notes: LPM estimated with OLS. An observation is a cell. The sample consists of 9687 cells. Mixed settlement
indicates cells with both settlers and nomads; Polarization measures cell-level polarization; Fractionalization mea-
sures cell-level fractionalization; Population density measures the population per km2 with data from the Gridded
Population of the World (GPW), version 4 for the year 2000. Dependent variable: Conflict share measures the share
of years (1997-2014) in which at least one conflict incident occurred in a cell. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid.
c significant at 10%; b significant at 5%; a significant at 1%.

Table B18: Controlling for Cell-Specific Time Trends

Dep. var. Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T 0.014a 0.013a 0.010b 0.016b

(0.003) (0.004) (0.004) (0.007)

T × Mixed settlement 0.029a 0.028a 0.058a

(0.007) (0.006) (0.013)

T × Polarization 0.013b 0.007 0.024b

(0.006) (0.006) (0.010)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of
conflict events plus 1 per cell and year. The regressions control for cell-specific time trends and country-year fixed
effects. Coefficients are reported with standard errors clustered at the cell level in parentheses. c significant at 10%;
b significant at 5%; a significant at 1%.
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Table B19: Conflict Onset

(1) (2) (3) (4) (5) (6)
Onset Onset Onset Onset Onset Onset

T 0.015a 0.012b 0.010 0.012b 0.010b 0.009
(0.005) (0.005) (0.006) (0.005) (0.005) (0.006)

T × Mixed settlement 0.012c 0.011c 0.014b 0.014b

(0.007) (0.007) (0.006) (0.007)

T × Polarization 0.005 0.002
(0.006) (0.006)

Observations 167679 167679 167679 161009 161009 161009
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variable: Onset indicates conflict onset and is equal one if
at least one conflict event occurs in a cell and year t and no conflict occurred in a cell in the previous year t− 1. For
sequential conflict events over multiple years, all years following the initial event in a certain cell are coded as missing.
Columns 4-6 further exclude all cells with conflict during the first sample year, 1997. Coefficients are reported with
standard errors clustered at the cell level in parentheses. c significant at 10%; b significant at 5%; a significant at 1%.
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Table B20: Alternative Spatial and Serial Clustering

Dep. var.: Incident Incident Incident Incident
(1) (2) (3) (4)

Panel A. Alternative spatial clustering

T 0.014a 0.014a 0.014b 0.014c

(0.003) (0.004) (0.006) (0.007)

T × Mixed settlement 0.029a 0.029a 0.029a 0.029a

(0.007) (0.008) (0.009) (0.010)

Spatial clustering 50 km 100 km 250 km 750 km

Panel B. Alternative serial clustering

T 0.014b 0.014b 0.014b 0.014b

(0.007) (0.007) (0.007) (0.007)

T × Mixed settlement 0.029a 0.029a 0.029a 0.029a

(0.008) (0.009) (0.009) (0.009)

Serial clustering 0 periods 1 period 5 periods 10 periods

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variable: Incident indicates conflict incidence and is equal
to one if at least one conflict event occurs in a cell and year. The regressions control for cell and country-year fixed
effects. Coefficients are reported with spatially clustered standard errors in parentheses. Panel A tests alternative
spatial clustering specifications, while maintaining infinite serial correlation. Colum1-4 allow for a spatial correlation
within a 50, 100, 250 and 750 km radius of a cell’s centroid, respectively. Panel B tests alternative serial clustering
specifications, while maintaining a spatial correlation within a 500 km radius of a cell’s centroid. Colum1-4 allow for
a serial correlation of 0, 1, 5 and 10 years, respectively. c significant at 10%; b significant at 5%; a significant at 1%.
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C Mechanisms at work: Competition vs Culture

Below are depicted a series of Figures and Tables investigating mechanisms at work and channels

of transmission. They are all discussed in detail in the main text under section 4.2.

Figure C7: The Agricultural Frontier: Fringe Cells

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AeroGRID, IGN, and the GIS User Community

Agricultural Frontier
Fringe cells
Mixed settlement
fishnet1_sans_africa2

Notes: This graph depicts “Fringe” cells, defined as regions with an above-median share of agricultural land and an
above-median degree of infertile land.
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Figure C8: Overlap between GREG and Murdock ethnic group boarder data
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Notes: The graph predicts the location of the historic ethnic homeland of nomads (Murdock), dating back up to 5,000
years, from the location of nomads in the 1960s (GREG). The red vertical line indicates the border between nomadic
and sedentary groups, based on data from GREG. Negative values on the horizontal axis measure the distance to
nomadic homeland (as seen from settler homeland).

Table C1: Persistence of Production Technologies

Nomads Mixed settlement Settlers Total

Crop suitability (cell sh./human per km2) 5.974 17.042 24.887 16.865
(16.439) (24.029) (27.146) (24.900)

Infertile land (cell share) 66.799 34.304 2.390 30.331
(42.605) (42.322) (12.620) (43.238)

Cattle (# animals/person) 12.413 353.163 36.433 62.142
(170.572) (6087.183) (849.829) (2100.291)

Goat 17.668 274.962 23.102 48.382
(226.908) (3790.582) (419.822) (1292.721)

Sheep 29.775 219.382 17.537 43.669
(594.322) (3255.092) (262.105) (1144.596)

Notes: The unit of observation is a cell. The table provides summary statistics on the underlying production tech-
nologies. Columns 1-3 divide cells along mobility patterns, based on settlement mobility data from Murdock’s Ethno-
graphic Atlas matched onto geolocation information from the Geo-referencing of Ethnic Groups dataset (GREG).
Column 1 depicts the average (standard deviation) of cells inhabited by nomads only; column 2 identifies cells in-
habited by at least one settled and at least one nomadic group (”Mixed settlement”); column 3 cells inhabited by
settlers only. Column 4 considers the complete sample. Data on crop suitability and on infertile land are derived from
Globcover categories 11, 14, 20 30 and 200, respectively; population data is derived from the Gridded Population
of the World (GPW), version 4; data on cattle density is derived from the Gridded Livestock of the World (GLW3)
dataset by Fao for the year 2005 and available for Sub-Saharan Africa; data is accessed via HarvestChoice.
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Table C2: Competition versus Culture, Alternative Data and Reference Years

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

Panel A. GLC-SHARE data for 2014

T 0.013a 0.008b 0.010a 0.006 0.010
(0.003) (0.004) (0.003) (0.004) (0.007)

T × Mixed settlement 0.027a 0.023a 0.009 0.008 0.006
(0.007) (0.006) (0.007) (0.007) (0.014)

T × Fringe (1992) 0.031a 0.019a 0.019a 0.034a

(0.006) (0.006) (0.006) (0.010)

T × Mixed set. × Fringe (1992) 0.046a 0.046a 0.129a

(0.017) (0.016) (0.035)

T × Polarization 0.007 0.024b

(0.006) (0.010)

Cells 9353 9353 9353 9353 9353
Observations 168354 168354 168354 168354 168354

Panel A. SAGE data for 1992

T 0.014a 0.008b 0.010a 0.006 0.012
(0.003) (0.003) (0.003) (0.004) (0.007)

T × Mixed settlement 0.029a 0.026a 0.013b 0.011c 0.015
(0.007) (0.006) (0.006) (0.006) (0.013)

T × Fringe (2014) 0.036a 0.023a 0.023a 0.030a

(0.006) (0.006) (0.006) (0.009)

T × Mixed set. × Fringe (2014) 0.052a 0.052a 0.148a

(0.017) (0.017) (0.037)

T × Polarization 0.008 0.026b

(0.006) (0.010)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366

Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. Fringe indicates cells with an above median
share of agricultural land (total of crop and grass land) and an above-median share of bare soil. This table defines
Fringe with alternative data sources for different reference years. Panel A: data on the agricultural extent in 1992
is derived from the SAGE data set by the Center for Sustainability and the Global Environment at the University
of Wisconsin-Madison. Panel B: data on the agricultural extent and on bare soil extent in 2014 is derived from the
Global Land Cover SHARE (GLC-SHARE) database by Fao. T measures temperature in degree Celsius; Mixed
settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization. Dependent
variables: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year;
ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. The regressions control for
cell and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table C3: Competition versus Culture, Cattle Data

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.008 0.005 0.006 0.004 0.003
(0.008) (0.008) (0.008) (0.010) (0.016)

T × Mixed settlement 0.023b 0.019b 0.008 0.007 0.013
(0.010) (0.009) (0.008) (0.009) (0.018)

T × Fringe (Cattle) 0.028b 0.014 0.015 0.024
(0.012) (0.011) (0.011) (0.018)

T × Mixed set. × Fringe (Cattle) 0.048b 0.047b 0.074b

(0.023) (0.023) (0.036)

T × Polarization 0.006 0.018
(0.010) (0.019)

Cells 7705 7705 7705 7705 7705
Observations 138690 138690 138690 138690 138690
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Fringe indicates cells with an above-median share of crop and bare land and above-median cattle density.
Data on cattle density is derived from the Gridded Livestock of the World (GLW3) dataset by Fao for the year 2005
and available for Sub-Saharan Africa; data is accessed via HarvestChoice. Data on crop and bare land cover is derived
from Globcover 2009, categories 11 and 14. T measures temperature in degree Celsius; Mixed settlement indicates
cells with both settlers and nomads; Polarization measures cell-level polarization. Dependent variables: Incident
indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the
logarithm of the number of conflict events plus 1 per cell and year. The regressions control for cell and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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Table C4: Competition versus Culture, Soil Qualities

Dep. var.: Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6)

T 0.008 0.009 0.008 0.014 0.011 0.011
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

T × Mixed settlement 0.022b 0.018c 0.012 0.026b 0.018c 0.023b

(0.010) (0.010) (0.009) (0.011) (0.010) (0.010)
T × Polarization 0.008 0.008 0.007 0.007 0.007 0.007

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
T × Fringe (Poor nutrient av.) 0.009

(0.008)
T × Mix × Fringe (Poor nutrient av.) 0.039

(0.026)
T × Fringe (Poor nutrient retention) 0.006

(0.007)
T × Mix × Fringe (Poor nutrient ret.) 0.053b

(0.022)
T × Fringe (Poor rooting conditions) 0.012

(0.008)
T × Mix × Fringe (Poor rooting cond.) 0.060a

(0.019)
T × Fringe (Poor oxygen to roots) -0.018b

(0.007)
T × Mix × Fringe (Poor oxygen to roots) 0.014

(0.021)
T × Fringe (High excess salts) -0.009

(0.010)
T × Mix × Fringe (High excess salts) 0.087a

(0.032)
T × Fringe (High toxicity) -0.014

(0.012)
T × Mix × Fringe (High toxicity) 0.079c

(0.043)
Constant 0.000 0.000 0.000 0.000 0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cells 9655 9655 9655 9655 9655 9655
Observations 173790 173790 173790 173790 173790 173790
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. Fringe indicates cells with an above-median
share of agricultural land and constrained soil qualities. Data on agricultural land is from Globcover 2009. Data on
soil qualities is from the Harmonized World Soil Database, version 1.2. Constrained soil quality indicates cells with
an above-median combined land share in classes 4 and 5 in the respective soil quality category (soil classes of 4 and 5
correspond to soil with very severe limitations and non-soil, such as desert sand). T measures temperature in degree
Celsius; Mixed settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization;
Dependent variable: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a
cell and year. The regressions control for cell and country-year fixed effects. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table C5: Controlling for Vegetation Density

(1) (2) (3) (4) (5) (6)
Incident Incident Incident Incident Incident Incident

NDVI 0.096b 0.097b 0.100b 0.099b 0.099b 0.099b

(0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

T 0.018b 0.012c 0.007 0.009 0.006 0.006
(0.008) (0.007) (0.007) (0.007) (0.008) (0.008)

T × Mixed settlement 0.028a 0.022a 0.009 0.008 0.008
(0.009) (0.009) (0.009) (0.009) (0.009)

T × Fringe 0.045a 0.024b 0.024b 0.024b

(0.011) (0.011) (0.011) (0.011)

T × Mixed settlement × Fringe 0.064a 0.063a 0.063a

(0.023) (0.023) (0.023)

T × Polarization 0.006 0.006
(0.009) (0.009)

Observations 168491 168491 168491 168491 168491 168491
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. NDVI, or Normalized difference vegetation
index, is a satellite-based index that measures biomass, frequently used in climate sciences to monitor drought
conditions, based on data by NOAA Vermote et al. (2014). The sample includes 9687 cells for the years 1997-2014.
Fringe indicates cells with an above median share of agricultural land (total of crop and grass land) and an above-
median share of bare soil; data is derived from Globcover 2009, and correspond to categories 11, 14 ,20, 30 and
200, respectively. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variable: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year. The regressions control for cell and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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Table C6: Competition versus Culture, Extended Version

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.014a 0.008 0.010c 0.006 0.011
(0.003) (0.005) (0.005) (0.006) (0.009)

T × Mixed settlement 0.029a 0.023a 0.010 0.009 0.026c

(0.007) (0.006) (0.012) (0.012) (0.014)

T × Agriculture 0.005 0.005 0.006 0.009
(0.005) (0.005) (0.005) (0.007)

T × Barren -0.004 -0.004 -0.004 -0.012
(0.006) (0.006) (0.006) (0.008)

T × Fringe 0.044a 0.023b 0.023b 0.052a

(0.010) (0.010) (0.010) (0.016)

T × Mix set. × Agric. -0.007 -0.006 -0.027
(0.015) (0.015) (0.025)

T × Mix set. × Barren 0.004 0.003 -0.011
(0.015) (0.015) (0.023)

T × Mixed set. × Fringe 0.066a 0.066a 0.183a

(0.025) (0.025) (0.048)

T × Polarization 0.008 0.024b

(0.006) (0.010)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Fringe indicates cells with an above median share of agricultural land (total of crop and grass land) and
an above-median share of bare soil; data is derived from Globcover 2009, and correspond to categories 11, 14 ,20, 30
and 200, respectively. Agriculture indicates cells with an above-median share of agricultural land; Barren indicates
cells with an above-median share of bare land. T measures temperature in degree Celsius; Mixed settlement indicates
cells with both settlers and nomads; Polarization measures cell-level polarization. Dependent variables: Incident
indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the
logarithm of the number of conflict events plus 1 per cell and year. The regressions control for cell and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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D Mechanisms at work: Climate-induced spread of violence

In the current appendix section we present the finding briefly described in the main text under

Section 4.3.

So far our empirical analysis has focused on local violence, i.e. in the immediate surroundings of

mixed-settlement areas. We now investigate another element of our conceptual framework, namely

that heat shocks trigger mobility of nomadic groups leading to competition and conflict for more

fertile lands. Addressing this question is important because it informs on how climate shocks drive

the spatial spread of violence.

The main empirical challenge consists in retrieving information on the effective presence and

influence of certain groups in particular territories. We assume that groups react primarily to

heat shocks affecting their ethnic homeland. If heat shocks negatively impact the productivity of

grasslands in their homeland, we expect groups to move elsewhere in search of more fertile lands

and consequently to be potentially involved in violent events further away from their homeland.

To illustrate the patterns of mobility that we have in mind, consider Figure D9 that displays

mobility patterns of the Dinka ethnic group in Sudan. The homelands of this traditionally nomadic

group are represented by green polygons, and each dot represent the geolocalisation of one given

fighting event involving this group and taking place outside their traditional homelands. Warmer

colors (i.e. red and orange) depict events occurring in years with high temperatures measured in

the Dinka homelands, while colder colors (i.e. blue) correspond to colder years. Visual inspection

suggests a positive correlation between heat and the range of mobility – in hotter years the Dinka

are involved in conflict events taking place further away from their homelands. This is confirmed

by a correlation analysis between temperature and distance yielding a coefficient of 0.29 that is

significant at the 1 percent level.

Moving beyond this example of a single group, we now investigate systematically such mobility

patterns for various ethnic groups. To this purpose, we extend our dataset in a new dimension,

namely to the fighting group operating in each location. We focus on active rebel groups involved

in at least one violent conflict event over the sample period, ignoring other types of fighting groups.

ACLED considers as rebel groups “political organizations whose goal is to counter an established

national governing regime by violent acts”. Further, we restrict the analysis to Sahel countries.13

With the Sahara desert to the north and relatively fertile biomes to the south, the semi-arid Sahel

zones have been subject to numerous violent incidents between settlers and nomads in recent years,

as discussed earlier.

We test whether heat shocks in the ethnic homeland of a rebel group boost its fighting operations

far from its homeland. Following the methodology of Berman et al. (2017), we exploit ACLED

information on the identity of the rebel groups and assign to each group its main ethnic affiliation,

based on the ethnicity of the group’s leaders and troops. This allows us to link rebel groups in

ACLED to settlement information from Murdock’s Ethnographic Atlas and to information in a

13Sahel countries include Algeria, Burkina Faso, Cameroon, Central African Republic, Chad, Eritrea, Ethiopia,
Mali, Mauritania, Niger, Senegal, South Sudan, Sudan.
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Figure D9: Conflict and Distance to Dinka Homeland, Sudan
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Note: Correlation of temperature and mobility is 0.29 (significant at the 1% level).

Notes: The unit of observation: ACLED conflict events, matched to GREG for Dinka affiliated groups. The green
polygon depicts Dinka ethnic homeland according top GREG. Points indicate ACLED conflict event location. Tem-
perate in a given homeland centroid and year is indicated by different colors. For illustrative purposes, events in the
same location are dispersed locally.

group’s ethnic homeland from GREG. We do not include events for which none of the involved

actors has distinguishable ethnic affiliations. Of the 538 rebel groups in our sample, we are able to

match the ethnic affiliation for 145 groups, whereby the remaining groups are dropped. Matched

groups account for 4,406 of 9,290 events. The majority of excluded groups are local, and contrary

to rebel groups, their objective is not to replace or change the political regime in power. As a

next step, we then retrieve from the GREG dataset the geocoordinates of the ethnic homelands to

compute the average yearly temperature in their centroid.

We obtain a dataset containing, for each rebel group, all violent events where the group is

involved. Our unit of analysis is a rebel group × location × year triplet (i, k, t). In this setting,

a location is defined as 1 × 1 km cells, to fully exploit the spatial nature of this exercise and to

be able to track profound changes in nomadic migration patterns. Table D1 contains descriptive

statistics on the sample used in this section. Unconditional evidence shows that nomadic groups

tend to fight further away from their homeland than settlers.

We now study how distance to ethnic homeland of conflict events is affected by heat shocks in

the ethnic homeland of the group, and we estimate the following specification:

distanceikt = β1 ×Thomeland
it + FEi + FEct + εikt (2)

xl



Table D1: Climate-induced Mobility and Conflict, Descriptive Statistics

Nomad Settler Total Mean difference (Nomad - Settler)

T in homeland (centroid) 28.687 27.308 28.242 1.379a

(1.457) (2.925) (2.137) (0.388)

Distance to homeland 233.643 419.632 293.687 -185.989b

(293.170) (632.131) (438.699) (81.919)

Event in other settlement cat. 0.528 0.119 0.396 0.408a

(0.404) (0.302) (0.419) (0.071)

Event in own homeland 0.768 0.345 0.631 0.423a

(0.334) (0.425) (0.415) (0.069)

Notes: The unit of observation is an actor. Columns 1-3: Summary statistics. Columns 1-2 divide cells along mobility
patterns. Column 1 and 2 depict the average (standard deviation) nomadic and settled rebel groups, respectively.
Column 3 considers the complete sample. Column 4 performs a difference of mean test between nomads and settler,
with the following significant levels: c significant at 10%; b significant at 5%; a significant at 1%.

where distanceikt is the distance between the geolocation of the fighting event k and the homeland

centroid the involved group i and Thomeland
it measures temperature in the homeland centroid of the

group.14 Conditional on rebel group fixed effects (i.e. FEi ), the coefficient β1 captures the impact

of temperature on the spatial spread of violence. Given the data structure we cluster standard

errors in the actor-location dimension.15

The estimation results of equation 2 are reported in Table D2. In column 1, all events and

groups are included in the sample. The coefficient of interest is positive and significant at the 1%

threshold confirming that groups tend to fight further away from their traditional area of operation

when heat shocks impact their ethnic homeland. We restrict the estimation to the subsamples of

settlers and nomadic groups only in columns 2 and 3 respectively. Clearly, the effect is limited

to nomadic groups only: The coefficient of interest is 3 times larger and highly significant in the

nomadic groups subsample while both its magnitude and statistical significance collapse for settlers.

In other words, the climate-induced spatial spread of violence is driven by nomadic groups only. In

the remaining columns we consequently restrict the estimation to this subsample.

We now investigate how the spread of violence relates to the search of new resources and

competition. In Column (4), we replicate the previous column for the subsample of events that

correspond to land-related violence as defined in section 3.2. This specification is very demanding

as it leads to a drastic reduction in sample size. Yet, statistical significance is still very high.

And, more importantly, we observe a threefold increase in the coefficient of interest. A natural

interpretation is that the spatial spread of violence is magnified when it turns to search for new

resources. The next two columns follow the same logic but with a different approach. There,

14In GREG, a single ethnic group can be scattered across multiple locations. Therefore, we assign to each rebel
group-location pair the geographically closest homeland centroid. We allow a maximal distance of 1000 km, although
results are robust to alternative choices as shown in Table D3 below.

15Nomadic homelands frequently span across wide geographies. Hence, far apart events fought by the same group
may be very different in their type and intensity.
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we look at soil quality in the cells where violence takes place and highlight cells containing water

and cells suited for agriculture. In detail, only cells with an above-median share of cropland and

water among all cells with nomadic conflicts are considered in columns (5) and (6), respectively.

Information on land cover is derived from the Global Land Cover SHARE database by FAO. In

each case, the estimation sample is restricted to these cells. Again, we observe that the magnitude

of the coefficient of interest increases substantially with respect to the benchmark in column (3).

This confirms that the spatial spread of violence is more pronounced when nomadic groups move

to fertile areas.

In terms of quantification, focusing on the (lower-bound) specification of column 3, we can

see that the effect is quantitatively sizeable. A one SD increase in homeland temperature (+ 3.2

degrees) leads to an increase in the distance from homeland of 47 km (representing 0.13 SD). When

focusing on the (upper-bound) estimate of column 4, the effect is almost three times larger, i.e. a

one SD increase in homeland temperature translates into an increase in the distance from homeland

of 134 km (0.37 SD).

Next, the robustness of these findings is investigated. The baseline imposes a maximal distance

between an event and the centroid of a associated ethnic homeland (distanceikt) of 1000 km.

Panel A in Table D3 limits this distance to maximally 500 km, which omits events further apart

from their homelands. Reducing maximal distance yields smaller coefficient magnitudes, although

the results remain comparable to the baseline. Panel B returns to the full sample, but clusters

the standard errors spatially, allowing for a spatial correlation within a 500 km radius of a cell’s

centroid and infinite serial correlation. Finally, Panel C changes the unit of observation from the

location-actor-year level to the event level. In this setting, frequently-fought regions receive more

weight, as several events may occur in a single cell and year involving a single rebel group. Overall,

the estimation results withstand these robustness exercises.
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Table D2: Climate-Induced Mobility and Conflict

Dependent variable: Distance to homeland (centroid, km)

Fighting group: All Settlers Nomads

(1) (2) (3) (4) (5) (6)

T in homeland (centroid) 5.873a 0.839 14.840a 41.879a 24.372a 27.351a

(2.008) (1.821) (4.583) (11.492) (6.746) (8.235)

Events 1904 895 1009 98 509 488

Groups 127 41 86 30 63 63

Group FE X X X X X X

Country × Year FE X X X X X X

Fight over resources only X

Conflict location: Agri. (M) X

Conflict location: Water (M) X

Notes: An observation is a rebel group × location × year. The sample is limited to Sahel countries. Information on
conflict participants is derived from ACLED and matched on the ethnic group level to settlement mobility information
from Murdock’s Ethnographic Atlas. As a result, conflict participants’ mode of settlement can be identified. Multiple
events of the same group within the same 1 × 1 kilometer cell and year are coded as a single observation. T in
homeland (centroid) measures temperature in degree Celsius in the geographic center of a fighting group’s nearest
homeland. A group’s homeland is defined according to the specified ethnic group location in GREG. Column 1
considers all conflict events, column 2 only considers conflict events involving a settler group and columns 3-6 only
considers conflict events involving a nomadic group. Column 4 restricts the subsample of nomadic event further
to events including at least one of the following key words: land dispute, dispute over land, control of land, over
land, clash over land, land grab, farm land, land invaders, land invasion, land redistribution, land battle, over cattle
and land, invade land, over disputed land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture,
cow, cattle, farm, crop, harvest. Column 5 (6) restricts the subsample of nomadic events further to events taking
place in cells with an above-median share of farm land (water), with data from Global Land Cover SHARE by Fao.
The dependent variable measures the distance between a conflict event and the center of a participating group’s
homeland. The regressions control for group and country-year fixed effects. Coefficients are reported with standard
errors clustered at the actor-location level in parentheses. c significant at 10%; b significant at 5%; a significant at
1%.
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Table D3: Climate-induced Mobility and Conflict, Alternative Specifications

Dependent variable: Distance to homeland (centroid, km)

Fighting group: All Settlers Nomads

(1) (2) (3) (4) (5) (6)

Panel A. Restricting dependent variable to < 500 km

T in homeland (centroid) 2.715b 1.489 9.537a 34.745a 19.910a 22.962a

(1.371) (1.471) (3.654) (9.460) (5.911) (6.557)

Events 1615 698 917 96 478 448
Groups 120 35 85 30 61 60

Panel B. Spatially clustered standard errors

T in homeland (centroid) 5.873b 0.839 14.840a 41.879a 24.372a 27.351a

(2.444) (2.381) (5.608) (7.952) (6.579) (7.987)

Events 1904 895 1009 98 509 488
Groups 127 41 86 30 63 63

Panel C. Event level regressions

T in homeland (centroid) 2.172 -3.175 18.234a 45.535a 29.348a 31.166a

(2.326) (2.286) (5.466) (8.879) (7.212) (9.107)

Events 4406 2148 2258 127 1134 1102
Groups 127 41 86 30 63 63

Group FE X X X X X X
Country × Year FE X X X X X X
Fight over resources only X
Conflict location: Agri. (M) X
Conflict location: Water (M) X

Notes: Panel A: as baseline table, with the difference that the maximal distance between conflict event and rebel
groups’ homeland is restricted to 500 km (instead of 1000km). Panel B: as baseline table, with the difference that the
standard errors are spatially clustered, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and
infinite serial correlation (Conley, 1999). Panel C: as baseline table, with the difference that the unit of observation
is a conflict event. As a results, a single actor potentially could be involved in multiple conflict events in the same
location and year. The sample is limited to Sahel countries. Information on conflict participants is derived from
ACLED and matched on the ethnic group level to settlement mobility information from Murdock’s Ethnographic
Atlas. As a result, conflict participants’ mode of settlement can be identified. Multiple events of the same group
within the same 1 × 1 kilometer cell and year are coded as a single observation. T in homeland (centroid) measures
temperature in degree Celsius in the geographic center of a fighting group’s nearest homeland. A group’s homeland
is defined according to the specified ethnic group location in GREG. Column 1 considers all conflict events, column
2 only considers conflict events involving a settler group and columns 3-6 only consider conflict events involving a
nomadic group. Column 4 restricts the subsample of nomadic event further to events including at least one of the
following key words: land dispute, dispute over land, control of land, over land, clash over land, land grab, farm
land, land invaders, land invasion, land redistribution, land battle, over cattle and land, invade land, over disputed
land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture, cow, cattle, farm, crop, harvest. Column
5 (6) restricts the subsample of nomadic events further to events taking place in cells with an above-median share
of agricultural (water), with data from Global Land Cover SHARE by Fao. The dependent variable measures the
distance between a conflict event and the center of a participating group’s homeland. The regressions control for
group and country-year fixed effects. Standard errors are reported in parentheses. c significant at 10%; b significant
at 5%; a significant at 1%.
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E Resilience through Formal Institutions and Policies

Below are presented several Tables studying the impact of policies. They are all discussed in detail

in the main text under section 5.

Table E1: Resilience Through Formal Institutions and Policies, Alternative Variables

(1) (2) (3)
Incident Incident Incident

T 0.033a 0.016c 0.036a

(0.012) (0.008) (0.013)
T × Mixed settlement 0.032b 0.031a 0.035b

(0.016) (0.010) (0.017)
T × Property rights -0.023 -0.024

(0.015) (0.016)
T × Mixed set. × Property rights -0.034c -0.037c

(0.020) (0.021)
T × Independent Judiciary -0.010 -0.009

(0.014) (0.014)
T × Mixed set. × Independent Judiciary -0.023 -0.002

Cells 8479 9230 8134
Observations 152622 166140 146412
Sample share - interaction group .51 .12 .55
Mix share - interaction group .11 .07 .11
Cell FE X X X
Country × Year FE X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The table tests heterogeneity across relevant
country-wide institutional features The sample includes the years 1997-2014 and the number of included cells in each
column varies with the data availability of the test heterogeneity. Column 1 tests the role of property rights with
data from the Economic Freedom of the World Dataset (only post sample data available) and column 2 considers
judiciary independence (pre-sample) with data from Political Constraints Database. In both cases, data is accessed
via the Quality of Government data collection and a binary variable is coded indicating above-median levels in the
respective variable. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers
and nomads. Dependent variable: Incident indicates conflict incidence and is equal one if at least one conflict event
occurs in a cell and year. The regressions control for cell and country-year fixed effects. Coefficients are reported
with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a
cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at
1%.
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Table E2: Resilience Through Formal Institutions and Policies, Border Analysis

Dependent variable: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

Panel A. 75 km buffer around national borders
T 0.013 0.006 0.053a 0.024b 0.036c

(0.012) (0.009) (0.015) (0.009) (0.020)
T × Mixed settlement 0.034b 0.027b 0.018 0.024b 0.044c

(0.014) (0.012) (0.018) (0.011) (0.025)
T × High polity -0.005 0.019

(0.015) (0.017)
T × Mixed set. × High polity -0.050b -0.033

(0.021) (0.022)
T × High land dispute resolution 0.029 0.021

(0.019) (0.017)
T × Mixed set. × High land dispute resolution -0.057b -0.034

(0.022) (0.024)
T × Low corruption -0.061a -0.062a

(0.017) (0.019)
T × Mixed set. × Low corruption -0.007 0.007

(0.022) (0.025)
T × Federal states -0.026 -0.008

(0.021) (0.020)
T × Mixed set. × Federal sates -0.099b -0.078c

(0.039) (0.043)
Cell FE / Country × Year FE X X X X X

Panel B. 75 km buffer around national borders, including border × year fixed effects
T -0.021 -0.002 0.007 -0.006 -0.011

(0.014) (0.011) (0.013) (0.010) (0.024)
T × Mixed settlement 0.033a 0.021c 0.036b 0.031a 0.042c

(0.012) (0.012) (0.015) (0.010) (0.023)
T × High polity 0.019 0.027

(0.016) (0.019)
T × Mixed set. × High polity -0.041b -0.018

(0.019) (0.022)
T × High land dispute resolution 0.001 -0.000

(0.017) (0.019)
T × Mixed set. × High land dispute resolution -0.026 0.001

(0.020) (0.023)
T × Low corruption -0.021 -0.016

(0.016) (0.021)
T × Mixed set. × Low corruption -0.030c -0.019

(0.018) (0.024)
T × Federal states 0.007 0.004

(0.025) (0.025)
T × Mixed set. × Federal sates -0.100a -0.082b

(0.036) (0.040)
Cell FE / Country × Year FE / Border × Year FE X X X X X

Cells 2897 2997 3319 3319 2638
Observations 52146 53946 59742 59742 47484
Sample share - interaction group .44 .42 .51 .1 .93
Mix share - interaction group .1 .1 .1 .11 .14

Notes: For details, consult the notes of Table 4. The sample is limited to cells within a 75 km buffer around national
borders. The distance is measured between the centroid of a cell and a border. Panel B additionally controls for
border-year specific fixed effects. In cases where cells contain multiple borders, a cell is assigned to the border closest
to its centroid.
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Table E3: Resilience Through Formal Institutions and Policies, Border Analysis, Larger Buffer

Dependent variable: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

Panel A. 120 km buffer around national borders
T 0.014 0.005 0.045a 0.021a 0.040b

(0.010) (0.008) (0.013) (0.008) (0.019)
T × Mixed settlement 0.037a 0.025b 0.022 0.026a 0.043c

(0.012) (0.010) (0.017) (0.010) (0.023)
T × High polity -0.007 0.010

(0.012) (0.015)
T × Mixed set. × High polity -0.053a -0.038b

(0.018) (0.019)
T × High land dispute resolution 0.027c 0.024c

(0.016) (0.014)
T × Mixed set. × High land dispute resolution -0.046b -0.031

(0.019) (0.021)
T × Low corruption -0.050a -0.061a

(0.015) (0.017)
T × Mixed set. × Low corruption -0.010 0.006

(0.020) (0.022)
T × Federal states -0.023 -0.005

(0.019) (0.019)
T × Mixed set. × Federal sates -0.085b -0.059

(0.033) (0.036)
Cell FE / Country × Year FE X X X X X

Panel B. 120 km buffer around national borders, including border × year fixed effects
T -0.013 0.003 0.009 -0.001 0.002

(0.013) (0.010) (0.012) (0.009) (0.022)
T × Mixed settlement 0.035a 0.020b 0.035b 0.029a 0.041c

(0.011) (0.009) (0.014) (0.009) (0.021)
T × High polity 0.012 0.011

(0.014) (0.018)
T × Mixed set. × High polity -0.046a -0.027

(0.016) (0.019)
T × High land dispute resolution -0.002 -0.006

(0.015) (0.017)
T × Mixed set. × High land dispute resolution -0.026 -0.010

(0.018) (0.020)
T × Low corruption -0.016 -0.010

(0.014) (0.018)
T × Mixed set. × Low corruption -0.028c -0.013

(0.017) (0.022)
T × Federal states 0.007 0.004

(0.023) (0.024)
T × Mixed set. × Federal sates -0.081a -0.052

(0.031) (0.034)
Cell FE / Country × Year FE / Border × Year FE X X X X X

Cells 2897 2997 3319 3319 2638
Observations 52146 53946 59742 59742 47484
Sample share - interaction group .44 .42 .51 .1 .93
Mix share - interaction group .1 .1 .1 .11 .14

Notes: For details, consult the notes of Table 4. The sample is limited to cells within a 120 km buffer around national
borders. The distance is measured between the centroid of a cell and a border. Panel B additionally controls for
border-year specific fixed effects. In cases where cells contain multiple borders, a cell is assigned to the border closest
to its centroid.
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