
American Economic Review 2012, 102(7): 3674–3700 
http://dx.doi.org/10.1257/aer.102.7.3674

3674

Self-Fulfilling Risk Panics†

By Philippe Bacchetta, CÉdric Tille, and Eric van Wincoop*

Sharp surges in asset price risk are a prominent feature of financial panics, such 
as the turmoil in the Fall of 2008 or more recently the European debt crisis. Implied 
volatility, as measured by the VIX index, more than quadrupled in the wake of the 
Lehman Brothers failure, and tripled both in May 2010 and August 2011 in connec-
tion to the European debt crisis. Explaining such huge and sudden spikes in risk is 
an important theoretical challenge that the literature has yet to meet. In this paper we 
propose a theory for large self-fulfilling changes in beliefs about risk.

We frame our analysis in a very simple model where agents have mean-variance 
preferences and choose to allocate their wealth between a risk-free bond and a risky 
asset. The key implication is that the equilibrium asset price  Q t  depends negatively 
on asset price risk, defined as the variance of the asset price tomorrow, va r t ( Q t+1 ). 
To see how self-fulfilling shifts in risk can arise in this context, assume that agents 
believe that the risk va r t ( Q t+1 ) depends on a variable  S t  . This implies that  Q t  depends 
on  S t  as well because the asset price depends negatively on risk. Therefore  Q t+1  
depends on  S t+1 . Now, if we assume that the distribution of  S t+1  depends on  S t , then 
the risk va r t ( Q t+1 ) will indeed depend on  S t  . This circular relationship between asset 
price risk and the asset price level can therefore generate self-fulfilling shifts in risk 
coordinated around the variable  S t  . What is interesting is that  S t  could be a funda-
mental variable like dividends, but it could also be a variable extrinsic to the model, 
i.e., a sunspot variable.1

We consider three versions of the model, which highlight the various roles of 
the state variable(s). We consider both an autoregressive and a Markov process for 
the state variable  S t  . In the first version, we assume that the state variable does not 
affect dividends. Therefore  S t  is a pure sunspot and the risky asset pays a constant 
dividend. We show that there is a fundamental equilibrium where the asset price is 
constant, and a sunspot equilibrium where the asset price, and asset price risk, fluc-
tuate with the sunspot. Changes in the value of the sunspot can trigger both a large 
increase in risk and a drop in the asset price. The change in perceived risk is entirely 
self-fulfilling.

1 The key aspect of our model is that time-varying risk is self-fulfilling. This contrasts with a large and growing 
literature that has introduced exogenous time-varying risk in the fundamentals, such as Bansal and Yaron (2004), 
Bloom (2009), and many others.
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In the second version of the model we assume that the state variable affects the 
dividend of the risky asset, and is therefore a fundamental. There is again a funda-
mental equilibrium, where risk is constant and changes in the asset price reflect the 
impact of the state variable on the dividend. There is also a so-called “sunspot-like” 
equilibrium in which the state variable plays a dual role. It plays both the role of 
a fundamental that affects dividends and the role of a sunspot that generates self-
fulfilling shifts in risk. The latter role dominates.2

Finally, in the third version of the model there is a second state variable. In addi-
tion to  S t  playing the role of a fundamental, we introduce a two-state sunspot vari-
able that switches expectations between low and high risk states. A change in this 
sunspot can be seen as a shift from a tranquil to a panic state, which we call a risk 
panic. During such a risk panic there is a spike in asset price risk and a drop in the 
asset price that can be very large in magnitude. We show that the panic is larger 
when the fundamental is weak, and that the asset price becomes much more sensi-
tive to the fundamental once we shift to the panic state. The role of the fundamental  
S t  in the panic state is the same as in the sunspot-like equilibria discussed above. In 
addition to its fundamental role, it becomes a focal point for self-fulfilling changes 
in beliefs about risk.

The paper is related to the broader literature on multiple equilibria with self-ful-
filling shifts in beliefs.3 However, the sunspot equilibria resulting from our analysis 
differ from the literature. First, our model has a unique non-sunspot equilibrium. 
Thus, in contrast to most of the literature, the role of sunspots is not to randomize 
over multiple fundamental (non-sunspot) equilibria.4 A second key feature of our 
setting is that the self-fulfilling shift in beliefs is not about the level of a variable (the 
asset price) but about the level, and more generally the process, of its risk. This is 
critical as we wish to explain large spikes in risk.

There is also a literature focusing on self-fulfilling shifts in beliefs about risk 
that are due to an interaction between risk and liquidity. This occurs in limited par-
ticipation models such as Pagano (1989); Allen and Gale (1994); and Jeanne and 
Rose (2002). When agents believe that risk is high, market participation is low. This 
implies low market liquidity, which leads to a large price response to asset demand 
shocks and therefore high risk.5 This is quite different though from what happens in 
our model, where there is no concept of market liquidity. In contrast to static limited 
participation models, the dynamic nature of the model is critical in generating our 
results. In our setting, sunspot equilibria cannot occur in the absence of dynamic 
relation between the state variable today and its distribution tomorrow.

2 The term “sunspot-like” equilibria was first coined by Manuelli and Peck (1992, p. 205). They write: “There are 
two ways that random fundamentals can influence economic outcomes. First, randomness affects resources which 
intrinsically affects prices and allocation. Second, the randomness can endogenously affect expectations or market 
psychology, thereby leading to excessive volatility.” In the limiting case where fundamental uncertainty goes to 
zero, sunspot-like equilibria converge to pure sunspot equilibria.

3 In terms of asset prices, there are many applications of this phenomenon for both stock prices and exchange 
rates. In particular, there is a large literature with self-fulfilling speculative attacks on currencies. See, e.g., Obstfeld 
(1986); Aghion, Bacchetta, and Banerjee (2004); or Burnside, Eichenbaum, and Rebelo (2004).

4 There are some examples in the literature where sunspot equilibria occur even with a unique non-sunspot equi-
librium. See, for example, Cass and Shell (1983) or Hens (2000). See Benhabib and Farmer (1999) or Shell (2008) 
for surveys on the sources of sunspots.

5 This phenomenon is not limited to limited participation models of asset prices. For other applications see 
Bacchetta and van Wincoop (2006) and Walker and Whiteman (2007).
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We derive our results under the assumption that agents have simple mean-variance 
preferences. The mean-variance portfolio model has a long history in academics 
and remains extensively used today. It is also widely used in the financial industry 
and can therefore be considered as a reasonable description of actual behavior.6 An 
alternative avenue would be to introduce micro founded risk-based portfolio con-
straints, such as value-at-risk constraints or margin constraints, so that asset demand 
(and therefore the asset price itself) would depend explicitly on uncertainty about 
the future asset price.7 This would, however, make the model significantly more 
complicated. The mean-variance portfolio assumption in this paper should then be 
considered as an approximation of more complex behavior.

The model is too simple to calibrate to actual data of financial panics. However, 
at a qualitative level it does connect to events in recent years in several ways. First, 
it can generate spikes in risk and a drop in asset prices that are very large, as we 
show through numerical illustrations. We are not aware of any other macro model 
that can generate the huge spikes in risk as seen during the US financial crisis in 
2008 or the European debt crisis. Second, this happens without any change in fun-
damentals. Balance sheets of US financial institutions had started to gradually dete-
riorate long before the financial panic in the Fall of 2008. The same can be said for 
Greek debt, which did not suddenly reach its high level in May of 2010, when it 
first ignited a spike in risk. Finally, the last version of our model implies that a risk 
panic also leads to increased volatility of risk that is coordinated around news about 
a macro fundamental. During recent market turmoil associated with European debt, 
any news about Greek bailout packages has indeed had the effect of large shifts in 
the VIX seen around the world.

The remainder of the paper is organized as follows. In Section I we describe the 
model. Section II considers the model when there is one state variable that is a sun-
spot, following either an autoregressive or Markov process. Section III considers the 
case where the state variable affects the dividend of the risky asset, thus becoming 
a macro fundamental. This gives rise to the possibility of sunspot-like equilibria. It 
then extends the model by introducing a second state variable, which is a sunspot. 
This allows for equilibria that have the flavor of a switch between fundamental and 
sunspot-like equilibria. Section IV concludes.

I. A Simple Mean-Variance Portfolio Choice Model

The model is designed to keep complexity to a strict minimum. Consider an 
overlapping generation setup where investors are born with wealth W. They live 
for two periods and only consume when old. Their only problem is to allocate 
their wealth between a risky equity and a risk-free bond that pays a gross return 
R > 1.

6 See Basak and Chabakauri (2010) for further motivation.
7 A substantial literature introducing such constraints has developed in recent years. Examples are Gromb and 

Vayanos (2002); Brunnermeier and Pedersen (2009); and Zigrand, Shin, and Danielsson (2010). For the same 
reason of analytic tractability as in this paper, these constraints are often introduced in a reduced-form way rather 
than based on explicit micro foundations.
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Equity consists of a claim on a tree with a stochastic payoff. There are k trees, 
each producing an exogenous stochastic output (dividend)  A t  . Denoting the equity 
price by  Q t  , the equity return from t to t + 1 is

(1)  R k, t+1  =    A t+1  +  Q t+1   _  Q t 
   .

In general, agents face uncertainty both about the dividend and the future equity 
price. The dividend is equal to

(2)  A t  =   
_
 A  + m  S t  ,

where  S t  is an exogenous state variable that follows a stochastic process. The divi-
dend is constant at   

_
 A  when m = 0. In that case  S t  is an extrinsic variable, or pure 

sunspot, with no fundamental role. When m > 0,  S t  has a fundamental impact on the 
dividend. For simplicity we assume that the distribution of  S t+1  depends at most on  
S t  and is time invariant. The analysis could easily be extended to processes of  S t+1  
that depend on more lags of  S t  . We also assume that the unconditional distribution 
of  S t  is such that  A t  is always nonnegative.

Investors born at time t maximize a mean-variance utility over their portfolio 
return

(3)  E t   R  t+1  p
   − 0.5γ va r t  ( R  t+1  p

  ),

where γ measures risk aversion and the portfolio return is

  R  t+1  p
   =  α t   R k, t+1  + (1 −  α t ) R.

 α t  denotes the portfolio share invested in equity. The clearing of the equity market 
requires that the wealth invested in equity equates the value of existing trees:

(4)  α t  W =  Q t  k.

DEFINITION 1: An equilibrium is a nonnegative asset price function  Q t  = f ( S t ) 
such that (i) agents choose the portfolio share  α t  to maximize their utility (3), (ii) the 
market clearing condition (4) is satisfied, and (iii) there are no asset price bubbles: 
li m T→∞   E t   Q t+T / R  t+T  = 0.

Maximization of (3) with respect to  α t  gives the optimal portfolio share, which 
reflects the expected excess return on equity scaled by the variance of the equity 
return:

(5)  α t  =   
 E t   R k, t+1  − R

  _  γ va r t  ( R k, t+1 )
   .

Using (5), the market clearing condition (4) becomes

(6)  E t  ( A t+1  +  Q t+1  − R  Q t ) = λ va r t  ( Q t+1  +  A t+1 ),
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where λ = γk/W. Equation (6) equates the equilibrium expected excess payoff on 
equity to a risk premium that depends on the variance of  Q t+1  +  A t+1 .

Iterating (6) forward, and using the no bubble condition li m T→∞   E t   Q t+T / R  t+T  = 0, 
gives a present value expression for the equilibrium asset price:

(7)  Q t  =  ∑ 
i=1

  
∞

       1 _ 
 R  i 

    E t   A t+i  − λ  ∑ 
i=1

  
∞

       1 _ 
 R  i 

    E t  va r t+i−1  ( Q t+i  +  A t+i ).

The asset price depends on the present value of the expected future dividends 
and the present value of expected future risk, measured by the expected value of  
va r t+i−1 ( Q t+i  +  A t+i ) for i ≥ 1.

II. Sunspot Equilibria

We first consider the case where the state variable  S t  is a pure sunspot with no 
direct impact on the dividend. This corresponds to m = 0 in (2) with the dividend 
constant at   

_
 A . One solution to the asset price is immediate, which is a straightfor-

ward fundamental equilibrium:

(8)  Q t  =   
_
 A /(R − 1).

The asset price is constant and equal to the present value of the constant dividend.
However, there can be other equilibria where the asset price is affected by the 

sunspot variable  S t  . These are sunspot equilibria, which are defined as follows:

DEFINITION 2: Assume m = 0, so that  S t  is an extrinsic variable. A pure sunspot 
equilibrium is an equilibrium with nonconstant asset price  Q t  = f ( S t ).

In the remainder of this section we focus on these equilibria. Their existence is 
not guaranteed and depends in particular on the process of  S t  . We first derive some 
necessary conditions for the existence of a sunspot equilibrium, and then consider 
two specific examples based on, respectively, an autoregressive and Markov process 
for  S t  .

A. Necessary Conditions for Sunspot Equilibrium

When m = 0, the present value relationship (7) becomes

(9)  Q t  =     
_
 A  _ 

R − 1
   − λ  ∑ 

i=1
  

∞

       1 _ 
 R  i 

    E t  va r t+i−1  ( Q t+i ).

The asset price  Q t  can only depend on the sunspot  S t  through the asset price risk  
 E t va r t+i−1 ( Q t+i ). If risk does not depend on the sunspot, and is therefore constant, it 
is immediate from (9) that the asset price is constant and thus risk is zero. The fun-
damental equilibrium (8) is then the only solution. This implies a simple condition 
for the existence of a sunspot equilibrium.
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PROPOSITION 1: A necessary condition for a sunspot equilibrium to exist is that 
the distribution of  S t+1  depends on  S t  .

PROOF: 
The proof can be given by contradiction. Consider a sunspot equilibrium  

 Q t  = f ( S t ). When the distribution of  S t+1  does not depend on  S t  , then va r t ( Q t+1 )  
= va r t (  f ( S t+1 )) does not depend on  S t  . This is true for all t (current and future), so 
that (9) implies that  Q t  does not depend on  S t  .

If this condition does not hold, it breaks a key element in the circular link between 
the asset price and asset price risk that gives rise to the possibility of sunspot equi-
libria. There is another necessary condition for existence that is useful for later 
analysis.8

PROPOSITION 2: Consider a sunspot equilibrium  Q t  = f ( S t ), where f ( S t ) can be 
represented by an infinite order polynomial. A necessary condition for such a sun-
spot equilibrium to exist is that there is at least one pair ( n 1 ,  n 2 ) ∈  N  *  ×  N  *  such that 
co v t ( S  t+1   n 1   ,  S  t+1   n 2   ) depends on  S t  .

PROOF: 
First, notice that there can only be a sunspot equilibrium if va r t  ( Q t+1 ) depends on  

S t  , since we assumed that the distribution of  S t+1  depends at most on  S t  and is not 
time varying. Write the solution  Q t+1  = f ( S t+1 ) as an infinite order polynominal  
Q t+1  =  ∑ n=0  

∞
    α n    S  t+1  n

  . This implies va r t  ( Q t+1 ) =  ∑  n 1 =1  
∞
      ∑  n 2 =1  

∞
    α  n 1    α  n 2  co v t  ( S  t+1   n 1   ,  S  t+1   n 2   ). 

It therefore follows that for va r t  ( Q t+1 ) to depend on  S t  there must be at least one pair 
( n 1 ,  n 2 ) with  n 1  ≥ 1 and  n 2  ≥ 1 such that co v t  ( S  t+1   n 1   ,  S  t+1   n 2   ) depends on  S t  .

The condition in Proposition 2 that f ( S t ) can be represented by an infinite order 
polynomial applies to all solutions where the function f (S) is continuously differen-
tiable. It also applies when  S t  can take on a finite number of values, in which case  
f ( S t ) can always be written as a finite order polynomial.

The condition in Proposition 1 is looser than in Proposition 2. To see this, consider 
the case where  S t  follows a symmetric Markov process. It can take two values,  

_
 S   and  

_ S , and the probability of remaining in the same state is p > 0.5. This implies that the 
distribution of  S t+1  depends on  S t  , so that the condition in Proposition 1 is satisfied. 
However, co v t  ( S  t+1   n 1   ,  S  t+1   n 2   ) = p(1 − p)(  

_
 S     n 1   −   _ S    n 1  )(  

_
 S     n 2   −   _ S    n 2  ) is independent of the 

value of  S t  . The condition of Proposition 2 is therefore not satisfied and there cannot 
be a sunspot equilibrium. This is because both the probability and the absolute size 
of a jump to another state do not depend on the current state.9

While the conditions in Propositions 1 and 2 are satisfied for a wide range of dis-
tributions, in the remainder of this section we focus on two examples to illustrate the 
existence of sunspot equilibria. We first consider an AR(1) process before turning to 
an asymmetric two-state Markov process.

8 The notation  N  *  in the proposition stands for the set of positive natural numbers.
9 This result only applies to a two-state Markov process. There will, in general, be sunspot equilibria for sym-

metric three-state Markov processes where  S t  can take on the values −  _ s  , 0 and +  _ s   and similarly when there are 
more than three states.
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B. Autoregressive Sunspot Process

We assume that the sunspot follows an AR(1) process:

(10)  S t+1  = ρ  S t  +  ϵ t+1   with 0 < ρ < 1.

The innovation  ϵ t+1  has a bounded zero-mean symmetric distribution with  ϵ t+1  ∈  
[− _ ϵ ,  _ ϵ ]. The variance of  ϵ t+1  is denoted by  σ 2 , and the variance of  ϵ  t+1  2

   is denoted  
ω  2 . Symmetry implies that  E t   ϵ  t+1  3

   = 0. Clearly the condition in Proposition 1 is 
satisfied when ρ > 0. The condition in Proposition 2 is satisfied as well because  
cov( S  t+1  2

  ,  S  t+1  2
  ) = 4 ρ 2  σ 2  S  t  2  +  ω  2  depends on  S t  .

For the purpose of the next Proposition it is convenient to define a threshold value 
on the dividend that insures a nonnegative asset price:

  A 1  ≡   R −  ρ 2 
 _ 

4λ  ρ 2   σ 2 
   (  R −  ρ 2 

 _ 
4 ρ 2   σ 2 

    ω  2  +  σ 2  +   R − 1 _ 
(1 − ρ ) 2 

     
_
 ϵ  2 ).

The following Proposition shows that there exists a sunspot equilibrium.

PROPOSITION 3: Assume that the sunspot variable  S t   follows the AR process (10) 
and that   

_
 A  >  A 1 . Then there are two equilibria within the class of finite polynomial 

solutions: the fundamental equilibrium (8) and a sunspot equilibrium

(11)  Q t  =   ̃  Q  − V S  t  2 

where

(12) V =   R −  ρ 2 
 _ 

4λ  ρ 2   σ 2 
   > 0

(13)    ̃  Q  =   1 _ 
R − 1

   (  
_

 A  − λ V  2   ω  2  − V  σ 2 ) <     
_
 A  _ 

R − 1
   .

PROOF: 
See the Appendix.

The Proposition identifies a sunspot equilibrium for a particular AR(1) process. 
Note that more generally within the class of AR(1) processes there is an infinite num-
ber of such equilibria as sunspot equilibria exist for any ρ > 0 and an infinite num-
ber of values of σ, ω, and  

_
 ϵ . Also, even for a given set of parameters, Proposition 3 

is limited to solutions within the class of finite order polynomials.
To understand the existence of the sunspot equilibrium in Proposition 3, it is use-

ful to go back to the present value relation (9). In the sunspot equilibrium, risk is 
time-varying:

 va r t  ( Q t+1 ) = 4 V  2  ρ 2   σ 2   S  t  2  +  V  2   ω  2 .



3681BACChETTA ET Al.: SElf-fulfilliNg RiSk PANiCSVOl. 102 NO. 7

There are therefore self-fulfilling shifts in perceptions of risk. This is an equilibrium 
because of the circular relationship between the stochastic process of the asset price 
and asset price risk. If agents perceive risk to depend quadratically on the sunspot, 
then so does  Q t  from (9). Risk then depends on the variance of  S  t+1  2

  , which depends 
on  S  t  2  when ρ > 0. Beliefs about risk are therefore self-fulfilling and coordinated 
around the sunspot variable. The asset price is lower in the sunspot equilibrium than 
in the fundamental equilibrium and risk is higher and more volatile.

Equation (12) shows that higher risk aversion (which implies a higher λ) reduces 
the sensitivity of the asset price and risk to the sunspot. When investors are highly 
sensitive to risk, risk does not need to move much to clear the asset market. The qua-
dratic sunspot enters in the market clearing condition (6) both through the expected 
excess payoff and the variance of  Q t+1 . The parameter V affects risk more (propor-
tional to  V  2  S  t  2 ) than the expected excess payoff (proportional to V S  t  2 ). After chang-
ing parameters, equilibrium is therefore primarily reestablished through a change in 
risk. Higher risk-aversion raises the weight on risk in equation (6) (higher λ), and 
thus allows the market to clear with risk being less sensitive to the quadratic sunspot 
(lower V ).

A feature of the sunspot solution  Q t  = f ( S t ) is that it is symmetric in the sun-
spot: f ( S t ) = f (− S t ), so that the sign of the sunspot is irrelevant. This is closely 
related to the symmetric conditional stochastic process for  S t , which more gen-
erally is defined as a process where  S t  can take on the values { s j } ≡ {− s j }, j ∈ J 
and prob( S t+1  =  s i  |  S t  =  s j ) = prob( S t+1  = −  s i  |  S t  = −  s j ) ∀i, j ∈ J. It is easy 
to show (see Appendix (A6)) that such a symmetric process implies that when  
va r t  ( Q t+1 ) is symmetric in  S t  , so will  Q t  , and when  Q t  is symmetric in  S t  , so will 
va r t  ( Q t+1 ). Symmetry is therefore preserved in the self-fulfilling loop from risk to 
the price and back to risk. The AR(1) process, with a symmetrically distributed 
innovation, is an example of such a symmetric process. We next turn to a two-
state Markov process that is not symmetric, resulting in a sunspot solution that is 
not symmetric either.

C. Two-State Markov Sunspot Process

We consider the example of a two-state asymmetric Markov process. We refer to 
the two states as the “normal” and the “bad” state, denoted by N and B, respectively. 
We denote the probability of being in a state i = N, B next period, conditional on 
being in that state today, by  p i . We assume that  p B  and  p N  are both between 0.5 and 
1 and that the normal state is more persistent:  p N  >  p B .10 Of course, what agents 
consider as “bad” is subjective as  S t  plays no fundamental role when m = 0.

Define  p D  =  p B (1 −  p B ) −  p N (1 −  p N ) and κ = 1 + R −  p N  −  p B , which are 
both positive under our assumptions. We also define the following threshold value 
for the dividend:

  A 2  ≡   
1 −  p  B 

 _  p  D       κ _ λ   [κ    p  B 
 _  p  D    − 1].

10 If  p N  =  p  B  ,  S t  follows a symmetric two-state Markov process. We have already seen that this does not satisfy 
the necessary condition for the existence of a sunspot equilibrium in Proposition 2.
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The value of the asset price in state i is denoted by  Q i . The following Proposition 
shows that there is exactly one sunspot equilibrium in this case.

PROPOSITION 4: Assume that the sunspot variable  S t   follows a two-state Markov 
process with transition probabilities  p i  of staying in state i = N, B. Assume that 
0.5 <  p B  <  p N  < 1 and   

_
 A  >  A 2 . Then there are two equilibria. One is the funda-

mental equilibrium with a unique price Q =   
_
 A /(R − 1) and no risk. The second is 

a sunspot equilibrium with 0 <  Q B  <  Q N  <   
_
 A /(R − 1),

(14)  Q D  ≡  Q N  −  Q B  =   κ _ λ  p D 
  

and

(15)  Q B  =   1 _ 
R − 1

   (  
_

 A  − λ  p  B  (1 −  p  B )  Q  D  2
   + (1 −  p  B )  Q D ). 

PROOF: 
See the Appendix.

The sunspot solution here is in many ways similar to the one for the autoregres-
sive sunspot process considered in Section IIIB. The asset price in the sunspot equi-
librium is always lower than in the fundamental equilibrium, while risk is higher 
than in the fundamental equilibrium. In state i the variance of  Q t+1  is  p i (1 −  p i ) Q  D  2

  .  
Since  p B (1 −  p B ) >  p N (1 −  p N ) under our assumptions, risk is higher in the bad 
state, which results in a lower price in the bad state. Since  S t  is a pure sunspot, the 
higher risk when we shift from state N to state B is entirely self-fulfilling.

There is one difference though in comparison to the sunspot solution for the 
autoregressive process. Because the sunspot process is now no longer symmetric, 
the price and risk are no longer a symmetric function of the sunspot. Without loss 
of generality we can let  S N  = 1 and  S B  = −1. From Proposition 4,  Q t ( S N ) >  Q t ( S B ),  
which implies asymmetry. As we will see, this asymmetry is an attractive feature 
when we allow m to be positive in the next section.

The intuition for the self-fulfilling risk in the sunspot equilibrium again reflects 
the circular relationship between the stochastic process of the asset price and asset 
price risk. If agents believe that asset price risk is high in state B and low in state 
N, then indeed it will be. It leads to a low price in state B and a high price in 
state N. This in turn implies that risk is higher in state B, as  p B  <  p N  means that 
in state B there is more uncertainty about next period’s state and therefore about 
next period’s price. Shifts in beliefs about risk across the two states are therefore 
self-fulfilling.

When the increase in risk from state N to state B is very large, and the drop in the 
price big, we can speak of a risk panic. This is a large self-fulfilling shift in perceived 
risk. To illustrate this, Figure 1 shows both the asset price (left panel) and asset price 
risk (right panel) for a particular parameterization. Asset price risk is defined as the 
standard deviation of next period’s asset price divided by the asset price today. It 
is assumed that  p N  = 0.99, so that a switch to the bad state is quite rare. The solu-
tion is shown for different values of  p B . Independent of the value of  p B  we see that 
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a switch from state N to state B leads to an enormous spike in risk and drop in the 
price level.11 For example, for  p B  = 0.7 the risk panic involves an increase in asset 
price risk from 5 percent to 40 percent and a drop in the asset price by 47 percent.12

III. Sunspot-Like Equilibria and Risk Panics

We now turn to the case where m > 0, so that the state variable  S t  is a fundamental 
that affects the dividend. We show that apart from a fundamental equilibrium there 
now exist so-called “sunspot-like” equilibria. In those equilibria  S t  plays the dual 
role of a fundamental that affects the asset price through its impact on dividends 
and a sunspot that leads to self-fulfilling shifts in risk. We again consider the cases 
where  S t  follows a first-order autoregressive process and an asymmetric two-state 
Markov process. We also consider an extension of the model where in addition to the 
time-varying fundamental (the dividend) there is a sunspot variable that can trigger  
risk panics.

11 If  p B  is too high (even if still below  p N  ) there is no sunspot equilibrium as the condition   
_
 A  >  A 2  is no longer 

satisfied.
12 In these results, the average equity premium varies from 2 percent to 9 percent, dependent on the value of  p B .  

The equity premium is large here because consumption is perfectly correlated with the equity return. It obviously 
does depend a lot on the state, being higher in the bad state than in the good state by a factor  p B (1 −  p B )/[ p N  (1 −  p N )].  
We do not make an assumption about the rate of risk-aversion γ. Instead, we only need to choose λ = γk/W, which 
we set at 0.5. This implies that γ  α t  = 0.5 Q t  , which is about 4 in the good state, so that the equity portfolio share is 
1 when γ = 4 or 0.4 when γ = 10.

Figure 1. Illustration of Risk Panic in Markov Sunspot Equilibrium

Notes: The chart on the left shows the asset price in the normal state N and the bad state B as a function of the prob-
ability  p  B  of remaining in the bad state. The probability of remaining in the good state is held at 0.99. The chart on 
the right shows risk, measured as the standard deviation of the asset price next period, divided by the asset price 
today, in both the normal and bad states. Other than  p  B  , which varies along the horizontal axis, the parameterization 
is as follows:  

_
 A  = 1; R = 1.1;  p N  = 0.99; λ = γ k/W = 0.5.
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A. Autoregressive Dividend Process

We assume that the process for  S t  is given by (10) with the same assumptions 
as before. In addition we define the following threshold values for the dividend:  
A 3  ≡ max ( A 31 ,  A 32 ,  A 33 ), where

  A 31  ≡ m 
_
 ϵ /(1 − ρ)

  A 32  ≡ λ    R 2   m 2   σ 2  _ 
(R − ρ ) 2 

   +   (R − 1) m ρ _ ϵ   __  (R − ρ)(1 − ρ)  

  A 33  ≡   R −  ρ 2 
 _ 

4λ  ρ 2  σ 2 
   ( σ 2  +   (R − 1)  _ ϵ   2 

 _ 
(1 − ρ ) 2 

   +   (R −  ρ 2 ) ω 2 
 _ 

4 ρ 2  σ 2 
  ) + λ    ρ 2   m 2   σ 2 

 _ 
(1 − ρ ) 2 

   +   (R − 1)m 
_
 ϵ  _ 

(1 − ρ ) 2 
  .

PROPOSITION 5: Assume that  S t   follows the AR process (10). Also assume that   
_
 A  >  

A 3 . Then there are two equilibria within the class of finite polynomials. The first is a 
fundamental equilibrium:

(16)  Q t  =   1 _ 
R − 1

   ( 
_
 A  − λ    R 2   m 2   σ 2  _ 

(R − ρ ) 2 
  ) +   mρ _ 

R − ρ    S t  .

The second is a sunspot-like equilibrium:

(17)  Q t  =   ̃  Q  + v  S t  − V  S  t  2 

where

(18) V =   R −  ρ 2 
 _ 

4λ  ρ 2   σ 2 
  

(19) v = −    m _ 
1 − ρ  

(20)   ̃  Q  =   1 _ 
R − 1

   (  _ A  − λ ( V  2  ω  2  + (v + m ) 2   σ 2 ) − V  σ 2 ).

PROOF: 
See the Appendix.

In this case,  Q t  is obviously affected by  S t  even in the fundamental equilibrium. To 
see the contrast between the fundamental and the sunspot-like equilibrium, consider 
the present value equation (7), which in this case becomes

(21)   Q t  =   1 _ 
R − 1

      
_
 A  +   mρ _ 

R − ρ    S t  − λ  ∑ 
i=1

  
∞

     1 _  R  i      E t  va r t+i−1  ( Q t+i  +  A t+i ).



3685BACChETTA ET Al.: SElf-fulfilliNg RiSk PANiCSVOl. 102 NO. 7

In the fundamental equilibrium the asset payoff risk va r t  ( Q t+1  +  A t+1 )  
=  (mRσ) 2 /(R − ρ ) 2  is constant, so that the last term in (21) is constant. The asset 
price then depends positively on  S t  with coefficient mρ/(R − ρ). It is more sensi-
tive to dividend shocks when the dividend is more persistent (higher ρ). The impact 
of  S t  on the asset price vanishes to zero as its fundamental impact becomes small 
(m → 0).

In the sunspot-like equilibrium,  S t  plays the dual role of a fundamental and a 
sunspot that leads to time-varying beliefs about risk. Its fundamental role is still 
captured by the second term of (21) that depends positively on  S t  . Its sunspot role 
is captured by the present value of time-varying risk through the last term of (21). 
We have

(22) va r t  ( Q t+1  +  A t+1 ) = (v + m − 2ρV  S t  ) 2   σ 2  +  V  2   ω  2 .

This time-varying risk is self-fulfilling as it does not go away when the fundamental 
role of  S t  vanishes with m → 0. This is because V does not depend on m. The coef-
ficient on the quadratic term is in fact the same as in the pure sunspot equilibrium. 
When m → 0 the sunspot-like equilibrium converges to the pure sunspot equilib-
rium in Proposition 3. The main difference with Section III is that when m > 0 the 
self-fulfilling shifts in beliefs about risk are now coordinated around a macro funda-
mental rather than an external sunspot variable.

Note also that the linear coefficient on  S t  is negative in the sunspot-like equilib-
rium (19). This is because the positive linear term in  S t  in (21), associated with its 
fundamental role, is more than offset by the linear dependence of risk (22) on  S t  that 
captures self-fulfilling beliefs about risk. Together with the negative quadratic term 
in  S t  , it is therefore clear that the sunspot role dominates the fundamental role in the 
sunspot-like equilibrium.

Although in a very different context, not involving time-varying shifts in risk, 
Spear, Srivastava, and Woodford (1990, p. 281), and Manuelli and Peck (1992) also 
present models with sunspot-like equilibria. Spear, Srivastava, and Woodford (1990) 
point out that “… a sharp distinction between “sunspot equilibria” and “non sunspot 
equilibria” is of little interest in the case of economies subject to stochastic shocks to 
fundamentals.” Indeed, as we raise m slightly above 0, the sunspot-like equilibrium is 
technically no longer a pure sunspot equilibrium, but it is effectively indistinguishable.

There is one unattractive aspect of the sunspot-like equilibrium. This relates to the 
symmetric process of the sunspot. As we saw in Section IIIB, this symmetric pro-
cess leads to a symmetric solution for the asset price and risk when m = 0, which 
means that the sign of  S t  is irrelevant. Risk is equally high when  S t  is a big positive 
number as when it is an equally big negative number. This carries over to sunspot-
like equilibria. When m is only slightly above zero, the solution is virtually identical 
to the sunspot solution. Symmetry of the sunspot solution then implies that risk is 
equally high, and the price equally low, for a large positive  S t  (good fundamental) as 
for an equally large negative  S t  (bad fundamental).

This unattractive feature continues to hold for any positive m due to the domi-
nance of the sunspot role of  S t  . In general, we have

(23) va r t  ( Q t+1 ) = (v − 2ρV  S t  ) 2   σ 2  +  V  2   ω  2 .
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Since v < 0, this implies that risk is actually highest, and the asset price is lowest, 
when the fundamental is strongest. Related to this, a rise in dividends always low-
ers the asset price when  S t  > 0. However, this unappealing result is not a general 
feature of sunspot-like equilibria, but is closely connected to the symmetric process 
for the sunspot. It does not occur when  S t  follows an asymmetric two-state Markov 
process, which we turn to next.

B. Two-State Markov Dividend Process

The asymmetric two-state Markov process is analogous to that in Section IIIC, 
with the difference that the dividend is higher in the normal state than in the bad 
state:  A N  >  A B . We define  A D  =  A N  −  A B , which converges to zero when m → 0. 
The assumptions on the switching probabilities are as in Section IIIC, and we define 
the following threshold for the dividend:

 A 4  =   1 −  p B 
 _  p  D    (− p B  R  A D  +    p B  (R −  p N ) +  p N  (1 −  p N )   ___  

2λ  p D 
   

 × [κ +  √ 
__

   κ 2  − 4R λ   p  D   A D   ]).

The equilibria are then given by the following proposition.

PROPOSITION 6: Assume that the fundamental  A t   follows a two-state Markov pro-
cess. it takes on value  A i  in state i = N, B, with transition probability  p i  of remaining 
in state i. Assume that 0.5 <  p B  <  p N  < 1,  A D  <    κ 2 

 _ 
4R λ  p D 

   and  A B  >  A 4 . Then there are 
two equilibria. The values of the asset price difference  Q D  =  Q N  −  Q B  in the two 
equilibria are

(24)  Q D  = [  κ _ 
2λ  p D 

   −  A D ] ±   1 _ 
2λ  p D 

    [ κ 2  − 4 R λ  p D   A D ] 0.5  > 0.

Corresponding to each value of  Q D , the asset price in state B is

(25)  Q B  =    A B 
 _ 

R − 1   

 +   (1 −  p B )  p N  (  p N  +  p B  − 1)  A D  − (1 −  p B )[  p B  (R −  p N ) +  p N  (1 −  p N )]  Q D 
      _____     p D  (R − 1)   .

PROOF: 
See the Appendix.

Since  Q D  is positive, the asset price is higher in the normal state than in the bad 
state. We refer to the equilibrium where  Q D  takes on its lowest value (with the minus 
sign between the two terms in (24)) as the fundamental equilibrium, and to the other 
as the sunspot-like equilibrium.
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In the fundamental equilibrium, the asset price differs between the normal and 
bad states only if the dividend differs between these two states ( Q D  → 0 when  
 A D  → 0). By contrast, the asset price differs across the two states in the sunspot-like 
equilibrium even when the dividend does not. When  A D  goes to zero,  Q D  converges 
to κ (λ p D ) −1 , which is its value in the pure sunspot equilibrium (14) in Section IIIC.

In the fundamental equilibrium asset payoff risk in state i = N, B is written as

(26) va r t  ( Q t+1  +  A t+1 ) =  p i  (1 −  p i )   1 _ 
(2λ  p D  ) 2 

     [κ −  [ κ 2  − 4R λ  p D   A D ] 0.5 ] 2 .

Equation (26) shows that risk is higher in the bad state as  p B (1 −  p B ) >  p N (1 −  p N ),  
which reflects our assumption that the fundamental is riskier (i.e., more likely to 
change) in the bad state.13 Risk goes to zero when the dividend becomes identical 
in the two states ( A D  → 0). The higher price in the normal state in the fundamental 
equilibrium follows both from the higher expected dividend in the normal state and 
the lower risk.

The determinants of risk are different in the sunspot-like equilibrium. Asset pay-
off risk in state i is now written as

(27)  va r t  ( Q t+1  +  A t+1 ) =  p i  (1 −  p i )   1 _ (2λ  p D  ) 2     [κ +  [ κ 2  − 4R λ  p D   A D ] 0.5 ] 2 .

It is still the case that risk is higher in the bad state than in the good state. This is 
however no longer because of the exogenously higher fundamental risk in the bad 
state. To the contrary, (27) shows that asset payoff risk increases in both states when 
fundamental risk declines ( A D  → 0). In the sunspot-like equilibrium risk is self-
fulfilling and the main role of the fundamental  S t  is as a focal point for these self-
fulfilling shifts in risk.

A higher fundamental unambiguously implies a higher price and lower risk in the 
sunspot-like equilibrium. This is because the process for  S t  is no longer symmetric 
as was the case for the autoregressive process. As a result the symmetry between 
good and bad states that we found there does not apply here.

C. Switching Equilibria and Risk Panics

Finally, we consider a situation that combines elements of both the sunspot and 
sunspot-like equilibria analyzed so far. In addition to the Markov process for the 
fundamental between states B and N in the previous subsection, we extend the model 
by introducing a two-state sunspot variable, with the states indexed as 1 and 2. The 
dividend is not affected by whether we are in state 1 or 2.

The presence of the two-state sunspot variable allows for a richer analysis of risk 
panics. It is useful to think of the sunspot in this case as a trigger variable that shifts 
expectations between low risk in state 1 and high risk in state 2. One can think of state 
2 as a “panic state”, so that the switch to that state implies a large spike in risk and 
drop in the asset price. We will show that while this panic is not caused by a change in 

13 The variance of  A t+1  is  p i (1 −  p i ) A  D  2
   in state i.
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the fundamental (the dividend), the magnitude of the panic depends critically on the 
level of the fundamental. This feature is absent from the equilibria considered thus far.

The sunspot state variable is assumed to be uncorrelated with the fundamental. 
In either state 1 or 2, the probability of remaining in the same state next period is 
p > 0.5. The model now has four possible states, depending on the value of the sun-
spot and the fundamental: (N, 1), (N, 2), (B, 1), and (B, 2). We define the asset prices 
in these states as, respectively,  Q N  (1),  Q N  (2),  Q B  (1), and  Q B  (2). We solve the asset 
prices in each state by imposing a market clearing condition for each state. We also 
define  Q D  (i) =  Q N  (i) −  Q B  (i) for i = 1, 2.

In this case, the equilibria involve longer expressions that relate the asset price in 
each state to model parameters, which are fully described in the Appendix. Instead, 
the proposition below focuses on some key signs that characterize the new equilib-
rium that results from this setting. In the Appendix we define a cutoff  A 5  for  A B  and  
A max  for  A D . There is also a critical value for p:

   _ p   =   3R + 1 −  p N  −  p B 
  __   

4R + 2 − 2 p N  − 2 p B 
   ,

which is between 0.75 and 1.

PROPOSITION 7: Assume that the fundamental  A t   follows a two-state Markov pro-
cess as in Proposition 6. Also assume that  A D  <  A max  and that  A B  >  A 5 . Then there 
are four equilibria when  

_
 p   < p < 1. The first two equilibria are the same as the 

fundamental and sunspot-like equilibria in Proposition 6, regardless of whether we 
are in state 1 or 2. in the third equilibrium we have

(28)  Q D  (2) >  Q D  (1) > 0

(29)  Q B  (2) −  Q B  (1) <  Q N  (2) −  Q N  (1) < 0.

 Equilibrium 4 is analogous to equilibrium 3, with the role of states 1 and 2 switched.

PROOF: 
See the Appendix.

Equilibrium 3 is the novel result in Proposition 7. A switch from state 1 to 2 
involves an increase in risk and a drop in the asset price. Proposition 7 states that 
asset prices are lower in state 2:  Q B  (2) <  Q B  (1) and  Q N  (2) <  Q N  (1). This is associ-
ated with an increase in risk as there is no change in the expected level of the divi-
dend. A numerical illustration below shows that the increase in risk and drop in the 
price can be very large, in which case we can speak of a risk panic.

We show in the Appendix that when p approaches 1, equilibrium 3 is such that 
state 1 converges to the fundamental equilibrium in Proposition 6, while state 2 con-
verges to the sunspot-like equilibrium. A switch from state 1 to state 2 then implies 
a switch from the fundamental to the sunspot-like equilibrium of Proposition 6. 
When p < 1 a switch from state 1 to state 2 is not exactly a switch between the two 
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equilibria of Proposition 6, as the very possibility of a switch increases uncertainty 
when we are in state 1. State 1 is then characterized by higher risk and a lower asset 
price than in the fundamental equilibrium in Proposition 6.

Three features characterize the role of the fundamental during and after a risk 
panic. First, the panic itself is not caused by a change in the fundamental, as it con-
sists of a switch between state 1 and state 2, and not between state N and state B. 
Second, the panic has a larger impact when the fundamental is weak to start with. It 
follows from Proposition 7 that the drop in the asset price in a panic (a move from 
state 1 to 2) is larger when the fundamental is bad (state B) than when it is normal 
(state N ). Finally, after a panic (once we are in state 2) the asset price becomes more 
volatile. As  Q D  (2) >  Q D  (1), the asset price is more sensitive to changes in the fun-
damental between states N and B when we are in state 2.

Even though the panic is not caused by a change in the fundamental, the last two 
results show that the fundamental plays a key role as a focal point for expectations 
that affects both the magnitude of the panic itself, and subsequent shifts in perceived 
risk. When p is close to 1 we can think of the role of  S t  as suddenly changing from 
that of a pure fundamental to that of a sunspot-like variable around which agents 
coordinate their perceptions of risk.

Figure 2 provides a numerical illustration of these results for a particular param-
eterization. The probability of staying in the normal state is  p N  = 0.99, while the 
probability of staying in the bad state is  p B  = 0.9. This means that the fundamental 
is 91 percent of the time in the normal state and 9 percent of the time in the bad 
state. The probability that the sunspot variable remains the same is p = 0.99. If we 
are currently in the low-risk state 1, the probability of switching to panic state 2 is 
then only 0.01.

Figure 2 considers the following experiment. We start in state (N, 1) in periods 0 
and 1, where the dividend is at its normal value of  A N  = 1 and we are in the nonpanic 
state 1. Then at time 2 the dividend drops by 10 percent to its value  A B  = 0.9, but we 
remain in the nonpanic state 1. In period 3 we switch to the panic state 2 while the 
fundamental remains weak at  A B  = 0.9. In period 4 the fundamental is restored to 
its normal level of  A N  = 1 but we remain in the panic state 2. Finally, starting with 
period 5 we return to state (N, 1). Figure 2 reports both the asset price (normalized 
to 100 in state (N, 1)) and asset price risk. The latter is the standard deviation of the 
asset price next period, divided by the asset price today.

We see that the deterioration of the fundamental in period 2 lowers the asset price 
by about 13 percent. About a third of that is a result of the lower expected future 
dividend while the rest is the result of the exogenous increase in risk. We see though 
that risk spikes much more in period 3 when the economy is hit by a risk panic (a 
switch to state 2). This causes a much sharper additional drop in the asset price, low-
ering it to a level 56 percent below its starting point. What is key for this really bad 
outcome is that both the fundamental is weak (we are in state B) and the economy 
is hit by a self-fulfilling risk panic. In period 4, when the fundamental is restored to 
its normal level, the asset price is way up again (only 10 percent below its starting 
point), even though we are still in the panic state.

Figure 2 therefore illustrates that the level of the fundamental plays a key role 
during a risk panic. The panic is much larger when the fundamental is weak at the 
time of the panic. Moreover, once we reach the panic state, the asset price becomes 
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much more sensitive to changes in the fundamental. An improvement in the funda-
mental from state B to state N raises the asset price much more when we are in the 
panic state (compare period 4 to period 3) than when we are in the nonpanic state 
( compare period 1 to period 2). Rather than a regular fundamental,  S t  becomes a 
gauge of fear when we switch to the panic state.

IV. Conclusion

We have developed a very simple mean-variance portfolio choice model to show 
that self-fulfilling shifts in risk, coordinated around either a sunspot or a macro 
fundamental, can occur in equilibrium. This is a result of a circular relationship 
between the process of asset price risk and the asset price itself. The analysis was 
motivated by large changes in asset price risk during recent financial crises. We have 
shown that the model can give rise to significant risk panics that take the form of a 
large sudden spike in risk and drop in the asset price. The magnitude of such panics 
can be particularly large when a macro fundamental is weak.

The simple model can be extended in various directions. In the working paper 
version (Bacchetta, Tille, and van Wincoop 2010), we consider a richer model with 
leveraged financial institutions and households. The richer setup enables us to exam-
ine several extensions to the basic model. We allow the interest rate to be determined 
endogenously and introduce another state variable, the wealth of leveraged financial 
institutions. We show that these extensions do not substantially change the results. In 
this case it is the net worth of leveraged financial institutions that becomes the focal 
point of fear in the market during a panic. It does not matter much for the results 
exactly which macro fundamental plays this role. We also consider two additional 
variables, leverage and market liquidity, which both collapse during a risk panic.

Figure 2. Illustration of Risk Panic in Switching Equilibrium

Notes: Vertical slashed lines = state 2 (panic state); vertical dotted lines = dividend shock. In periods 0 and 1 the 
economy is in state (N, 1), where the dividend is high and there is no panic (state 1). At time 2 the dividend drops 
by 10 percent from 1 to 0.9. At time 3 there is a shift to state 2 (panic state). At time 4 the dividend rises back to 
1, but we remain in the panic state. Starting with date 5 we return to state (N, 1) where the dividend is high and 
there is no panic. The parameterization is as follows:  A N  = 1;  A B  = 0.9; R = 1.1;  p N  = 0.99;  p B  = 0.9; p = 0.99; 
λ = γ k/W = 0.5.
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The analysis raises further questions that deserve to be addressed in future research. 
First, one can ask what happens when we consider multiple risky assets. For exam-
ple, will all asset prices be equally affected by the panic? This question is par-
ticularly relevant when considering the global dimension of recent financial  crises,  
with stock markets usually changing in lockstep around the world. In Bacchetta and 
van Wincoop (2012) we have started to address this question. Second, what are the 
policy implications? Is there anything that regulators can do to reduce the magnitude 
of risk panics? In Bacchetta, Tille, and van Wincoop (2011) we argue that a policy 
aimed at penalizing balance sheet risk exposure of financial institutions can help. 
Finally, it would be of interest to enrich the model to introduce other features often 
seen during financial panics, such as bank runs and significant contractions of the 
real economy.

Appendix

PROOF OF PROPOSITION 3:
First, conjecture that the solution is  Q t+1  =   ̃  Q  − V S  t+1  2

  . Using (10), we have  
Q t+1  =   ̃  Q  − V ρ 2   S  t  2  − 2Vρ  S t   ϵ t+1  − V ϵ  t+1  2

  . The expectation and variance of  Q t+1  are 
therefore

  E t   Q t+1  =   ̃  Q  − V ρ 2   S  t  2  − V σ 2 

 va r t  ( Q t+1 ) = 4 V  2   ρ 2   σ 2   S  t  2  +  V  2   ω  2 .

Notice that we used the fact that  E t   ϵ  t+1  3
   = 0 given the symmetry of the distribution. 

Substituting these into the market clearing condition (6) implies

   
_
 A  +   ̃  Q  − V ρ 2   S  t  2  − V σ 2  − R  ˜ Q  + RV  S  t  2  = λ (4 V  2   ρ 2   σ 2   S  t  2  +  V  2   ω  2 ).

Equating the constant terms on the left and right hand side, as well as the terms 
proportional to  S  t  2 , gives

   
_
 A  +   ̃  Q  (1 − R) − V σ 2  = λ  V  2   ω  2 

 V (R −  ρ 2 ) = λ 4 V  2   ρ 2   σ 2 .

This has two solutions. One is the fundamental equilibrium where V = 0 and   ˜ Q   
=   

_
 A /(R − 1). The other is the sunspot equilibrium where V and   ˜ Q  are as in (12) 

and (13). The condition   
_
 A  >  A 1  implies that  Q t  is nonnegative. The lowest value of 

the asset price is reached when  ϵ t  is constant at  
_
 ϵ  or −  _ ϵ . In that case ( S t  ) 2  reaches 

its maximum value of   
_
 ϵ  2 /(1 − ρ ) 2  and  Q t  its lowest value of   ˜ Q  − V   

_
 ϵ  2 /(1 − ρ ) 2 . 

Substituting the values for   ˜ Q  and V, this is positive when  
_
 A  >  A 1 . Finally, it is clear 

that the solution satisfies the no bubble condition li m T→∞   E t (1/R ) T  Q t+T  = 0 as  Q t  is 
always between 0 and   

_
 A /(R − 1).
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Moreover, the sunspot equilibrium (11) is the only one within the class of finite 
polynomial functions. Assume that the solution is

(A1)  Q t  =  ∑ 
i=1

  
n

    α i    S  t  i 

so that  Q t+1  =  ∑ i=1  
n
    α i  (ρ  S t  +  ϵ t+1  ) i . Using the binomial theorem, the term in  

va r t ( Q t+1 ) with the highest power of  S t  is the variance of the cross-product   
α n  n ρ n−1   S  t  n−1  ϵ t+1 , which is

  α  n  2   n 2   ρ 2(n−1)   σ 2   S  t  2(n−1) .

Hence, there is a term in the market-clearing condition with the power 2(n − 1). 
This is consistent with the conjectured solution (A1) only for n = 2. It follows that  
α n  = 0 for all n > 2.

PROOF OF PROPOSITION 4:
If we are in state N at time t, then

(A2)  E t   Q t+1  =  p N   Q N  + (1 −  p N )  Q B 

(A3) va r t  ( Q t+1 ) =  p N  (1 −  p N )( Q N  −  Q B  ) 2 .

Similarly, if we are in state B at time t, then

(A4)  E t   Q t+1  =  p B   Q B  + (1 −  p B )  Q N 

(A5) va r t  ( Q t+1 ) =  p B  (1 −  p B )( Q N  −  Q B  ) 2 .

Substituting these results into (6), the market clearing conditions in, respectively, 
states N and B can we written as

(A6)    
_
 A  +  p N   Q N  + (1 −  p N )  Q B  − R  Q N  = λ  p N  (1 −  p N )( Q N  −  Q B  ) 2 

(A7)    
_
 A  +  p B   Q B  + (1 −  p B )  Q N  − R  Q B  = λ  p B  (1 −  p B )( Q N  −  Q B  ) 2 .

Taking the difference between these two relations, we have

(A8) κ  Q D  = λ  p D   Q  D  2
   .

This has two solutions. The first is  Q D  = 0, which gives the fundamental equilib-
rium  Q N  =  Q B  =   

_
 A /(R − 1). The second solution is the sunspot equilibrium where  

Q D  = κ/(λ p D ). Substituting this into the market clearing condition for state B, 
using that  Q N  =  Q B  +  Q D , we get (15). Using the expression for  Q D  ,  Q B  is positive 
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when   
_
 A  >  A 2 . Since  Q N  is larger than  Q B  , it is positive as well. The no bubble condi-

tion is clearly satisfied as the asset price can take on only two finite values.
We can also show that the asset price is always higher than in the fundamental 

equilibrium. For this it is sufficient to show that  Q N  <   
_
 A /(R − 1). Using (15) and  

Q N  =  Q B  +  Q D  , this condition is satisfied when −λ p B (1 −  p B ) Q D  + (R −  p B ) < 0.  
After substituting the expression for  Q D  , the left hand side becomes −(1 −  p N ) 
× (  p B (1 −  p B ) + (R −  p B ) p N )/ p D  , which is indeed negative.

PROOF OF PROPOSITION 5:
First, conjecture the solution  Q t  =   ̃  Q  + v S t  − V S  t  2 . From the process (10), we 

have  Q t+1  +  A t+1  =   ̃  Q  +   
_
 A  + (v + m)ρ  S t  − V ρ 2   S  t  2  + (v + m − 2Vρ  S t ) ϵ t+1  −  

V ϵ  t+1  2
  . The expectation and variance of  Q t+1  +  A t+1  are therefore

   E t  ( Q t+1  +  A t+1 ) =   ̃  Q  +   
_
 A  + (v + m) ρ  S t  − V ρ 2   S  t  2  − V σ 2 

  va r t  ( Q t+1  +  A t+1 ) = (v + m − 2Vρ  S t  ) 2   σ 2  +  V  2   ω  2 .

Substituting these into the market clearing condition (6) implies

   ̃  Q  +   
_
 A  + (v + m) ρ  S t  − V ρ 2   S  t  2  − V σ 2  − R   ˜ Q  − Rv  S t  + RV  S  t  2  

 = λ ((v + m − 2ρV  S t  ) 2   σ 2  +  V  2   ω  2 ).

Equating the terms proportional to  S  t  2 ,  S t  and constant terms on the left and right 
hand side gives

 V (R −  ρ 2 ) = λ4  V  2   ρ 2   σ 2 

 mρ + v (ρ − R) = −λ4 (v + m)Vρ  σ 2 

   
_
 A  +   ̃  Q  (1 − R) − V σ 2  = λ ((v + m ) 2   σ 2  +  V  2   ω  2 ).

The first equation implies that either V = 0 or V =   R −  ρ 2 
 _ 

4λ  ρ 2   σ 2 
   . When V = 0 the other 

two equations imply that v =   mρ
 _ R − ρ   and   ˜ Q  =   1

 _ 
R − 1   (  

_
 A  − λ    R 2  m 2  σ 2 

 _ 
(R − ρ ) 2 

  ). This is the funda-

mental equilibrium. When V =   R −  ρ 2 
 _ 

4λ  ρ 2   σ 2 
   , the other two equations imply that v and   ˜ Q  

are as in, respectively, (19) and (20). This is the sunspot-like equilibrium.
The lowest value that the dividend can take is when  S t  is at its lowest value  

−  _ ϵ  /(1 − ρ). The dividend is always positive when   
_
 A  >  A 31 . In the fundamental 

equilibrium, the lowest value that the asset price can take is when  S t  is at its lowest 
value −  _ ϵ  /(1 − ρ). The asset price is then positive when   

_
 A  >  A 32 . In the sunspot-

like equilibrium the lowest value that the asset price can take is when  S t  is at its high-
est value  

_
 ϵ  /(1 − ρ). The asset price is then positive when   

_
 A  >  A 33 . Therefore the 

condition   
_
 A  >  A 3  guarantees that the dividend and the asset prices in both equilibria 

are always positive.
The no bubble condition is clearly satisfied as well, since the asset price is 

bounded in both equilibria because  S t  is bounded. Finally, the same reasoning as in 
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Proposition 3 can be used to show that the linear and quadratic solutions are the only 
ones among the class of finite polynomials.

PROOF OF PROPOSITION 6:
If we are in state N at time t, then

(A9)   E t  ( Q t+1  +  A t+1  =  p N  ( Q N  +  A N ) + (1 −  p N )( Q B  +  A B )

(A10) va r t  ( Q t+1  +  A t+1 ) =  p N (1 −  p N )( A D  +  Q D  ) 2 .

Similarly, if we are in state B at time t, then

(A11)  E t  ( Q t+1  +  A t+1 ) = (1 −  p B )( Q N  +  A N ) +  p B  ( Q B  +  A B )

(A12) va r t   ( Q t+1  +  A t+1 ) =  p B  (1 −  p B )( A D  +  Q D  ) 2 .

Substituting these results into (6), using  Q N  =  Q B  +  Q D  and  A N  =  A B  +  A D  , the 
market clearing conditions in, respectively, states N and B can we written as

  p N  [ A D  +  Q D ] − R  Q D  +  A B  − (R − 1)  Q B  = λ p N (1 −  p N )  [ A D  +  Q D ] 2 

 (1 −  p B ) [ A D  +  Q D ] +  A B  − (R − 1)  Q B  = λ  p B  (1 −  p B )  [ A D  +  Q D ] 2 .

Taking the difference, defining x =  A D  +  Q D  , we have

(A13) λ  p D   x 2  − κx + R  A D  = 0.

This quadratic polynomial has two solutions when  A D  <    κ 2 
 _ 

4Rλ  p  D 
   . These two solu-

tions are

 x =   1 _ 
2λ  p D 

   (κ ±  [ κ 2  − 4Rλ  p D   A D ] 0.5 ).

Using  Q D  = x −  A D  , this implies (24). The corresponding values of  Q B  can be 
found from the market clearing condition for state B. Replacing  A D  +  Q D  with x 
and using λ p D   x 2  = κx − R  A D  , the state B market clearing condition becomes

(A14)  Q B  =    A B 
 _ 

R − 1
   +   1 −  p B 

 _  (R − 1)  p D 
   ((  p  D  −  p  B  κ) x + R  p  B   A D ). 

This implies (25), using x =  Q D  +  A D  and  p D  −  p B κ = − (  p B (R −  p N ) +  
 p N (1 −  p N )) from the definition of κ.

The only thing that remains to be checked is that the asset price is always posi-
tive. First note that  Q D  is positive in both equilibria. This follows from the poly-

nomial in x, which implies x =   λ  p D 
 _ κ    x 2  +   R _ κ    A D  , so that  Q D  = x −  A D  =   λ  p D 

 _ κ    x 2  +  
  1 _ κ  (R − κ) A D  . This is positive because  A D  > 0 and R − κ =  p N  +  p B  − 1 > 0. The 
asset price is then guaranteed to always be positive when it is positive at the lowest 
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value of  Q B . Substituting the higher of the two roots of x into (A14), the resulting 
expression is larger than 0 when  A B  >  A 4 .

PROOF OF PROPOSITION 7:
We start from the market clearing condition (6), with one condition for each of the 

four states (N, 1), (N, 2), (B, 1), and (B, 2). We rewrite this set of four market clearing 
conditions as a set of three relative market clearing conditions (taking differences 
between the market clearing conditions) plus the market clearing condition for 
the state (N, 1). The relative market clearing conditions only contain relative asset  
payoffs across the various states. Here payoff is defined as the sum of the price 
and the dividend. We denote the relative payoff between states (N, 1) and (B, 1) as  
x =  Q D (1) +  A D  , and the relative payoff between states (N, 2) and (B, 2) as y  
=  Q D (2) +  A D . The relative payoff between states (B, 1) and (B, 2) is  Q B (1) −  
 Q B (2). These three unknowns are solved using a system of three relative market 
clearing conditions. The first is the difference between the market clearing condition 
(6) in state (N, 1) and its counterpart in state (B, 1):

(A15) (  p [1 −  p N  −  p B ] + R) x + (1 − p)[1 −  p N  −  p B ] y − R  A D 

   = λ  p D  p x 2  + λ  p D  (1 − p)  y 2  + λ p (1 − p)

 × [[ (1 −  p B ) 2  −  ( p N ) 2 ]  (x − y) 2  + 2 [1 −  p N  −  p B ](x − y)

 × [ Q B  (1) −  Q B  (2)]].

The second is the difference between the market clearing condition in state (N, 2) 
and its counterpart in state (B, 2):

(A16) (1 − p)[1 −  p N  −  p B ] x + ( p [1 −  p N  −  p B ] + R) y − R  A D 

   = λ  p D (1 − p)  x 2  + λ  p D  p   y 2  + λp(1 − p)

 × [[ (1 −  p B ) 2  −  ( p N ) 2 ] (x − y) 2  + 2[1 −  p N  −  p B ](x − y)

 × [ Q B  (1) −  Q B  (2)]].

The third is the difference between the market clearing condition in state (B, 1) and 
its counterpart in state (B, 2):

(A17) (2p − 1)(1 −  p B )(x − y) − [R − (2p − 1)][ Q B  (1) −  Q B  (2)] 

 = λ (2p − 1)  p B  (1 −  p B )(x + y)(x − y). 
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These three equations together give the solution for all relative prices. To obtain 
the solution for absolute prices, we impose the market clearing condition (6) for  
state (N, 1):

(A18) p [  p N  ( Q N  (1) +  A N ) + (1 −  p N )( Q B  (1) +  A B )] + (1 − p)

   × [  p N  ( Q N  (2) +  A N ) + (1 −  p N )( Q B  (2) +  A B )] − R  Q N  (1) 

 = λ  p N  (1 −  p N )( p x 2  + (1 − p)  y 2 ) + λp (1 − p)

 ×  [  p N  (x − y) + [ Q B  (1) −  Q B  (2)]] 2 .

Consider the solution for relative prices. We start by taking the difference between 
(A15) and (A16):

(A19) (R + (2p − 1) [1 −  p N  −  p B ])(x − y) = λ (2p − 1)  p D  (x + y)(x − y). 

One solution of (A19) is x = y. Together with (A15), this implies λ  p D   x 2  − κx +  
R  A D  = 0, which has two solutions:

(A20) x = y =   κ ±  [ κ 2  − 4Rλ  p D   A D ] 0.5 
   __  

2λ  p D 
   .

(A17) then implies  Q B (1) −  Q B (2) = 0. This corresponds to the first two equilib-
ria in Proposition 7. In each equilibrium the asset price is the same in state 1 as in 
state 2, and only depends on whether we are in N or B. The two equilibria correspond  
to the fundamental and sunspot-like equilibria of Proposition 6. Using  Q N (1) +  
A N  = x +  Q B (1) +  A B ,  Q N (2) +  A N  = y +  Q B (2) +  A B ,  Q N (1) =  Q B (1) + x −  
A D   , and λ p D   x 2  − κx + R A D  = 0, (A18) implies the expression for  Q B (1) in 
Proposition 6.

When x ≠ y (A19) implies that x + y = [R + (2p − 1)(1 −  p N  −  p B )]  
× [λ(2p − 1)  p D ] −1 . (A17) then implies  Q B (1) −  Q B (2) = δ(y − x) where

 δ = (1 −  p B )   (2p − 1)  p N  (1 −  p N  −  p B ) +  p B  R
   ___   

 p D  (1 + R − 2p)   > 1.

δ > 1 when p = 0.5. As δ is an increasing function of p, δ is always above 1.
The sum of (A15) and (A16) implies that

(A21)  y − x =  Q D  (2) −  Q D  (1) = ± [η (κ (x + y) − 2R  A D  

 − 0.5λ  p D   (x + y) 2 ) ]  0.5 ,
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where

 η =   1   _____      
  1 _ 
2
   λ  p D  + 2λp (1 − p)(1 −  p N  −  p B )(1 −  p B  +  p N  − 2δ)

   .

An equilibrium exists only if the bracket in (A21) is positive. As δ > 1 we have 
1 −  p B  +  p N  − 2δ < −  p B  − (1 −  p N ) < 0, and η is thus positive as  p N  and  p B  are 
both above 0.5. The numerator of the bracket in (A21) is positive when

  A D  <  A max   = [κ (x + y) − 0.5λ  p D   (x + y) 2 ]  (2R) −1 .

A necessary (but not sufficient) condition for this is p >  _ p  , where  
_
 p   is defined above 

Proposition 7. Equilibrium 3 is the value of (A21) with the positive sign on the right-
hand side and equilibrium 4 is the value with the negative sign.

We now ensure that asset prices are positive in all equilibria. We focus on equi-
librium 3 as equilibrium 4 is analogous. We first show that  Q B (2) is the lowest value 
of the asset price in equilibrium 3. This equilibrium corresponds to the value of 
(A21) with the positive sign on the right-hand side, so we have  Q D (2) >  Q D (1) 
and  Q B (1) −  Q B (2) = δ( Q D (2) −  Q D (1)) > 0. We can also show that  Q D (1) > 0 
(the algebra for this is a bit lengthy and available on request). It then follows that  
Q D (2) > 0, so that  Q N (2) >  Q B (2). Also, it follows that  Q N (1) >  Q B (1) >  Q B (2). 
It is therefore sufficient to show that  Q B (2) is positive. Before we do so, note that 
these inequalities imply the inequalities in Proposition 7 for equilibrium 3. We have  
Q D (2) >  Q D (1) > 0. We also have  Q B (2) −  Q B (1) = − δ(  y − x) and  Q N (2) −  
Q N (1) = (y − x) +  Q B (2) −  Q B (1) = (1 − δ)(y − x). It follows that  Q B (2) −  
 Q B (1) <  Q N (2) −  Q N (1) < 0.

We can solve for  Q B (2) from the asset market clearing condition (A18):

  Q B  (2) =    A B  + v
 _ 

R − 1
  ,

where

(A22) ν = R  A D  + ( p − R) δ (  y − x) + 0.5 (x + y)(  p N  − R) 

 + 0.5 ((2p − 1)  p N  − R)(x − y) −   λ  p N  (1 −  p N )  __ 
4
   

 × ( (x + y) 2  +  (x − y) 2  + 2 (2p − 1)(x + y)(x − y))
 − λp (1 − p) (  p N  (x − y) + δ (y − x)) 2 .

 Q B (2) is positive as long as  A B  >  A 5  = −ν.
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A specific case is one where the probability of switching between states 1 
and 2 becomes negligible, i.e., p → 1. We then have (x + y) → κ (λ p D ) −1  and  
y − x → ±  [ κ 2  − 4λ p D  R A D ] 0.5  (λ p D ) −1 . This implies that

  Q D  (i) +  A D  →   κ ±  [ κ 2  − 4R λ  p D   A D ] 0.5 
   __  

2 λ  p D 
   .

In equilibrium 3, state 1 is associated with the negative value in the numerator, while 
state 2 is associated with the positive value. From Proposition 6 it is clear that state 1 then 
converges to the fundamental equilibrium and state 2 to the sunspot-like equilibrium.

Symmetry

This Appendix presents the analysis underlying the discussion on symmetry in the 
sunspot equilibrium discussed at the end of Section IIIB. Define Ris k t  = va r t  ( Q t+1 ). 
We show that when the conditional distribution of the sunspot  S t  is symmetric, then 
a symmetric solution for the price  Q t  as a function of the sunspot implies a symmet-
ric solution for Ris k t  as a function of the sunspot. Similarly, a symmetric solution 
for Ris k t  as a function of the sunspot implies a symmetric solution of the price as 
a function of the sunspot. Symmetry of the solution as a function of  S t  is therefore 
consistent with the loop between the asset price and risk.

We define the symmetry of the distribution of the sunspot  S t+1  conditional on the 
current value of the sunspot  S t  as the following property:

(A23) prob ( S t+1  =  s j  |  S t  =  s i ) = prob ( S t+1  = −  s j  |  S t  = −  s i ) ∀i, j ∈ J,

where J denotes the set of possible realizations of the sunspot. (A23) shows that the 
distribution of  S t+1  conditional on  S t  =  s i  is simply the opposite of its distribution 
conditional on  S t  = −  s i  .

The asset price  Q t  = f ( S t ) is a symmetric function of  S t  when f ( S t  =  s i )  
= f ( S t  = −  s i ). Similarly risk is a symmetric function of  S t  when Ris k t  ( S t  =  s i )  
= Ris k t  ( S t  = −  s i ).

We first show that when the price  Q t  is a symmetric function of  S t  then Ris k t  is also 
a symmetric function of  S t  :

 Ris k t  ( S t  =  s i ) = va r t  ( Q t+1  |  S t  =  s i )

 =  ∑ 
j∈J

   
 

  p rob ( S t+1  =  s j  |  S t  =  s i ) [  f ( s j )] 2  

 − ( ∑ 
j∈J

   
 

  p rob ( S t+1  =  s j  |  S t  =  s i ) f ( s j ) ) 
2

 

 =  ∑ 
j∈J

   
 

   p rob ( S t+1  = −  s j  |  S t  = −  s i ) [  f (−  s j )] 2  

 − ( ∑ 
j∈J

   
 

  p rob ( S t+1  = −  s j  |  S t  = −  s i ) f (−  s j ) ) 
2

 

 = va r t  ( Q t+1  |  S t  = −  s i ) = Ris k t  ( S t  = −  s i ).
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Next, we show that when Ris k t  is a symmetric function of  S t  then the price is also 
a symmetric function of  S t  . We know that  Q t  depends on Ris k t  and expectations of  
Ris k t+i  , i > 0. So we need to show that the expectation of Ris k t+i  , i > 0, is symmet-
ric in  S t  when Ris k t+i  is symmetric in  S t+i  . Since  E t  Ris k t+i  =  E t   E t+1 … E t+i−1 Ris k t+i   
it is sufficient to show that when Ris k t+1  is a symmetric function of  S t+1 , then its 
expectation at time t is symmetric in  S t  . Backward induction then gets our result:

  E t  (Ris k t+1  |  S t  =  s i ) =  ∑ 
j∈J

   
 

  p rob ( S t+1  =  s j  |  S t  =  s i ) Ris k t+1  ( s j )

 =  ∑ 
j∈J

   
 

  p rob ( S t+1  = −  s j  |  S t  = −  s i ) Ris k t+1  (−  s j )

 =  E t  (Ris k t+1  |  S t  = −  s i ) .
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