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I Computation of Optimal Portfolio

We will focus on the optimal portfolio of an agent in the Home country. As
discussed in the text, with a constant fraction  of wealth consumed each period,

the agent maximizes
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Our objective is to compute the optimal portfolio at time ¢ if this agent is
picked at time t to choose a new portfolio. We will write this optimal portfolio as
Zut. The probability that the agent chooses a new portfolio again at time ¢ + ¢

with ¢ > 0 is p; = p(1 — p)"~!. We can then write
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Here Wy 44(i) denotes wealth at ¢ + s conditional on the next portfolio change
taking place at t4+¢ < t+s. This means that the portfolio share Zp; is held constant
until ¢+ 1. WH,HS denotes wealth at ¢ + s conditional on the next portfolio change
taking place at t + s or later. In that case the portfolio share Z; remains constant
until at least t + s.

The first-order condition for the optimal portfolio Zg; is then
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Here }A%ffi’tﬂ =1l Rff] is the cumulative portfolio return from ¢ + 7 to ¢ + s.

aWHS /O0Zmy is equal to OW,y;/0Zp for i = s. We have assumed that the cost 7y
will remain constant during the duration that the investor holds the portfolio Z;.
Using this, the first order condition with respect to Zg; is now
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Now write the first order condition in terms of exponentials of logs, with lower
case letters denoting logs in deviation from steady state. Using that (1 — ()R =6,

we have
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Next replace rg+y; with 0.5er4; + rﬁj and rpgy; with —0.5er; + rﬁj, where

rﬁw (TH445 +TFitj)/2 is the average log return and er,j = rg 1 — rpey; is the



excess return, and define
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Assuming that log wealth and log returns in the exponents are normally dis-

tributed, the first order condition can be written as
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where
Ay = By (s + 0.5er,1j) + 0.5vary(z; ;) + 0.125var(eryy ;) + 0.5cov(eriy;, i js)
Ay = Ey (x5 — 0.5er4) — Ty + 0.5vary(z; 5. 5) + 0.125var(eryy ;) — 0.5cov(eritj, i js)
As = By (y),s + 0.5ery1;) + 0.5var(y; s) + 0.125var(eryy;) + 0.5cov(erit, yj.s)
Ay = E; (y),s — 0.5er1j) — Tay + 0.5var(y;,s) + 0.125var,(erey ;) — 0.5cov(eriyj, yj.s)

Using the approximation e = 1 + z, this becomes
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We will now focus on the weighted average covariance
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where
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We have used that cov(eryy;, ;) = 0.50ar(ru;) — 0.5var(rp.s;) = 0 because
of symmetry.

In order to compute these terms, we use log-linearized expressions for wealth
and portfolio returns. Start with wp,45(). When we log-linearize the wealth

accumulation equation
Wiy = (1= QREAW, + G (16)
using G/W =1 — 0, we get
WH 41 = OWpe + fofl + (1= 0)gu 41 (17)
We can use this to derive
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In analogy to the definition of €r;,;,, we define
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We have again used that average and excess returns are uncorrelated due to sym-

metry.



We next need to focus on the term
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First write an expression for wg ¢y;_1:
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Using ¢ = s in the previous equation, we have
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The optimal portfolio then becomes
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Here h%, is a hedge portfolio (also depending on the 74;), defined below and the

denominator DEN is equal to
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The hedge term h%, is equal to Ng;/DEN, where
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Writing out the numerator and denominator of the expected excess return term

of (33), we get respectively
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Dividing by £60/(1 — 30), we can then write the portfolio as
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and
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The optimal portfolio for Foreign investors is the same, with the exception of

¥ =0 (37)

the hedge term. The hedge term for the Foreign investors is Ng;/DEN, where
Np; replaces the superscripts and subscripts H in the expression for Np; with
superscripts and subscripts F. In addition, 7g; is replaced by —7p;.

Only the average hedge term matters for the model. In the average hedge term
hi¥™ = (hin, + hin)/2 all terms other than those involving the fees 7y, and 7
drop out. The reason for this is as follows. Consider the first covariance in the
expression for Ngy;. When we add the corresponding term for Foreign investors,
the covariance is
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the covariance between excess returns and average returns is zero, this expression
is zero. The same applies to the other terms in Np; that involve covariances.
For example, the covariance between €r;;,; and fjft 45, with the latter equal to
0.5(m t4+s + Grre+s), is zero for the same reason. Home and Foreign returns have
the same covariance with variables that are averages across the two countries.

In the end we therefore have
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After some algebra this can be simplified to
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II Solution of the Model
It is useful to repeat the equations of the model:
g =4z + (22 — Dw?P (42)
P = 0wl |+ 0(2z — Ver, + a? (43)
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A t€T¢ 11
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2 Fvary(ers) + ( [z +m (44)
2= (1—p)z_1 + % S 1B = p)°Ereryys (45)
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dtD = Pildﬂ1 + pgdfiQ + 5? (46)
Ny = P1M4—1 + PaNe—2 + 6? (47)
af = piai, + psal 5+ €f (48)
67“t+1 - (1 - 5)Q£|—1 - th + 5dtD+1 (49)
D= Z[ﬁ(l - p)]s_l :)/'Uart(ert—i-S) + 2(’~Y - 1) Z es_icovt(ert-i-s; 67"t+z‘> (50)
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We first describe the solution for given values of the variances and covariances
that enter these expressions. After that we will discuss the solution of these vari-
ances and covariances. For now we therefore take var(er;y1) and D as given.

We first need to truncate the infinite sum in (45). We truncate at the horizon
T, so that

a=1-pa1+ 5 (51— p) Erer (51)

In practice we set T = 60, which is 5 years. Setting it longer does not affect the
results. Excess returns are not really predictable more than 5 years into the future.

Define
D
Grr—1

D
q;
D
qdi_1
Rt—1

Uz

Also introduce

by = 4(1 — f) 53
by = 0(22 — 1)(1 — 6) 54
by = 0(2z — 1)6 55
by =0(2z — 1) 56

b6 = 4f)\2(5p621
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where )
Ag=—+—— (61)

Avar(eryyy)

After substituting (44), the market equilibrium condition (42) becomes
@ =4AfBEerq +4(1— f)z +4n + (22 — 1wy (62)

Substituting the excess return expression (49) and the dividend process (46), we

can write this as
bsq” = (22 — 1)@ + b1z + brEygl, + bsd? + bed”; + 4ny (63)

Substituting the expression for the excess return, the wealth accumulation

equation (43) can be written as
@ = ap + 0w, +0(22 = 1) (1= 8)g” — g”, + 6dP) (64)

This becomes
@GP = aP + 0GP | + bagP — byg”, + bsd? (65)

We need to do more work for the expression (45) for z;. We have

T
2= (1=pz1+ph Y _[B(1—p)°Eery, (66)
s=1
where )
We have
ETts = (1 - 5>q£ks o qt’isfl + 5d1?+s (68)
Using the process for d”, we can write
Edf,, = ai(s)d] + ax(s)d), (69)
where a;(s) and ay(s) depend on p¢ and pg.
Using these results, and a bit of algebra, we get
T T
SNBA=p)PEers =Y vsEgl, + ardy + axd; (70)
s=1 s=0
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where

vo = —B(1—p)
or = (51— p)T(1— )
vy = (1-6)[B(L —p)] = [B(1 _p)]s+1 s=1,.,T-1

a; = 52_:1[6(1 —p)°ai(s)
ay = 52;1[5(1 —p)°as(s)
We then have

T
zt = (1=p)zi—1 +ph Z Usthg-s + body + biody” ;
s=0

where by = pAia; and big = pAias.

We can now write the model in the form
AEY,, = BY,

where the matrices A and B are:

0 0 by 0 bp 0 0 O O O
0 0 0 0 0O 0 0 0 0O 0 O
pAvr  pAvr_1 ... pAvr pAaiyy —1 0 0 0O O O O
0 1 0 0 0O 0 0 0 0 0 O
A 0 0 0 1 O 0 0 0 0O 0 O
0 0 0 0 0O 1.0 0 0 0 O
0 0 0 0 0O 0 01 0 0 O
0 0 0 0 0O 0 0 0 0 1 o0
0 0 0 0 0O 0 1 0 0 0 O
0 0 0 0 0O 0 0 0 0 0 1
0 0 0 0 0O 0 0 01 0 O
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0 0 bg O 0 —4 0 0 0 —=bsg —bg O
0 0 by —0y 0 0O 0 1 0 b3 0 0
0O o0 .. O 0 p—1 0 0 0 0 —=by —byg O
1 0 0 0 0O 0 o0 0 0 0 0
B 0 .. 0 1 0 0 0O 0 0 0 0 0 0
o 0 o0 0 0 pr pp 0 0 0 0 0
0 0 0 0 0 0 0 p¢ p¢ 0 0 O
0 0 0 0 0 0 0 0 0 pf p3 O
0 0 O 0 0 1 0 0 O 0 0 0
0 0 O 0 0 0O 0 0 0 1 0 0
0O 0 O 0 0 0O 0 1 0 0 0 0
The control variables in Y, are
thJrTfl
CV, = (78)
a’
The vector of state variables is
QtD—l
Zt—1
Uz
N1
sVi—| a? (79)
a’tD—l
dy
d’,
Wiy

Using the solab.m code by Paul Klein (see http://paulklein.ca/newsite/codes/codes.phpcode)
to solve for the system AFE,Y;.; = BY,, we obtain the matrices F' and P for the
solution of the control variables as a function of the state variables and the accu-

mulation equation for the state variables:

CV, = FSV, (30)
ESVi1 = PSV, (81)
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We can do impulse response analysis using that

Y = Gyi1 + Qe (82)
yr = My (83)

Here

Yt CLtD (84)

and

3 (85)
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M 1is defined as:

0
0 -2 (86)
0

O BI=

o O O

o O O
[en}

o O O

¢; is the vector of shocks:

gt — 8? (87)

The matrices G and @ follow from (80)-(81). Let f be the last row of F', p the
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second row of P and h the last row of P. Then
fi fo fapr+fa fape fspi+fe fspy  fapt+fs o fips fo

1 D2 Pspr+DPa Psp2 Dspt+pe  Pspy  pipl 4+ ps pipy Do
0 0 01 Py 0 0 0 0 0
a_| 0o 1 0 0 0 0 0 0
0 0 0 0 o p% — 2 0 0 0
0 0 0 0 0 0 pd b0
0 0 0 0 0 0 1 0 0

hi he hapr+hy hapy hspl+he hspy  hrpi+hs hipd  he

Finally, the matrix ) multiplying the shocks is

f3 f5 f7
b3 DPs D7
1 0 0
0O 0 O
©= 0 1 0
0 0 1
0 0 0
hs hs hy

The solution is conditional on A\; and Ay, which depend on wvar(er:y1) and D.
In order to solve for var(er;;1) and D, one approach is to iterate on their values.

Start with var(ery,;) = 0.025% and

D = 30501~ p)5(0025%) = U5 .02 (58)

We can solve the model conditional on this and use the result to compute the
implied theoretical values of var(eryy1) and D. We can then solve again conditional
on these values and keep iterating until var(er;;1) and D no longer change.

The procedure described in the last paragraph is computationally very intensive
when we estimate the parameters and we therefore follow a different approach. The

model allows us to estimate

a-pu=137 (59
JAz = ﬁ/var(J:zrtH) (%0)
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These multiply expected excess returns in the expression for z;'. We could estimate
(1— )M\ and fA;. Alternatively we could also set the variances and covariances at
some level and then estimate f and 4. Both will yield the same values of (1 — f)A;
and f\;. Consider setting all the variances of future excess returns equal to 0.0252
and the covariances that enter D equal to 0. Conditional on doing so, the estimates
of f and 7 are denoted f and 7.

We can now use the following procedure to find the correct estimates f and 4
that are consistent with the theoretical solutions for the variances and covariances.
We rescale f and 4 to be consistent with the theoretical values of the variances
and covariances, while keeping (1 — f)A; and f\; unchanged to the level found
when setting the variances equal to 0.0252 and the covariances equal to zero. The
theoretical variances and covariances can be computed based on the solution where
the variances are 0.025% and the covariances are zero because the solution, and
therefore the impulse responses, depends only on the values of (1 — f)A; and fA;.

We then have

1—f B
B = p)lPt [vary(eriys) +2(5 = 1) Xics 05 covy(ertys, erig)] B
1-f
91
=30 = P T (00257 oy
f . f
Avar(ers11)  7(0.0252) (92)
Solving this yields 4 = A;/A,, where
1 (o]
A= APt [5(0.025%)] +
2> [B(L=p)I >0 covy(erpis, eresi) (93)
s=1 1<s
and
Ay = i[ﬁ(l ) [Um’t(erws) + 2 Z 0° " covy(eryps, €Tt+i)1 +
s=1 <8
fUE”“t 67‘t+1 i 1 _ (94)
s=1
In addition _
f — ﬁL@Tt“) (95)

7(0.0252)
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