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This online Appendix has 5 sections. Section I shows that the effect of a stan-

dard monetary shock in the NK model with our benchmark calibration. Section

II shows that for shigh large enough, there will not be default when s̃ = shigh, as

assumed in section 2.1 of the paper. Sections III derives the NK Phillips curve.

Section IV discusses the case of uncertainty about T , briefly mentioned in section

2.1 of the paper. Finally, Section V discusses the relationship between equilibrium

output and expected interest rates, discussed in section 4.1 of the paper.

I Effect of a Standard Monetary Shock

The plots below show the response of the interest rate, output and inflation to a

1% negative monetary shock at t = 0.
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II Minimum Level of shigh

As mentioned in Section 2.1, we assume that the primary surplus shigh in the

good state is sufficiently high such that default never happens in that state. We

derive a condition for shigh under which this is the case. We only do so in the

non-monetary LW model of Section 2.1. If bT > shigh/(R − 1), there is default

even when s̃ = shigh. When bT = shigh/(R−1) the price schedule then drops down

a second time, to

QT−1 =
ζ

(R− 1)bT
(ψslow + (1− ψ)shigh) (1)

We need to show that there can be a level of shigh such that there is no equilibrium

with bT > shigh/(R − 1). This is the case if the pricing schedule is always above

the debt accumulation schedule. For a given bT > shigh/(R − 1), QT−1 from the

pricing schedule must be higher than from the debt accumulation schedule. This

is the case when

ζ

(R− 1)bT
(ψslow + (1− ψ)shigh) >

χκκb0 − χss
bT − (1− δ)T b0

(2)

If this is the case for bT = shigh/(R− 1), it also holds for larger bT , leading to the

condition

ζ

(R− 1)
(ψslow + (1− ψ)shigh) >

χκκb0 − χss
1− (R− 1)(1− δ)T b0/shigh

(3)

Since the left-hand side of this expression depends positively on shigh and goes to

infinity when shigh → ∞, while the right hand side depends negatively on shigh

and goes to a constant when shigh →∞, it follows that for shigh above some cutoff

level this condition is always satisfied.

III Derivation of the NK Phillips Curve

We derive the optimal price set by firms, taking into account all the features of

our model, in particular: i) habit formation by households; ii) price indexation; iii)

lagged response in price adjustment. Another interpretation of the latter feature

is that firms base they pricing decision on information that is d periods old.
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The consumption-leisure tradeoff equation for households, derived from the

utility function (26) in the paper, is

Nt(i)
φ

(Ct − ηCt−1)−σ − ηβEt(Ct+1 − ηCt)−σ
=
Wt(i)

Pt
(4)

Notice that the labor supply Nt(i) and the wage Wt(i) are firm-specific.

Our assumptions about information delay imply that at time t−d firms choose

the relative price h∗t (i) ≡ P ∗t (i)/Pt. Due to our assumption of indexation, if the

firm optimizes its prices at time t and does not re-optimize again in subsequent

periods, the price at t+ k is

Pt+k(i) = h∗t (i)Pt

(
Pt+k−1
Pt−1

)γ
(5)

Profits at t+ k for firm i are

Πt+k(i) = h∗t (i)Pt

(
Pt+k−1
Pt−1

)γ
Yt+k(i)−Wt+k(i)

(
Yt+k(i)

A

) 1
1−α

(6)

Demand for firm i’s goods is equal to

Yt+k(i) =

(
Pt+k−1
Pt−1

)−γε(
h∗t (i)Pt
Pt+k

)−ε
Yt+k (7)

where Yt+k is aggregate output.

Maximizing the expected present discounted value of profits

Et−d

∞∑
k=0

θkQt,t+kΠt+k(i)

with respect to h∗t (i) we obtain

Et−d

∞∑
k=0

θkQt,t+k
P−εt Yt+k
P−εt+k

(
Pt+k−1
Pt−1

)γ(1−ε) [
1− µ 1

h∗t (i)

Pt+k
Pt

(
Pt+k−1
Pt−1

)−γ
MCt+k(i)

]
= 0

(8)

where µ = ε/(ε − 1) is the steady state markup, MCt+k(i) is the real marginal

cost of production, Qt,t+k is the stochastic discount factor from t to t + k, and d

is the information processing delay. The real marginal cost of production Mt+k(i)

is defined as the derivative of the real labor cost Wt+k(i)Nt+k(i)/Pt+k with respect

to Yt+k(i).
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It follows from (8) that in a zero-inflation steady state the marginal cost is

1/µ. Linearizing around the steady state, and using Qt,t+k = βk in steady state,

we obtain

Et−d

∞∑
k=0

(βθ)k [h∗t (i)− (pt+k − pt) + γ(pt+k−1 − pt−1)−mct+k(i)] = 0 (9)

where lower case variables denote logs in deviation from their steady state. (9)

can be rewritten as

h∗t (i) = (1− βθ)Et−d
∞∑
k=0

(βθ)k [(pt+k − pt)− γ(pt+k−1 − pt−1) +mct+k(i)] (10)

Using the production function, we can rewrite (4) as

Wt+k(i)

Pt+k
=
Nt+k(i)

φ

C̃t+k
=

(Yt+k(i)/A)φ/(1−α)

(Yt+k − ηYt+k−1)−σ − ηβEt+k(Yt+k+1 − ηYt+k)−σ
(11)

The total real cost of production, Wt+k(i)Nt+k(i)/Pt+k, is

(Yt+k(i)/A)(φ+1)/(1−α)

(Yt+k − ηYt+k−1)−σ − ηβEt+k(Yt+k+1 − ηYt+k)−σ
(12)

and the marginal cost is

MCt+k =
φ+ 1

1− α
1

A

(Yt+k(i)/A)(φ+α)/(1−α)

(Yt+k − ηYt+k−1)−σ − ηβEt+k(Yt+k+1 − ηYt+k)−σ
(13)

When prices are all the same and constant, Yt+k = Yt+k(i) is equal to the

natural rate Y n
t+k, and the marginal cost is equal to 1/µ. From (13) we can then

solve for the natural rate of output, which is constant as productivity is constant.

Using

yt+k(i) = yt+k − εh∗t + ε(pt+k − pt)− γε(pt+k−1 − pt−1)

which is the log-linearized version of(7), we obtain the log-linearized version of (13)

in the form

mct+k =
φ+ α

1− α
xt+k +

σ

(1− βη)(1− η)
x̃t+k −

(φ+ α)ε

1− α
h∗t

+
(φ+ α)ε

1− α
(pt+k − pt)−

(φ+ α)ε

1− α
γ(pt+k−1 − pt−1) (14)
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where, as in the paper, xt ≡ yy − ynt and x̃t ≡ xt − ηxt−1 − βηEt(xt+1 − ηxt).

Substituting (14) in (10) we obtain

h∗t = (1− βθ)Et−d
∞∑
k=0

(βθ)k [(pt+k − pt)− γ(pt+k−1 − pt−1) + ζ1xt+k + ζ2x̃t+k]

(15)

where

ζ1 =
φ+ α

1− α
1− α

1− α + (α + φ)ε

ζ2 =
σ

(1− ηβ)(1− η)

1− α
1− α + (α + φ)ε

We can write (15) as

h∗t = θβEt−dh
∗
t+1 + θβEt−dπt+1−γθβEt−dπt+ (1− θβ)ζ1Et−dxt+ (1− θβ)ζ2Et−dx̃t)

(16)

Let p∗t = h∗t + pt be the log price at t of the firms that re-optimize. (16) implies

p∗t − pt = θβEt−d(p
∗
t+1 − pt+1) + θβEt−dπt+1 − γθβEt−dπt

+ (1− θβ)ζ1Et−dxt + (1− θβ)ζ2Et−dx̃t (17)

which can also be written as

p∗t − pt−1 = θβEt−d(p
∗
t+1 − pt) + πt − γθβEt−dπt

+ (1− θβ)ζ1Et−dxt + (1− θβ)ζ2Et−dx̃t (18)

If p̄t denotes the price level of firms that do not re-optimize, we have

pt = θp̄t + (1− θ)p∗t (19)

Subtracting pt−1

πt = θ(p̄t − pt−1) + (1− θ)(p∗t − pt−1) (20)

Firms that do not re-optimize index to past inflation, so that p̄t − pt−1 = γπt−1.

This gives

πt = θγπt−1 + (1− θ)(p∗t − pt−1) (21)

Taking the expectation at t−d of the same expression one period later, multiplied

by θβ, we obtain

θβEt−dπt+1 = θ2γβEt−dπt + (1− θ)θβEt−d(p∗t+1 − pt) (22)
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Taking the difference between the last two equations and substituting (18) we

obtain

πt = γπt−1 + βEt−dπt+1 − γβEt−dπt + ω1Et−dxt + ω2Et−dx̃t (23)

where

ω1 =
1− θ
θ

(1− θβ)
φ+ α

1− α + (α + φ)ε
(24)

ω2 =
1− θ
θ

(1− θβ)
1− α

1− α + (α + φ)ε

σ

(1− ηβ)(1− η)
(25)

This is the NK Phillips curve.

IV Uncertainty about the Date of Default Deci-

sion

We have assumed that the only uncertainty in the model is about the level of

primary surpluses that can be generated from T onward. In other words, there is

uncertainty about whether the government is able to enact reforms that raise the

primary surplus. But this uncertainty is resolved at a known date and the default

decision is then made at that time. We will now discuss an extension whereby

there is uncertainty about T itself.

In general there can be uncertainty about both the date that we find out if

reforms will be enacted and about the reforms themselves. We now abstract from

the latter by setting ψ = 1. In this case the agents know that there will be

no reform that raises primary surpluses, but they do not know at what time a

decision will be made to default or not. We further simplify by considering only

two possible dates for the default decision. The default decision will take place at

T1 with probability p and at T2 with probability 1 − p, with T1 < T2. The asset

price prior to T1 now takes into account the possibility of default at either T1 or

T2.

Monetary policy now takes the following form. The central bank chooses in-

terest rates R0 to RT1−1. After that, if a default decision is made at time T1,

the central bank chooses interest rates R̃T1 , ..., R̃H and after that the Taylor rule

applies. If no default decision is made at time T1, the central bank chooses inter-

est rates RT1 , ..., RH and after that the Taylor rule applies. Central bank policy
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starting at T1 will therefore depend on whether a default decision is made at time

T1.

Without uncertainty about T , the debt accumulation and pricing schedules

took the form of two relationships between bT and QT−1. They now take the form

of two relationships between bT1 and QT1−1. The debt accumulation schedule is

the same as before, replacing T with T1:

bT1 = (1− δ)T1 B0

PT1
+
PT1−1
PT1

χκκB0/P0 − χss
QT1−1

(26)

where

χκ =

[
rT1−2...r1r0 + (1− δ)rT1−2...r1

P0

P1

+ ...+ (1− δ)T1−1 P0

PT1−1

]
χs = 1 + rT1−2 + rT1−2rT1−3 + ...+ rT1−2...r1r0

The pricing schedule is now more complex as we need to take into account

possible default at T2. Starting at date T1, there may be multiple equilibria if the

debt is in an intermediate range. In this case there is either a self-fulfilling default

at T2 or no default at T2. But agents now need to make an assumption prior to

T1 about which of these two equilibria will be picked if both equilibria exist and

there is no default decision at T1. We will consider the worst case scenario under

which agents belief that the default equilibrium will be picked if it exists.

Starting at date T1, the problem is like the one discussed in Section 2 as there

can only be default at T2 if no default decision is made at T1. Using the results

from section 2, the lowest the lowest value of debt for which there is a default

equilibrium is

blow =
ζspdv(T2) + rT2−1χ̄

ss̄

(PT1/PT2)(1− δ)T2−T1((1− δ)QT2 + κ)ζ + rT2−1χ̄
κκ

(27)

where

χ̄κ =

[
rT2−2...rT1 + (1− δ)rT2−2...rT1+1

PT1
PT1+1

+ ...+ (1− δ)T2−1 PT1
PT2−1

]
χ̄s = 1 + rT2−2 + rT2−2rT2−3 + ...+ rT2−2...rT1+1rT1

spdv(T2) =

[
1 +

1

rT2
+

1

rT2rT2+1

+ ...

]
slow

QT2 =
κ

RT2

+
(1− δ)κ
RT2RT2+1

+
(1− δ)2κ

RT2RT2+1RT2+2

+ ...
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The price at T1 − 1 will be equal to

QT−1 =
(1− δ)(pH̃T1 + (1− p)Q̄T1) + κ

RT1−1
(28)

where H̃T1 is the payoff at time T1 when a default decision is made at T1 and Q̄T1 is

the asset price at T1 if no default decision is made at T1. In what follows we derive

expressions for H̃T1 and Q̄T1 . These will be functions of bT1−1, which therefore

delivers the price schedule.

First consider H̃T1 . If the default decision takes place at T1, we have

spdv(T1) =

[
1 +

1

r̃T1
+

1

r̃T1 r̃T1+1

+ ...

]
slow

Q̃T1 =
κ

R̃T1

+
(1− δ)κ
R̃T1R̃T1+1

+
(1− δ)2κ

R̃T1R̃T1+1R̃T1+2

+ ...

We have

H̃T1 = Q̃T1 if bT1 ≤
spdv(T1)

(1− δ)Q̃T1 + κ
(29)

=
ζspdv(T1)

bT1
if bT1 >

spdv(T1)

(1− δ)Q̃T1 + κ
(30)

Next consider Q̄T1 . This is the asset price at T1 if there is no default decision

at T1. When bT1 ≤ blow, there will be no default at T2 and

Q̄T1 =
κ

RT1

+
(1− δ)κ
RT1RT1+1

+
(1− δ)2κ

RT1RT1+1RT1+2

+ ... (31)

When bT1 > blow, there will be default at T2. The first step is to compute bT2
based on debt accumulation from T1 to T2. Using the results from section 2 of the

paper we have

bT2 = (1− δ)T2−T1PT1
PT2

bT1 +
PT2−1
PT2

χκκbT1 − χss
QT2−1

(32)

where

χκ =

[
rT2−2...rT1+1rT1 + (1− δ)rT2−2...rT1+1

PT1
PT1+1

+ ...+ (1− δ)T2−T1−1 PT1
PT2−1

]
χs = 1 + rT2−2 + rT2−2rT2−3 + ...+ rT2−2...rT1+1rT1

When then have

QT2−1 =
ζspdv(T2)

bT2
(33)
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Using

Qt =
(1− δ)Qt+1 + κ

Rt

we can then work backward to obtain QT1 , which gives us Q̄T1 .

The pricing schedule drops down twice, at bT1 = spdv(T1)/[(1− δ)Q̃T1 + κ] and

at bT1 = blow. In order to avoid an equilibrium with default, the debt accumulation

schedule must cross below the pricing schedule and therefore below these two

points where the pricing schedule drops down. We cannot tell a priori which

of these two points will be binding and therefore follow the following approach.

We first maximize utility subject to the constraint that at bT1 = spdv(T1)/[(1 −
δ)Q̃T1 + κ] the asset price from the pricing schedule is equal to that from the

debt accumulation schedule. We check that at the same time the asset price from

the debt accumulation schedule is no larger than from the pricing schedule at

bT1 = blow. If this is not the case, it does not represent optimal policy as there will

exist a default equilibrium. We next maximize utility subject to the constraint

that at bT1 = blow the asset price from both schedules is the same. We then check

that at bT1 = spdv(T1)/[(1− δ)Q̃T1 + κ] the asset price from the debt accumulation

schedule is no larger than from the pricing schedule. If this is not the case, there

exists a default equilibrium. There is always an optimal policy solution that avoids

default under one of these two constraints, which represents the binding constraint.

Figure A1 provides an illustration for the case where T1 = 10 and T2 = 20.

Except for ψ = 1, all other parameters are the same as in the benchmark parame-

terization. The chart on the left shows the maximum inflation rate under optimal

policy for different values of B0, while the chart on the right shows the ultimate

price level as a result of the optimal policy. The charts also show results for the

case where T = 10 and T = 20 without uncertainty, and ψ = 1. The thick sec-

tion on the horizontal axis represents the range of B0 for which there are multiple

equilibria under uncertainty about T in the absence of monetary policy, which is

0.84 to 1.47.

The case of uncertainty lies between the two cases without uncertainty. The

range of B0 for which there are multiple equilibria is shifted to somewhere in

between the two cases without uncertainty, but otherwise the results remain very

similar to those without uncertainty. Unless B0 is very close to the lowest value

for which there are multiple equilibria, it remains the case that very significant

inflation is needed to avoid multiple equilibria. For example, when B0 is 1.42
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times Blow, which is 1.19 and again near the middle of the multiplicity range, the

maximum inflation rate is 20%, while ultimately the price level will increase by a

factor 3.9.

V Interest Rates and Output

There is a limit to how much real interest rates can change and therefore contribute

to help avoid self-fulfilling crises. In the standard model without habit formation

the consumption Euler equation, together with ct = yt, implies

yt = yt+1 −
1

σ
rt (34)

where rt = it − Etπt+1 − rn is the real interest rate minus the natural rate. This

implies

y0 = − 1

σ
E0

∞∑
t=0

rt (35)

If there are large changes in the real interest rate, they will need to be reversed as

the sum of all the changes in the real interest rate is equal to −σyt and yt cannot

change by too much in the first quarter of a change in policy (if it does, the model

should not be taken seriously).

With habit formation the last expression needs to be modified a bit. In this sec-

tion we derive the modified expression. The consumption Euler equation, together

with ct = yt, implies

ỹt = Etỹt+1 −
1− βη
σ

rt (36)

where

ỹt = yt − ηyt−1 − βηEt(yt+1 − ηyt) (37)

Collecting terms, and removing the expectation operator for future variables in

what follows to save on notation, we have

(1 + η + βη2)yt − ηyt−1 − (1 + βη + βη2)yt+1 + βηyt+2 = −1− βη
σ

rt (38)

or

yt−1 =
1 + η + βη2

η
yt −

1 + βη + βη2

η
yt+1 + βyt+2 +

1− βη
ησ

rt (39)
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We can write this as yt+1

yt

yt−1

 = A

 yt+2

yt+1

yt

+

 0

0
1−βη
ησ

rt

 (40)

where

A =

 0 1 0

0 0 1

β −1+βη+βη2

η
1+η+βη2

η

 (41)

Define

a = −A−1

 0

0
1−βη
ησ

 (42)

Then  yt+2

yt+1

yt

 = A−1

 yt+1

yt

yt−1

+ art (43)

We can diagonalize the matrix (A−1)′:

(A−1)′ = P∆P−1 (44)

Then

A−1 = (P ′)−1∆P ′ (45)

Define ã = P ′a. Then

P ′

 yt+2

yt+1

yt

 = ∆P ′

 yt+1

yt

yt−1

+ ãrt (46)

Define

xt = P ′

 yt+1

yt

yt−1

 (47)

Then we have

xt+1 = ∆xt + ãrt (48)
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It turns out that the first and second eigenvalues are explosive (the first one is

larger than 1 and the second one is 1). Call these λ1 and λ2. Then the first and

second elements of the difference equation above are

xt+1(1) = λ1xt(1) + ã(1)rt (49)

xt+1(2) = λ2xt(2) + ã(2)rt (50)

Solving these gives

xt(1) = −ã(1)
∞∑
i=0

1

λi+1
1

rt+i (51)

xt(2) = −ã(2)
∞∑
i=0

1

λi+1
2

rt+i (52)

At time zero we can write

x0(1) = −ã(1)
∞∑
t=0

1

λt+1
1

rt (53)

x0(2) = −ã(2)
∞∑
t=0

1

λt+1
2

rt (54)

Assume that y is zero at time -1 (the shock happens at time 0). Define Z =

(P ′[1 : 2, 1 : 2])−1. It then follows that

y0 = −
∞∑
t=0

(
Z[2, 1]ã(1)

1

λt+1
1

+ Z[2, 2]ã(2)
1

λt+1
2

)
rt (55)

Numerically this is equal to (for benchmark parameters):

y0 = −0.58r0−0.73r1−0.83r2−0.89r3−0.93r4−0.95r5−0.97r6−0.98r7−0.99r8−...
(56)

Further coefficients are very close to -1. Except for the first two or three coefficients,

there is not a lot of difference relative to the case without habit formation. The

first couple of coefficients are smaller as consumption responds less with habit

formation. This allows for larger changes in the equilibrium interest rate for a given

change in y0. But it remains the case that the sum of the interest rates cannot

change much. For the benchmark parameterization y0 = 0.0157 corresponds to

the sum above when we plug in the solution for the real interest rates (everything

is in deviation from steady state). Much larger real interest changes imply that

output in the first quarter rises by much more than 1.57% (6.3% on an annualized

basis), which is implausible.
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