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Abstract

The objective of this paper is to show that the proposal by Froot and Thaler (1990)
of delayed portfolio adjustment can account for a broad set of puzzles about the
relationship between interest rates and exchange rates. The puzzles include: i) the
delayed overshooting puzzle; ii) the forward discount puzzle (or Fama puzzle); iii)
the predictability reversal puzzle; iv) the Engel puzzle (high interest rate currencies
are stronger than implied by UIP); v) the forward guidance exchange rate puzzle;
vi) the absence of a forward discount puzzle with long-term bonds. These results
are derived analytically in a simple two-country model with portfolio adjustment
costs. Quantitatively, this approach can match all targeted moments related to

these puzzles.



1 Introduction

Richard Thaler won the 2017 Nobel Prize in Economics. Thaler has focused his re-
search on behavior that he refers to as a deviation from “rational efficient markets.”
One example of this is the foreign exchange market. Focusing on the forward dis-
count puzzle, the fact that high interest rate currencies tend to appreciate, Froot
and Thaler (1990) argue that “a rational efficient markets paradigm provides no
satisfactory explanation for the observed results”. They suggest that gradual port-
folio adjustment could solve this puzzle. Their hypothesis is that “...at least some
investors are slow in responding to changes in the interest differential,” arguing
that “It may be that these investors need some time to think about trades before
executing them, or that they simply cannot respond quickly to recent informa-
tion.” In Bacchetta and van Wincoop (2010) we took this proposal seriously and
showed that it can indeed account for the forward discount puzzle.

The objective of this paper is to explore the role of gradual portfolio adjustment
for a broader set of features in the interaction between exchange rates and interest
rates. We find that gradual portfolio adjustment can account for as many as six
puzzles that have been identified in the literature. The puzzles that we address

are:

1. Delayed overshooting puzzle: a monetary contraction that raises the interest
rate leads to a period of gradual appreciation, followed by gradual deprecia-

tion.

2. Forward discount puzzle (or Fama puzzle): high interest rate currencies have

higher expected returns over the near future.

3. Predictability reversal puzzle: high interest rate currencies have lower ex-

pected returns after some period of time.

4. Engel puzzle: high interest rate currencies are stronger than implied by un-

covered interest parity.

5. Forward guidance exchange rate puzzle: the exchange rate is more strongly

affected by expected interest rates in the near future than the distant future.

6. LSV puzzle: current interest differentials do not predict long-term bond re-

turn differentials.



The delayed overshooting puzzle was first documented by Eichenbaum and
Evans (1995) for the US and Grilli and Roubini (1996) for other countries. It
should be pointed out that the subsequent studies have shown that the evidence
depends on identification strategies.! The second puzzle, the forward discount
puzzle (Fama (2006)), is the best known on this list and continues to be a well
established empirical fact.? The predictability reversal puzzle, first documented
by Bacchetta and van Wincoop (2010), is related to the forward discount puzzle.
They show that while the excess return over the next quarters is positive for
higher interest rate currencies (forward discount puzzle), after about 8 quarters
the quarterly excess return is negative for currencies whose current interest rate is
relatively high. In other words, there is a reversal in the sign of expected excess
returns. Engel (2016) confirms that this is a robust puzzle.

The fourth puzzle is documented in Engel (2016). The Engel puzzle says that
high interest rate currencies tend to have a stronger exchange rate than under UIP
(uncovered interest rate parity). This is because the sum of all expected future
excess returns is negative for high interest rate currencies. In other words, the
predictability reversal will ultimately dominate and investors demand a lower sum
of all future excess returns on currencies whose interest rate is currently high. Such
currencies are therefore strong relative to what they would be under UIP.

The forward guidance exchange rate puzzle is developed by Gali (2020). Un-
der UIP the exchange rate is equal to the unweighted sum of all future expected
interest rate differentials. This implies that changes in expected interest rates in
the near future have the same effect on the exchange rate today as changes in the
expected interest differential in the more distant future. However, in the data Gali
(2020) finds that expectations of interest differentials in the distant future have
a much smaller effect on the current exchange rate than expectations of interest
differentials in the near future.

The LSV puzzle stands for the puzzle developed by Lustig, Stathopoulos and
Verdelhan (2019) (henceforth LSV). It says that the forward discount puzzle has

no analogy in long-term bonds. While the international excess return on short-

1See for example Cushman and Zha (1997), Faust and Rogers (2003), Scholl and Uhlig (2008)
or Bjgrnland (2009). Cheung and Lai (2000) and Steinsson (2008) document broader evidence

of a humped shape real exchange rate response to shocks.
2Notice, however, that the puzzle does not seem to hold when we include post-2008 data. See

Bussiere et al. (2018).



term bonds tends to be positive for currencies with a relatively high interest rate
(forward discount puzzle), LSV find that this is not the case for long-term bonds.
They show that the local excess return of long-term bonds over short-term bonds
tends to be lower for high interest rate currencies and that this offsets the positive
expected excess return for short-term bonds.®> LSV find that no-arbitrage models
in international finance cannot account for this.

Our objective is to show that a single friction, associated with portfolio adjust-
ment costs, is able to account for each of these puzzles.* An additional objective is
to do so in an analytically tractable way, which significantly facilitates the analysis
and makes the results more transparent. With the exception of the LSV puzzle, the
key results are summarized through a set of propositions that follow directly from
the closed form analytical solution of the model. We obtain analytic tractability
by assuming that agents can adjust their portfolio each period, but face a simple
quadratic portfolio adjustment cost.

The first four puzzles are not entirely independent. For example, we will see
that delayed overshooting can give rise to the forward discount puzzle, predictabil-
ity reversal as well as the Engel puzzle. At the same time, these four puzzles are
not simply different sides of the same coin. We will show that while there is con-
siderable overlap in the regions of the parameter space that satisfy the individual
puzzles, there are also big differences. For example, when the portfolio friction is
very high, there is always delayed overshooting and predictability reversal, while
the Engel puzzle is not satisfied and excess return predictability is weak.

The paper is part of a broader literature that has modeled portfolio frictions.
There are three ways of modeling these frictions in the literature, which have a close

analogy to modeling price stickyness in the goods market. The assumption that we

3The international excess return of long-term bonds can be written as the sum of the interna-
tional excess return for short-term bonds plus the difference in local excess returns of long-term
over short-term bonds.

4While there is a vast literature on the forward discount puzzle, which we will not review here,
the other puzzles have received much less attention, and certainly not jointly. A few papers focus
on delayed overshooting, e.g., Gourinchas and Tornell (2004) and Kim (2005). Recently, several
papers analyze the predictability reversal puzzle. Engel (2016), Itshkoki and Mukhin (2017), and
Valchev (2020) propose explanations based on liquidity shocks. Chernov and Creal (2018) and
Dahlquist and Penasse (2017) focus on the role of long-term real exchange rate adjustment. The
forward guidance exchange rate puzzle and LSV puzzle have only been recently documented and

no solution has been proposed yet.



make of a portfolio adjustment cost is analogous to the Rotemberg (1982) cost for
price changes. Other papers taking this approach include Vayanos and Woolley
(2012), Garleanu and Pedersen (2013) and Bacchetta, Tieche and van Wincoop
(2020). The second approach is the most common in the literature. It assumes
that there are overlapping generations of agents that change their portfolio every
T periods, analogous to Taylor price setting.® The last approach is analogous to
Calvo price setting and assumes that agents make a new portfolio decision each
period with a given probability p. This approach is adopted in Bacchetta, van
Wincoop, and Young (2020).

While the assumption of a simple quadratic portfolio cost is more ad hoc than
the other two approaches, it has several advantages. First, as already emphasized,
it is the only approach that allows for analytical tractability. The assumption that
agents change their portfolio every T periods means that one needs to keep track of
the wealth and portfolios of T" generations of agents. The assumption that agents
make a new portfolio decision with probability p makes the model even harder
to solve. It significantly complicates portfolio Euler equations and substantially
increases the number of state variables. Another advantage of a quadratic portfolio
cost is that it leads to smooth impulse response functions in response to shocks.
This is not the case when agents make new portfolio decisions every T periods.
Bacchetta and van Wincoop (2010) show that this leads to a “wobbly” impulse
response. This is because of the anticipation that agents changing their portfolio
at the time of the shock will change their portfolio again exactly T periods later.

One limitation of the paper is that there does not exist direct evidence on the
importance of gradual portfolio adjustment in the foreign exchange (FX) market.
The FX market is a complex market, associated with any type of international
asset trade by any type of agents. At one extreme, if a household changes the
global allocation of a retirement portfolio, this would generally lead to FX trade.
Such changes in retirement portfolios are done very infrequently, contributing to

very gradual portfolio adjustment.® At the other extreme, FX hedge funds are very

SRecent examples include Bacchetta and van Wincoop (2010), Bogousslavky (2016), Duffie

(2010), Henderschott et al. (2013) and Greenwood et al. (2018).
6For example, Mitchell et al. (2006) find that 80 percent of 1.2 million workers with 401 (k)

plans initiated no trades during a two-year period. Ameriks and Zeldes (2004) find that over
a 10-year period, 44 percent of households made no changes to their TTAA-CREF portfolio
allocations.



active players. However, as argued by Bacchetta and van Wincoop (2010), they
manage only a very small fraction of external asset holdings. Since in addition
their positions are limited by risk aversion, they alone cannot undo excess return
predictability in the FX market. There exists extensive micro evidence on slug-
gish portfolio adjustment by households.” In addition, Bacchetta, Tieche and van
Wincoop (2020) show that US mutual funds face significant portfolio frictions in
their global equity portfolio choices.® But there is no clear evidence on the overall
magnitude of portfolio frictions in the FX market. Therefore, while our findings
show that such frictions can account for the puzzles, this paper takes no stand on
whether the assumed frictions are quantitatively plausible.

The remainder of the paper is organized as follows. In Section 2 we discuss a
two-country model with short-term bonds and gradual portfolio adjustment. In
Section 3 we provide formal propositions related to the first five puzzles as well as
a numerical illustration. Section 4 introduces long-term bonds in order to address
the LSV puzzle. Section 5 discusses an extension of the model to infinite lives.

Section 6 concludes.

2 Model with Gradual Portfolio Adjustment and
Short-Term Bonds

The six puzzles can be written both in terms of real interest rates and exchange
rates and in terms of nominal interest rates and exchange rates. As Engel (2016)
points out, the forward discount puzzle applies equally when using real variables.
Gali (2020) also uses real interest rates and exchange rates to develop the forward

guidance exchange rate puzzle. An advantage of stating the puzzles in terms of real

"See for example Ameriks and Zeldes (2004), Bilias et al. (2010), Brunnermeier and Nagel
(2008), Mitchell et al. (2006) and Giglio et al. (2019). Duffie (2010) reviews a broad range
of evidence motivating models of gradual portfolio adjustment. Also related is evidence by the
Investment Company Institute cited by Bacchetta, van Wincoop and Young (2020) showing that
only 40 percent of US investors change their stock or mutual fund portfolio during any particular

year.
8Related to that, Bohn and Tesar (1996) and Froot et al. (2001) find that international

portfolio flows are highly persistent and strongly related to lagged returns. Bohn and Tesar
(1996) conclude: “we suspect that investors may adjust their portfolios to new information
gradually over time, resulting in both autocorrelated net purchases and a positive linkage with

lagged returns.”



variables is that the real exchange rate is stationary, while the nominal exchange
rate is generally not stationary. We therefore use real variables, although we should
stress that the equations can easily be written in nominal terms as well.

In this section we first describe the model and then the solution for the equilib-
rium real exchange rate and corresponding excess return predictability coefficients.
We also discuss a calibration of the model that is used to numerically illustrate
the puzzles in the next two sections. Our focus will be on portfolio choice and
asset market equilibrium, but we will also discuss the goods market, for which we
assume price stickiness. Full details of the general equilibrium model are left to

the Online Appendix.

2.1 Model Description

There are overlapping generations of agents who live two periods. There are two
countries, Home and Foreign (h = H, F'). There are two assets, Home and Foreign

nominal bonds. Agents in the Home country born at time ¢ maximize
1
CH’t + n (Etcllﬁlﬁll) = O5w (ZH,t — ZH,t71>2 (1)

where Cp; is consumption at time ¢ and zp,; is the fraction that Home agents
invests in the Foreign bond. Since there are only two assets, there is only one
portfolio share.

The utility of consumption is specified in an analytically convenient way as
linear in time t consumption and logarithmic in the certainty equivalent of time
t+1 consumption, with a rate of risk aversion of . As we will see, this specification
implies that saving at time ¢, which will be the wealth that is invested in the assets,
is always 1. This is a simple device to ignore changes in asset demand associated
with changes in wealth.

The last term of (1) is a quadratic portfolio adjustment cost. It captures a
utility cost of choosing a different portfolio share zp; invested in Foreign bonds
from that of “parents” one period ago. We do not take a stand on the micro
underpinnings of this cost. It may for example be related to portfolio decision
making costs or trading costs. While in the benchmark model we assume two-
period lived agents, in Section 5 we consider an extension to infinite lives, where

agents also need to take into account the cost of future portfolio share changes.



The budget constraint is

CHit1 = Rfﬁ(YH,t — Cuy) (2)

where Y is real income at time ¢ and Rﬁg is the real portfolio return from ¢ to

t + 1. The income Yy, is discussed in the Online Appendix, but is irrelevant for

what follows. The portfolio return is

H St+1 o .
Rty = | 2my S eftem T 4 (1= zpg)e”
t

Here #; and 7; are the nominal interest rate on Home and Foreign bonds, S; is the
nominal exchange rate, measured in terms of the Home currency per unit of the
Foreign currency, and P, is the overall consumer price index of Home agents.

We introduce a tax 7 of investment in the Foreign bond by Home agents,
imposed by a broker or the government. There will be an analogous tax 7p;
of investment in the Home bond by Foreign agents. The aggregate of this tax
revenue across all Home agents is reimbursed through the term 73,4 in (3), which
the agents take as given. This assures that the tax 74, will only affect portfolio
choice, not the overall return.

These taxes play two roles. First, their mean level 7 can be set to generate
realistic home bias. Second, changes in these costs generate exogenous portfolio
shifts, which we refer to as financial shocks. Itskhoki and Muhkin (2019) have
argued that exchange rates are disconnected from observed fundamentals primarily
through unobserved financial shocks. Gabaix and Maggiori (2015) also argue that
such shocks are critical to exchange rates, while Bacchetta, van Wincoop and
Young (2020) show that they play a key role in the global equity market as well.
While we model financial shocks as resulting from time-varying taxes, all that
matters is that they generate exogenous portfolio shifts. Alternative ways that
these have been modeled in the literature include noise trade, liquidity trade, hedge
trade, time-varying risk-bearing capacity or time-varing investment opportunities.’
The exact origin of such shocks plays no role in our analysis.

Substituting the budget constraint (2) into (1), we can maximize with respect

to consumption C'y,; and the portfolio 2z ;. The first-order condition with respect

9For different ways of modeling the portfolio shocks, see Bacchetta and van Wincoop (2006),
Dow and Gorton (1995), Gabaix and Maggiori (2015), He and Wang (1995), Spiegel and Sub-
rahmanyam (1992) and Wang (1994).



to consumption gives Yy, — Cyy = 1. Saving is therefore always 1 and agents
invest a wealth of 1 in the two assets. The first-order condition with respect to

the portfolio zp, is

H ) .
Etef'YTZ_l+5t+1*5t+1Z*TH,t*7Tt+l _ Etef'yrfﬂﬂﬁfm,tu

o H - 1/}(ZHt - ZH,t—l) =0 (4)
Ete(1*7)rt+1

where inflation from ¢ to ¢ 4 1 is denoted as w11 = p;y1 — Py, with p; the log price
level. Expectations of exponentials are computed by assuming log normality, after

which we linearize around zero values of exponents. This gives

Eysy i1 —si+i; —is— T +0.50var(5141) —COUt('WﬁI{‘FPtHa Se41) =V (2m—2H4-1) = 0
(5)

A first-order approximation of the log-portfolio return is

H .

roi = Zaa(eran — Tayg) + i — T (6)

where the excess return is eryy1 = s;41 — ¢ + if — 4. Substituting (6) into (5), we
can solve for the optimal portfolio as

1
Y+ yo?

ZHt — ZH (zH4—1 — Zm) + (Ererir — Tuy) (7)

Y +q0?
Here 751 = Tt — T, 02 = vary(s;1) and
s s ) +

where 05, = cov(St41, pr+1). These moments are time-invariant once s; and p; are
solved as a function of model shocks. Zy is the steady state fraction invested in
the Foreign bond by Home agents.

The role of the parameters i) and 7 in the portfolio can be understood intu-
itively. When choosing portfolios, investors care about expected returns, risk and
the cost of portfolio adjustment. A rise in 1 implies a higher weight on the cost of
portfolio adjustment, leading the optimal portfolio to depend more on the lagged
portfolio and less on the expected excess return. A rise in v implies that investors
are more concerned with risk, leading to a lower weight on both the lagged portfo-
lio and the expected excess return. We will refer to the dependence of the portfolio
on the lagged portfolio and expected excess return as respectively portfolio per-

sistence and return sensitivity. A higher v leads to both less portfolio persistence

8



and weaker return sensitivity, while a higher 1 raises portfolio persistence, but
weakens return sensitivity.!?

The Foreign country faces an analogous problem. Its real wealth, in terms of
Foreign purchasing power, is then also 1, while its optimal fraction invested in

Foreign bonds is

_ _ 1 .
2Rt — ZF = (2Ft-1 — ZF) s (Eierir + Try) 9)

- +—
Y+ yo? Y +0

where 7p; = Ty — 7. As a result of symmetry we have Zp =1 — Zy.

The real supply of bonds is assumed fixed at 1 in terms of the purchasing power
of the respective countries. Let Q; = S;P/P; be the real exchange rate, where
Py is the consumer price index of the Foreign country in the Foreign currency.
As a result of Walras’ Law, it is sufficient to focus on the Foreign bond market
equilibrium. In terms of Home country purchasing power, the value of the Foreign
bond supply is @;, while the wealth of Home and Foreign agents is 1 and Q.

Foreign bond market equilibrium is then
2ag + 2@ = Q1 (10)
Linearizing around the log real exchange rate, ¢;, equal to zero, this becomes
A _

where 254 = 0.5(zm¢ + zp) is the average that the two countries invest in the
Foreign bond and b = 0.5zy.

It is useful to define the nominal interest rate differential as the Foreign minus
the Home interest rate, i = i} —4;. Real interest rates are defined as the nominal
interest rate minus expected inflation, so r; = ¢, — Eym 1 and rj = if — By, . The
real interest rate differential is then r = r; —r, = iP — Ey(w},; — m41). It follows
that the expected excess return can also be written in terms of real variables as
Eierii1 = Eiqri1 — o +rP. Using this, substituting the optimal portfolios (7) and

(9) into the Foreign bond market equilibrium condition (11) gives

Eiqii1 — 0q + bpgi—1 + TtD + 0-57}D =0 (12)

where 6 = 1 + b + v02b and 7” = 7p; — Ty Note that a rise in 77 implies an

exogenous portfolio shift towards the Foreign bond, away from the Home bond.

0These effects are similar to Garleanu and Pedersen (2013).

9



2.2 Real Exchange Rate Solution

Using (12), standard solution techniques for second-order stochastic difference

equations give
[e.@]

1
@ = aq1 + By Z Ditt (ris +0.57.5;) (13)

=0

where o and D are the roots of the characteristic equation of (12):

a:‘g—‘/f_wb 14
L0+ \/022 — dapb (15)

It is easily verified that 0 < a < 1 and D > 1. The real exchange rate there-
fore depends on the lagged real exchange rate and a present discounted value of
expected future real interest rate differentials.

A couple of comments about the parameters o and D are in order as they are
key to the solution. Appendix B derives the following Lemma:

Lemma 1. The following properties describe the relationship between o, D and

the portfolio adjustment cost parameter :

o As ) rises from 0 to oo, a rises monotonically from 0 to 1.

o As ) rises from 0 to oo, D rises monotonically from 1 + vyo2b to co.

Higher portfolio adjustment costs imply that the real exchange rate depends
to a greater extent on the value of the real exchange rate during the last period

and future expected real interest rates are discounted more heavily.

2.3 Goods Market and Monetary Policy

So far we have abstracted from the goods market. The solution (13) for the real
exchange rate depends on the real interest rate, which is an endogenous variable
and generally depends on goods market equilibrium. The real interest rate may
depend on both monetary policy shocks and financial shocks, dependent on the
nature of monetary policy and extent of price stickiness. To illustrate this, we
briefly discuss the goods market, focusing on the key equations while leaving most
of the details to the Online Appendix.

10



Assume a continuum of differentiated Home and Foreign goods. Agents have
Cobb Douglas utility over the index of Home and Foreign goods, with a fraction ¢
spent on domestic goods. There is local currency pricing: Home and Foreign firms
set prices of respectively Py, and Pp,; in the Home country in the Home currency
and Pp, and Pj, in the Foreign country in the Foreign currency. Output is linear
in labor. Firms face quadratic Rotemberg costs of price changes.

The real wage rate is constant since consumption and leisure are perfect substi-
tutes.!’ The marginal cost of production of Home firms is therefore proportional
to P, in Home currency and P;/S; in Foreign currency. Similarly, the marginal
costs of Foreign firms is P, in Foreign currency and S; P in Home currency. Given
the cost of price changes, optimal prices depend on both last period’s price and
the marginal cost. Prices (in logs) set by Home and Foreign firms in the Home

and Foreign country are
pat = (1 — K)pae—1 + Kp Py = (1 — ﬂ)p#;{,tfl + k(pe — 5¢) (16)
pre= (1= K)pre +w(pf +50) P = (1= K)Pryy + KDy (17)

Here x depends on the cost of price adjustment, with £ = 1 implying flexible prices

and xk = 0 perfectly sticky prices. Consumer price indices are

e = epme + (1 — ©)pry Py = (1 = ©)py + 00y (18)

Combining the price relationships (16)-(18), we arrive at

w

where 7P = 7} — m, is Foreign minus Home inflation and w = 2(1 — ¢)r/[1 + (1 —

2¢)k]. w is 1 when prices are perfectly flexible and 0 when perfectly sticky. A
nominal appreciation of the Foreign currency (rise in s;) leads to a real Foreign
currency appreciation (rise in ¢;). This raises the marginal cost of production
in the Foreign country relative to the Home country, which lowers the price of
imported goods in the Foreign country relative to the Home country. This reduces
Foreign relative to Home inflation, stabilizing the real exchange rate, and more so
the more flexible prices are. In the extreme where prices are perfectly flexible, the

real exchange rate remains constant: ¢, = 0.

1'We have omitted leisure from (1) as it plays no role for portfolio choice, but it is included in
an expanded utility function in the Online Appendix.

11



Now consider the following monetary policy:
i = om + 1y (20)

where v; captures exogenous monetary policy shocks. We need to impose the

following condition on ¢ to ensure a unique solution:

o>1-— w702b

w

In the case of flexible prices, where w = 1, this implies ¢ > 1, the familiar Taylor

principle. In addition assume AR(1) processes for monetary and financial shocks:

Vy = th_l —l— €t (21)
T =0 e (22)

where monetary policy shocks ¢, are assumed to be uncorrelated with financial
shocks 7.
Substituting (19), (20) and r{ = i — Eywf, into (12) we get a second-order

difference equation in the relative inflation rate:
Erl — (1 —w)f +w)rf + bip(1 —w)ml = wyy + 0507 (23)

We can then solve for 7P, which also gives us the solution for i, r” and ¢.
Defining §; and J> as the unstable and stable characteristic roots of (23), the

solutions for the real exchange rate and real interest rate are

1—w 1l—w
qr = (52(]1571 + 51 — th + 0551 — pTTtD (24)
5 — (5 - T 5 -
P = (¢ — 02)damy + — £ +5(p +p - ¢)th 405 T2 0 (;_ 2p (bWTtD (25)
1 1 — Pr

Clearly, the real exchange rate and real interest rate are in general both affected
by monetary policy shocks and financial shocks.
When prices are perfectly flexible (w = 1), we have ¢; = 0 and rP = —0.577.

When prices are perfectly sticky (w = 0), 6; = D and J, = o and we have

1
PR +0.55— pTTtD (26)

rP =P (27)

QG = aq1 +

12



In this case the real interest differential is equal to the nominal interest differential,

which is exogenously controlled through monetary policy, so that
e = pris e (28)

In what follows we assume complete price stickiness, so that w = 0 and (26)
is the solution for the real exchange rate. This means that the real interest rate
is controlled entirely through monetary policy. This conforms with the reality
that real and nominal exchange rates are virtually indistinguishable at short to
medium horizons.'? The same results apply when we assume partial price stickiness
(0 < w < 1) if we assume that central banks target the real interest differential in
(28) instead of following monetary policy (20). In this case the inflation differential
7P is equal to —wgq; /(1 — w) from (19). For given real exchange rate fluctuations,
relative inflation is smaller the stickier prices are (lower w).

The financial shocks 7 play a limited role in our analysis. Our assumption
(28) implies that the real interest differential is not affected by financial shocks.
They therefore do not directly impact excess return predictability by interest dif-

2 of the nominal exchange rate,

ferentials. However, they do affect uncertainty o
which affects portfolio choice. This affects the second-order difference equation of
q; through 6. We will assume that financial shocks are large enough to match the

observed exchange rate volatility in the data.

2.4 Excess Return Predictability Coefficients

Consider the following regression:
eryy = o+ ﬁkrf) + €tk (29)

Several of the puzzles are related to the excess return predictability coefficients
Br. The coefficient [, tells us the effect of the current real interest differential
on the expected excess return k periods from now. The forward discount puzzle
focuses on k = 1, with one period usually being a month or a quarter. For the

predictability reversal puzzle and the Engel puzzle we are also interested in (3, for

12 Another drawback with assuming w > 0 is that a financial shock that leads to a higher nom-
inal interest rate differential (a drop in 72) will lead to a Foreign currency nominal depreciation

(drop in s;). In the data higher interest rates are usually associated with a currency appreciation.

13



k > 1, which relates to the effect of the current interest differential on the excess
return further into the future.

In the model, the value of 3 is equal to

cov(ery g, mP)
var(rpP)

Br = (30)

Using the solution for the real exchange rate under the assumed AR(1) process for

the real interest differential, Appendix C shows that this can be written as'3

DYY AR D VYo if o # p
o= lg)kjp(D—%p—(l—p)(k—l)) ita=p (81)
where
v (7)) o
A2:g:2laip+1—lap} %)

Lemma 2 in Appendix F characterizes the signs of \; and \y. Both are positive

for low values of v, but turn negative as v increases.

2.5 Numerical Illustrations

We provide numerical illustrations for each of the puzzles. We calibrate the pa-
rameters as follows. Parameters other than v and v are calibrated to interest rates
and exchange rates of the remaining G-7 countries relative to the United States
(as in Engel, 2016). The real interest rate is computed as the monthly nominal
interest rate minus the expected monthly inflation rate (estimated from annual
inflation). We find p = 0.9415.1* The standard deviation ¢ of the monthly excess

return is computed as the average standard deviation of the monthly change in

133, is a continuous function of a (and therefore of 1), but A\; and Ay are not defined at o = p,
which is why the expression for 8 at a = p is reported separately.
14The average standard deviation of the relative real interest rate innovation is 0.000342. This

is only used in the impulse response of the real exchange rate to a one standard deviation interest

rate shock in Figure 1. It does not affect any of the other results.

14



the real exchange rate, which is 0.0271.> We set b = 0.085 based on the average
home bias for G-7 countries during Q2, 2017.'% Details regarding the data for this
calibration can be found in Appendix A.

We consider a wide range of values for ¢ and v, with ¢ ranging from 0 to 20 and
v from 10 to 100. Somewhat arbitrarily, we set ¢/ and v at respectively 15 and 50
in the benchmark. We should point out @) = 15 does not imply a high welfare cost.
With a two standard deviation relative interest rate shock, the welfare loss from

the portfolio friction is equivalent to only a 0.005 percent drop in consumption.

3 Explaining Five Puzzles

We now use the simple model introduced above to address the first five puzzles.
We do so by discussing a series of propositions and provide numerical illustra-
tions. When describing the intuition behind the results, we will always consider
an increase in the relative Foreign interest rate (rise in 7), which leads to an ap-
preciation of the Foreign currency (rise in ¢;). We will always refer to the Foreign

currency, so a depreciation refers to a Foreign depreciation or drop in ¢;.

3.1 Delayed Overshooting Puzzle

First define

In(1—p)—Iin(l—«) fa
o) —in(p) 7 1)
p

o+
Il

15 A discussed, we can set the standard deviation of the financial shocks to match the observed
standard deviation of the change in the real exchange rate. When we do this, we find that
under the benchmark parameterization the interest rate shocks account for only 1 percent of the
variance of real exchange rate changes. This is consistent with the well known disconnect between
exchange rates and macro fundamentals. It also connects closely to Itskhoki and Mukhin (2017),
who also explain exchange rate disconnect through financial shocks that are the main driver of
exchange rate volatility.

16We combine BIS data on debt securities outstanding with external assets and liabilities for
debt securities from the IMF International Investment Position Statistics. For each country we
compute home bias as 1 minus the fraction invested abroad divided by the fraction of the rest of
the world in the world supply of debt securities. The average home bias is 0.66. In a two-country
model this home bias is 1 — 2Zy, implying a steady state fraction invested abroad of Zy of 0.17.
Since b = 0.5z, this gives b = 0.085.
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Appendix D proves the following proposition:

Proposition 1. Consider the impulse response of the real exchange rate to a pos-
D

itive shock to the relative Foreign interest rate r;”.
o if a < 1—p: the real exchange rate appreciates at the time of the shock and

subsequently gradually depreciates back to the steady state.

o ifa > 1—p: there is delayed overshooting. The real exchange rate appreciates
at the time of the shock and keeps appreciating until time t > 1. Then it
gradually depreciates back to the steady state.

Since Lemma 1 tells us that « rises from 0 to 1 as we raise the gradual portfolio
adjustment parameter v, Proposition 1 implies that for sufficiently large v, and
assuming p > 0, there is delayed overshooting of the type reported by Eichenbaum
and Evans (1995) and others. They show that after a monetary policy tightening,
the currency continues to appreciate for another 25-39 months before it starts to
depreciate. With less gradual adjustment, such that o < 1 — p, there is no delayed
overshooting.

To understand the intuition, consider an increase in the Foreign interest rate.
There will be an immediate appreciation of the Foreign currency as investors shift
to Foreign bonds. Subsequent to the shock, there are two opposing forces at work.
On the one hand, the Foreign interest rate gradually declines again, which leads to
a shift away from Foreign bonds and a gradual depreciation. On the other hand, to
the extent that portfolios are slow to adjust, there will be a continued flow towards
Foreign bonds, which leads to a continued appreciation. When v is sufficiently
large, the second force dominates and there will be delayed overshooting.

Expression (34) indicates how long the real appreciation will last in the case
of delayed overshooting. Appendix D shows that the derivative of ¢ with respect
to « is positive. A larger gradual portfolio adjustment parameter 1, which raises
a (Lemma 1), will then lead to a longer duration of the delayed overshooting. In
the extreme case where o approaches 1, ¢ approaches infinity.

Figure 1 provides a numerical illustration. The chart on the left shows the
impulse response of the real exchange rate under the benchmark parameterization.
The chart on the right shows the time to maximum overshooting for ¢ varying from
0 to 20 and ~ taking on the values 10, 50 and 100.
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Figure 1: IMPULSE RESPONSE ¢; AND DELAYED OVERSHOOTING

A Impulse Response g, in Percent B Overshooting: Time to Maximum

157 (y=15,y=50) ~ Impact
1.2
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0 24 48 72 96 120 144 168 0 5 10 15 20

months W

Notes: Panel A shows the response of ¢; to a one standard deviation increase in 7”. Panel B shows

the number of months for ¢; to reach its maximum for different values of ¢ and ~.

Chart A of Figure 1 shows that the real exchange rate overshoots, reaching
a maximum after 35 months. This is consistent with the results in Eichenbaum
and Evans (1995). Chart B shows that except for very small values of ¢, the
model implies delayed overshooting. Consistent with Proposition 1, the time to
maximum impact rises significantly with ¢. It is also larger the lower the rate
of risk-aversion. Both of these effects are associated with portfolio persistence. A
higher ¢ and lower v raise the persistence of the portfolio response. The more
gradual portfolio response leads to a more gradual appreciation, which increases

the time ¢ to maximum overshooting.

3.2 Forward Discount Puzzle

While UIP implies that the Fama coefficient (3 is zero, empirical evidence typically

finds a positive number. Proposition 2 characterizes the sign of 8; in the model:

Proposition 2. The Fama predictability coefficient 31 is positive, and larger when

there is gradual portfolio adjustment (¢ > 0).
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The proof is given in Appendix E. Since g; > 0, a positive excess return is
expected on the high interest rate currency, consistent with the forward discount
puzzle. Moreover, Proposition 2 says that (; is larger when we introduce a cost of
adjusting portfolios (¢» > 0). Even without this cost, there is some excess return
predictability in the model through a risk premium channel.!” But 3, is always less
than 1 without portfolio adjustment costs, in contrast to most empirical evidence.'®

Proposition 1 on delayed overshooting is a useful starting point to understand
the role of gradual portfolio adjustment in accounting for the forward discount
puzzle. When a > 1 — p, so that there is delayed overshooting, the Foreign
currency is expected to continue to appreciate after the initial appreciation at
the time of the shock. The Foreign currency will then have a positive expected
excess return both due to the higher interest rate and the expected appreciation.
Therefore the portfolio adjustment parameter v, which causes a gradual portfolio
shift to the Foreign currency that leads to continued appreciation, increases the
Fama predictability coefficient /3;.1

Under the benchmark parameterization the excess return predictability coeffi-
cient (3, is equal to 3.26. Figure 2 shows how J; varies with ¢ and ~. It rises until
v is about 12 and then gradually declines. When ¢ is low, portfolio persistence
is weak, leading to less delayed overshooting and less excess return predictability.
On the other hand, when v is very high, return sensitivity is weak. Agents then
respond very little to changes in expected returns, so that the real exchange rate
does not change much. This also weakens excess return predictability because
the strength of the appreciation after the initial shock is weak. Therefore the
predictability coefficient 3 is largest for an intermediate value of ).

Figure 2 also shows that the excess return predictability coefficient (; is larger
when risk aversion « is smaller. A smaller v increases both portfolio persistence

and return sensitivity, both of which lead to a larger appreciation subsequent to

17Specifically, a higher Foreign real interest rate leads to a real appreciation of the Foreign
currency, which increases the relative value of the Foreign bond supply. To invest a larger
portfolio share in Foreign bonds, investors demand a positive expected excess return on the
Foreign bond.

8When v = 0, we have 31 = y02b/(yo%b+ 1 — p).

19Even when o < 1 — p, so that there is no delayed overshooting, gradual portfolio adjustment
leads to a higher Fama coefficient 5, because the rate of depreciation subsequent to the shock
is smaller due to gradual portfolio adjustment. The weaker subsequent depreciation implies a

higher expected excess return on the Foreign currency and therefore a larger Fama coefficient ;.
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the initial shock that enhances predictability.

Figure 2: FORWARD DISCOUNT PUzZLE: PREDICTABILITY COEFFICIENT [3;

%}

3.3 Predictability Reversal Puzzle

Define ¢ = pyo?/(1—p). Excess return predictability at longer horizons, measured

by [k, is described in the following proposition:

Proposition 3. The following holds for (y.:

o if ) <: By is positive for all k and drops monotonically to zero as k — oo.

o if1) > 1): there is a k > 1 such that 3, is positive for k < k and negative for

k > k. It converges to zero as k — oo.

The proof is given in Appendix F. Proposition 3 implies that when the gradual
adjustment parameter is low, the Foreign currency continues to have positive ex-
pected excess returns in all future periods, although the predictability Sy vanishes
to zero over time. But when the gradual adjustment parameter is sufficiently high
(¢ > 1), there will be a predictability reversal. While initially, after the increase
in the Foreign interest rate, the Foreign currency is expected to have a positive ex-
pected excess return, after a certain period of time it is expected to have a negative
excess return. Bacchetta and van Wincoop (2010) first documented this reversal

in the sign of predictability for nominal interest rates and exchange rates. They
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find that a high interest rate currency has a positive expected excess return for
about 5-10 quarters, after which it has a negative expected excess return. Engel
(2016) reports similar findings for real interest rates and exchange rates.

The excess return on the Foreign currency is driven both by the higher Foreign
interest rate and the change in the value of the Foreign currency. Under delayed
overshooting the Foreign currency will at first appreciate and therefore have a
positive excess return. But after time ¢ it will start to depreciate, which contributes
to a negative excess return. If ¢ is large, by the time the Foreign currency starts to
depreciate, the interest differential will be small. The excess return is then mainly
driven by the Foreign currency depreciation and is therefore negative.?’

Engel (2016) claims that models with gradual portfolio adjustment cannot ac-
count for the predictability reversal. To understand this, we first need to introduce
the concept of the UIP exchange rate. From the definition of the excess return we
have ¢ = Eiqiy1 +rP — Esery,y. Integrating forward and assuming long-run PPP

(lims oo Eiqirs = 0), we get an expression analogous to that in Engel (2016)2!:

a=q" - Z Everyy; (35)
i=1
where -
9" = Z Et"’tai (36)
i=0

is the UIP exchange rate. It is the real exchange rate when expected future excess
returns are zero. When the sum of future expected excess returns is positive,
investors demand positive risk premia on the Foreign currency and we see that
¢ < ¢/, In other words, the Foreign currency is weak.

Engel conjectures that in response to a rise in r? the Foreign currency appre-
ciates less under gradual portfolio adjustment than the UIP exchange rate and
then gradually moves towards the UIP exchange rate. This implies that always
q: < ¢, so that the sum of subsequent expected excess returns is always positive.
In that case there can be no predictability reversal. Figure 3A shows the response
of both ¢; and ¢!* under the benchmark parameterization. While initially ¢, < ¢/*
as a result of the weak initial portfolio adjustment, not long after that q; > ¢/

The latter is consistent with predictability reversal.

20Delayed overshooting is not a necessary condition for predictability reversal. Dependent on

parameters, predictability reversal can also happen when o + p < 1.
21See also Dahlquist and Penasse (2017).
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Figure 3: SIGN REVERSAL OF PREDICTABILITY COEFFICIENT [y

A Impulse Response g, and g/* B Coefficients B, (y=15,y=50)  C Time to Sign Reversal of p,
(percent, y=15,y=50)
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Notes: Panel A shows the response of ¢; and ¢/* to a one standard deviation increase in 7. Panel B
shows the regression parameter Sy for different levels of k. Panel C shows the level of k for which g

turns negative for different values of ¢ and ~.

Figure 3B reports [ for k£ from 1 to 180 for the benchmark case. The reversal
of the predictability coefficient from positive to negative occurs after 30 months.??
This is not too far from the reversal after 5-10 quarters reported in Bacchetta and
van Wincoop (2010). Tt is also consistent with results reported in Engel (2016).%3

Figure 3C considers the impact of 1 and v on the time k where [, reverses sign

22The Online Appendix discusses the implications for the national intertemporal budget con-
straint, which says that the net external debt is equal to the present discounted value of future
trade surpluses plus gross external assets times the present value of the excess return. The net
external debt is always zero in the model. A rise in 77 leads to a Foreign currency appreciation
that raises wealth and consumption in the Home country, leading to a Home trade deficit. But
this is paid for by a higher return on external assets (Foreign bonds) than external liabilities

(Home bonds) until the time of predictability reversal.
Z3Engel (2016) reports results of regressions of both the ex-post and ex-ante excess return on

the interest differential. The ex-ante excess return relies on a VAR to compute expected returns

and delivers a somewhat shorter time to reversal of about 12 months on average.
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from positive to negative. This rises with a higher ¢ and lower . Both enhance
the portfolio persistence, which leads to a later date ¢ of maximum overshooting.

A longer period of appreciation after the shock delays the predictability reversal.

3.4 Engel Puzzle

The Engel puzzle says that high interest rate currencies tend to be strong relative

to the UIP exchange rate. More formally:
cou(gi — g!"rP) > 0 (37)

Engel (2016) provides evidence that this condition holds in the data for 6 curren-
cies. We will refer to it as the Engel condition. Using (35), we can also write it

as .
> B<0 (38)
k=1

which is an equivalence used by Engel (2016) as well. Predictability reversal is
a necessary condition for this to hold, so that ¢ > 1) is a necessary, but not a
sufficient condition. Negative expected excess returns on the Foreign currency for
k > k must more than offset the positive expected excess returns when k < k.
Define (¢F, 9F) as positive values of 1, with ¢F < & where cov(q;—ql,7P) =

0. Appendix G describes these values and proves the following proposition:

Proposition 4. Necessary and sufficient conditions for the Engel condition to hold

are

1oy <1 <y
2. vo?b < % (1 — /11— p)z.

Proposition 4 imposes several restrictions on parameters for the Engel condition
to be satisfied. While the conditions may seem restrictive, we will see that they
will hold under a broad range of parameters.

Proposition 4 tells us that the Engel condition is satisfied for intermediate
values of ¢, for risk aversion ~ that is not too large and for interest rate persistence
p that is not too close to 0 or 1. The role of 1) and v can again be related to portfolio
persistence and return semsitivity. A very low value of ¢ implies weak portfolio

persistence. The lack of appreciation after the initial shock (or weak appreciation)
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implies that ¢; — ¢/” will remain negative or not become very positive. On the
other hand, a very high 1 implies that return sensitivity is weak. The portfolio
will respond very little to the higher interest rate, so that ¢; — ¢/ again remains
negative. For intermediate values of ¢ we see a significant appreciation after the
shock, leading to a sustained positive ¢; — ¢/ for high interest rate currencies.
When ~ is very large, portfolio persistence and return sensitivity are both weak,
so that ¢; — ¢/* either remains negative or does not become very positive and the
Engel condition does not hold.

Finally consider the persistence p of the real interest rate. If the interest differ-
ential is very persistent, the Foreign currency continues to experience high interest
rates for a very long time, which by itself causes positive excess returns for a long
time. This is inconsistent with the Engel condition. On the other hand, when p is
very small, the real exchange rate does not respond very much. We do not see a

sustained appreciation that leads to a large positive ¢, — ¢/ after the shock.

Figure 4: ENGEL PUZZLE )/~ Bk
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Figure 4 shows that the Engel result holds quite generally in the model as long
as 1 is not too close to zero. Consistent with Proposition 4, the Engel result is
stronger the lower the rate of risk-aversion v and peaks for an intermediate value
of ¢. For the benchmark parameterization the Engel coefficient > ;7 | f, is equal
to -25. This is similar to the estimate in Engel (2016), who finds a -31 coefficient

for the G6 average exchange rate against the dollar and an average of -21 for the
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individual G6 currencies against the dollar.?*

3.5 Connection Between First Four Puzzles

The puzzles discussed so far are not entirely independent. For example, we often
refer back to the delayed overshooting puzzle to explain the other puzzles. Nonethe-
less it is not the case that they are simply different versions of a single puzzle. This
is illustrated in Figure 5. In our benchmark case (b = 0.085,0 = 0.0271,~ = 50),
Figure 5 shows the combinations of 1) and p that satisfy various conditions: i) de-
layed overshooting after at least three periods (Proposition 1); ii) 5; > 1 (Proposi-
tion 2);% iii) predictability sign reversal after more than three periods (Proposition
3); iv) Engel condition (38) (Proposition 4).

While there is significant overlap between the shaded areas in Figure 5 where
the various puzzles are satisfied, there are also significant differences. This confirms
that the puzzles are far from identical. With regards to 1), we can see that it must
be large enough for the first three puzzles. But the Engel puzzle is explained only
for an intermediate range of ¥. Thus, when 1 is large, the Engel condition may
not be satisfied, while the other puzzles are. The persistence of interest differential
shocks, p, plays an important role for delayed overshooting and predictability
reversal. In particular, as Figure 5 illustrates, p cannot be too small to have
significant delayed overshooting and predictability reversal. But the other two
puzzles can be satisfied for very small p. In the data, however, we found that
p = 0.9415, so that the four conditions are easily satisfied simultaneously. This is

in particular the case for our benchmark of ¢ = 15.26

24Engel (2016) also reports a regression of the level of the real exchange rate ¢; on rP. The
model implies a coefficient of 42 for the benchmark parameterization, which represents the fact
that a high interest rate currency tends to be strong. Engel (2016) reports a coefficient of 43.7

when using the G6 average exchange rate against the dollar.
Z5Notice that there is predictability (3; > 0) for any value of v, but here we focus on a stronger

level of predictability which is closer to the data (51 > 1).
26While our benchmark risk aversion is relatively high (y = 50), a lower v has a small impact

on Figure 5 and, if anything, increases dark areas.

24



Figure 5: VALUES OF 1 AND p CONSISTENT WITH PUZZLES 1 TO 4

Proposition 1: Delayed Overshooting After 3 Periods Proposition 2: 4, > 1

Proposition 3: Sign Reversal After 3 Periods Proposition 4: Engel Puzzle

Notes: The shaded areas represents combinations of ¥ and p that satisfy the various conditions
in our benchmark case (b = 0.085,0 = 0.0271,v = 50). For Proposition 1 (delayed overshooting),
the condition is ¢ > 3. For Proposition 2 (Fama coefficient), it is 8; > 1. For Proposition 3, the

condition is a sign reversal after at least three periods, k > 3. For Proposition 4 it is equation (38).

3.6 Forward Guidance Exchange Rate Puzzle

The following proposition addresses the forward guidance puzzle posed by Gali
(2020):

Proposition 5. The current real exchange rate q; depends less on expected interest
differentials in the distant future than in the near future. The higher the gradual

portfolio adjustment parameter 1, the less future expected interest differentials af-

fect q;.

Proposition 5 follows directly from equation (13) and Lemma 1. Future ex-
pected interest differentials are discounted at the rate 1/D, where D is larger than
1 and rises with .

Under UIP the real exchange rate is given by (36), where there is no discounting.

Even when ¢ = 0, the discount rate 1/D is less than 1 when we allow for exchange
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rate risk, which leads to a deviation from UIP. Specifically, we have D = 1+ ~yo2b.
But as we shall see, the discount rate 1/D is very close to 1 when ¢ = 0.

To see the role of 1, assume that we are currently at time ¢ and consider
an expected one-period increase in the interest rate differential at ¢ + k. The
only reason the real exchange rate appreciates prior to t + k is an expectation of
subsequent appreciation. The response of ¢, 1 to a given higher ¢, is reduced
as a result of a positive ¢ as portfolios are less sensitive to expected returns. For
the same reason the response of ¢, to a given expected higher ¢; 1 is reduced
as a result of the positive v». When going back all the way to time ¢, the response
of ¢; can be very small when k is large. There are multiple rounds of discounting
as each period the real exchange rate response to an expected higher real exchange
rate next period is reduced by the positive portfolio adjustment parameter .27

The monthly discount rate 1/D under our benchmark parameterization is 0.78.
Future expected interest rates are therefore heavily discounted. This is consistent
with results reported by Gali (2020), which imply that expected interest rates more
than two years into the future have an effect on the current real exchange rate that
is very small compared to the impact of expected interest rates over the next two
years.?® For comparison, when 1) = 0 (holding all other parameters the same), the
discount rate is 1/D = 0.997. In that case the expected interest rate two years
into the future has an effect on the current exchange rate that is only 7 percent

less than the effect of the current interest rate.

4 Lack of Predictability with Long-term Bonds

LSV show that while there is international excess return predictability for short-
term bonds (the forward discount puzzle), this is not the case for long-term bonds.

In order to address this last puzzle, we extend the model by introducing long-term

2TWhile this broadly captures the intuition, the actual response of the real exchange rate is
somewhat complicated by the fact that the real exchange rate not only responds to the expected
real exchange rate next period, but also to the lagged real exchange rate.

Z8Galf (2020) regresses g; on Z?io Etrt[-)m and >7,, Etrﬁi. We cannot do so in our model
as both are proportional to P and therefore collinear. They would no longer be collinear if we
adopted an AR(2) process. More generally, the precise coefficients that we would obtain for a
Gali type regression depend on what we assume about the information about future expected

interest differentials, which is auxiliary to the gradual portfolio adjustment aspect of the model.
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bonds. We discuss the main model assumptions, leaving the solution to the Online
Appendix. We instead focus on the results and intuition.
The analysis extends the OLG model of Section 2 to four assets: one-period

bonds and long-term bonds in both countries. Agents in the Home country maxi-

mize .
21
Cuy+1In (EtCH ) - Z¢ Z (2H4t — ZHir1)" (39)
i=1
For i = 1,2,3,4, zpm,, is the fraction that Home agents invest in respectively

Foreign short-term bonds, Foreign long-term bonds, Home long-term bonds and
Home short-term bonds.

We again assume local currency price stickiness. Optimal consumption implies
again that financial wealth is always 1. Let R, and R 1 be the real return on
Home and Foreign long-term bonds from the perspective of respectively Home and
Foreign agents. The gross real interest rates on one-period bonds are R; and R;.

Consumption of Home agents at ¢t 4+ 1 is equal to the portfolio return:

Craiyr = Ri+zmay <QQt+1 Rje ™t Rt) + ZH2 (%Rfﬁ@m’L‘t — Rt) +
t t

ZH3 ¢ (Rt+1 Rt) + Ti41 (40)

There are now two time-varying costs of investing abroad: g and 74 1+ for invest-
ing in respectively the Foreign short and long-term bonds. There are analogous
costs of investing in Home bonds by Foreign investors. These again lead to finan-
cial shocks that are assumed to be large enough to match the observed variance
matrix of the excess returns of the first three asset over Home short-term bonds.
The aggregate of these costs is reimbursed through 7}, ;.

Long-term bonds in both countries earn real coupons of «, (1 — )k, (1 —§)3x,
and so on. The real returns on Home and Foreign long-term bonds, from the

perspective of respectively Home and Foreign agents, are then

(1— 5)P L+ R
RH—I RSL+ (41>
1— 8Pk
Ry = L0+ s (42)
P

Here PL and PtL"k are the prices of newly issued bonds at time ¢, measured in real

terms from the perspective of Home and Foreign agents.
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After solving for the optimal portfolios and imposing market clearing condi-
tions, we solve for the logs of the asset prices, ¢, pL and ptL ™ as a function of
exogenous interest rate shocks. We are specifically interested in ¢; and the relative
long-term bond price pf — pf * which determine the excess returns of interest.
They depend on shocks to the relative interest rate r” = r; — rf, which again
follows an AR(1) process.

In numerically implementing this model, our assumptions about ¥, v, p and b
are the same as in the benchmark parameterization discussed at the end of Section
2. In addition we set 6 = 0.0071, leading to a Macauley duration of the long-term
bonds of 99.3 months or 8.3 years. This corresponds closely to LSV, who consider
returns on 10-year coupon bonds. These have the same Macauley duration of 8.3
years when the annual interest rate is 4 percent.

There are three excess returns that are linearly related:
L,* * L,* *
Qe+1 — Qe + T4y — TtL = @11 — @+ =71 + [(Ttﬂ —ry) — (7"{11 — 1) (43)

The excess return on the left is the return on Foreign minus Home long-term bonds.
The first excess return on the right is the return on Foreign minus Home short-term
bonds. The second excess return on the right is equal to the difference between
two domestic excess returns, the excess return of long-term over short-term bonds
in the Foreign country relative to the Home country.

Table 1 reports the results when regressing these three monthly excess returns
on the current interest differential r”, comparing the model to the moments re-
ported by LSV based on the data. It shows the predictability numbers for the three
excess returns in (43). Consistent with LSV, there is very little excess return pre-
dictability for long-term bonds in the model. The 0.65 coefficient that LSV find in
the data is actually not statistically significant. The model generates excess return
predictability for short-term bonds (the Fama coefficient) that is exactly the same
as in the LSV data, about 2.0. The difference between the international excess
return predictability of long and short-term bonds is accounted for by the last col-
umn, which again is very similar in the model and the data. Even though a higher
relative interest rate P raises the expected excess return on Foreign short-term
bonds, the excess return of long-term over short-term bonds significantly drops in
the Foreign relative to the Home country, offsetting the positive FX excess return
when investing in Foreign long-term bonds.

The intuition for the decline in the excess return of long-term over short-term
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Table 1: Predictability with Long-term Bonds

Regressions on P

long-term Bond short-term Bond Local Bond
Excess Return Excess Return Return Differential
Gi+1 — Gt + 7“{1’*1 - T’tL Qey1 — Qe i — 1 (Tffi — 1)) — (7"tL+1 )
Benchmark
model 0.35 1.99 -1.64
LSV panel
estimate 0.65 1.98 -1.34

Note : The table shows the slope coefficient of a regression of the dependent variable on the
interest differential . The benchmark model is described in the text and the LSV panel
estimates are from Lustig, Stathopoulos and Verdelhan (2019), Table 1.

bonds in the Foreign relative to the Home country is as follows. The higher Foreign
interest rates causes especially Foreign investors to reallocate their portfolio from
Foreign long-term bonds to Foreign short-term bonds (the two assets are closer
substitutes for Foreign investors). This lowers the price of Foreign long-term bonds.
However, the process of reallocating from Foreign long-term bonds to Foreign short-
term bonds continues over time as a result of gradual portfolio adjustment, leading
to a continued decline in the relative price of Foreign bonds. This implies a negative
excess return of long-term bonds over short-term bonds in the Foreign country.
Even though the Foreign currency is appreciating, this is approximately offset by
the drop in the relative price of Foreign bonds over time. The net result is that
the excess return of Foreign over Home long-term bonds is not much correlated

with the interest differential.

5 Extension with Infinitely-Lived Agents

This section extends the two-period OLG structure in Section 2 to a framework
where agents have infinite lives. A major implication is that portfolio demand
depends on expected excess returns further into the future instead of myopic port-
folio demand that only depends on the expected excess return over the next period.
The real exchange rate still follows an AR(2) process. Quantitatively, however, the

model with infinite lives can explain the puzzles considered in Section 3 only if we
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limit the information set of agents when forming expectations of future excess
returns.

Assume that agents have infinite lives and maximize

011{? - C}LI? 1
ﬁ + E, Z 5 (TJF:F — 0.5Y(2H,4s — ZH,t+s—1)2> (44)
s=0

As we will see, this specification implies that when § = 0 the optimal portfolio
and equilibrium real exchange rate is the same as in the OLG setup considered so
far. We can then compare to infinite lives where 5 > 0.

In the OLG setup, utility depends on consumption in a special way to guaran-
tee a constant level of financial wealth of 1. This is no longer feasible in an infinite
horizon setup. Wealth will generally be time varying, depending on portfolio re-
turns and consumption decisions. This affects the equilibrium real exchange rate
through portfolio demand. But for comparison to the previous results, we will
abstract from this channel and focus on the impact of changes in the interest
differential on portfolio demand through expected excess returns.

Home wealth evolves according to
Wiri1 = Wy — CH,t)Rfﬁ (45)

with the portfolio return as in (3). Financial shocks are not explicitly introduced.

As before, they only affect the variance o2 of the exchange rate when added.
Leaving details to Appendix H, one can write the portfolio Euler equation in

terms of a second-order difference equation in the optimal portfolio that takes the

form??

YOE (2441 — Zi) —w(zae — Z) 0 (2H4-1 — Zn) + Ereryy =0 (46)

where w = 9(1 + ) + 0?2, and the steady state portfolio is

_ 0.5 T Y= 105,p Os,\
ZH = — — —

S (- B S

Here 05, = cov(siy1, mer1) and o5\ = cov(Sii1, Agey1), where Agy = ey — wpy 18

the log consumption-wealth ratio.?’

29Here we normalize the steady state financial wealth Wit —Cay to 1.
30The last two terms of Zy capture respectively an inflation hedge and a hedge against time

variation in expected future portfolio returns, which determine the consumption-wealth ratio.
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Solving the second-order difference equation (46), we have

zay — Zu = (21 — Zm) + % Z(ﬁﬁ)s_lEteTtJrs (47)
s=1
where
W — \Jw? — 4p)?

T
The optimal portfolio (47) can be compared to the portfolio (7) in the myopic
case. In both cases the optimal portfolio depends on the portfolio from the previous
period and expected excess returns. But there are now two differences. First, while
in the myopic case the optimal portfolio only depends on the expected excess return
over the next period, it now depends on the expected present discounted value of

31 This happens as agents wish

all future excess returns, with discount rate 7.
to smooth their portfolio changes in response to these expected excess returns.
Second, when 8 > 0 the coefficient 1 on the lagged portfolio is smaller than in the
myopic case. Agents now wish to smooth their current portfolio relative to both
past and future portfolios, leading them to give less weight to the past portfolio.

It is interesting to compare (47) with the optimal portfolio in the framework
considered by Bacchetta, van Wincoop, and Young (2020). Instead of a cost of
changing portfolio shares, they adopt a Calvo-type friction where agents make
a new portfolio decision each period with probability p. They show that the
aggregate portfolio can be approximated as in (47), where n = 1 — p and the
discount rate is S(1 — p). The latter corresponds to (47) when n =1 —p.

An analogous solution applies to the Foreign portfolio, so that the average
portfolio share becomes

224 =05+ U(Zzél —0.5) + Z(ﬁn)s_lEtertJrs (48)
s=1

ESES

When solving for the equilibrium real exchange rate it is easier to go back to the

first-order difference equation (46), which for the average portfolio share is

YBE S, — wit + 3t + Eeryy =0 (49)

31The optimal portfolio depends on expected excess returns beyond next period only if both
B >0 and ¢ > 0. When ¢ — 0, then n — 0, so that the optimal portfolio only depends on the

expected excess return over the next period.
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where 2 = 2 — 0.5.

Define the real Home and Foreign financial wealth at time ¢ as Ag; = Wy, —
Cuy and Apy = Wgy — Cpy. In terms of Home purchasing power, the latter is
QiAp,. If we again assume a real Foreign bond supply of 1, the Foreign bond

market equilibrium condition is
Apizae + QiArizry = Q4 (50)
If the steady state real wealth of both countries is also 1, we can linearize this as
2 =bg — 0.5 (gl + Zrar,) (51)

As discussed, for comparison to the myopic case we will ignore the second term,
which captures the effect of time-varying wealth on portfolio demand.
Substituting 2! = bg, into (49), we again get a second-order difference equation

in the real exchange rate:

1B — Cqr + b1 + TtD =0 (52)

where p = 1+ ¢bf and ( = 1 4+ wb. When § = 0, we have 4y = 1 and { = 6, so
that (52) corresponds exactly to (12) in the myopic case. The general solution is

analogous to before (see (13)), with

C— /(= 4bu

o =
24

p_ ot VG — Wbu
21

While the solution takes the same form as in the myopic case, the coefficients
a and D will be different when § > 0. The implication for the first four puzzles is
illustrated in Table 2, which reports four coefficients. The first (Fama) is the Fama
coefficient 3;. The second (Reverse) is the number of months until predictability
reversal, so the value of £ where (5 turns from positive to negative. The third
(Overshoot) is the number of months after the interest rate shock that the real
exchange rate reaches its highest level. The fourth (Engel) is the Engel coefficient
> re i Bk. With the exception of 3, the table assumes the same parameters as in
the benchmark parameterization.

The first column reports the benchmark results discussed in Section 3, where
B = 0. The next column changes [ to 0.9966, implying an annual discount rate of

0.96. The remaining two columns will be discussed below.
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In order to understand the impact of long horizons, it is useful to go back to the
impulse response of the real exchange rate under the benchmark parameterization
in Figure 1A. The Foreign currency appreciates at the time of the increase in r”,
then continues to appreciate for an additional 34 months, after which it depreciates
gradually back to its starting point. If instead g = 0.9966, agents have an effective
horizon of 20 months.3? Anticipating the overshooting, followed by depreciation
of the Foreign currency, investors start selling the Foreign currency much sooner.
The exchange rate will then peak much sooner.

Table 2 shows that with § = 0.9966 the exchange reaches its maximum after
3.9 months, versus 34.1 months in the myopic case. While we can still account for
the first three puzzles, the quantitative magnitudes change due to the more limited
delayed overshooting. The Fama coefficient drops from 3.26 to 1.08. Predictability
reversal now happens after 7.9 months instead of 29.3 months. We can no longer

account for the Engel puzzle. The Engel coefficient turns slightly positive.

Table 2: Moments with Long Horizons

Benchmark RW Carry
=0 £ =0.9966 [ =0.9966 [ = 0.9966
Fama 3.26 1.08 4.44 4.18
Reverse 29.3 7.9 12.2 12.4
Overshoot 34.1 3.9 18.1 18.1
Engel -24.9 1.9 -52.0 -46.9

Notes: The benchmark parameterization ¢y = 15, v = 50, p = 0.9415, ¢ = 0.0271, b = 0.085 is
assumed for all columns. Fama is the coefficient ;. Reverse is k when [ changes from positive
to negative. Overshoot is the months after an interest rate shock that ¢; reaches its maximum.
Engel is equal to Zzozl Br- The last two columns assume limited information when computing the
expectation of future excess returns. RW assumes random walk expectations for the exchange rate,

while Carry conditions expectations of all future excess returns on the current 2.

The deterioration of the results with long horizons is not due to the horizon
itself, but rather the strong rationality in forming expectations. The agents are
aware not just of the current interest rate differential, but of the timing of all shocks
that gave rise to it. Expected excess returns then depend on both the current and

all past interest differentials. This does not correspond to the observed behavior of

32This is computed as >_.(8n)%/>,(Bn)" = 1/(1 — Bn).
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FX market participants, where for example carry trade is just based on the current
interest rate differential. In columns 3 and 4 of Table 2, we assume that exchange
rate forecasts are based on limited information, while keeping f = 0.9966. In
column 3 we assume random walk (RW) forecasts. This implies that the one-month
ahead expected excess return is simply the interest differential r”. In column 4
we consider a strategy similar to carry trade (Carry), where the information set is
limited to the current interest differential and expectations are formed rationally
conditional on this information set.
Under RW expectations, (48) implies that

A~ A~ /r/ = S
F=nat + v > (Bn) B, (53)
s=0

Using the AR process for the interest differential and market equilibrium 2/ = bg;,
the real exchange rate is
n 1 D
Gt =NGt—1 + T
b1 —ppn "
When only the current interest differential 7 is used to form expectations, the
second term in the portfolio expression (48) that depends on the present discounted
value of all expected future excess returns can be written as Ar”. In that case,

using market equilibrium, the exchange rate becomes

A
Gt = NGr—1 + grtD

To make sure that expectations are rational, we compute all excess return pre-
dictability coefficients 5 and find A such that A = (n/¢) >0, (8n)*15,.%

Table 2 shows that with a long horizon, we can account for all of the first four
puzzles with either RW expectations or expectations conditioned on the current
interest differential.®* The Engel coefficient is again significantly negative. Com-

pared to the second column, there is significantly longer delayed overshooting, a

#Specifically, we find b/A = p(n — p) — p(m —1)/(m —n) + (m — p)(L—n)/[(m —n) (1 —np)],

where 1 = 1/(Bn), p = Y.
34Closely related, in a framework where agents make new portfolio decisions once in two years,

Bacchetta and van Wincoop (2010) find that introducing limited information helps in accounting
for the forward discount puzzle. They discuss various rationalizations for the use of such limited

information. See also Bacchetta and van Wincoop (2007).
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higher Fama coefficient and about one year till predictability reversal. We can
also account for the Gali puzzle. This is easiest to see under RW expectations.
The rate fn at which future expected interest differentials are discounted in the
portfolio expression (53) carries over to the real exchange rate. This discount rate
is equal to 0.95. This means that an interest differential one year from now gets

about half the weight as the interest differential today.

6 Conclusion

We have explored the implications of delayed portfolio adjustment for exchange
rate dynamics. We have shown that when adjustment is sufficiently gradual it
can solve the forward premium puzzle, as suggested by Froot and Thaler (1990).
Moreover, it can explain five other puzzles related to the relationship between
exchange rates and interest rates. Some of these puzzles are related, though far
from identical, while others are quite separate (the Gali and LSV puzzles).

Most of the paper has assumed that investors are short lived, only caring about
excess returns over the next period. We have shown that we can still account for
the puzzles when agents have infinite lives, although that requires imposing an
additional friction in terms of limited information processing. Assuming random
walk exchange rate expectations, or expectations that are only conditioned on the
current interest differential, is consistent with observed practice (e.g. the carry
trade) even by sophisticated traders.

One limitation of our analysis is the absence of direct evidence on the extent
of portfolio frictions in the foreign exchange market. It is therefore hard to judge
whether the assumed parameters are empirically plausible. This will be an im-
portant area for additional research. In contrast to other financial markets, the
complexity of the FX market is that it is connected with global trade in financial
assets of any type. These trades involve both investors with significant inertia and
much more active traders.

While our analysis has focused on short-term excess returns, another interesting
direction for future research is to consider returns over longer horizons. This would
allow us to study longer term relationships (Chinn and Meredith, 2004), as well
as the link between the yield curve and exchange rates. Jointly considering equity

prices will be of interest as well.
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Appendix

A Data Description

To calibrate the model, we use monthly data for G7 countries over the interval
December 1992 to December 2017 (the interval for which all data is available
for all countries). Nominal exchange rates are end-of-period from FRED. Prices
come from OECD CPI series. Nominal interest rates are end-of-period one-month
Eurorates from Datastream. Long-term bond returns come from Benchmark 10Y
Datastream Government Total Return Index. The monthly return is computed as
In(TRI}/TRI}_,) where TRI} is the total return index for country 4.

To compute real returns, we compute monthly inflation expectations using a
regression of monthly inflation rate on lagged annual inflation. We compute short-
term and long-term real return differentials and log real exchange rates for the six
countries with respect to the US. We compute the moments of interest for each

country pair and take the simple average of these moments.

B Proof of Lemma 1

It is immediate from the definitions of @ and D that they are respectively equal
to 0 and 1 + vo?b when 1 = 0. To show that they both monotonically rise with
1, we take their derivatives:

O 0.5b 3
5 = T (\/9 —4¢b—(9—2)) (B.1)

oD 0.5b

o — b
It is easy to see that \/m is larger than both # — 2 and 2 — 6. This is
automatic when these are negative. When they are positive, it follows because
62 — 4b > (6 —2)2. The latter can be written as —t¢b > —6 + 1, which holds when
substituting 0 = 1 + b + vyo2b.

Next consider the limit of ¢p — co. We can write

1— /122
lim a = 0.5 lim ————— (B.3)

PY—00 P—00 1/9

( 02 — 40b + (0 — 2)) (B.2)
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Since both the numerator and denominator approach 0 when ) — oo, we can use

L'Hopital's rule:

. - 0.5(1/6%)(1 = )70 (—4b + 8¢b°/6)
lim o = —0.5 lim

Jim Jim e ~1 (B.4)

It is immediate that D — oo as § — oo and D/6 — 1 when 1) — oo.

C Excess Return Predictability Coefficients

We will now derive the excess return predictability coefficients

cov(ersp, rP)

= C.1
O var(rpP) (C.1)
From ¢; = aqi_1 + ﬁrf, we have
1
G = D, (rf +ar? +a’rP,+..) (C.2)
Therefore
€Ttk = Gtk — Qek—1 T+ 7}3;6,1 = (C.3)
1
D—_prgk. + D—_(Of - 1) (Tt'ikfl + arﬁk72 + 0627’3»]?72 + ) + Tt'ikfl
Then
1 _
cov(Guak — Quik—1 + THp_1,77) = D—_pkvar(rtD) + p*tvar(rP) +
! (= Dwar(rP) [ p" ' +ap 2 + ..+ %p+ o (C.4)
D, f T .
It follows that
_ b ke
Pr=p5_ P +p7 T+
! (=) (" Fap 2+ . 4+ %+ o (C.5)
D, —— .

Consider the last term, but not including the ratio at the end of the large bracketed

term. We can rewrite this as

g;_lpak—l ((g)k_l bt (g)) (C.6)



When «a # p, we can write it as

a—1 (8= (&) e

which can be written as

a—1 B a—1 1
P k—1 pk (CS)

D—pa—pa D—pa—p

Adding to this the remaining terms of (C.5), we obtain the expression (31) for f
in the text when a # p. When a = p, (C.6) is equal to

a—1
D—p

(k — 1)t (C.9)
Adding to this the remaining terms of (C.5), we obtain the expression (31) for f
when a = p.

D Proof of Proposition 1

From q; = aq;_; + 1P /(D — p) we can write ¢; as a function of current and past

real interest rate shocks:

1
q: = D—_p ; Vi€i—i (D].)
where - -
Y TN £ p
Vv, = a—=p (DQ)

(i +1)p' ifa=p
First assume o # p. If the interest rate shock starts at time ¢ = 0, and we
normalize the shock to D — p > 0 without loss of generality, it implies that in
response to this shock
(1—p)p' — (1 —a)a

Gt —qt—1 = Vg — Vg1 = (D.3)
a—p

This implies that ¢ — ¢ = a + p — 1. More generally, ¢; < ¢;—1 when

~ In(1—p)—in(l—a)
T e = inGy)

(D.4)
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while ¢; > ;1 when t < t. Below we show that 0t/0a > 0. Since t = 1 when
a =1—p, it follows that ¢ < 1 when o + p < 1. The condition (D.4) is therefore
satisfied for all t > 1, so that ¢; < ¢, for all £ > 1. This proves the first part of
Proposition 1. When o + p > 1, 9t/da > 0 implies that ¢ > 1. Therefore the real
exchange rate continues to appreciate for at least one additional period after the
shock (t = 1), and will start to depreciate once ¢t > ¢t > 1. Finally, when a = p,
we have ¢; — q;—1 = p~(p — (1 — p)t) and the same results as those above apply
with ¢ = p/(1 — p). In this case a + p < 1 corresponds to p < 0.5, where ¢ < 1,
and a + p > 1 implies p > 0.5, so that ¢ > 1.
It remains to show that 0t/0a > 0 when a # p. We have

ot _ 1 a(lna—Inp)+ (1 —a)(In(l — a) —In(1 — p))
da ol —a) [Ina/p)]?

(D.5)

The sign is determined by the numerator in the large fraction. Note that it is
positive for & = 0 and a = 1. The derivative of the numerator with respect to «
is In(a/p) —In(1 —a) /(1 — p), which is positive when a > p, zero when o = p and
negative when o < p. The numerator of the large expression in (D.5) is therefore

smallest when a = p, where it is zero. It is therefore positive for all a # p.

E Proof of Proposition 2

We have

1 1—a 11
— M4d=—— (D= _ D—aDp—1 E.1
=it D—p( l—ap) D p1_ap D7 oPr=1ta) (1

Using that aD = ¢¥b and o + D = 6, we have

1 1 1 1

br=5— (0 —1—ppb) = 5—

- 1- ? E.2
D—pl—ap DT ap (=AW +10°)b>0 (E2)

Next consider the second part of Proposition 2. When 1 = 0, we have o = 0,
0 =14 ~o%b and D = 6. The second part of Proposition 2 then holds when

1 2 1 2
— 1— S — E.
D_pl_ap(vaJr( p)w)>1+702b_p70 (E.3)
This implies
(D = p)(1 = ap)yo® < (yo® + (1 = p))(1 +~0%b — p) (E4)
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Collecting terms multiplying vo? and using Do = b, we have
(D —pbp + ap® =1 =0’ — (1 = p)yb)yo® < (1 — p)* (E.5)
Using D =0 — a = 1 + ¢b + v0%b — «, this becomes
—a(l = p*)ye? < (1-p)* (E.6)

which clearly holds.

F Proof of Proposition 3

It first useful to characterize the signs of \; and Ay. The value of ¥ where A\; =0
is ¢ defined in the text. Moreover, the value of 1) where a = p, is ¥+ p/b. We can

write the following Lemma:
Lemma 2. There are three regions that determine the sign of A1 and Ay:
00<¢<QZS A >0 and Xy >0
o <Y <th+p/b: A\ <0 and\y >0
o ) >1Y+p/b: A1 >0 and Xy <0
When v =0, Ay > 0 and Ay = 0. Whenwzlﬁ, A1 =0 and Ay > 0.

Proof. First consider \;. Since D — p > 0, the sign is determined by

a—1

a—p

D—p (F.1)

1 is defined such that this term is equal to 0. To see this, setting (F.1) equal to

zero and substituting the expressions (14) and (15) for a and D, we have

0+ 02 —4b 60— /02— db—2 (F2)
2 p9—~/92—4¢ —2p '

Cross multiplying delivers
Wb = pd —p (F.3)
Substituting 8 = 1 4 ¥b + vo2b gives ¢ = (p/(1 — p))yo? = .
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Now go back to (F.1). It is immediate that this term is positive when a > p, so
that A\; > 0. This happens when ¢ > 1)+ p/b. So we need to consider 1) < 1+ p/b,
so that @ < p. Consider D and p(a — 1)/(a — p) as functions of ¢. It follows
from Lemma 1 that both rise monotonically with . At ¢ = 0, so that a = 0,
D > pla—1)/(a — p). But p(a — 1)/(ax — p) rises to infinity as « approaches p
from below, which happens when 1 approaches v+ p/b from below. Therefore the
schedule for p(a—1)/(a— p) must cross that for D between ¢ = 0 and ) = ¢+ p/b.
This happens at 1) = 7). It follows that A; > 0 when ¥ < ¢, A\; = 0 when ¢ = 1)
and A\; < 0 when ¢ <1 <)+ p/b.

Next consider Ay. It is immediate from (33) that Ay < 0 when « > p, which
happens when 1 > 1 + p/b. So consider ¢ < ¢ + p/b, so that a < p. (33) then
implies that Ay > 0 when 1/(1 — ap) < p/(p — ). Cross multiplying, this gives
a > ap?. This holds as long as @ > 0 or ¢ > 0. When ¢y = 0, « = 0 and
Ay = 0. O

The first part of Proposition 3 follows immediately from Lemma 2. When
¥ = 0, we have S, = A\;p*~1, which is positive (A\; > 0) and monotonically declines
to zero as k rises. When 0 < ¢ < v, Lemma 2 says that both \; and ), are
positive. Since 0 < a < 1, it follows that £, = A\ p* ! 4+ X\a*~! is positive and
monotonically declines to zero with an increase in k. Finally, when ¢ = 1), Lemma
2 implies that £, = Xa®!, with Ay > 0 and 0 < a < 1. It again follows that 3,
is positive and declines monotonically to zero as k rises.

Next consider the second part of Proposition 3, where 1 > 1. It is immediate
from (31) that limy_.o Bx = 0. When ¢ # 9 + p/b, so that a # p, we can write

Br p\EL
P A1 <a> + A2 (F.4)
_pkfl - )\2 ; + )\1 (F5)

The sign of B corresponds to the sign of either of the two right hand side expres-
sions. Assume first that 1 < ¢ < ¥ + p/b, so that a < p, Ay < 0 and Ay > 0
(Lemma 2). Then (F.4) implies that 8), > 0 when k < k; and 3, < 0 when k > k;
with
B4 In(—=X2/ A1)
in(p/a)

We know from Proposition 2 that £; = A1 + Ay > 0, so that Ay > —\;, which

(F.6)
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implies that k; > 1. The k in Proposition 3 is the first whole number larger than
k.

A similar reasoning applies to the case where ¢ > 1) + p/b, so that a > p,
A1 > 0 and Ay < 0 (Lemma 2). Then (F.5) implies that 8, > 0 when k < ky and

B < 0 when k > ky with
7 ln(—)q/)\z)
= )

From Proposition 2, \; > —\,, so that ky > 1. Again the k in Proposition 3 is the

(F.7)

first whole number larger than k,.
Finally consider the special case of ¢ = ¥ + p/b, so that a = p. In that case
(31) implies that 8, > 0 when k < k3 and 3, < 0 when k > ks with

> 1 (F.8)

Again the k in Proposition 3 is the first whole number larger than k.

G Proof of Proposition 4

The Engel condition is Y .-, B < 0. We will focus here on a # p, which is

sufficient as the [; are continuous at a = p. Then

> 1 1 1 1
;/Bk M PTG T T, D) (G1)

The Engel condition can therefore be written as (D — p)(1 — ap) < 1 — p. Using

that Da = ¢b and D = 0 — «, we can also write it as

vb ¢
a>1+p+1—p2 (G.2)

where ¢ = y02b. Using 6 = 1 + b+ ¢ and the definition of «, this becomes

(L+p)p 1-p
T, (G.3)

VI + b+ ¢)2 — b < 1 —

We can, for convenience, refer to the left and right hand sides of (G.3) as f(v)
and g(v). f(v) is a convex function, which is always positive and is symmetric
around the axis ©» = (1 — ¢)/b, where it reaches a minimum. ¢(¢) is a line with

a negative slope. Moreover f(0) > ¢(0). These properties imply that there are
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only two possibilities. Either f(1)) remains above g(1) for all ¢» and therefore
the Engel condition is never satisfied, or f(1) crosses ¢g(1) twice and the Engel
condition is satisfied for an intermediate range of 1 that we will refer to as the
interval (¥ ¢F), with the boundaries of the interval equal to the solutions to
f@) =g(¥).

To consider the solutions of f(¢) = g(1), we square both sides. We need to
be careful doing so. If f2(¢)) = ¢*(x) has two solutions, it is either the case that
f(@) = g(v) for both solutions or f(¢) = —g(¢) for both solutions. We know that

f

(1) is convex with an axis of symmetry ¢» = (1—¢)/b. If it crosses the symmetric
f(¥) twice, there will be two solutions that average to less that (1 — ¢)/b since
(¥

g(1) is a negatively sloping line.
We can write f2(¢) = ¢*(¢) as
AY* + By +C =0 (G.4)
where
A= pb? (G.5)
B=bp(¢—1-p) (G.6)
- _¢p)2 (1% — p%9) (G.7)

In order for the Engel condition to be satisfied over some intermediate range
(YE, L) for ¢, two conditions need to hold. First, as discussed above, it must be
the case that the average of these solutions is less than (1 — ¢)/b, which implies
¢ < 1 — p. Second, it must the case that two solutions to f?(v)) = ¢*(v) exist,
which requires B2 — 4AC > 0, which can be written as

pp? =2(2 = p)(1 = p)p + p(1 = p)* >0 (G-8)
This is a quadratic that is positive when ¢ = 0, then turns negative and then
positive again. When ¢ = 1 — p, the quadratic is negative, so that both ¢ <1 —p
and (G.8) will be satisfied when ¢ is between zero and the smaller of the two
solutions to (G.8) as an equality. The latter is equal to

b=t (1 yT) (G.9)

p

To summarize, the Engel condition is satisfied if and only if ¢ < ¢ and ¥ < ¢ <
¥EF), where ¥F and ¥ are the solutions to the quadratic (G.4).
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H Infinite Lives

To derive the portfolio Euler equation in the infinite lives case, assume that all the
additional wealth at t + 1 due to a change in the portfolio share at ¢ is consumed.
This is fine since consumption is optimally chosen intertemporally. The portfolio

Euler equation is then

EChyi(Why — Chy) (errramsetiimT oMl _ gl )
—(2ms — 2m4-1) + BUE(2mp41 — 2Hy) = 0 (H.1)

Define A+ as the log consumption-wealth ratio, where financial wealth is Wy, —

Cr . Then the first-order condition becomes
(WHt _ CHt)li’yEt (e*’y)\H,t+1*’}’?“f_’~_b1{+€?“t+1*T*ﬂt+1 _ e*’Y>\H,t+1*’W‘f_’f11+it*7rt+1>
—(2mt — 2H4-1) + BOE(2m041 — 2m) = 0 (H.2)

Using the linear approximation rfjﬁ = zp(ery1 — 7) + iy — mpq for the portfolio

return, the portfolio Euler equation becomes

(WHt _ CHt)li’yEt (e*VAH,t+1+(1*VZH,t)(67“t+1*T)+(1*’Y)(itfﬂt+1) _ e*V>\H,t+1*VZH,t(ertH*TH,t)Jr(l*W)(it*ﬂtJrl))
—(2ms — 2H4-1) + BUE(2m041 — 2H) = 0 (H.3)

Assuming that steady state financial wealth Wy, — Cp, is 1, computing ex-
pectations of the exponentials using log normality, and approximating e* = 1 + x,

we can approximate the portfolio Euler equation as

Ereriyy — (2t — 5H)<72 — (2t — 2i—1) + PUE(zgi41 — zu:) =0 (H.A4)

where 05 )
By=— - — 4 L Tep Ted (H.5)
v y0* oy 0?0

with 0 = var(eryy1) = var(sit1), 0sp = cov(Sp41, 1) and og \ = cov(Sp11, A g41)-
We can write this in the form of the following first difference equation in 2y ; =
ZHt — EHZ

VBB Z 41 — WEHs + Vep—1 + Brery =0 (H.6)

where w = (1 + ) + yo?. This corresponds to (46) in the text.
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