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Abstract

We introduce a portfolio friction in a two-country DSGE model where investors

face a constant probability to make new portfolio decisions. The friction leads to

a more gradual portfolio adjustment to shocks and a weaker portfolio response to

changes in expected excess returns. We apply the model to monthly data for the

US and rest of the world for equity portfolios. We show that the model is consistent

with a broad set of evidence related to portfolios, equity prices and excess returns

for an intermediate level of the friction. The evidence includes portfolio inertia,

limited sensitivity to expected excess returns, a significant impact of financial

shocks, excess return predictability, and asset price momentum and reversal.

JEL classification: F30, F41, G11, G12

Keywords: portfolio frictions, infrequent portfolio decisions, international port-

folio allocation, excess return predictability, financial shocks.



1 Introduction

In the last decade, DSGE open economy models have increasingly incorporated

portfolio choice.1 However, the implications of these largely frictionless models

contrast sharply with the evidence on asset prices, excess returns and portfolios.

In this paper we introduce a financial friction whereby investors make infrequent

portfolio decisions. Analogous to Calvo price setting, investors make new portfolio

decisions each period with a probability p. We analyze the implications for optimal

portfolio choice and use data on equity prices, excess returns and portfolios to show

that this friction allows us to more closely fit the data.

Frictionless portfolio choice models imply that investors respond only to ex-

pected excess returns in the immediate future, to which portfolios are extremely

sensitive. Moreover, past portfolio choice has no impact on current portfolio choice.

This is inconsistent with micro evidence on the portfolio behavior of households

and mutual funds. In addition it has implications for asset prices and excess returns

that are inconsistent with the data.

With regard to households portfolio choice, the Investment Company Institute

reports that 60 percent make no change to their stock or mutual fund portfolio

over the course of a year.2 This is consistent with a substantial literature that has

documented portfolio inertia by households.3 Giglio et al. (2021), using a survey

of US based Vanguard investors, document a response of equity portfolio shares

to expected returns that is too weak to make sense in the context of frictionless

models. They further provide evidence that changes in expected returns have

limited explanatory power for when investors trade, but help predict the direction

and the magnitude of trading conditional on its occurrence. They suggest that

1Examples include Benhima and Cordonier (2020), Camanho et al. (2020), Davis and van

Wincoop (2018), Devereux and Sutherland (2007, 2010), Didier and Lowenkron (2012), Dou and

Verdelhan (2015), Evans and Hnatkovska (2012, 2014), Gabaix and Maggiori (2015), Hau and

Rey (2006), Hnatkovska (2010), Koijen and Yogo (2020), and Tille and van Wincoop (2010a,b,

2014).
2In the year 2001, 60 percent made no change (see Equity Ownership of America, 2002). In

2007, 57 percent made no change (see Equity and Bond Ownership in America, 2008).
3See for example Ameriks and Zeldes (2004), Bilias et al. (2010), Brunnermeier and Nagel

(2008) and Mitchell et al. (2006). Even stronger inertia applies to retirement portfolios. The

Investment Company Institute (2021) reports that for over 30 million employer-based defined

contribution plans, 90 percent of investors made no changes during a given year. Mitchell et al.

(2006) reports similar evidence.
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this can be captured by introducing infrequent random trading à la Calvo, which

we do in this paper.

Bacchetta et al. (2021), provide evidence on the importance of portfolio fric-

tions based on the international portfolio allocation of US equity mutual funds.

They report strong evidence of a gradual portfolio response and a weak response to

changes in expected returns. Camanho et al. (2020) also use data for international

equity mutual funds, providing evidence of infrequent portfolio rebalancing.

Frictionless portfolio choice models have several unrealistic implications for

asset prices and excess returns. The first is that asset prices are very little affected

by financial shocks, which can be thought of as latent asset demand shocks or

exogenous portfolio shifts.4 Since portfolios are quite sensitive to expected excess

returns, very small asset price changes are sufficient to clear markets in response

to such financial shocks.5 This contrasts with evidence of large price impact of

financial shocks. Gabaix and Koijen (2021), using granual IV, show that a one

percent increase in US equity demand raises the equity price by five percent. They

argue that this is about a factor 100 times larger than in frictionless models. This

large price impact implies that financial shocks are the dominant driver of asset

prices, as illustrated by Gabaix and Koijen (2021) as well. This is also consistent

with Koijen and Yogo (2019), who provide evidence that latent asset demand

shocks are the main driver of equity prices. Similarly, Itskhoki and Muhkin (2021)

show that exchange rates are largely driven by financial shocks, which accounts

for the disconnect from macro fundamentals. Gabaix and Maggiori (2015) also

emphasize the importance of financial shocks for exchange rates, for which they

cite a variety of evidence.

Frictionless models also have unrealistic implications for expected excess re-

turns. The extreme sensitivity of portfolios to expected excess returns implies

that in equilibrium expected excess returns are very small. Excess returns are

therefore hard to predict, in contrast with lots of evidence for both equity and cur-

rency markets. Related, there is widespread evidence in many financial markets

of excess return momentum and reversal. Excess returns are positively autocorre-

4Examples are portfolio shifts due to changes in risk aversion or the risk-bearing capacity of

financial institutions, liquidity trade, noise trade or FX intervention.
5Tille and van Wincoop (2014) show that first-order changes in portfolio shares are associated

with third-order changes in expected returns because expected excess returns are divided by

second order moments (e.g. the variance of the excess return) in optimal portfolios.
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lated at short horizons (momentum) and negatively over longer horizons (reversal).

This is hard to explain in frictionless portfolio choice models.

Another significant feature of equity holdings is limited participation. Chien et

al. (2020) and Zhang (2021) introduce limited stock market participation in a two-

country model and show that this can contribute to explain limited international

risk sharing. However, in contrast to infrequent portfolio adjustment, limited par-

ticipation by itself does not generate the forward and backward-looking portfolio

features that can explain excess return dynamics like momentum and reversal.

We introduce the portfolio friction in a two country model where investors trade

equity from both countries and a risk-free bond. There are both dividend shocks

and financial shocks. The model is solved with a global solution method. But

to develop intuition, we derive an approximate expression of the equity portfolio

share in the Home country that uses techniques related to Campbell and Viceira

(1999). The optimal portfolio depends on the lagged portfolio and the expected

present discounted value of all future excess returns. It is perturbed by additive

exogenous portfolio shocks (financial shocks). There is also a hedge term that

captures risk associated with future returns, but it is numerically not important.

We apply the model to monthly data for the United States versus the rest of

the world (an aggregate of 44 countries). We consider implications for portfolio

behavior, equity prices and international equity return differentials. For different

values of p, we give the model the benefit of the doubt by calibrating the parameters

of the financial shock process to fit some key moments.

We find that the model fits the data best for an intermediate friction of p = 0.1.

For a stronger portfolio friction (lower p), the excess return is too autocorrelated,

there is too much excess return momentum, the expected excess return is too

volatile and the portfolio response to expected excess returns is too weak. But

the model performs worst without the portfolio friction. Portfolios are excessively

sensitive to expected excess returns compared to the data and the price impact

of financial shocks is much weaker than seen in the data. The latter implies that

exogenous financial flows need to be implausibly large to be consistent with various

data moments. Even then the frictionless model is inconsistent with evidence

related to expected excess returns. It also does not feature asset price momentum

and reversal.

The paper fits into a broader literature of portfolio frictions that lead to gradual

portfolio adjustment. In analogy to price setting, there are three ways of model-
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ing gradual portfolio adjustment: investors make new portfolio decisions every T

periods (like Taylor price setting), with a given probability p (like Calvo price set-

ting) or they face a quadratic cost of changing portfolio shares (like Rotemberg

cost of price changes). This is the first paper that adopts the Calvo setup. It also

distinguishes itself by considering a broad set of implications for both portfolios

and asset prices.

The most common assumption in this literature is staggered portfolio decisions

every T periods.6 One drawback is that it leads to bumpy impulse response func-

tions as agents adjusting their portfolios at the time of a shock will predictably

do so again in T periods. A quadratic portfolio adjustment cost has been adopted

by Bacchetta and van Wincoop (2021), Bacchetta et al. (2021), Bacchetta et al.

(2022), Gârleanu and Pedersen (2013) and Vayanos and Woolley (2012). This is

easier to work with, but it is less realistic as it does not reflect the fact that in-

vestors change their portfolios at different times, as reported for example by Giglio

et al. (2021).7

The remainder of the paper is organized as follows. Section 2 develops the

model. Section 3 discusses an approximation of the optimal portfolio in order to

develop intuition. Section 4 discusses data and calibration and Section 5 presents

the empirical results. Section 6 concludes.

2 Model

There are two countries, Home (H) and Foreign (F ). There is a single good. In

both countries there is a continuum of agents on the interval [0, 1] who have infinite

lives and make decisions about consumption and portfolio allocation. Agents of

6For recent contributions, see Abel et al. (2007), Bacchetta and van Wincoop (2010), Bo-

gousslavsky (2016), Chien et al. (2012), Duffie (2010), Greenwood et al. (2018) and Hendershott

et al. (2013). Earlier papers examine the impact of infrequent portfolio adjustments taking the

process of asset returns as exogenous, e.g. see Lynch (1996) or Gabaix and Laibson (2002).
7The Calvo setup implies heterogeneity in portfolio shares across investors, which is an im-

portant difference from the portfolio adjustment cost approach, but one that we will not explore

here. Another difference relates to the aggregate portfolio expression. While in both cases the

aggregate portfolio depends on the lagged portfolio and a present discounted value of future ex-

pected excess returns, the coefficient on the latter is very different. In the Calvo setup it depends

on long-term risk about future excess returns, while in the adjustment cost setup it is largely

driven by the exogenous adjustment cost parameter.

4



both countries can hold three assets: Home and Foreign equity and a risk-free

bond.

2.1 Infrequent Decision Making

The key aspect of the model is infrequent decision making about consumption and

portfolios. Analogous to Calvo price setting, we assume that agents make new

decisions with a probability p. However, infrequent decision making only affects

portfolio choice: we assume an intertemporal elasticity of substitution of 1, which

implies that optimal consumption is a constant fraction of wealth. Agents therefore

do not need to rethink their consumption choice. For portfolio choice we assume

that the fraction 1 − p of agents that does not make new portfolio decisions will

hold their portfolio shares constant until the time comes that they make a new

portfolio decision.8

2.2 Assets

Agents can invest in Home equity, Foreign equity and a one-period risk-free bond.

The number of equity shares is normalized to 1 in both countries, while bonds are

in zero net supply. The gross interest rate on the bond is denoted Rt. The returns

on Home and Foreign equity from t to t+ 1 are

RH,t+1 =
QH,t+1 +DH,t+1

QH,t

(1)

RF,t+1 =
QF,t+1 +DF,t+1

QF,t

, (2)

where QH,t and QF,t are the prices of Home and Foreign equity shares and DH,t,

DF,t are dividends.

Define the relative and average log dividends as dDt = dH,t − dF,t and dAt =

0.5(dH,t + dF,t). They are assumed to follow an AR process:

dDt = ρdd
D
t−1 + εd,Dt (3)

dAt = (1− ρd)d+ ρdd
A
t−1 + εd,At . (4)

8An alternative, not explored here, is that agents hold the quantity of asset holdings constant.

This is analogous to a buy-and-hold portfolio, in which case there is no rebalancing. In our

specification, even the agents that do not make new portfolio decisions still trade to rebalance

their portfolio. This can for example be achieved by investing in a mutual fund. While in reality

a combination of both is realistic, this would significantly complicate our analysis.
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The shocks to relative and average log dividends are assumed to be uncorrelated.

The standard deviations of the shocks are σdD and σdA .

2.3 Budget Constraints

We focus mostly on describing Home agents. For Foreign agents we simply need

to replace the H with an F . Consider agent i in the Home country who makes a

new portfolio decision at time t. First some notation is in order. Let W i
H,t be the

wealth of the agent at the start of period t and cwiH,t the fraction of wealth that is

consumed. The remainder is then invested in the three assets. A fraction ziHH,t is

invested in Home equity and ziHF,t in Foreign equity. The remainder is invested in

the bond. We also denote z̃HH,t and z̃HF,t as the average portfolio shares of all Home

agents that make new portfolio decisions at time t. In equilibrium ziHH,t = z̃HH,t

and ziHF,t = z̃HF,t for investors making new portfolio decisions at time t. But we

will make this substitution only after deriving the first-order conditions for agent

i. For Foreign agents we denote the fractions allocated to the Home and Foreign

equity as ziFH,t and ziFF,t.

Wealth of agent i making a new consumption and portfolio decision at time t

then evolves according to

W i
H,t+1 = (1− cwiH,t)W i

H,tR
p,H,i
t+1 (5)

where the portfolio return is

Rp,H,i
t+1 = Rt + ziHH,t(e

τH,tRH,t+1 −Rt) + ziHF,t(e
−τH,tRF,t+1 −Rt) +

−z̃HH,t(1− eτH,t)RH,t+1 + z̃HF,t(1− e−τH,t)RF,t+1. (6)

Here τH,t is a tax on the Foreign investment return and subsidy on the Home

investment return, which will be discussed further below. The aggregate of this

tax/subsidy across all Home agents making a portfolio decision at time t is re-

imbursed through the last two terms of (6). This assures that it will only affect

portfolio allocation, not overall wealth accumulation. Analogously, for Foreign

agents τF,t is a tax on the Home return and subsidy on the Foreign return.

Wealth of Home agent i who does not make new consumption/portfolio deci-

sions at time t, and last made new decisions at t− j, evolves according to

W i
H,t+1 = (1− cwiH,t−j)W i

H,tR
p,H,i,t−j
t+1 (7)
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where the portfolio return is

Rp,H,i,t−j
t+1 = Rt + ziHH,t−j(e

τH,t−jRH,t+1 −Rt) + ziHF,t−j(e
−τH,t−jRF,t+1 −Rt) +

−z̃HH,t−j(1− eτH,t−j)RH,t+1 + z̃HF,t−j(1− e−τH,t−j)RF,t+1. (8)

The portfolio return has an extra t − j superscript to denote when consump-

tion/portfolio decisions were last made. The consumption-wealth ratio and port-

folio shares are those chosen at t− j. The tax/subsidy is also at t− j as it is held

constant until a new portfolio decision is made.

After deriving the portfolio Euler equations, we will substitute ziHH,t = z̃HH,t

and ziHF,t = z̃HF,t. The same is done for portfolio shares prior to time t. The

portfolio return of agents who last made a portfolio decision at time t− j is then

Rp,H,t−j
t+1 = Rt + z̃HH,t−j(RH,t+1 −Rt) + z̃HF,t−j(RF,t+1 −Rt) (9)

The tax/subsidy τH,t−j no longer enters.

2.4 Financial Shocks

The tax/subsidy τH,t for Home agents and τF,t for Foreign agents plays two roles.

First, their mean level τ can be set to generate realistic average portfolio home

bias. Second, their changes over time generate exogenous portfolio shifts, which

we will refer to as financial shocks.

Define their relative and average values as τDt = τH,t− τF,t and τAt = 0.5(τH,t +

τF,t). We assume that they follow AR processes:

τDt = ρττ
D
t−1 + ετ,Dt (10)

τAt = (1− ρτ )τ + ρττ
A
t−1 + ετ,AF,t (11)

The relative and average shocks are assumed to be uncorrelated. The standard

deviations of the shocks are στD and στA .

A rise in τDt generates an exogenous portfolio shift from Foreign to Home equity.

A rise in τAt generates an exogenous portfolio shift from foreign to domestic equity

(increased home bias). We refer to these as financial shocks. These exogenous

portfolio shifts, unrelated to endogenous changes in expected returns and risk, can

be introduced in many other ways. In the literature they sometimes are modeled

in the form of noise trade, liquidity trade, hedge trade, time-varying risk-bearing
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capacity or time-varying investment opportunities.9 We do not wish to take a

strong stand on what the exact origin of these portfolio shocks is.

2.5 Bellman Equations

Agents are assumed to have Rince preferences, which for any agent (from Home

or Foreign) we can write as

ln(Vt) = max
ct,zt

{
(1− β) ln(ct) + β ln

([
EtV

1−γ
t+1

] 1
1−γ
)}

, (12)

where ct is consumption and zt the vector of portfolio shares. This implies an

intertemporal elasticity of substitution (IES) of 1 and a rate of risk aversion of γ.

Let V n,i
t be the value function of Home agent i who makes new consump-

tion/portfolio decisions at time t. Similarly, V o,i,t−j
t is the value function of Home

agent i who does not make new decisions at time t and who last made a con-

sumption/portfolio decisions at t− j. Here o stands for “old”. For either of these

agents, there is a probability p that they make a new portfolio decision at t+1 and

a probability 1− p that they do not. We can then write the Bellman equations for

these respective agents as

ln(V n,i
t ) = max

cwiH,t,z
i
HH,t,z

i
HF,t

{
(1− β) ln(cwiH,tW

i
H,t)+

β

1− γ
ln
(
pEt

(
V n,i
t+1

)1−γ
+ (1− p)Et

(
V o,i,t
t+1

)1−γ)}
(13)

ln(V o,i,t−j
t ) = (1− β) ln(cwiH,t−jW

i
H,t) +

β

1− γ
ln
(
pEt

(
V n,i
t+1

)1−γ
+ (1− p)Et

(
V o,i,t−j
t+1

)1−γ)
. (14)

The value functions will be proportional to the wealth of the agent. We will

therefore write

V n,i
t = W i

H,te
fn(St) (15)

V o,i,t−j
t = W i

H,te
fo(St,ziHH,t−j ,z

i
HF,t−j ,z̃HH,t−j ,z̃HF,t−j ,τH,t−j). (16)

9For different ways of modeling the portfolio shocks, see Bacchetta and van Wincoop (2006),

Dow and Gorton (1995), Gabaix and Maggiori (2015), He and Wang (1995), Spiegel and Sub-

rahmanyam (1992) and Wang (1994).
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Here St is a vector of aggregate state variables, which will be defined below. Apart

from the wealth of the agent, the value function of an agent making new consump-

tion/portfolio decisions at time t only depends on the aggregate state St through

the function fn. The value function of an agent who last made a portfolio decision

at t−j also depends, through the function f o, on the portfolio shares at time t−j,
ziHH,t−j and ziHF,t−j.

10 It also depends on z̃HH,t−j, z̃HF,t−j and τH,t−j, as they affect

portfolio returns Rp,i,H,t−j
t+s until new portfolio decisions are made. The functions

fn and f o evaluated at their respective state variables at time t are also denoted

fnH,t and f o,i,t−jH,t for Home agents.

Substituting (15) and (16) into (13) and (14), and using the wealth accumula-

tion equations, we can write the Bellman equations as

fnH,t = max
cwiH,t,z

i
HH,t,z

i
HF,t

{
(1− β)ln(cwiH,t) + β ln(1− cwiH,t) +

β

1− γ
ln

(
Et

(
pe(1−γ)f

n
H,t+1 + (1− p)e(1−γ)f

o,i,t
H,t+1

)(
Rp,H,i
t+1

)1−γ)}
(17)

f o,i,t−jH,t = (1− β)ln(cwiH,t−j) + β ln(1− cwiH,t−j) +

β

1− γ
ln

(
Et

(
pe(1−γ)f

n
H,t+1 + (1− p)e(1−γ)f

o,i,t−j
H,t+1

)(
Rp,H,i,t−j
t+1

)1−γ)
. (18)

When the individual-specific portfolio shares ziHH,t−j and ziHF,t−j are evaluated

at the equilibrium portfolio shares z̃HH,t−j and z̃HF,t−j for agents last making port-

folio decisions at t− j, we omit the i supercript and write

f o,t−jH,t+1 = f o(St+1, z̃HH,t−j, z̃HF,t−1, z̃HH,t−j, z̃HF,t−j, τH,t−j)

It is also useful to define

λtHH,t+1 =
∂f o,i,tH,t+1

∂ziHH,t
(19)

λtHF,t+1 =
∂f o,i,tH,t+1

∂ziHF,t
. (20)

These derivatives are again evaluated by setting the agent i-specific portfolio shares

equal to z̃HH,t and z̃HF,t.

10In principle the lagged consumption wealth decision cwiH,t−j should enter as well, but we

will see that this remains constant over time.
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2.6 Portfolio Euler Equations

Maximizing the right hand side of (17) with respect to cwiH,t, z
i
HH,t and ziHF,t, using

the portfolio return (6), gives three first-order conditions. The first-order condition

with respect to the consumption-wealth ratio simply gives cwiH,t = 1− β. Agents

therefore always consume a fraction 1 − β of their wealth, so that the infrequent

decision making only matters for portfolio choice. Home agent i then invest βW i
H,t

in the three assets.

For the portfolio Euler equations it is useful to define scaled stochastic discount

factors:

mn,t−j
H,t+1 =

[
Rp,H,t−j
t+1

]−γ
e(1−γ)f

n
H,t+1

mo,t−j
H,t+1 =

[
Rp,H,t−j
t+1

]−γ
e(1−γ)f

o,t−j
H,t+1 .

These are scaled stochastic discount factors for an agent who last made portfolio

decisions at t − j, conditional on the agent respectively making a new portfolio

decision at t+ 1 and not making a new portfolio decision at t+ 1. We also define

an unconditional stochastic discount factor as mt−j
H,t+1 = pmn,t−j

H,t+1 + (1−p)mo,t−j
H,t+1.

11

After taking the derivatives of (17) with respect to ziHH,t and ziHF,t, and then

setting these portfolio shares equal to z̃HH,t and z̃HF,t, we obtain the following

portfolio Euler equations

Etm
t
H,t+1(e

τH,tRH,t+1 −Rt) + (1− p)Etmo,t
H,t+1R

p,H,t
t+1 λ

t
HH,t+1 = 0 (21)

Etm
t
H,t+1(e

−τH,tRF,t+1 −Rt) + (1− p)Etmo,t
H,t+1R

p,H,t
t+1 λ

t
HF,t+1 = 0. (22)

The first terms in (21)-(22) are the expected excess returns discounted with the

pricing kernel. When agents make new portfolio decisions each period (p = 1),

equating these first terms to zero gives the portfolio Euler equations. The second

term applies when p < 1, so it specifically relates to infrequent portfolio decisions.

It captures the impact of future expected returns and risk beyond period t + 1,

which affect λtHH,t+1 and λtHF,t+1. Knowing that they may not get an opportunity to

change their portfolio allocation again for some time, agents who make portfolio

decisions at time t need to incorporate beliefs about expected returns and risk

beyond time t+ 1.

11The SDF for Rince preferences is [ct/ct+1][V 1−γ
t+1 /EtV

1−γ
t+1 ]. After substituting the solution

for consumption, wealth accumulation, (15)-(16), and multiplying by βEtR
p,H,t−j
t+1 mt−j

H,t+1, the

scaled discount factors are obtained.
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We can then also write the Bellman equations as

e(1−γ)f
n
H,t/β = αEtm

t
H,t+1R

p,H,t
t+1 (23)

e(1−γ)f
o,t−1
H,t /β = αEtm

t−1
H,t+1R

p,H,t−1
t+1 (24)

where α = (1−β)(1−γ)(1−β)/ββ1−γ. These are for an agent who last made a portfolio

decision at time t and t− 1.

In the first-order conditions λtHH,t+1 and λtHF,t+1 play an important role. Their

values one period earlier, so λt−1HH,t and λt−1HF,t, will be control variables to be solved

as a function of the state at time t. Expressions for them can be obtained by

considering an agent who last made a portfolio decision at time t−1, but does not

make a new portfolio decision at time t. Taking derivatives of (18) for j = 1 with

respect to ziHH,t−1 and ziHF,t−1, and then setting the agent i portfolio shares equal

to z̃HH,t−1 and z̃HF,t−1, we have

EtR
p,H,t−1
t+1

(
mt−1
H,t+1λ

t−1
HH,t − θm

o,t−1
H,t+1λ

t−1
HH,t+1

)
= βEtm

t−1
H,t+1(e

τH,t−1RH,t+1 −Rt) (25)

EtR
p,H,t−1
t+1

(
mt−1
H,t+1λ

t−1
HF,t − θm

o,t−1
H,t+1λ

t−1
HF,t+1

)
= βEtm

t−1
H,t+1(e

−τH,t−1RF,t+1 −Rt) (26)

where θ = β(1−p). While we will not do so, one can use these to write the portfolio

Euler equations (21)-(22) as equating an expected present discounted value of all

future excess returns, multiplied by appropriate stochastic discount factors, equal

to zero.

2.7 Market Clearing Conditions

There are three market clearing conditions: for Home equity, Foreign equity and

bonds. Denote zjk,t =
∫ 1

0
zijk,tdi for j = H,F and k = H,F . Similarly, aggregate

Home and Foreign wealth is WH,t =
∫ 1

0
W i
H,tdi and WF,t =

∫ 1

0
W i
F,tdi. Market

clearing conditions will then be12

zHH,tWH,t + zFH,tWF,t = QH,t/β (27)

zHF,tWH,t + zFF,tWF,t = QF,t/β (28)

(1− zHH,t − zHF,t)WH,t + (1− zFH,t − zFF,t)WF,t = 0. (29)

12This uses that
∫ 1

0
zijk,tW

i
j,tdi = zjk,tWj,t for j = H,F and k = H,F . This abstracts from

a small aggregation issue discussed in Appendix B that portfolio shares and wealth may be

cross-sectionally correlated. This turns out to be numerically unimportant.
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2.8 Control and State Variables

The control and state variables are respectively

cvt =
{
qH,t, qF,t, rt, z̃HH,t, z̃HF,t, z̃FF,t, z̃FH,t, f

n
H,t, f

n
F,t, cvH,t, cvF,t

}′
(30)

svt = {St, sH,t, sF,t}′ (31)

where qH,t, qF,t and rt are the log equity prices and interest rate, and13

cvH,t =
{
f o,t−1H,t , λt−1HH,t, λ

t−1
HF,t

}
cvF,t =

{
f o,t−1F,t , λt−1FH,t, λ

t−1
FF,t

}
St =

{
dH,t, dF,t, τH,t, τF,t, w

D
t , w

D
t−1, z

A
H,t−1, z

D
H,t−1, z

D
F,t−1

}
sH,t = {τH,t−1, z̃HH,t−1, z̃HF,t−1}
sF,t = {τF,t−1, z̃FH,t−1, z̃FF,t−1} .

The last five state variables in St are relative log wealth wDt = ln(WH,t)− ln(WF,t),

wDt−1, z
A
H,t−1 = ωt−1zHH,t−1 + (1 − ωt−1)zFH,t−1, z

D
H,t−1 = zHH,t−1 − zFH,t−1 and

zDF,t−1 = zFF,t−1 − zHF,t−1. Here ωt = WHt/(WHt + WFt) is the relative wealth of

the Home country.

Regarding the evolution of the state variables St, the processes for dDt , dAt , τDt
and τAt are given by (3), (4), (10), and (11). The portfolio share zHH,t evolves

according to

zHH,t = (1− p)zHH,t−1 + pz̃HH,t (32)

with similar equations for zHF,t, zFH,t, and zFF,t. Using (5) and (9), we have14

wDt+1 = wDt + ln (Rt + zHH,t(RH,t+1 −Rt) + zHF,t(RF,t+1 −Rt))−
ln (Rt + zFH,t(RH,t+1 −Rt) + zFF,t(RF,t+1 −Rt)) . (33)

These dynamic equations for portfolio shares and wealth also tell us how the last

three state variables in St evolve.15

13Although the control variables cvH,t and cvF,t are not of separate interest to us, we need to

keep track of them as their values one period later enter the portfolio Euler equations.
14This uses the same approximation that we made for the market clearing conditions, that∫ 1

0
zijk,tW

i
j,tdi = zjk,tWj,t for j = H,F and k = H,F , which is numerically extremely accurate

(Appendix B).
15Relative wealth is stationary in the model. In Appendix F we discuss the logic behind the

stationarity and report the ergodic distribution of relative wealth wDt for a parameterization that

is discussed in Section 4.
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2.9 Definition of Equilibrium and Solution

Appendix A lists the Foreign country portfolio Euler equations, Bellman equations

and first-order difference equations for λt−1FH,t and λt−1FF,t. These are all derived

analogously to those for the Home country.

Definition 1 An equilibrium consists of
{
qH,t, qF,t, rt, z̃HH,t, z̃HF,t, z̃FF,t, z̃FH,t, f

n
H,t, f

n
F,t

}
as functions of St,

{
f o,t−1H,t , λt−1HH,t, λ

t−1
HF,t

}
as functions of St and sH,t, and{

f o,t−1F,t , λt−1FH,t, λ
t−1
FF,t

}
as functions of St and sF,t such that the following are sat-

isfied: (i) The Home portfolio Euler equations (21)-(22), (ii) the Home Bellman

equations (23)-(24), (iii) the Home λ difference equations (25)-(26), (iv) the For-

eign country analogues of (21)-(26) shown in Appendix A, and (v) the market

clearing conditions (27)-(29).

The model is solved with a global solution method. Appendix C discusses the

details. The large number of state and control variables (a total of 15 each) makes

it challenging to obtain a global solution using standard projection methods. There

is a dimensionality problem both when control variables are approximated as step

functions on a rectangular grid of state variables or as polynomial functions that

minimize average equation errors on a large number of points of the state space.

We therefore instead follow the Taylor projection method developed in Levintal

(2018).16 This involves approximating the solution locally at various nodes of the

state space, and then combining these local solutions to form the global solution.

This involves far fewer parameters, although it needs to be repeated at many points

of the state space.

3 Approximate Portfolio Expression

In this section we discuss an approximate portfolio expression in order to develop

intuition about what is driving portfolio allocation in the model.

3.1 Notation

Since our data in the next section applies to equity portfolio shares, we focus on

the equity portfolio. For agents who make new portfolio decisions, the share of the

16Den Haan et al. (2016) develop an analogous method. The method is applied in Fernandez-

Villaverde and Levintal (2018) and Barro et al. (2018) to solve models with rare disasters.
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equity portfolio that is invested in Home equity by respectively Home and Foreign

agents is denoted

z̃eHH,t =
z̃HH,t

z̃HH,t + z̃HF,t

z̃eFH,t =
z̃FH,t

z̃FH,t + z̃FF,t
.

We are particularly interested in the average portfolio share invested in Home eq-

uity, z̃e,At = 0.5(z̃eHH,t + z̃eFH,t). The main effect of infrequent portfolio decisions

relates to the way investors respond to changes in expected excess returns. Ex-

pected excess returns affect the average portfolio share z̃e,At , but not the difference

in portfolio shares, z̃e,Dt = z̃eHH,t− z̃eFH,t, which is a measure of equity home bias.17

Some notation regarding asset returns is in order as well. The excess return of

Home over Foreign equity is denoted ert+1, which is equal to rH,t+1 − rF,t+1. Here

lower case letters denote log returns. We also denote ert+1,t+i = ert+1 + ...+ ert+i

as the cumulative excess return of Home equity over Foreign equity over the next

i periods. Other cumulative returns are denoted analogously.

3.2 Approximated Portfolio

To derive approximate portfolio shares, we follow a methodology similar to Camp-

bell and Viceira (1999), although the portfolio problem is considerably more com-

plicated here. After a significant amount of algebra described in the Online Ap-

pendix,18 we find the following approximate expression for the average Home equity

portfolio share:

z̃e,At = 0.5 +
1

D

∞∑
i=1

θi−1Etert+i +
1

(1− θ)D
τDt + ht (34)

17Moreover, at least up to the time of the Great Recession, there has been a trend decrease in

home bias for reasons that have little to do with gradual portfolio adjustment.
18We start by deriving expressions for z̃HH,t, z̃HF,t, z̃FH,t and z̃FF,t using portfolio Euler

equations, Bellman equations, and λ difference equations. We log-linearize portfolio returns,

though we treat the new time t portfolio shares as unknown parameters that need to be solved

and do not linearize around these variables. Most expectations take the form of Ete
x, where x

includes log asset returns and the Bellman variables. Assuming log normality, these expectations

are approximated as eEx+0.5var(x), where Ex and var(x) are moments that vanish to zero in the

deterministic steady state. We then approximate this as 1 + Ex+ 0.5var(x).
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where

D =
∞∑
i=1

θi−1 [γ ¯vart(ert+i) + 2(γ − 1) ¯covt(ert+i, ert+1,t+i−1)] (35)

Moments with a bar refer to the mean of these moments.

The optimal portfolio depends on three terms. The first is a present discounted

value of expected future excess returns (international equity return differentials).

The second is proportional to τDt , capturing financial shocks. A rise in τDt leads

to an exogenous portfolio shift from Foreign to Home equity. The last term, ht,

is a hedge term. It depends on time-varying expectations of future risk and is

discussed in Appendix D.

3.3 Comparison to Frictionless Portfolio

It is instructive to compare (34) to what it would be when p = 1:

z̃e,At =
Etert+1

γ ¯vart(ert+1)
+

1

γ ¯vart(ert+1)
τDt + ht (36)

We will focus here on the expected excess return term. When p < 1 the average

share invested in Home equity depends on the present discounted value of all

expected future excess returns, as opposed to just the expected excess return over

the next period as in (36). When investors make a new portfolio decision, they have

a longer effective horizon when p < 1 as they do not know when they will make a

new portfolio decision again. The discount rate is θ = β(1− p). A lower value of p

therefore implies a longer effective horizon and a higher weight on expected excess

returns further into the future. There is a close analogy between this optimal

portfolio and the optimal price that a firm sets under Calvo price setting. The

latter assumes that there is a probability p of firms setting a new price each period.

When a firm sets a new price, the expression for the optimal price (e.g. page 45

of Gali, 2008) depends on a weighted average of expected future marginal costs,

with the weight declining at the same rate β(1 − p) as in the optimal portfolio

expression (34).

A lower p implies that investors are less responsive to expected excess returns in

the near future. To see this, consider the portfolio response to a change in Etert+1,

which has a coefficient 1/D. When p = 1, D = γ ¯vart(ert+1), as seen in (36). When

p < 1, the expression for D is more complicated. But to get a sense, ignore the

second part of the term in brackets in (35), which depends on the autocorrelation
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of excess returns. If we also assume that the variance is the same for all future

excess returns, we have D = γvart(ert+1)/(1 − θ). The portfolio response to a

change in Etert+1 is therefore a fraction 1−θ of the portfolio response when p = 1.

The smaller the p, the weaker the response. This is simply because there is more

weight on excess returns further into the future and therefore less weight on the

excess return in the immediate future.

There is a second reason why investors respond less to expected excess returns

when p < 1, which is that only a limited fraction of investors make a new portfolio

decision at any time. Analogous to z̃e,At , we define the overall portfolio share ze,At
as the average of zHH,t/(zHH,t + zHF,t) and zFH,t/(zFH,t + zFF,t). Linearization

implies that it evolves according to

ze,At = (1− p)ze,At−1 + pz̃e,At (37)

For a given response of z̃e,At to changes in expected excess returns, this implies a

weaker and more gradual response of the overall portfolio share ze,At .

The weaker and more gradual portfolio response to expected excess returns

is a key aspect of the model. It implies that financial shocks (associated with

changes in τDt ) have a bigger effect on asset prices as portfolios are less responsive

to expected excess returns and therefore asset prices. As we will see, the gradual

portfolio response also gives rise to momentum and reversal of asset prices that is

commonly seen in financial markets.

3.4 Financial Flows and Price Impact

In Appendix E we show that the global solution for z̃e,At is very close to the approxi-

mation (34) without the hedge term ht. This suggests both that the approximation

(34) is quite accurate and that the hedge term is not very important quantitatively.

Ignoring the hedge term, we can use (34) and (37) to write the following expression

for the portfolio share ze,At allocated to Home equity across all investors from both

countries (in deviation from its mean 0.5):

ze,At = (1− p)ze,At−1 +
p

(1− θ)D

∞∑
i=1

(1− θ)θi−1Etert+i + 0.5ft (38)

where

ft =
2p

(1− θ)D
τDt (39)
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The portfolio depends on the lagged portfolio, the present discounted value of

future expected excess returns and the term 0.5ft that is proportional to τDt . The

coefficients (1 − θ)θi−1 of expected future excess returns sum to 1. A rise in τDt
generates an exogenous portfolio shift that leads to a flow from Foreign to Home

equity. One can write the exogenous portfolio flow from Foreign to Home, as a

fraction of the Home equity market, as ∆zeHH+∆zeFH = 2∆ze,At = ∆ft, abstracting

from general equilibrium changes in expected returns. A one standard deviation

shock to τDt then generates a financial flow of

∆ft =
2p

(1− θ)D
στD (40)

Following the literature, we define the price impact of the financial flow as the

change in the relative price qD at the time of the shock relative to the change in

the flow as a share of the Home market:

M =
∆qDt
∆ft

(41)

For example, M = 2 means that the relative price rises by 2 percent when there

is an exogenous flow towards Home equity equal to 1 percent of the market.

4 Data and Calibration

We calibrate the model to show how infrequent portfolio adjustment brings us

closer to the empirical evidence on portfolios and excess returns. In this section

we describe the data and the calibration for various degrees of the portfolio friction.

In Section 5, we present the quantitative implications for the different parameter

values and compare them to the data.

4.1 Data

We consider monthly data from November 1995 to December 2018 for the US and

the rest of the world (ROW). The latter is an aggregate of 44 countries. We use

data for the excess return ert, the relative equity price qDt , the average portfolio

share ze,At that the two countries invest in US equity, the difference ze,Dt in the

portfolio shares that the US and ROW invest in US equity (a measure of home

bias), and log dividends.
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The excess return is computed as the change in the log of the MSCI US total

return index minus the change in the log of the MSCI ACWI ex US total return

index. The latter is an aggregate of 44 countries (ROW), not including the US.

The relative equity price is computed from the MSCI price index for the US and

ROW. To compute log dividends, we use data on earnings as opposed to dividends

as the latter do not include share repurchases, which have become the preferred

method of shareholder payments.19 We compute earnings using the monthly MSCI

series for the price index divided by the price-earnings ratio, again for the US and

the aggregate of the other 44 countries.

Portfolio data is obtained from US external equity assets and liabilities from

Bertaut and Tryon (2007) and Bertaut and Judson (2014), updated through the

end of 2018, together with US and ROW market capitalization data. The share

invested in US equity by respectively US and ROW investors is computed as

zeHH,t =
zHH,t

zHH,t + zHF,t
=

US market cap− US ext liab
US market cap− US ext liab+ US ext assets

zeFH,t =
zFH,t

zFH,t + zFF,t
=

US ext liab

ROW market cap+ US ext liab− US ext assets

where US ext liab and US ext assets refer to US external equity liabilities and assets.

Average and relative portfolios are ze,At = 0.5(zeHH,t+z
e
FH,t) and ze,Dt = zeHH,t−zeFH,t.

We are mainly interested in ze,At , which depends on expected excess returns. ze,Dt
is a home bias variable that is mainly driven by exogenous changes in τAt .

We also consider several excess return predictability regressions. Our sample

is not long enough to obtain accurate estimates of excess return predictability

with just one country pair. For these regressions we therefore use panel data for

excess returns of US equity relative to that of 73 foreign countries. These excess

returns are regressed on their own lag as well as the relative log dividend yield. We

again use MSCI data to compute excess returns, relative equity prices and relative

dividends (as discussed above).

19The MSCI earnings data is a 12-month trailing average. Companies do not report monthly

dividends. The measure is reasonable if dividends plus repurchases keep up with the 12-month

trailing average of earnings. The correlation between dHt − dFt computed based on relative

earnings and relative dividends is 0.81.
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4.2 Calibration

The numerical solution is very time consuming. We therefore only consider four

different values of p: p = 0.04, 0.1, 0.2 and 1 (the frictionless case). Table 1 shows

the calibration of the remaining parameters for each value of p. These involve the

parameters of the dividend and financial shock processes, as well as γ, β and τ .

We set γ = 10 and β = 0.99668. Risk aversion of 10 is simply adopted from

Bacchetta and van Wincoop (2010), who use their model of infrequent portfolio

adjustment to account for the forward discount puzzle. They provide a variety of

motivations for this choice. A time discount rate of 0.99668 implies a risk-free rate

that is about 4 percent annualized in the risky steady state.

The dividend processes (3)-(4) are calibrated as follows. We set ρd = 0.9767 as

the autocorrelation of dDt . We then compute εd,Dt and εd,At from (3)-(4), from which

we obtain their standard deviations σdD and σdA . We set the mean log dividend

equal to d = (1− β)/β, which implies an annualized dividend yield of 4 percent in

steady state.

The financial shock processes are (10)-(11). As with dividends, there are four

financial shock parameters: τ , ρτ , στD and στA . Since financial shocks are un-

observable, we set these four parameters to match four moments. This gives a

different set of parameters for each value of p. While the four parameters are set

jointly to target the four moments, we have a specific moment in mind for each

parameter.

τ is set such that steady state home bias corresponds to the 0.74 observed in

the data, which is the average of the fraction that the US invests in US equity

and ROW invests in ROW equity. The standard deviation στD of the innovation

ετ,D determines the magnitude of exogenous financial flows between US and ROW

equity. We set it to match the observed standard deviation of the excess return.

The standard deviation στA affects the volatility of portfolio home bias, captured

by ze,D. We therefore set στA to target the standard deviation of ∆ze,D. Finally, we

set the persistence ρτ to match the coefficient a1 of the regression qDt+1−qDt = a1q
D
t .

This coefficient tells us how quickly the relative price reverts to the mean. In the

data a1 = −0.0084 (s.e.=0.0022).20

We first match the moments by applying the local linear solution at the steady

state over the entire state space. Using the resulting parameterization, we compute

20This is based on a panel regression for 73 countries.
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the global solution, for which we report the model moments below. The targeted

moments are therefore not exactly equal to those in the data, but they are very

close.

We consider a fifth parameterization, for which the parameters are the same

as for the p = 1 case with the exception of στD and τ . As discussed below, to

match the targeted moments the size of the financial flow between the two equity

markets is extremely large when p = 1. We therefore consider a case where στD is

lowered such that the size of the financial flow is equal to that under the p = 0.1

case. At the same time τ is adjusted to match the observed portfolio home bias,

as discussed above.

5 Quantitative Implications

In this section we discuss the quantitative implications of the model for different

values of p, as described in the previous section, and relate them to the data.

We discuss three sets of results. The first relates to the portfolio expression (38),

which tells us how responsive the portfolio is to the lagged portfolio and expected

excess return. We also consider evidence related to the last term of the portfolio

expression, containing exogenous financial shocks. We will discuss the size of the

implied financial flows, the price impact of the flows and their contribution to

the variance of the excess return. In the second set of results, we consider various

moments involving excess returns and equity portfolio shares. We finally consider a

variety of evidence related to excess return predictability, including excess return

momentum and reversal. The results for each of the five parameterizations are

presented in Tables 2, 3 and 4. They show that the results are close to the data

when p=0.1.

5.1 Portfolio Terms and Price Impact

We first consider the optimal portfolio expression (38). The first two rows of Table

2 report information related to the first two elements of the optimal portfolio

expression: the coefficient 1− p on the lagged portfolio and the coefficient p
(1−θ)D

on the weighted average of expected future excess returns.

While both ετ,Dt and ετ,At are financial shocks in the model, in what follows we

mainly refer to financial shocks as innovations in ετ,Dt , which change ft in the last
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term of the portfolio expression and lead to financial flows between the two equity

markets. The last three rows of Table 2 report several pieces of information related

to these financial shocks. It first reports the standard deviation of a financial shock

innovation ∆ft in the portfolio, which is 2p
(1−θ)DστD . It measures the size of the

exogenous financial flow between the two equity markets, as a fraction of either

equity market, due to a one standard deviation financial shock. The next row

reports the price impact M of financial shock innovations. The last row reports

the fraction of the variance of the excess return that is due to these financial shocks.

While Table 2 does not report empirical counterparts, we can draw compar-

isons to the literature. The first two rows of Table 2 can be compared to results

reported by Bacchetta et al. (2021), Raddatz and Schmuckler (2012) and Giglio

et al. (2021). Bacchetta et al. (2021) estimate a version of (38) using monthly

portfolio shares of US equity mutual funds in foreign countries.21 The other papers

report the portfolio response to lagged portfolio shares or expected excess returns,

but not both. Raddatz and Schmuckler (2012) report the sensitivity of mutual

fund portfolio shares to lagged portfolio shares, without including expected excess

returns. Giglio et al. (2021) report evidence on the response of equity portfo-

lio shares of Vanguard investors to expected excess returns (from survey data),

without including lagged portfolios.22

The coefficient on the lagged portfolio in Bacchetta et al. (2021) is 0.918, while

the coefficient on the weighted average of expected future excess returns is 15.4.23

These results are in line with the model when p = 0.1, where Table 2 shows that

the coefficient on the lagged portfolio is 0.9 and the coefficient on the weighted

average of expected future excess returns is 15.1. Raddatz and Schmuckler (2012,

Table 5) report a coefficient of 0.9 on the lagged portfolio share (when including a

destiny-fund fixed effect), also consistent with p = 0.1. Finally, Giglio et al. (2021)

21We will refer here to the results reported in the Appendix of Bacchetta et al. (2021), where

they estimate a portfolio specification identical to (38). The main body of the paper considers

a generalized specification where the portfolio share depends both on the lagged portfolio share

and a buy-and-hold portfolio share (lagged portfolio share adjusted for valuation effects).
22In their Table V, they do consider a regression of the change in the equity portfolio share on

the lagged portfolio share and expected returns. The dependent variable is not the actual change

in the portfolio share, but the change due to active trading, removing valuation effects, and over

different time windows for different investors. Nonetheless, it does show that active trading very

gradually brings the portfolio back to its long-run mean, as is the case in our model.
23See Table B.1, column 1, of Online Appendix.
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find that the equity share of Vanguard investors depends on the one-year expected

excess return on equity with a coefficient 1.16. This translates to 13.9 for monthly

expected returns24, again suggesting a value of p close to 0.1.

Giglio et al. (2021) document that the portfolio response to the expected excess

return is much stronger conditional on trading by investors. Moreover, they report

that the timing of the trading is unpredictable. They argue that this is consistent

with a Calvo type friction as we assume here, where the timing of portfolio decisions

is random for each investor.

Next consider evidence related to financial shocks. While we cannot observe

the magnitude of the exogenous financial shocks, there are estimates of the price

impact of these shocks and the extent to which they account for equity prices.

As pointed out in the introduction, Gabaix and Koijen (2021) present evidence

that the price impact of financial shocks in the equity market is about 5 for the

aggregate stock market. This corresponds to a price elasticity of demand of 0.2.

They also review evidence in the literature on the price elasticity of the demand

for individual stocks. This micro elasticity averages to about 1. In a two-country

model, Home and Foreign equity are likely to be closer substitutes than stocks and

bonds, but not as close as two individual US equity. Therefore, one can reasonably

expect the elasticity in our model to be somewhere in between 0.2 and 1, which

implies a price impact somewhere in the range of 1 to 5. The price impactM = 2.15

when p = 0.1 is consistent with this.

As pointed out by Gabaix and Koijen (2021), estimates of the price impact of

financial shocks are much larger than implied by frictionless models. This large

price impact of financial shocks implies that they are important drivers of asset

prices. When p = 0.1, Table 2 reports that 96 percent of the variance of ∆qDt is due

to financial shocks. Consistent with this, Koijen and Yogo (2019) find that latent

asset demand shocks are the main driver of stock prices. Similarly, Itskhoki and

Muhkin (2021) find that financial shocks are the main driver of exchange rates.

The evidence in Table 2 is inconsistent with the frictionless case p = 1. Table

2 shows that the weight on the expected excess return is then 147, about 10 times

bigger than the evidence discussed above suggests. Portfolios also do not depend on

24This uses column 3 of Table 3 of Giglio et al. (2021), where some outliers are removed.

Without removing the outliers, the number is 8.3. Here it is implicitly assumed that the portfolio

depends only on expected returns over the next 12 months, with equal weights on each month.

When p = 0.1, our model implies that two thirds of the weight is on the first 12 months.
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lagged portfolios. This is inconsistent not just with the papers discussed above, but

with a large micro literature mentioned in the introduction that has documented

portfolio inertia.

The price impact of financial shocks is only 0.25 when p = 1, well below esti-

mates in the literature. This weak price impact means that either excessively large

financial shocks are needed to account for the variance of the excess return, or the

model is inconsistent with evidence that financial shocks are the main driver of

equity prices. This is illustrated in the last two columns of Table 2. When the

financial process parameters are set to match the variance of the excess return,

a one standard deviation financial shock implies a monthly flow from the ROW

to the US stock market that is 10 percent of the entire US stock market. While

no direct observations of these exogenous flows exist, this is implausibly large. If

instead the size of a one standard deviation financial shock innovation is the same

as under p = 0.1 (last column), none of the variance of the excess return is driven

by financial shocks.

At the same time, p = 0.04 appears too low. It implies a coefficient on the

weighted average of expected future excess returns of 5.6. This is lower than the

estimates reported above, which are closer to 15. The coefficient on the lagged

portfolio is 0.96, which is on the high end based on the estimates reported above.25

5.2 Portfolio and Excess Return Moments

Table 3 reports a set of model moments. These include the standard deviations

of the excess return and several portfolio variables (ze,At , ∆ze,At and ∆ze,Dt ), auto-

correlations of the excess return, ze,At , ∆ze,At and the relative equity price qDt , as

well as correlations between the relative dividend change ∆dDt and both the excess

return and ∆ze,At .26 The moments in the model are averages over 1000 simulations,

with standard errors in brackets. The only targeted moments in Table 3 are the

standard deviations of the excess return and ∆ze,Dt , which are indicated in italics.27

25On the other hand, it is consistent with micro evidence for households. The Investment

Company Institute reports that 60 percent of households do not change their stock or mutual

fund portfolio during a given year, which corresponds to p = 0.04 for monthly data.
26We only consider the standard deviation of the monthly change in portfolio home bias ∆ze,Dt ,

rather than ze,Dt , as home bias trends upward in the data.
27The other targeted moments are the steady state home bias and the coefficient a1 from the

regression qDt+1 − qDt = a1q
D
t , which are both exactly matched.
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The moments are again consistent with the data when p = 0.1. Perhaps surpris-

ingly, this is the case for most of the parameterizations. It may be most surprising

that the model performs well in Table 3 even for the frictionless case p = 1. The

reason that the model performs well is that the process of the financial shock is

chosen to make the model match several key moments, particularly the standard

deviation of the excess return. As already discussed, in the frictionless case an

excessively large financial shock is needed to overcome the unrealistically small

price impact of financial shocks.

The last column provides further perspective on this. When the size of the

financial shock in the frictionless case is set equal to that under p = 0.1 (last

column), the standard deviation of both the excess return and average equity

portfolio share are less than one fourth of what they are in the data. With this more

reasonably sized financial shock, the excess return and average equity portfolio

share are almost entirely driven by the dividend shocks (see last two rows of Table

3, last column). In the data the correlations of both ert and ∆ze,At with the change

in the relative dividend ∆dDt are close to 0.2.

Table 3 does show that the autocorrelation of the excess return becomes too

high when p = 0.04. It is more than 5 standard deviations above the data. The

friction is clearly too strong when p = 0.04. The gradual portfolio adjustment leads

to a gradual response of the relative price, which gives rise to an excess return that

is too autocorrelated when p = 0.04.

This is further illustrated in Figure 1, which shows impulse responses of qDt and

ze,At for a one standard deviation relative dividend shock εd,Dt and financial shock

ετ,Dt . When p = 0.04, the gradual portfolio adjustment leads to a hump-shaped

response of both the relative asset price and portfolio to both shocks. The same

is also the case when p = 0.1, but there is less delayed overshooting in that case,

leading to a smaller and more realistic autocorrelation of the excess return.

The hump-shaped response of the relative price is consistent with extensive ev-

idence in financial markets of excess return momentum and reversal in commodity,

equity, currency and bond markets (e.g. Moskowitz et al., 2012). After an initial

increase in the relative price, it continues to rise for some time (momentum) and

then declines (reversal). Closely related is the evidence of post-earnings announce-

ment drift, where the equity price continues to rise for some time after a positive

earnings announcement. This can be seen in Figure 1 for the relative dividend

shock when p = 0.04 or p = 0.1.
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Excess return momentum and reversal is further illustrated in Figure 2, which

shows the impulse response of the expected excess return in response to a one

standard deviation financial shock. A financial shock that raises the relative Home

equity price implies a positive Home excess return. But as Figure 2 illustrates, it

also implies a positive expected excess return the next month when p = 0.04 or

p = 0.1. This continued positive excess return implies a positively autocorrelated

excess return (momentum). But eventually the relative Home price starts to fall

(Figure 1, panel C), leading to a negative excess return (reversal). This can be

seen in Figure 2 for both p = 0.04 and p = 0.1.

Another problem with the frictionless case is that there is no such excess return

momentum and reversal. Figure 1 shows that when p = 1 there is no delayed

overshooting. The relative price starts to gradually fall after the initial increase, for

both dividend and financial shocks. The expected excess return therefore remains

negative in response to financial shocks, as shown in Figure 2.

5.3 Excess Return Predictability

Table 4 reports various moments related to excess return predictability. It first

reports regressions of the excess return over the next 1, 3 and 12 months on the

current relative log dividend yield. In the data the regression coefficient is es-

timated using panel data for 73 countries. Standard errors for the data are in

parentheses. The model reports population moments, computed by simulating the

model over 200,000 years. Table 4 next reports evidence on momentum and rever-

sal by regressing the change in the relative price over the next 3 months on both

the change in the relative price over the past month and the current relative price.

Finally, the last four rows of Table 4 report the standard deviation and autocor-

relation of the expected excess return Etert+1. In the data we can only observe an

approximation of the expected excess return based on a regression. Table 4 shows

that for all parameterizations of the model the standard deviation and autocor-

relation of the theoretical and regression-based expected excess return are quite

close. This gives us confidence that the regression-based expected excess return is

a good proxy for its unobservable theoretical counterpart. The regression used to

compute the expected excess return is ert+1 = a1ert + a2(d
D
t − qDt ), which contains

both momentum and the relative dividend yield. The regression in the data is
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again a panel regression for 73 countries.28

Table 4 shows that the model again performs well when p = 0.1. Regressing

the excess returns on the dividend yield gives coefficients that are quite close to the

data for all of the three horizons. The momentum/reversal regression is also very

close to the data. The positive coefficient on the lagged change in the relative price

reflects momentum, while the negative coeffient on the current relative price reflects

reversal. Both are close to the data. This is again associated with the humped-

shaped impulse response of the relative price documented in Figure 1. Finally, the

standard deviation and autocorrelation of the regression-based expected excess

return are also close to those in the data when p = 0.1.

The frictionless case is again inconsistent with the data. The momentum coef-

ficient is close to zero and more than 3 standard deviations below that reported in

the data. Moreover, the expected excess return has an autocorrelation that is close

to 1, which can be rejected by the data, where it is 0.48. The high autocorrelation

of the expected excess return in the frictionless case can also be seen in Figure

2, where a financial shock leads to a very persistent drop in the expected excess

return. By contrast, when p = 0.04 or p = 0.1, it is first positive and then negative,

due to momentum and then reversal. This leads to a much lower autocorrelation.

The fact that there is excess return predictability at all in the frictionless case,

with regression coefficients on the relative log dividend yield close to the data, is

only because the size of the financial shock is set so high. The last column shows

that when lowering the size of the financial shock to that under p = 0.1, there is

virtually no excess return predictability.

Finally, Table 4 again implies that p = 0.04 is too low. The momentum coef-

ficient is much too high and the expected excess return is too volatile relative to

the data.

6 Conclusion

We have introduced a Calvo type portfolio friction in a two-country DSGE model

for the global equity market. The optimal portfolio depends on the lagged portfolio

and the present discounted value of expected excess returns across the two equity

28The standard errors of the standard deviation and autocorrelation of the regression-based

expected excess return are obtained by computing the standard deviation and autocorrelation

for 1000 draws from the estimated distribution of (a1, a2).
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markets. The friction implies portfolio inertia (gradual adjustment of portfolios)

and a weaker response to expected excess returns.

We find that the model with an intermediate level of the friction is consistent

with a broad set of empirical evidence. This includes portfolio behavior by house-

holds and mutual funds, as well as evidence related to the price impact of financial

shocks and the behavior of excess returns. In a frictionless model portfolios do not

exhibit observed portfolio inertia and are excessively sensitive to expected excess

returns. This has several counterfactual implications for asset prices, such as a

weak price impact of financial shocks, either excessively large financial shocks or

no expected excess return predictability, and inability to account for momentum

and reversal of excess returns. On the other hand, when the friction is too strong,

portfolio inertia is too strong. This leads to excess returns that are too autocor-

related, too much excess return momentum and too much volatility in expected

excess returns.
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Appendix

A Foreign Country Equations

First, define:

mn,t−j
F,t+1 =

[
Rp,F,t−j
t+1

]−γ
e(1−γ)f

n
F,t+1

mo,t−j
F,t+1 =

[
Rp,F,t−j
t+1

]−γ
e(1−γ)f

o,t−j
F,t+1

where the portfolio return is defined as

Rp,F,t−j
t+1 = Rt + z̃FH,t−j(RH,t+1 −Rt) + z̃FF,t−j(RF,t+1 −Rt) (A.1)

Also define mt−j
F,t+1 = pmn,t−j

F,t+1 + (1− p)mo,t−j
F,t+1.

The Foreign country portfolio Euler equations are

Etm
t
F,t+1(RF,t+1 −Rt) + (1− p)Etmo,t

F,t+1R
p,F,t
t+1 λ

t
FF,t+1 = 0 (A.2)

Etm
t
F,t+1(e

−τF,tRH,t+1 −Rt) + (1− p)Etmo,t
F,t+1R

p,F,t
t+1 λ

t
FH,t+1 = 0 (A.3)

The Foreign country Bellman equations are

e(1−γ)f
n
F,t/β = αEtm

t
F,t+1R

p,F,t
t+1 (A.4)

e(1−γ)f
o,t−1
F,t /β = αEtm

t−1
F,t+1R

p,F,t−1
t+1 (A.5)

The Foreign country λ difference equations are

EtR
p,F,t−1
t+1

(
mt−1
F,t+1λ

t−1
FH,t − θm

o,t−1
F,t+1λ

t−1
FH,t+1

)
= βEtm

t−1
F,t+1(e

−τF,t−1RH,t+1 −Rt)(A.6)

EtR
p,F,t−1
t+1

(
mt−1
F,t+1λ

t−1
FF,t − θm

o,t−1
F,t+1λ

t−1
FF,t+1

)
= βEtm

t−1
F,t+1(RF,t+1 −Rt) (A.7)

B Aggregation

There is a small aggregation issue in the market clearing conditions in that as-

set demand involves the product of wealth and portfolio shares. Specifically,

β
∫ 1

0
zijk,tW

i
j,tdi is the total demand for country k equity by agents from coun-

try j. We have
∫ 1

0
zijk,tW

i
j,tdi = zjk,tWj,t + cov(zijk,t,W

i
j,t), where the latter is a

cross-sectional covariance term. In theory the covariance term may not be exactly
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zero. ziHH,t and W i
H,t could be cross sectionally correlated as a result of wealth

accumulation after the most recent portfolio decision. For example, agents with

a large portfolio share in the Home country will have seen their wealth rise a lot

if Home equity returns have recently been relatively high. The market clearing

conditions (27)-(29) ignore the covariance term. This turns out to be numerically

very accurate, with the correlation between
∫ 1

0
zijk,tW

i
j,tdi and zjk,tWj,t above 0.9997

for all j, k based on the solution of the model for p = 0.1 discussed in Section 4.

The accuracy was checked by simulating the solution over 100,000 months, keeping

track of the wealth and portfolio shares of 100 million agents as an approximation

of the continuum of agents in the model.

C Solution Method

We first discuss an overview of the solution method and then provide some further

details.

C.1 Overview

The aim is to find a solution

cvt = g(svt) (C.8)

Given a particular node in the state space, Taylor projection locally approximates

g(svt) as a polynomial, which in our case will be linear. For a particular node svi

in the state space, this takes the form

cvt = cvi +M i(svt − svi) (C.9)

where M i is a matrix with a non-zero value in element (j, k) if state variable k

affects control variable j. Not all control variables depend on all state variables.

There are a total of 153 non-zero coefficients in M i, plus 15 constants in the vector

cvi, for a total of 168 coefficients.

The model can be written in the form

EtF (cvt, cvt+1, svt, svt+1) = 0 (C.10)

svt+1 = G(svt, cvt, εt+1) (C.11)

where εt+1 = (εdH,t, ε
d
F,t, ε

τ
H,t, ε

τ
F,t)
′ is the vector of shocks. F consists of the 15

equations listed in Definition 1. Equation (C.11) describes the evolution of state
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variables, which is further discussed in the next subsection. Using (C.9) at both t

and t+ 1, together with (C.11), we can write (C.10) in the form

H(svt) = EtH(svt, εt+1) = 0. (C.12)

We compute expectations using an order-5 monomial method (Judd, 1998) with

33 integration nodes for the shocks. H(svt) represents the errors of the equations.

At the node svi, the “Taylor” part of “Taylor projection” involves setting both

the level of H and its derivatives with respect to the state variables equal to zero:

H(svi) = 0 and ∂H/∂svt(svi) = 0. These give respectively 15 and 153 constraints

on the 168 parameters {cvi,M i}.29 We compute numerical derivatives using two-

sided finite-differences (using two or five-point stencils makes no difference). We

then solve the 168 parameters {cvi,M i} from the 168 equations.

We first obtain the local solution at the deterministic steady state.30 The other

nodes svi are obtained as follows. Since a rectangular grid is unfeasible in such

a high-dimensional problem, we use the approach from Maliar and Maliar (2015).

We generate a long simulation using the linear solution at the symmetric state (10

million periods). We sample every 1000 points to eliminate autocorrelation. From

this sample we construct a set of 150 points using Ward’s clustering algorithm.

We then use symmetry to obtain the solution at another 150 points. So we have a

solution at 301 points. We find that these points cover the ergodic set sufficiently

well.31

To construct the global solution, we use the modified Shepard’s inverse-weighting

interpolation. Define the weights

wi(sv
i, svt) =

w̃i(sv
i, svt)∑241

j=1 w̃j(sv
j, svt)

(C.13)

29Specifically, all 15 equations depend on St (9 state variables), which gives 135 derivatives.

In addition, the Bellman equation for fo,t−1
Ht and the difference equations for λt−1

HH,t and λt−1
HF,t

also depend on svH,t (3 state variables). This gives an additional 9 derivatives and an analogous

9 derivatives for the Foreign country. This gives a total of 153 derivatives.
30Variables other than portfolio shares are equal to their deterministic steady states. The

portfolio shares are set at zHH = zFF = z̄, zHF = zFH = 1− z̄, where z̄ is set at an empirically

realistic value (see Section 4). The value for τ is set to make sure that also z̃HH = z̃FF = z̄,

z̃HF = z̃FH = 1− z̄ at this symmetric node of the state space.
31If we create a new set of points by simulating the resulting global solution, the new set of

points is very similar. For p = 0.04, we could only find a solution at 143 points, which with

symmetry becomes 285.
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where

w̃i(sv
i, svt) =

(
max{0, k − ‖svi − svt‖}

k‖svi − svt‖

)2

.

‖svi − svt‖ is the Euclidean distance and k is set to 4.32 Then

cv(svt) =
241∑
i=1

wi(sv
i, svt)

(
cvi +M i(svt − svi)

)
(C.14)

We also solve the model in the frictionless case where p = 1. The same solution

method is followed, but the solution is significantly faster as there are far fewer

state and control variables. The set of state variables consists of the exogenous

state variables dH,t, dF,t, τH,t, τF,t and relative wealth wDt . The other four state

variables in St, related to lagged relative wealth and portfolio shares, as well as

sH,t and sF,t, are no longer state variables. The additional control variables cvH,t

and cvF,t also disappear. Overall, the number of state variables is reduced from 15

to 5 and the number of control variables is reduced from 15 to 9.

C.2 Further Details

A couple of points are in order regarding the set of state variables in St. Adding up

the market clearing conditions, the sum of wealth of both countries is proportional

to the sum of their asset prices. Aggregate wealth is therefore not a state variable.

The lagged bond market equilibrium condition implies ωt−1(zHH,t−1 + zHF,t−1) +

(1 − ωt−1)(zFH,t−1 + zFF,t−1) = 1. We therefore cannot use lagged relative wealth

and all four lagged portfolio shares as state variables. We also do not use the four

lagged portfolio shares as state variables. In a symmetric state, where ωt−1 = 0.5,

the four lagged portfolio shares are locally in a linear relationship (adding to 2).

Also note that zAF,t−1 = ωt−1zHF,t−1 + (1 − ωt−1)zFF,t−1 = 1 − zAH,t−1 is redundant

from the time t− 1 bond market clearing condition.

There are two reasons why only one-period lagged portfolios are in the state

space. First, (32) implies that the aggregate portfolio share zHH,t depends on the

one-period lagged portfolio share zHH,t−1 and the new portfolio share chosen at

time t. The lagged portfolio share zHH,t−1 aggregates all portfolio shares chosen at

t− 1 and earlier. Second, the new portfolio share z̃HH,t chosen at time t depends

32Setting k lower than 4 raises Euler equation errors, while setting it higher makes little

difference to the weights.
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through the portfolio Euler equation on beliefs about λtHH,t+1. The same variable

one period earlier, λt−1HH,t, is one of the control variables. It depends on portfolio

choice at t− 1, but not earlier. We do not need to solve for λt−jHH,t for j > 1, which

depends on portfolio shares prior to t− 1.

Next we discuss the evolution of the state variables. (C.11) writes the evolution

of the state variables as svt+1 = G(svt, cvt, εt+1). To see this, first consider the last 6

state variables at t+1: svH,t+1 = (τHt, z̃HH,t, z̃HF,t)
′ and svF,t+1 = (τFt, z̃FH,t, z̃FF,t)

′.

Clearly, these are elements of svt and cvt. Next consider the first 9 state variables:

St+1 = (dH,t+1, dF,t+1, τH,t+1, τF,t+1, w
D
t+1, w

D
t , z

A
Ht, z

D
Ht, z

D
Ft)
′. The Home and Foreign

dividends and taxes/subsidies at t + 1 depend on their values at time t (part of

svt) and the shocks εt+1. Skip over wDt+1 for a moment. wDt is part of svt. z
A
Ht, z

D
Ht

and zDFt depend on ωt, zHH,t, zHF,t, zFH,t and zFF,t. ωt depends on wDt , which is

part of svt. We can write zHH,t = (1 − p)zHH,t−1 + pz̃HH,t = (1 − p)zAH,t−1 + (1 −
p)(1− ωt−1)zDH,t−1 + pz̃HH,t, where ωt−1 depends on wDt−1. So zHH,t can be written

as a function of state variables at time t and control variables at time t. The same

is the case for the other portfolio shares.

Some more discussion is warranted regarding wDt+1. Denote all state variables

at t+1 other than wDt+1 as s̃vt+1. It follows from the discussion above that s̃vt+1 =

Gs(svt, cvt, εt+1) for a known function Gs. From (33), and the return expressions

(1) and (2), as well as the discussion above, it follows that we can write wDt+1 =

Gw(svt, cvt, εt+1, qH,t+1, qF,t+1) for a known function Gw. At this point we substitute

the linear projection (C.9) at a particular node svi, applied to t + 1: cvt+1 =

cvi + M i(svt+1 − svi). For a given cvi and M i (first and second row), this gives

qH,t+1 and qF,t+1 as linear functions of svt+1, which in turn implies a linear function

in s̃vt+1 and wDt+1. Write these as qi,t+1 = Gi(s̃vt+1, w
D
t+1). Then we have

wDt+1 = Gw(svt, cvt, εt+1, GH(Gs(svt, cvt, εt+1), w
D
t+1), GF (Gs(svt, cvt, εt+1), w

D
t+1))

(C.15)

We linearize the right hand side around wDt+1 = wDt , where wDt is the fifth element

of the node svi, to solve for wDt+1 as a function of svt, cvt and εt+1.

For the simulation of the global solution, we use the evolution equation for wDt+1

directly, which is a nonlinear equation (since returns tomorrow depend on prices

tomorrow, which in turn depend on wDt+1 itself. We solve this equation using

Brent’s method at each step in the simulation; this approach delivers the same

answer as the linearized solution if we use only the local solution at the steady
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state.

We finally make a couple more comments on the solution of the 168 parameters.

We start the solution of the 168 parameters either at the deterministic steady

state or at the nearest node in the state space for which we have solved the local

solution. We go in steps of 0.001 times the distance towards the new node in the

state space, each time resolving the parameters, until we have reached the new

node. We normalize the variables fnH,t+1, f
o,t
H,t+1, f

n
F,t+1, f

o,t
F,t+1 by f o,t−1Ht and f o,t−1Ft

to avoid overflows, given the large steady state values of the f variables. We use

a dampened quasi-Newton method to solve the parameters before switching to

hybrid-Powell once the largest absolute value of the elements of H(svt) is less than

10−4.

All codes are written in Fortran95 and compiled with the Intel Compiler, except

for Ward’s clustering algorithm, which is written in Matlab. All codes are available

on request. No proprietary software is needed.

D Hedge Terms

The last term in (34) is

ht =
1− γ
D

∞∑
i=1

θi−1covt(ert+i, r
A
t+1,t+i)

+
1− γ
D

∞∑
i=1

θi−1
(
covt(erH,t+i, (1− µ)fnH,t+i + µfnF,t+i)− covt(erF,t+i, µfnH,t+i + (1− µ)fnF,t+i)

)
+

(1− 2z̄)2

d

∞∑
i=1

θi−1covt(r
A
t+i − rt+i−1, (γ − 1)ert+1,t+i−1 + γert+i).

where rAt+1 = 0.5(rH,t+1 + rF,t+1), erH,t+1 = rH,t+1 − rt,erF,t+1 = rF,t+1 − rt, µ =

0.5 + (z̄ − 0.5)(D/d) and

d =
∞∑
i=1

θi−1
(
γ ¯vart(er

sum
t+i ) + 2(γ − 1) ¯covt(er

sum
t+i , er

sum
t+1,t+i−1)

)
Here ersumt+i = erH,t+i + erF,t+i and ersumt+1,t+i−1 = ersumt+1 + ...+ ersumt+i−1.

The terms in ht are hedge terms associated with time-varying risk. These

involve the variance and covariance of asset return variables and the Bellman vari-

ables fnH,t+s, f
n
F,t+s. Analogous to expected asset returns, it is not just uncertainty
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about asset returns and Bellman variables over the next period that affects port-

folios, but rather perceived risk at all future dates, with discount rate θ. In what

follows, assume that γ > 1.

The first term in ht implies that the average share invested in Home equity is

higher when Home equity has a relatively high payoff (compared to Foreign equity)

in bad future states where the world equity return has been low. Home equity is

then an attractive hedge against such bad states. The second term of ht captures

a hedge against future changes in expected portfolio returns. The approximated

solution for fnH,t is

fnH,t = Et

∞∑
i=1

βir̄p,Ht+i (D.16)

where r̄p,Ht+i = rt+i−1+z̄erH,t+i+(1−z̄)erF,t+i is the Home portfolio return evaluated

at the mean of portfolio shares. An analogous solution applies to fnF,t. The second

term of (D.16) then says that the Home portfolio share is high when Home equity

returns are relatively high in bad future states where subsequent future expected

portfolio returns are low. The last hedge term in (D.16) is less intuitive.

E Accuracy of Approximated Portfolio in Sec-

tion 3

Equation (34) gives a linear approximation of the solution of z̃e,At as the sum of

three terms. We will show that the global solution is very close to just the sum of

the first two terms, so ignoring the hedge term. This approximated solution is

z̃e,A,approximatet = 0.5 +
1

D

∞∑
i=1

θi−1Etert+i +
1

(1− θ)D
τDt . (E.17)

To show that this is close to z̃e,At from the global solution, we simulate the model

over 230 months, the sample length used for calibration and to compute data

moments in Section 5. During each month the present discounted value of expected

excess returns is computed by generating 100,000 different futures of 150 months.33

The parameter D is computed using the mean over the 230 months of the present

33Truncating after 150 months is sufficient as θ150 is equal to 0.0013, so that expected excess

returns further into the future get virtually no weight.
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discounted value of the moments in the expression for D, again using 100,000

futures of 150 months to compute the present discounted value of the moments.

For p = 0.1, Figure A1 shows both the global solution for z̃e,At and the approx-

imated solution (E.17). The two lines are extremely close, with a correlation of

0.964. Sometimes they are indistinguishable and overlap. Any deviation that is

left is caused either by the approximation itself used to derive (34) or the hedge

term ht. We have not been able to numerically approximate the time varying

hedge term accurately enough as it would require an even much larger number of

futures, but clearly it does not play a significant role.

F Ergodic Distribution Relative Wealth

We compute the ergodic distribution of relative wealth for p = 0.1 by simulating

the model over one million months. The result is shown in Figure A2. Ninety

five percent of the distribution is between plus and minus 0.52. The logic behind

the stationarity of relative wealth is as follows. Assume that a shock leads to

an increase in the relative wealth of the Home country. As a result of home bias

(which is matched in the parameterization), this leads to an increase in the relative

demand for Home equity. This raises the relative Home equity price and therefore

lowers the expected return on Home equity relative to Foreign equity. This lowers

the expected portfolio return of Home agents relative to Foreign agents, which in

turn reduces the relative wealth of the Home country.
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Table 1 Calibrated Parameters

Parameter p = 0.04 p = 0.1 p = 0.2 p = 1 p = 1
smaller
financial shock

γ 10 10 10 10 10

β 0.99668 0.99668 0.99668 0.99668 0.99668

ρd 0.9767 0.9767 0.9767 0.9767 0.9767

σdD 0.0447 0.0447 0.0447 0.0447 0.0447

σdA 0.0325 0.0325 0.0325 0.0325 0.0325

ρτ 0.98084 0.99003 0.99151 0.99177 0.99177

τ 0.0000941 0.0001050 0.0001011 0.0001078 0.0000410

στD 0.0006514 0.0003851 0.0003387 0.0003442 0.0000020

στA 0.0000624 0.0000359 0.0000243 0.0000084 0.0000084

Notes: The table reports parameters under 5 parameterizations. The first four parameterizations

set the parameters of the financial shock process (the last 4 parameters) to target 4 moments. The

other parameters remain the same. The last column of parameters is the same as the previous

column, except that στD is lowered such that the standard deviation of a financial shock innovation

∆ft = 2p
(1−θ)D ε

τ,D
t is the same as under the p = 0.1 parameterization and τ is adjusted to match

the observed portfolio home bias.

Table 2 Portfolio Terms and Price Impact

p = 0.04 p = 0.1 p = 0.2 p = 1 p = 1
smaller

financial shock

Features Portfolio Expression

coefficient lagged portfolio 0.96 0.9 0.8 0 0

coefficient expected excess return 5.6 15.1 30.7 147.1 2943

Financial Shock

s.d. financial shock innovation ∆f 0.0073 0.0117 0.0208 0.1012 0.0117

price impact M 3.44 2.15 1.20 0.25 0.0146

fraction var(ert+1) due to 0.977 0.956 0.944 0.924 0.00
financial shock

Notes: The table reports information about the three elements of the optimal portfolio expression ze,At =

(1 − p)ze,At−1 + p
(1−θ)D

∑∞
i=1

(1 − θ)θi−1Etert+i + 0.5ft. The coefficient on the lagged portfolio is 1 − p. The

coefficient on the weighted average of expected future excess returns (with weights adding to 1) is p
(1−θ)D . For the

last portfolio term the table reports the standard deviation of the financial shock innovation ∆ft = 2p
(1−θ)D ε

τ,D
t ,

which is the size of the exogenous financial flow between the two equity as a fraction of either equity market. It

also reports the price impact M , which is the ratio of the relative price change to the change in ∆ft in response

to a financial shock innovation ετ,Dt . The last row reports the fraction of the variance of the excess return that

is associated with financial shocks. The columns correspond to the parameterizations reported in Table 1.
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Table 3 Data and Model Moments

DATA MODEL

p = 0.04 p = 0.1 p = 0.2 p = 1 p = 1
smaller

financial shock

STANDARD DEVIATIONS

ert 0.0262 0.0257 0.0258 0.0260 0.0262 0.0058
(0.0014) (0.0010) (0.0010 ) (0.0011) (0.0003)

ze,At 0.0297 0.0322 0.0266 0.0247 0.0253 0.0052
(0.0090) (0.0080) (0.0080) (0.0074) (0.0019)

∆ze,At 0.0046 0.0054 0.0052 0.0050 0.0051 0.0015
(0.0004) (0.0004) (0.0003) (0.0003) (0.0003)

∆ze,Dt 0.0048 0.0047 0.0046 0.0046 0.0046 0.0974
(0.0008) (0.0006) (0.0004) (0.0002) (0.0041)

AUTOCORRELATIONS

ert 0.0686 0.3765 0.1022 0.0294 0.0181 -0.0039
(0.0559) (0.0605) (0.0590) (0.0601) (0.0592)

ze,At 0.9807 0.9828 0.9741 0.9710 0.9721 0.9665
(0.0107) (0.0162) (0.0190) (0.0182) (0.0224)

∆ze,At 0.0971 0.3784 0.0968 0.0170 0.0199 -0.0072
(0.0604) (0.0729) (0.0690) (0.0608) (0.0692)

qDt 0.9803 0.9826 0.9751 0.9720 0.9729 0.9593
(0.0103) (0.0137) (0.0170) (0.0175) (0.0199)

CONTEMPORANEOUS CORRELATIONS

corr(∆dDt , ert) 0.2025 0.1155 0.2044 0.2304 0.2351 0.9963
(0.0602) (0.0572) (0.0577) (0.06) (0.0017)

corr(∆dDt ,∆z
e,A
t ) 0.2709 0.1361 0.2001 0.2286 0.2361 0.9375

(0.0586) (0.0572) (0.0578) (0.0602) (0.0854)

Notes: Model moments and associated standard errors (in parentheses) are based on 1000 simulations of

a 278 month period. Results are shown for the parameterizations reported in Table 1. In the last column

the size of a one standard deviation of the financial shock innovation ∆ft is the same as under p = 0.1. Of

the four targeted moments, the table only reports the standard deviations of the excess return and ∆ze,Dt ,

which are indicated in italics.
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Table 4 Excess Return Predictability

DATA MODEL

p = 0.04 p = 0.1 p = 0.2 p = 1 p = 1
smaller

financial shock

Predictability by Relative Dividend Yield

ert+1 = a1(d
D
t − qDt ) 0.0066 0.0078 0.0068 0.0066 0.0068 0.0000

(0.0020)

ert+1,t+3 = a1(d
D
t − qDt ) 0.0185 0.0297 0.0216 0.0201 0.0205 0.0000

(0.0038)

ert+1,t+12 = a1(d
D
t − qDt ) 0.0779 0.1283 0.0849 0.0775 0.0764 0.0000

(0.0090)

Momentum and Reversal

qDt+3 − qDt = a1(q
D
t − qDt−1)

+a2q
D
t

a1 0.1020 0.5740 0.1158 0.0350 0.0046 -0.0034
(0.0296)

a2 -0.0290 -0.0520 -0.0287 -0.0260 -0.0260 -0.0513
(0.0045)

Expected Excess Return

s.d. theoretical E(er) 0.0106 0.0035 0.0024 0.0024 0.0000

a.c. theoretical E(er) 0.3980 0.5311 0.9527 0.9917 0.9985

s.d. regression-based E(er) 0.0042 0.0105 0.0035 0.0024 0.0026 0.0000
(0.0011)

a.c. regression-based E(er) 0.4814 0.4335 0.5308 0.9470 0.9824 0.9223
(0.2020)

Notes: Data moments are based on panel regressions for 73 countries, with standard errors in parenthesis. Model

moments are population moments computed by simulating the model over 200,000 years. Results are shown for the

parameterizations reported in Table 1. ert+1,t+i stands for the excess return over the next i months. The theoretical

E(er) stands for the expected excess return Etert+1 that can only be computed within the model. The regression-

based E(er) is the expected excess return based on the regression ert+1 = a1ert + a2(dt − qDt ) + εt+1. The standard

error of the standard deviation and autocorrelation of the regression-based E(er) in the data is computed by sampling

from the estimated joint distribution of (a1, a2), computing the standard deviation and autocorrelation for each pair

of parameters.
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Figure 1 Impulse Response Functions
A.  qD (dividend shocks)

Notes: The charts show the impulse response functions of qD and ze,A in response to a one standard deviation increase 
in εd,D (dividend shock) and ετ,D (financial shock), starting from the symmetric steady state. 
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Figure 2 Impulse Response Expected Excess Return
(Financial Shocks)
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Notes: Expected excess returns are computed from impulse response functions. Excess returns in the 
periods subsequent to the shock are expected excess returns. The chart shows the expected excess 
return over time in response to a one standard deviation financial shock innovation ετ,D.
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Figure A1 Approximation Optimal Portfolio*
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*The chart shows the global solution of the optimal portfolio based on a simulation over 278 months, as well as the  
approximation (34), without the hedge term ht. The correlation between the global solution and the approximation is 0.976. 
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Figure A2 Ergodic Distribution Relative Wealth

Notes: The ergodic distribution is obtained by simulating the model over 2.4 million 
months for the parameterization where p=0.1. 
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