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A  Model with Cash

We now present a model including three types of money: bank deposits, cash and CBDC.

In our modeling, central-bank-issued money d° is a composite of cash and CBDC
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with
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The transaction cost of consumption s(x) is still a function of money velocity x = pe/d

and the composite money instrument d; is still given by
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as in (1). However df is now reinterpreted as the composite (A.1), while d? is still the

composite of bank deposits (2). Cash pays zero interest and CBDC pays interest rg”’d“.

The household budget constraint is now
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First-order conditions (42),(43),(44),(46) are unchanged, however the FOC with respect
to the central-bank-issued money (45) needs to be replaced with two conditions, with

respect to cash and CBDC, respectively
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(A.5)and (A.6), together with (46), imply that the optimal cash and CBDC holdings
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and imply the equilibrium relationship
cashyry + chde(r; — rebd) = dé(r* — r¢) (A.8)



where rf is now defined via the relationship
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Furthermore, from the Euler equations (44) and (A.6) we have
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By combining (A.7) and (A.1)
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Inserting (A.11) in (A.10) we re-obtain the relationship
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showing that in equilibrium resources are split between bank deposits and the “basket”
of cash and CBDC the same way that they were split between bank deposits and CBDC
in the model with two instruments. (A.7) also implies that he total opportunity cost of

holding money is
do(r* — 1) + cashyry + cbdey(rf — riP) = d2(r* — b)) + dS(r* — r§) (A.13)

This analysis shows that with cash as a third instrument, economic outcomes may be
unchanged. Cash pays zero interest by construction. If the composite interest defined by
(A.9), that can be interpreted as the interest paid by the “basket” of cash and CBDC,
equals the interest paid by CBDC in the model with only two instruments, all outcomes
are identical: households allocate the same resources in money instruments — implying
that they incur the same transaction cost of consumption — and pay the same opportunity

cost (A.13) of holding money.

B Model with Deposits Affecting Banks’ Marginal
Funding Cost

In this extended model, as in the baseline model, each bank j can borrow in the form

of deposits d? or bonds. However, in the spirit of the model of Wang, Whited, Wu and
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Xiao (2022), we now posit that the cost of “non-reservable borrowing” is increasing in
the amount borrowed in this form, as a fraction of total borrowing.?® In particular, we
posit that, if bank j needs to finance loans I(j) and deposits are d°(j) < I(j), purchasers
of the additional debt I(5) — d(j) demand an interest equal to * + 3 (%) Asin

the baseline model, at time ¢ — 1 banks choose the rates r? | (j) and r!_(j) to maximize

time-t profits (B.1), subject to the deposit demand (9). Profits are now
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where in the last equality we defined & = ¢ + ¢(r* — r™), assuming for simplicity the
spread (r* — r™) to be constant. As in the baseline model, banks maximize profits
subject to the deposit demand (9) and the loan demand (24). The difference now is that

the choice of the two rates are not independent. The FOCs of the bank’s problem are
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(remember that rates, loans and deposits carrying the argument j refer to an individual

1

+epx (B.2)

W)t

+€ldtl Ttl—’_c—'_ )( (

bank, whereas those not carrying the argument j refer to the aggregate quantities).

2Wang, Whited, Wu and Xiao (2022) motivate the additional cost with the fact that non-reservable bor-
rowing does not benefot from FDIC insurance, hence purchasers of this debt carry default risk. It is worth
noticing that, if the introduction of CBDC causes banks’ disintermediation, it is possible that the government
would extend some form of insurance to some forms of bank debt other than deposits. In this case our baseline

model, where the marginal funding cost is the risk-free rate, would be more appropriate.



In a symmetric equilibrium in which all banks choose the same deposit rate () = r?

and loan rate r!(j) = r!, the solution to (B.2)-(B.3) is
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As the introduction of CBDC decreases the demand for bank deposits, banks react in
two ways. On the one hand banks increase non-reservable borrowing, which pushes up
the interest on this part of the debt and which in turn induces banks to increase the
loan rate (see (B.5)), with a negative effect on loan demand (61). On the other hand
banks also increase the deposit rate (B.4), in order to attract a higher deposit demand
and thus mitigate the increase in their marginal funding cost.

To evaluate the effect of introducing CBDC in this model we set x = 0.5%, in line
with the estimation of Wang, Whited, Wu and Xiao (2022).

Table B: CBDC-induced changes in the economy

7,=25% “case a “case b” ,=45% “case a” “case b”
HH Cons. +24 bps (+27) | +46 bps (+54) HH Cons. +30 bps (+41) | +49 bps (+62)
Bankers’ Cons. / | -130 bps (—119) || Bankers’ Cons. / | -140 bps (—117)
Deposit rate 3.08% (2%) 3.45% (2%) Dep. rate 3.29% (2%) 3.70% (2%)
Loan rate 5.14% (5%) 5.17% (5%) Loan rate 5.16% (5%) 5.19% (5%)
Welfare +13 bps (+9) | +37 bps (+40) Welfare +23 bps (+20) | +44 bps (+47)

Table B shows the effects of the introduction of CBDC on the economy in the new

model. For comparison, the table reports also the impact in the baseline model (in paren-
thesis). Notice that, when evaluating the new model, we adjust the model parameters
€p and ¢; to keep the pre-CBDC deposit rate at 2% and the pre-CBDC loan rate at 5%.
After CBDC is introduced, in the new model the deposit rate increases by more than
1 percentage point, whereas the loan rate increases by less than 20 bps. This contrasts
with the baseline model, in which these two rates are unchanged after the introduction
of CBDC (see Lemma 1).

The modest increase in the loan rate after the introduction of CBDC translates into



an even smaller increase of the cost of capital r® = (1 — ¢)r* + rl: since in our
calibration the working capital requirement is ¢ = 0.2 the cost of capital increases by at
most 5 bps. On the other hand, the increase in the deposit rate has a beneficial effect
on consumption and welfare.

Overall, the effect of the inroduction of CBDC on consumption and welfare is very
similar in the two models. In fact, we see that in some cases welfare increases even
slightly more in the new model than in the baseline one: the slightly higher cost of
capital has a negative impact on consumption but also on labor, with the result that in
some cases consumption may increase less than in the baseline model but welfare may

increase more.

C Proof of Proposition 1

If 4™y, > 1 and the marginal cost of managing deposits is negligible:
e a) The interest rate r¢ that mazimizes seigniorage is larger than the interest rate
on deposits r°,
Neglecting ¢, the component of seigniorage due to CBDC is S¢bde = (r* — rc)de.

Given equations (11), (17) and (13), demand for CBDC can be written as

de €ch (¥ C\—€ch (% comp\€cp ‘1(1 7‘*)
- = c c c C]_
pe = O (r r ) (’I" r ) ¥ — pcomp B(l -7’*) ( )
so that
_ A(]. —+ 7'*)
bd c 1—e. c
SV = afebpe(r® — ro) T (rF — reOmP)e b\/r* reomp 4+ B(1 + r*) (C.2)

with (r* — r°™P) given by (14). S®9 takes a more convenient form in terms of the

variable x, defined as

1
c (r* — re)l=cn\ =g
— cb €c
x = (ab + age = (C.3)

In terms of x, we can write S as
S — k (x17 — afet )zt (a 4 ba) 12 (C.4)

with a = B(1+7*), b= (r* — r?) and k = pc(r* — r°)\/A(1 + r*). Remember that

r* — 1% is given per Lemima 1, so that z is basically a function of r°.
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Hence

Sebde — fp (z — alhzer)(a + ba)~ 1/ (C.5)

The FOC wrt z is

1 , b
1— afPegate ! — Z(z —albatet)—— | =0 C.6
It is easy to see that the term %(a: — aZCbxecb)ﬁ is positive, since it is equal to

%(a + bx)_%Sdec and seigniorage is positive for any value of r¢ < r* (a, b, k and
x are also all positive). Hence (C.6) shows that, for = to be an interior maximum
of seigniorage,?* it must be

apeqrie Tt < 1 (C.7)

So if oazc”ecb > 1, then it must be z¢»~! < 1. Hence, since €4 > 1, it must be 2 < 1.

From the definition of = (C.3) and the relationship a;® + a;® = 1, it follows that,
in order for z < 1, we need (r* —r¢) < (r* —?), or r¢ > rb.
e b) The optimal value of r¢ is decreasing in ap, if € > 1.5

Define d;, = o, and

1 b
wx, ap) = (1 — apegprer Tt — 5(:8 - &zﬂsécb)m> (C.8)

where x is defined in (C.3). For each value of &;, the value of £ maximizing seignior-
age we have u(z(ap), ap) = 0.

The implicit value theorem tells us how the seigniorage-maximizing value of x varies

with ap:
o
0 —;L
=5 (C.9)
A ox
and we have
ou cp—1 1 bz
— = —z —-————] <0 C.10
Dy * b g (a + bx) ( )
The above inequality is obvious since €, > 1 and 0 < % < 1 (the latter holds

since a, b and x are positive).

op e 1 bx 1 (bx)Q 1 ab
W I _1 2 c.11
=G €ch |(€cb — 1) 2a+ bx 2 (a+bx)? 2 (a + bx)? ( )

24Geigniorage is a continuous function of 7¢ for 0 < 7¢ < r* so it must have a maximum in this range. It
can be verified that seigniorage is increasing at r¢ = 0 and decreasing at r¢ = r*, so the maximum must be

an interior one.



Since 0 < aj’jm < 1, the term in square parenthesis on the RHS of (C.11) is positive

for €4 > 1.5. If so, then it is easy to see g—g < 0. Hence we have

ou

o =
e (C.12)

ap ou

Since &, = o = 1 — a3, we deduce that the seigniorage-maximizing value of
x is increasing in o, (and &), hence, from the definition of  (C.3), the seigniorage-

25

maximizing CBDC spread r*—r¢ is increasing in a.,*° or equivalently, the seigniorage-

maximizing r¢ is decreasing in c..

e ¢) The peak value of seigniorage in the r¢ dimension is increasing in the CBDC
liquidity parameter &, = ai, and is increasing in the substitutability parameter
€cp while &, remains fixed.

(C.5) implies that the component of seigniorage due to CBDC can be written as
S — k(2 — (1 — ae)a't)(a + ba) /2 (C.13)

The seigniorage-maximizing value of z is a function of &, and €., (as specified in
the statement of the proposition, we think of &, and €., as two independent di-
mensions), hence §* = S*(x(de, €cp), Gic, €cp) Where S* = max,S. By the envelope

theorem peak seigniorage satisfies

ds* oS*
dée — Ode (C.14)
ds* oS*

= C.15
decp Decp ( )

We have g%: — g (atbx) /2 > 0and gﬁ—‘i = —log(z)(1— )z (atbx) /2 which

is positive when z < 1. Since, as proved in point a), the seigniorage-maximizing

value of x is smaller than 1, we have indeed that ‘3‘22 > 0 and gfz > 0, i.e. the

peak value of seigniorage in the r¢ dimension is increasing in &, and ey,

D Proof of Proposition 2

Suppose that the government can choose the elasticity of substitution €., but the relative

(r*—rc)l=<eb
(r*—rb)T=<cp

1
Using ap” + ap®* = 1 we can write z = (1 + Qg ( - 1)) "7 Given that the optimal 7° is
such that r* — r¢ < 7* — 7% (proved in point a) of this Proposition), and €., > 1, the only way that z can be

increasing in «, is if * — r¢ is increasing in a..



liquidity between CBDC' and bank deposits (afet /oy ) is fized. Under the conditions of
Proposition 1 the maximum of seigniorage is achieved in the limit e, — oo (so that the

two monies are perfect substitutes) and r¢ infinitesimally higher than r°.

First, notice that the assumption that aget/ aZ“'" is fixed, together with the conditions
o +afh =1,0 < ap* <1and 0 < aft < 1, which we hold throughout the paper (see
(3)), implies that both o;® and afet are fixed, and that lime , oo = lime , ootre = 1.

Next, consider that, as per point a) of Proposition 1, for a given value of €4 the
optimal 7¢ is larger than r°. Moreover, as per point ¢) of Proposition 1), the peak value
of seigniorage in the 7¢ dimension is increasing in the €4 dimension. So the maximum
value of seigniorage (across the €., and r¢ dimensions) is in the region/limit 7¢ > r* and
€p — 00. We first show that in the above region/limit (r* — r©™P) — (r* — r¢). We

have

€ch €cb * b 1—¢€cp ﬁ
(r* — rOMP) = q " (r* — r©) <1 + Zb (7"7'_))) b (D.1)

ob
. . . 1—
Since lime,, oot = 1, lime,socte 0 = 1.

€cb (% b 1-c, l1—e,
Moreover, with 7¢ > 7, 1+ hw) " 1 for €cp — 00. We thus

aid’ (r* _Tc))lfecb
obtain (r* — re™mP) — (r* — r¢). Intuitively, for e, — oo, bank deposits and CBDC are

* —1r°) < (r* —r?), bank deposits are driven out

perfect substitutes and, as long as (r
of the market, the composite liquid asset becomes effectively CBDC and the composite
rate becomes the CBDC rate.

Hence, in our region of interest (¢ > 7® and €4 — oc) the component of seigniorage

due to CBDC (C.2) becomes

Al 4 1)
Scbdc _ €ch (¥ __ 4.C D.2
pe g (r r>\/r*_TC+B(1+T*) (D2)

(D.2) shows that in this region S% is decreasing in ¢, so the supremum is reached as

¢ approaches r? from above.

E Properties of the optimal interest on CBDC

In section 3 we presented some qualitative arguments suggesting that the optimal in-

terest on CBDC is decreasing in government spending and the share of banks held by
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households. The numerical results in Section 5 are consistent with this hypothesis.

In this section we present an analytical proof of this statement under some conditions.
In particular, one of the conditions we need to impose is related to the effect of a change
in the CBDC rate on labor supply. A change in r¢ affects the money velocity z, which
in turn affects the transaction cost, and affects seigniorage, which in turn affects the tax
rate. Condition C1 in Proposition E1 posits that the effect of ¢ on labor supply through
the transaction cost is negligible relative to the effect through the tax rate.

To state condition C1 in precise terms we need to introduce two quantities. First,
define S as the sum of all government revenues other than those coming from labor
taxation, i.e. seigniorage plus revenues from taxation on profits:

S =10 + (7 — r™Ym + (r* — ¢ — ©)d° = plIP + S.

Second, define h as labor supply when the labor tax rate is zero: from (58) we have
_ 1
h = w T
Y (14s(z)+as'(x)) 7
Condition C2 is used in the second part of the proof — related to the welfare-

maximizing r¢ — to simplify the algebra.

Proposition E1: The interest rate on CBDC that maximizes consumption
and welfare is decreasing in government consumption and is decreasing in
the share of banks held by households, under the following conditions:

a8

o Cl: |55

>> [wh(2s'(z) + 8" (2)) 2%

at the optimum.

e C2: Banker’s consumption is big relative to household consumption,
and/or bankers represent a small share of the population, so that Ags =

0.

e C3: The cost of managing CBDC c° is negligible: ¢¢ — 0.

1. The consumption-maximizing r¢

We first focus on the interest on CBDC that maximizes consumption. Let us first outline
the general strategy to prove this proposition, and subsequently get into the details.
The steady state equations, (51)-(64) allow us to find all the endogenous variables of

the model in terms of the model parameters (including the parameter ¢, share of banks



held by households), and the government policy variables g (government consumption)
and 7°. Let us focus on on the budget constraint equation (55), that we rewrite here for

convenience
c(1+s(x)) = (1 — m,)wh + " — d(r* — rb) — do(r* —r®) + C(1 — )II° — £
Using (62) and (64) we rewrite this equation as 26

v(e,r%,9,C) = c(145(x)) —wh+g+c¢d°+ad’— (1 =) (d(r—)+1(r* —rt =) +k = 0

(E.1)
with
a = (=) =0 -
ko= i—oMe—7 00 —rt =
7";b — 7,b_|_ cb+ ¢(r* o Tm)

v can be seen as a function of the arguments {¢, r° g, (} since all the quantities
appearing on the RHS of (E.1), given the other steady-state equations — (51)-(54) and
(56)-(64) — are functions of these arguments (and of the other model parameters). The
table below summarizes all the dependencies, as well as their directions when fully un-
ambiguous, and references the corresponding steady-state equations (all the quantities

appearing in (E.1) but not listed on this table depend only on model parameters).

Table 4
variable | depends on | reference
T ré ] (54)
h ¢, 1% g, (58)
db ct, red (56)
de ct, 7t (57)

(E.1) implicitly defines consumption as ¢(r¢, g,¢). For any given value of g and ¢,

the value of r¢ that maximizes consumption needs to satisfy gfc = 0. By the implicit

function theorem

dc gayc
c

2yse (64) to make the replacement 7h = g — 7II® — (r* — r™ )i — (1* — 7¢ — ¢¢)d® and replace bank

profits T1° with its expression (62) in terms of profits from deposits and loans
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Provided that % 40,27 (E.2) is satisfied iff

ov

we,r®g,0) =55 =0 (E.3)

(E.1) and (E.3) are two equations that implicitly define the pair {r¢, ¢} at the optimal
(consumption-maximizing) point, as functions of ¢ and g. We can then use the implicit
function theorem again to find how the value of {r¢ c} solving the system (E.1) and
(E.3) changes with ¢ and g:

-1

ore Ire v v v v
0g ¢ _ are  de g OC
o oc ou op ou ou
g ¢ orc  dc dg  O¢
—1
0 % v v
. dc dg OC (E4)
O Ou ou Ou
are  de dg OC

where the last equality follows from the fact that 5(? = = 0 by (E.3). The two elements on
the first row in the LHS matrix of (E.4), %—7; and %—f, are the quantities we are interested

n:

ou v o
ot _ 50y 9y (E.5)
T v O En ’
69 G_ZW ore
c A dv ou
ot _ 2eac _ aC (E.6
a¢  owow  ou 6)
dc Orc ore

The strategy to prove this proposition will be to show that the expressions in (E.5) and
(E.6) are both negative. We further note that at the consumption-maximizing value of
r¢ it is necessary that % < 0, and this implies %ﬁ—) > (.28

Hence

27% is unambiguously positive (see (E.18)). Intuitively, increasing consumption violates the budget con-

straint, everything else equal.

28This is because, since g)ﬁ = -3,
dc
f)2 8 v 02_” v 82
Pe (W)_awﬂ_ ore v (B.7)
c\2 c ov - ov v 2 c !
a(re) or Qu oy (2) Ocor

Given that gr’i = 0 at the optimum, the second term in (E.7) is zero, and given that % > 0 (see (E.18)), for

8%c hs 8%y _ Op :
B(r)2 to be non-positive, we need B2 = Bre to be non-negative.
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e Given (E.6) and 5% > 0, to show that 9’ < 0 we need to show that

a¢
ouodv  Judv
¢ Given (E.5) and 8%% > 0, to show that %—’; < 0 we need to show that
Oouodv  Oudv
RO _TRTY S E.9
0g dc  Oc dg - (E.9)

We can now follow our strategy and fill in the details. u(c,r¢, g, (), is obtained by

differentiating the function v(c, 7€, g, () with respect to r¢.

9] oh od¢
,U,(C, 7)0997 C) = CS’(JZ‘)a—:; - warc + Cc arc
od’ b b
+ arc(a—g(l—T)(r—r))z() (E.10)
Given (58) and (64), labor h is itself defined through an implicit function
1
1 1 NS ﬂ ¥
07 (1 = > wo (1 — “%h )
h=— wv( Th)/ T 1 = T (E.11)
c"(1+4s(x) +xs'(x)” v (1+s(x)+zs(x))”
_ 1
If the tax rate is zero h reaches its highest value h = w7 To avoid

7 (14s(@)+os' ()7
working with a third implicit function (in addition to the implicit functions p and v)
which would make the algebra even more complex, we approximate h by performing a

Tayor explansion in % Notice that, given that the labor tax rate is 7, = % and

h=h(l— Th)_%, we have y
9-5
wh

The smaller is this quantity, the more accurate is our Taylor expansion.

= (1 —7)7 (E.12)
29

We want to collect all terms up to first order in %ﬁg contributing to expressions (E.8)
and (E.9). For this purpose, since (E.8) and (E.9) contain second derivatives of h with
respect to combinations of r¢, g and ¢ (all of which affect %5), we need to expand h up
to third order in ﬁ Later, when computing the first (second) derivatives of h we will

wh
keep all terms up to second (first) order. We obtain:

~ ~\ 2 ~\ 3 ~\ 4
— 1lg— 1/1 1 — 1/1 1 — —
=12 E L (e D) (2] i (B R 5) (L) ro( L
Y Wh 2\y ~v wh 3\ 7 vy wh wh

(E.13)

29Tn the baseline scenario in our paper, 7j, ranges between 0.25 and 0.45, and v = 1. This corresponds to

the quantity gw—_ﬁé ranging between 0.19 and 0.25.

12



From this we can obtain an expression for w-2%

36
~\ 2
w@h B wh (25 (x) + §"(x)) 1_1_1 1+i g—=S Oz
are oy (1+s(a) +as'(x)) 2\y "2 \an | ) o
~\ 2 ~
1 /1 1\g-S (1 3 1\[g-58 98
+ |-+ (-+= +(=+5-=) == = E.14
gl (7 72> Wh (7 y? ’73><wh> are (E.14)

Inserting (E.14) in (E.10) we obtain

or  ,0d°  ddb o
pleirt,9,.0) = ed(@) 5o+ GT + FRla— (=1 =)

- ~\ 2
(26/(2) + 5" (2)) 11, 1) (9=5)") o=
(v st@) tasa) || 2 <7+72> ( oh ) ore

~ ~\ 2 ~
1 1 1\g¢g-8 1 3 1\(g-S a5
gl (v vQ) Wwh <7 2 73) ( Wh ) ore

(E.15)

_l_
2|2

Since the quantities 2 and d® are decreasing in ¢ (see Table 4), the quantity (o — ¢(1 —

) (r* — 7)) is positive,® the function 5(¢) is increasing and convex, all the terms in

(E15) cad c_0d°

(r)
is positive but negligible since c¢ is neghglble by assumption, so for the function p to be

0 at the optimal point it must be 2 < 0, and it must also be

. N 2 N
1+<1+1>g—5+(1+3 1) g— S oS
v \7v /) wh A e wh ore

_ N\ 2
wh (28 (z) + §"(z)) 1/1 1 g—S Ox

o5}
3
)

Later on we will assume something somewhat stronger: that gﬁ Wh(2' () + 8" (x)) 22

(condition C1), so that the term on the RHS of (E.16) can be considered negligible rel-

>>

ative to that on the LHS. The economic meaning is the following: ‘ o8 represents the

ore

extra revenues that the government can collect by lowering ¢, and avoid extracting from
bh(2s'(x) + s”(:v))gﬁ

“lost” to transaction cost as a result of lowering ¢ of the same amount. Our assumption

workers’ wages;

represents the part of the worker’s wages that is

30Using (F.2), the quantity (a— ¢(1 —7°)(r* —#°)) can be rewritten as (r* —r?) — (70 +¢(1 — 7)) (r* — ),
which is positive because (r* — %) < (r* —r%) (see (E.2)) and (7% + ¢(1 — %)) < 1.
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is therefore that the amount “gained” by workers as a result of tax lowering is much
more significant that the amount “lost” to transaction cost, as we decrease r¢. In other
words, the assumption is that a change in r¢ affects labor (and labor income) essentially
only through its effect on the tax rate, whereas its effect through the transaction cost is
negligible.

After inserting (E.13) in (E.1) and (E.14) in (E.10) we obtain the following (to first

order in 4=2)31
wh

v Lwh  .d° d b o
G = LHs@ ST a1 =) >0 (E18)
% (1 N 1 LD__L (28" (x) + " (x)) 8_1
de v ) ¢ (L+s(x) +as'(x)) ore
4 <l %) g f_Sd—S(: >0 (E.19)
ye\y %) wh or
v 1 1 1\g-8
dg " 7+v2) wh (F-20)
op  1/1 N i) (28'(z) + 5" (x)) g— S Oz
g v \v %) (L+s(@)+as'(x) wh o
1 1 1 3 1\g¢g-S8\ 1088
- S )42(2+ 5= 2 =0 E.21
((7 W2> (W 72 W?’) wh ) wh Ore (21
g—lg = —(1- Tb)(db(r — fb) +I(r* — rh— cl)) <0 (E.22)
o _ by (. _ b od

The signs of the derivatives (E.18)-(E.23) are obtained the following way:

3 Notice that (E.19) is the derivative % at the {c,r°} point where y = 0. Indeed, given that d’, d° and
hence S are proportional to ¢ (see (56) and (57)), and h is proportional to ¢, by differentiating (E.15) we

N 2
obtain (ignoring terms in (91;—75) or higher-order)

D
o, Oz code  10d b "
dc S(I)Brc+08r°+cé)rc(a_g(1_T)(r_r))

1k (28()+5" (@) Oa _1<1+(1+i)g— )85
v ¢ (1+s(z)+zs'(x))dre ¢\ v vy %) awh ) orc
i(l+i>g—555
ve\y %) wh Ore
£ (1 1) @t 0 11 1
c v 2] ¢ (1+s(x) +as(x))dre e 2

) g-505 (E.17)

(E.17) is then equal to (E.19) given g = 0 at the optimum.

14



e In (E.18), (E.19) and (E.20) and (E.23) all the terms on the RHS are positive.

Regarding (E.23), remember that gfg < 0 (see Table 4).
Regarding (E.19), the first term is positive since s(x) is an increasing and convex

function and « is a decreasing function of ¢ (see Table 4). The second term is

positive because 3;7'1 < 0 at the {c,r°} point where u = 0 (see (E.15), (E.16) and

the related discussion). Using the assumption ‘g—ﬁ >> [wh(2s' (x) + 5" (2)) P

we

can say that %’f > 0.
e In (E.22) all the terms on the RHS are negative.

e In (E.21) the first term in the RHS is negative and the second term is positive for

the reasons discussed in the previous point.

E.8), together with (E.18)-(E.23) then shows that %< < 0. This shows that the
( ac

consumption-maximizing ¢ is decreasing in (.
Finally, to show that the consumption-maximizing r¢ is decreasing in g, we need to

show that g—’;g—’é - %g—’; > 0 (see (E.9)) Given (E.18)-(E.23), the sign of the first term

in the latter expression is positive, however the second term is negative.

Wh(2s'(z) + 8" (x)) 2| relative to those

Neglecting again the terms proportional to

a3
ore

proportional to in (E.19) and (E.21), and using ?)_Z >14+ %%’3 (since all the terms

in (E.18) are positive), we can write

owdv _opdv (| vk (L 1Y 0108 1yg-8) 108
dg Oc  Oc dg v ¢ vooN2 v 2 3 ) wh ) whOre
g

oL (L 1Y, 1) 805
ve\y ? v/ @h Ore
— 1+i+2<l+i_i>ﬂ Las’
B vy A2 vy 9% %) wh | whore
1|1 1 1 4 3\g—-S|as
e [v 72 (7 72 73> wh]&"c (24

The two terms after the equality sign are both positive for any v > 0.32

32This is easy to see when 7 > 1 (given gr; < 0). When 0 < v < 1, this is less immediate to see

because the terms (% + 32— i.> and (% + 4 i) can become negative for low . However, notice that

72 ’Y‘j 72 73
G 1 . . . .
91;—5 = 7n(1 — 7,)7 takes a maximum possible value of —3I+— (when 7, = 1—;_7—7) It is easy to verify that
B (I4)7
even for gw—_ES = —'YLT (and a fortiori for lower values of gw_—ﬁs) the two expressions in square parenthesis are
(A4y)”

positive for any positive 7.
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(E.24) shows indeed that the optimal value of r¢ is decreasing in g.

2. The welfare-maximizing r°¢

To prove this part of the proposition we adopt a very similar strategy. As before, the
optimal 7¢ is defined by two functions: the function v, which is the same as before, given
that consumption still needs to satisfy the budget constraint, and a new function that
we call "V, which states that the optimal 7¢ is the one maximizing welfare, derived
as follows. Remember that welfare is W = log(c) — ’Lj + Mog(c®) (see (39)). (58),
together with (54), (60) and (64) can be used to define h as a function of ¢ and r¢, while

Ov_

(55) (i.e. the v function) defines c(r®), with < = —2:=. All these equations therefore
e

define h(r, c(r®)) . Similarly, we can define ¢ (r¢, ¢(r¢)).

The value of r¢ that maximizes welfare must therefore satisfy

lac_h 5h(’“)c+% i @_}_Bcb"& _o
c Or¢ Oc Or¢ ~ Or¢ or¢ dc Ore )

Given (E.2) and % > 0, this condition can be written as

(E.25)

RSty & Pl e v 2
orc¢ or¢  Oc Or¢

ov oh Ov 61/ ah c A ov v dete _o
are " acare T o T -

Since by assumption we work in the limit A5 — 0 we define our second function

/LW(C7 7‘07 g? C) as

v Oh Ov (91/ oh
w ¢ — _e W gy 2
pert9,0) = 55 —chlo = W5 =0 (E.26)

The functions v and " define ¢ and the welfare-maximizing r¢ as functions of ¢ and C.
Following the same reasoning as in the previous subsection, to show that the optimal r°

is decreasing in ¢ and g we need to show that

oW o EMW ov

ac e ac ac "
and ]
respectively.
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We have (using (E.10) and (E.18))

o, Ox  ,0d°  0d° b i _Oh
ore oW T ¥ g0 T (LT =) S
6db b ~b . Oh
= Nt gola—CA=7)(r 7)) -z (E.27)
c b
with fi = cs’(m)@—f—ccad +8d (a—¢—7")(r—7") <0

or¢ or¢  or¢

(remember that s is an increasing function of z, % <0, % < 0 and ¢ is negligible).

ov . Oh
Cop = ¢ Weoo + fa (E.28)
with fo = es(x) + cd® + d°(a — (1 — ) (r — 7)) > 0

Inserting (E.27)-(E.28) into (E.25) we obtain

oh oh oh oh
woo_ . 400 o Oh Ly
a <f1 wc’)rc> (1 ch 80) + <C e + fz) g ore

oh . Oh oh
fl (1 —C h7%> - U}% + (C + f2)h7% (E29)

We use (E.14) to express grhc up to second order in 91;)—5, ignoring terms proportional

to [wh(2s'(x) + s"(z)) gﬂ relative to those proportional to ‘g—ﬁ . We also compute %
(again to second order in %)

- ~2
oh  1h 1/1 1\g-8
B I TR (T I A E.30
de vc<+2<’y+v2> wh ) ( )

so that

- ~ ~ ~\ 2
hY 0S 1lg—5 1 1 -5
+ fo—F 1+—g——+(———2) (gA—)

~w Ore¢ Y wh Yo wh
. - N 2
oS [1g-—S 1 2 g—=S
are \ v wh (w 72> ( wh ) (31

The term in the first line of (E.31) is negative since f; is negative (see (E.27)), the

term in the second line is also negative since fa is positive (see (E.28)) and g—rgc, as in
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the previous section, is negative;3 the term on the third line is positive. For "V =0
to be satisfied, the term in the third line must be bigger in absolute value that the one
on the second line. It is possible to show that this implies fg% <1if0 <y <5, that
is, for every realistic value of the inverse Frisch elasticity, especially in a macroeconomic

context.?* We have

oW 1 pYt1 1 1 -
@ | pl 14+ (- )%=
dg wh v Yoy

v Y h
1 1 2\g-2S)\ 85
- —+2(—+—2>9A—_S 2514 (E.32)
gl v ) h re
ouv fi R+ f205- (1 1 1\ g-5
- - 1— = Y - = ]_ - —_—
Oc ¢ 72 +C’lf) av'ch 7+72 +W wh
1051 1\g—5
— =1+ = — >0 E.33
ey (143) B
o e | O Ry g—=8
o ‘“‘T")(“”larc e Gy
oS- (1 1¢g-S
b T4 L2 E.34
ot (148 -

Notice that to obtain (E.34) we need to keep in mind that f; x ¢ (see (E.28)), h c_é,

a8
ore X C.

e In (E.32) the terms in the first and third line are positive, the one in the second

line is negative. But since, as discussed before, fg% < 1, the term in the third

a8

33 Another way to see that 5= is always negative at the optimum is the following: seigniorage increases in

r¢ for low values of ¢ and increases for high values of 7¢. The optimal value is the one the reaches the best

a5

tradeoff between maximizing seigniorage (which would require 5% = 0), and maximizing the other channels

(which would require r¢ = r*). Therefore, the optimal value must be above the seigniorage-maximizing one,

i.e. must be in the region where seigniorage is decreasing.

1 _g . .
34As previously noted, since % =71 —7)7, wLES takes a maximum possible value of —2— (when

(14

= ﬁ—,y) It is easy to verify that the factor in parenthesis in the third line of (E.31) is smaller than the

factor in parenthesis in the second line for any feasible value of 9;—; and every v s.t. v < 5. Therefore, for

~v < 5, for the term in the third line to be bigger in absolute value than the term in the second line, it must

be fol < 1.
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line is bigger in absolute value than the one in the second line, which is sufficient

w
to conclude that %‘—g > 0.

e Concerning (E.34), to show that % > 0, similarly to what we did in (E.17), we

can write (E.34) as

o v flﬁ’“l((Hl) g—g>+f23§i_ﬂg—g 105 1g-38

de c ¢ A v wh Wedre~3 wh  cIrcy? wh
f1 R 1 g— =8 fo0Shg—S 1905 1g-S
c + v wh T icore v wh corcy2 wh ( )

The second equality in (E.35) is obtained using "' = 0 at the optimum (see (E.31);

on the last line of (E.35), the first and the third term are positive, the second term

is negative but smaller in absolute value than the third term since, as discussed
. hY

before, 271—1@ < 1.

. wo. . s . b g
e Concerning (E.34), Q% is unambiguously positive since both gffc and gf( are

negative.

Given (E.34), (E.34), (E.19) and (E.23), we have unambiguously

oW ov  ou ov

¢ dc Oc OC

which shows that the optimal r¢ is decreasing in (.

>0 (E.36)

Finally, since % > 1+ %’”TE (see (E.19)) and Qg < —%’_“7—“ ((1 + }y) _

%gﬁ%g_—ﬁg (see (E.35)) we have (also using (E.21) for g—z and (E.32) for Qg%)

S 17
=lom

)_

oW ov oo 1 p+ 29— S
ooy oo L[ Rt 2g-
dg Oc dc dg c ~

Y wh
R (1 1 1\g—-S)\as
I = 2 Ta T T a E— e ——
T (72 " (72 v3) dh ) ore

(E.37)

. . . . hY
The only negative term in (E.37) is the second term on the RHS, however given fg% <1
(for 0 < v < 5) this term is smaller in absolute value than the last term in the same

range. (E.37) shows that the optimal r¢ is decreasing in g.
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