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This Online Appendix has 6 sections. Section A derives the period 2 net worth

of the bank (equation (13) of the text). Section B derives the optimal swap market

position (equation (21) of the text) and the optimal euro and dollar loan portfolios

(equations (22) and (23) of the text). Section C derives the analytical results in

Table 1 of the paper. Section D discusses other equilibria of the model than the

equilibrium focused on in the text. Section E discusses the data used to calibrate

the representative G-SIB bank balance sheet and the responses of bank balance

sheet variables to a shock to dollar funding in Figure 2 of the paper. Section F

discusses sensitivity analysis.

A Period 2 Net Worth

We can write the period 2 net worth as

W2 =
(
1 + ie,l0 − de2

)
Le1 +

1

E2

(
1 + i$,l0 − d$2

)
L$
1 − (1 + is)Be − (1 + ie1 )B

e,w
1

− 1

E2

(1 + i$1)B
$,w
1 + S1

(
1− F1

E2

)
(A.1)

The first two terms capture the gross returns on euro and dollar loans, the latter

multiplied by 1/E2 to convert to euros. The last two terms on the first line subtract

the gross return on retail euro liabilities and wholesale euro liabilities. The second

line subtracts the gross return on wholesale dollar liabilities, converted to euros

and adds the period profit from the swap market position.

We have

B$,w
1 = L$

1 − S1 (A.2)

Be,w1 = −W1 + Le1 −Be + S1 (A.3)
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Substituting these into (A.1), we have

W2 =
(
ie,l0 − de2 − ie1

)
Le1 + (ie1 − is)Be + (1 + ie1 )W1 (A.4)

+
1

E2

(
i$,l0 − d$2 − i$1

)
L$
1 +

(
−1− ie1 +

1

E2

(1 + i$1) + 1− F1

E2

)
S1

The first term on the second line becomes
(
i$,l0 − d$2 − i$1

)
L$
1 when linearizing

around e2 = ln(E2) = 0 and an excess return i$,l0 − d$2 − i$1 of zero. The sec-

ond term on the second line becomes (i$1− ie1 + e1− f1)S1 when linearizing around

e2 = i$1 = f1 = 0 and using that e1 = 0.

This gives

W2 =
(
ie,l0 − de2 − ie1

)
Le1 + (ie1 − is)Be + (1 + ie1 )W1

+
(
i$,l0 − d$2 − i$1

)
L$
1 +

(
e1 − f1 + i$1 − ie1

)
S1 (A.5)

Substituting

W1 = W0 − (1− p$1)(L
$
0 − L$

1)− (1− pe1 )(L
e
0 − Le1 ) (A.6)

we have

W2 =
(
ie,l0 − ie1 − de2

)
Le1 +

(
i$,l0 − i$1 − d$2

)
L$
1 + (1 + ie1 )W0 + (ie1 − is)Be

+
(
i$1 − ie1 + e1 − f1

)
S1

−(1 + ie1 )(1− p$1)(L
$
0 − L$

1)− (1 + ie1 )(1− pe1 )(L
e
0 − Le1 ) (A.7)

Linearizing the last line at ie1 = L$
0 − L$

1 = Le0 − Le1 = 0, we have

W2 =
(
ie,l0 − ie1 − de2

)
Le1 +

(
i$,l0 − i$1 − d$2

)
L$
1 + (1 + ie1 )W0 + (ie1 − is)Be

+
(
i$1 − ie1 + e1 − f1

)
S1 − (1− p$1)(L

$
0 − L$

1)− (1− pe1 )(L
e
0 − Le1 ) (A.8)

This is equation (13) in the text.

B Optimal Decisions by Bank

The bank maximizes the Lagrangian

ERp
2 − 0.5γvar(Rp

2)− 0.5
1

W1

ηS2
1 (B.1)

− le
W1

(
Be,w1 − B̄e

)
− ld

W1

(
B$,w

1 − B̄$
)
− µe

W1

(
Le1 − Le0

)
− µd

W1

(
L$
1 − L$

0

)
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SinceRp
2 = W2/W1, we have ERp

2−0.5γvar(Rp
2) = (1/W1)E(W2)−0.5γ(1/W 2

1 )var(W2).

It then follows from (B.1) that the bank maximizes

E(W2)− 0.5γ
1

W1

var(W2)− 0.5ηS2
1 (B.2)

−le

(
Be,w1 − B̄e

)
− ld

(
B$,w

1 − B̄$
)
− µe

(
Le1 − Le0

)
− µd

(
L$
1 − L$

0

)
Next substitute the expression (13) for W2 as well as (A.2)-(A.3) and (A.6).

Omitting terms that do not depend on L$
1, L

e
1 or S1, the bank maximizes(

ie,l0 − ie1 − d
)
Le1 +

(
i$,l0 − i$1 − d

)
L$
1 (B.3)

+
(
i$1 − ie1 + e1 − f1

)
S1 − (1− p$1)(L

$
0 − L$

1)− (1− pe1 )(L
e
0 − Le1 )

−0.5γ
1

W1

σ2
(
Le1
)2 − 0.5γ

1

W1

σ2
(
L$
1

)2 − 0.5ηS2
1

−le
(
Le1 + S1 − B̄e

)
− ld

(
L$
1 − S1 − B̄$

)
−le(1− pe1 )(L

e
0 − Le1 )− le(1− p$1)(L

$
0 − L$

1)

−µe

(
Le1 − Le0

)
− µd

(
L$
1 − L$

0

)
The first-order condition with respect to S1 is

S1 =

(
i$1 + ld

)
−
(
ie1 + le + f1 − e1

)
η

(B.4)

This corresponds to equation (21) in the text.

The first-order conditions with respect to Le1 and L$
1 are

Le1 =
ie,l0 − d− ie1 + 1− pe1 − pe1 le − µe

γσ2
W1 (B.5)

L$
1 =

i$,l0 − d− i$1 + 1− p$1 − ld + le(1− p$1)− µd

γσ2
W1 (B.6)

Next substitute the expressions for pe1 and p$1. This gives

Le1 =
ie,l0 − d− ie1 − le − µe + (1 + le)νeL

e
0

γσ2 + (1 + le)νeW1

W1 (B.7)

L$
1 =

i$,l0 − d− i$1 − ld − µd + (1 + le)νdL
$
0

γσ2 + (1 + le)νdW1

W1 (B.8)
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C Analytical Results

C.1 Probability of Default

We start by showing that ∆pD = 0 to the first order when linearizing at the pre-

shock equilibrium. The most important part of the argument is that ∆W1 = 0

when differentiating at the pre-shock equilibrium:

∆W1 = (1− p$1)∆L$
1 + (L$

0 − L$
1)∆p$1 + (1− pe1 )∆Le1 + (Le0 − Le1 )∆pe1 (C.1)

This is zero at the pre-shock equilibrium, where the asset prices are 1 and period

0 and 1 loans are the same.

We have

pD = Prob(W2 < 0) = Prob
(
de2L

e
1 + d$2L

$
1 > C

)
(C.2)

where the second equality follows from (13) and

C =
(
ie,l0 − ie1

)
Le1 +

(
i$,l0 − i$1

)
L$
1 + (1 + ie1 )W0 + (ie1 − is)Be

+
(
i$1 − ie1 + e1 − f1

)
S1 − (1− p$1)(L

$
0 − L$

1)− (1− pe1 )(L
e
0 − Le1 ) (C.3)

Linearizing de2L
e
1 +d$2L

$
1 at pre-shock loan levels and de2 = d$2 = d, we can write

the probability of default as

pD = Prob
((
de2 − d

)
Le0 +

(
d$2 − d

)
L$
0 > C − dLe1 − dL$

1

)
(C.4)

The left hand side has an exogenous stochastic distribution that is unaffected by

the shock. It therefore follows that this probability depends on C − dLe1 − dL$
1.

This is equal to(
ie,l0 − d− ie1

)
Le1 +

(
i$,l0 − d− i$1

)
L$
1 + (1 + ie1 )W0 + (ie1 − is)Be

+
(
i$1 − ie1 + e1 − f1

)
S1 − (1− p$1)(L

$
0 − L$

1)− (1− pe1 )(L
e
0 − Le1 ) (C.5)

This term does not change to the first-order due to the shock, so that ∆pD = 0.

We have already discussed that the last two terms, associated with the change in

W1, do not change to the first-order. Also, when ∆pD = 0, the euro and dollar

borrowing rates do not change to the first order. Now consider changes in euro

and dollar lending. For example, for euro lending this term is(
ie,l0 − d− ie0

)
∆Le1 = γσ2Le0

1

W0

∆Le1 (C.6)
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This term is third-order as ∆Le1 is multiplied by σ2. So we ignore this. The only

term left is the one involving synthetic dollar borrowing. Its first-order change is

− (f0 − e0)∆S1 − S0∆(f1 − e1) (C.7)

But this is also zero since the pre-shock CIP deviation f0 − e0 is zero and also

S0 = 0. It follows that ∆pD = 0, so that also ∆ie1 = ∆i$1 = 0.

C.2 Linearization

Differentiating (22)-(23) at the pre-shock equilibrium, using that ∆ie1 = ∆i$1 = 0,

we have

∆Le1 =
W0

γσ2 + νW0

(−∆le −∆µe) (C.8)

∆L$
1 =

W0

γσ2 + νW0

(−∆ld −∆µd) (C.9)

From the swap market clearing condition we have

∆(f1 − e1) = 0.5ηϵu + 0.5 (∆ld −∆le) (C.10)

∆S1 = −0.5ϵu + 0.5
1

η
(∆ld −∆le) (C.11)

where ϵu = ∆u.

Using that ∆W1 = 0, we have

∆Be,w1 = ∆Le1 +∆S1 (C.12)

∆B$,w
1 = ∆L$

1 −∆S1 (C.13)

We consider 4 scenarios: dollar liquidity shocks without and with slackness

in the euro borrowing constraint and u-shocks without and with slackness in the

dollar borrowing constraint. In all the equilibria ∆µe = ∆µd = 0 as banks do not

wish to increase lending.

C.3 Dollar Liquidity Shock without Euro Slackness

In the equilibrium derived below both dollar and euro lending drop, so that ∆Le1
and ∆L$

1 are negative. Dollar and euro borrowing constraints hold with equality.
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Therefore ∆Be,w1 = 0 and ∆B$,w
1 = −ϵb. These constraints bind, so that ∆le and

∆ld are positive. We must compute ∆Le1 and ∆L$
1 as well as ∆le and ∆ld.

We solve ∆le and ∆ld by setting ∆Be,w1 = 0 and ∆B$,w
1 = −ϵb. This implies

∆Le1 +∆S1 = 0 (C.14)

∆L$
1 −∆S1 = −ϵb (C.15)

It is convenient to add and subtract these equations:

∆Le1 +∆L$
1 = −ϵb (C.16)

∆Le1 −∆L$
1 + 2∆S1 = ϵb (C.17)

These two equations imply

∆ld +∆le =
γσ2 + νW0

W0

ϵb (C.18)

∆ld −∆le =
γσ2 + νW0

W0 +
1
η
(γσ2 + νW0)

ϵb (C.19)

Adding and subtracting gives

∆ld = 0.5(γσ2 + νW0)

(
1

W0

+
1

W0 +
1
η
(γσ2 + νW0)

)
ϵb (C.20)

∆le = 0.5(γσ2 + νW0)

(
1

W0

− 1

W0 +
1
η
(γσ2 + νW0)

)
ϵb (C.21)

It follows that

∆Le1 = − 0.5(γσ2 + νW0)

ηW0 + (γσ2 + νW0)
ϵb (C.22)

∆L$
1 = −ηW0 + 0.5(γσ2 + νW0)

ηW0 + (γσ2 + νW0)
ϵb (C.23)

These results also imply that

∆(f1 − e1) =
0.5η(γσ2 + νW0)

ηW0 + (γσ2 + νW0)
ϵb (C.24)

∆S1 =
0.5(γσ2 + νW0)

ηW0 + (γσ2 + νW0)
ϵb (C.25)
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C.4 Dollar Liquidity Shock with Euro Slackness

In the equilibrium with euro slackness we have ∆le = 0 and ∆Be,w1 > 0. In

the equilibrium derived below the dollar borrowing constraint still holds with an

equality, so that ∆B$,w
1 = −ϵb and ∆ld > 0.

We solve for ∆ld > 0 by imposing the dollar borrowing constraint with an

equality. This implies ∆L$
1 −∆S1 = −ϵb, so that

−W0

γσ2 + νW0

∆ld − 0.5
1

η
∆ld = −ϵb (C.26)

and

∆ld =
η(γσ2 + νW0)

ηW0 + 0.5(γσ2 + νW0)
ϵb (C.27)

We have

∆L$
1 = − ηW0

ηW0 + 0.5(γσ2 + νW0)
ϵb (C.28)

∆S1 =
0.5(γσ2 + νW0)

ηW0 + 0.5(γσ2 + νW0)
ϵb (C.29)

We also have

∆Le1 = 0 (C.30)

∆Be,w1 =
0.5(γσ2 + νW0)

ηW0 + 0.5(γσ2 + νW0)
ϵb (C.31)

The CIP deviation is

∆(f1 − e1) =
0.5η(γσ2 + νW0)

ηW0 + 0.5(γσ2 + νW0)
ϵb (C.32)

C.5 u-shock without Dollar Slackness

In the equilibrium below wholesale euro borrowing drops, so that ∆le = 0. The

dollar borrowing constraint binds, so that ∆ld > 0 needs to be solved.

We solve ∆ld by setting ∆B$
1 = 0. This implies

∆L$
1 −∆S1 = 0 (C.33)

This implies

− W0

γσ2 + νW0

∆ld + 0.5ϵu − 0.5
1

η
∆ld = 0 (C.34)
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This implies

∆ld =
0.5η(γσ2 + νW0)

ηW0 + 0.5(γσ2 + νW0)
ϵu (C.35)

We then have

∆L$
1 = − 0.5ηW0

ηW0 + 0.5(γσ2 + νW0)
ϵu (C.36)

We have

∆Le1 = 0 (C.37)

∆B$,w
1 = 0 (C.38)

∆Be,w1 = ∆S1 = − 0.5ηW0

ηW0 + 0.5(γσ2 + νW0)
ϵu (C.39)

The change in the CIP deviation is

∆(f1 − e1) = 0.5ηϵu + 0.5∆ld = 0.5η
ηW0 + (γσ2 + νW0)

ηW0 + 0.5(γσ2 + νW0)
ϵu (C.40)

C.6 u-shock with Dollar Slackness

When there is dollar slackness we have ∆ld = 0. It still remains the case that

∆le = 0 as euro borrowing falls. Is it easily checked that with no changes in

Lagrange multipliers, ∆Le1 = ∆L$
1 = 0.

We have ∆S1 = −0.5ϵu, ∆Be,w1 = −0.5ϵu and ∆B$,w
1 = 0.5ϵu. The CIP

deviation rises by ∆(f1 − e1) = 0.5ηϵu.

D Other Equilibria

Other equilibria, beyond the one we focus on in the paper, can exist. For the

benchmark parameterization in the paper, Figure A1 shows a mapping of the

probability of default pD into itself. The value of pD on the horizontal axis is the

assumed value of pD by the wholesale lenders. This determines the interest rates

on wholesale dollar and euro funding. The implied actual default probability is on

the vertical axis. These must be equal in order for an equilibrium to exist. Figure

A1 is drawn assuming that neither of the two shocks analyzed in the paper apply,

so that B̄$ = B$,w
0 , B̄e = Be,w0 and u = 0.

There are two solutions. We focus on the equilibrium with a low value of pD,

which is 0.005 or 50 basis points. We refer to this as the pre-shock equilibrium.
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But there is a second equilibrium with high value of pD = 0.107. This means

that without either of the shocks considered in the paper, it is possible to have

a self-fulfilling shock that raises the probability of default. Intuitively, a higher

probability of default raises wholesale dollar and euro interest rates, which lowers

net worth at time 2, which indeed raises the probability of default. However, the

higher default equilibrium is unstable. Raising the assumed default probability

slightly beyond that of the higher default equilibrium implies that the actual de-

fault probability is even higher. Similarly, lowering the assumed default probability

slightly implies that the actual default probability is even lower.

But other equilibria can exist as well, where none of the wholesale lending is

rolled over. These equilibria can take one of two forms. One is what we will refer to

as a bank run equilibrium. This type of equilibrium is familiar from the ban krun

literature. If wholesale funding is not rolled over, the bank is forced to liquidate

assets. When the losses from liquidation are high enough that the bank is unable

to pay the period 0 wholesale lenders, the bank defaults in period 1. In that case,

we do not even reach period 2. The other case is where it is possible for the bank

to liquidate enough assets in period 1 to pay the period 0 wholesale lenders, but

there is a significant drop in net worth and W1 < 0. This also lowers W2. If it is

the case that W2 < 0 even under the most favorable scenario, where d$2 = de2 = 0,

period 2 default is certain. In that case pD = 1 and it is indeed not optimal for

wholesale lenders to provide any funding in period 1. We refer to this as a delayed

bank run equilibrium. Bank default is delayed to period 2.

D.1 Bank run Equilibrium

First consider a regular bank run equilibrium. Assume that wholesale lenders

do not roll over their lending, so that B$,w
1 = Be,w1 = 0. In order to pay the

period 0 wholesale lenders, the bank must sell enough loans to pay the principal

B0 = B$,w
0 + Be,w0 . Note that the interest has already been deducted to pay

dividends to bank shareholders. So it must be the case that

p$1
(
L$
0 − L$

1

)
+ pe1

(
Le0 − Le1

)
= B0 (D.1)

If the bank is unable to sell enough loans to satisfy this, there exists a self-fulfilling

bankrun equilibrium. So consider if it is possible for the bank to satisfy (D.1).

The bank takes p$1 and pe1 as given. Assume that the bank will sell loans in a
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way that maximizes W1, while satisfying (D.1). From (D.1) we have

Le1 = − p$1
pe1

L$
1 +

1

pe1

(
p$1L

$
0 + pe1L

e
0 −B0

)
(D.2)

From (A.6), maximizing W1 implies maximizing

(1− p$1)L
$
1 + (1− pe1 )L

e
1 =

pe1 − p$1
pe1

L$
1 +

1− pe1
pe1

(
p$1L

$
0 + pe1L

e
0 −B0

)
(D.3)

The right hand side substitutes (D.2).

When pe1 > p$1, it is clear that the bank wants to set L$
1 as high as possible. In

that case L$
1 = L$

0. But when all banks do this, it implies that p$1 = 1, so that this

cannot be an equilibrium.

When pe1 = p$1, the bank is indifferent about how many dollar loans versus

euro loans to sell. Based on the expressions for the asset prices, it follows that

L$
0 −L$

1 = Le0 −Le1 . Referring to this selloff of both euro and dollar loans as x, we

then have p$1 = pe1 = 1− νx. To satisfy (D.1), we must then have

νx2 − x+ 0.5B0 = 0 (D.4)

At the same time x < L$
0 as the bank cannot sell more than L$

0 dollar loans.

Assuming that Le0 > L$
0, this automatically also implies that x < Le0 . In order for

a solution to the quadratic to exist, it must be the case that

2νB0 < 1 (D.5)

In that case we have

x =
0.5

ν

(
1−

√
1− 2νB0

)
(D.6)

Here we pick the lower solution for x to make it more likely that x < L$
0 is satisfied.

It can be checked that when we pick the higher solution to x, x < L$
0 will not be

satisfied. Note that since x < 0.5/ν, the loan prices 1− νx are larger than 0.5.

Note that
√
1− 2νB0 < 1− νB0, so that x > 0.5B0. A sufficient condition for

x < L$
0 not to be satisfied is therefore B0 > 2L$

0. This is certainly the case for our

parameterization. For any parameterization where S0 = 0, it is satisfied as long

as there are larger euro than dollar wholesale liabilities. I will assume that this is

the case. Therefore (D.1) cannot be satisfied with pe1 = p$1.

This leaves only one way that (D.1) may be satisfied, which is an equilibrium

where pe1 < p$1. In that case the bank wants to set L$
1 as low as possible, which is 0.
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Let x = Le0 −Le1 . It must then be the case that L$
0 < x < Le0 . The first inequality

is to have higher euro loan sales then dollar loans sales in order to have a lower

euro than dollar asset price. The second inequality says that the bank cannot sell

more euro loans than its time zero euro loans.

To satisfy (D.1), it must be the case that

νx2 − x+B0 − (1− νL$
0)L

$
0 = 0 (D.7)

This can only have a solution when

1− 4ν(B0 − (1− νL$
0)L

$
0) > 0 (D.8)

and x satisfies the bounds stated above.

The bank is unable to satisfy (D.1) when (D.8) does not hold, which is the case

when (
L$
0

)2
ν2 + (B0 − L$

0)ν − 0.25 > 0

This is the case when

ν >
−(B0 − L$

0) +

√
(B0 − L$

0)
2 +

(
L$
0

)2
2
(
L$
0

)2 (D.9)

It is easily checked that this is satisfied when ν > 1/[4(B0−L$
0)], which is 0.0215 for

our parameterization. But the precise cutoff in (D.9) is 0.0195. When ν > 0.0195,

there is no equilibrium where (D.1) is satisfied, so there is a bank run equilibrium.

D.2 Delayed Bank Run Equilibrium

Now consider a delayed bank run equilibrium. In this equilibrium again none of

the wholesale lending is rolled over in period 1, so that B$,w
1 = Be,w1 = 0. But

a regular bank run equilibrium does not exist. The bank is able to satisfy (D.1).

This occurs when

ν <
−(B0 − L$

0) +

√
(B0 − L$

0)
2 +

(
L$
0

)2
2
(
L$
0

)2 (D.10)

and x satisfies the bounds L$
0 < x < Le0 . Define the cutoff on the right hand side

of (D.10) as ν̄.
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To evaluate these bounds, we must solve x from (D.7). We have

x =
1±

√
1− 4ν

(
B0 − (1− νL$

0)L
$
0

)
2ν

(D.11)

For our assumed parameters, x always satisfies the bounds L$
0 < x < Le0 when

using the lower value of x, but not when using the upper value. So assume the

lower value.

In the delayed bank run equilibrium, both euro and dollar wholesale funding

are not rolled over since pD = 1. In this case the bank continues to operate until

period 2, but default is guaranteed in period 2. This means that W2 < 0 even in

the most favorable scenario where there is no default on loans, so that d$2 = de2 = 0.

We then have

W2 = (1 + ie,l0 )Le1 − (1 + is)Be (D.12)

Note that S1 = 0 as both dollar assets and liabilities are zero in this scenario.

Using that Le1 = Le0 − x, it follows that there exists a delayed bank run equi-

librium when ν < ν̄ and

x > Le0 − 1 + is

1 + ie,l0

Be (D.13)

First consider the upper end of the range for ν, ν = ν̄. In that case x = 1/(2ν̄).

As discussed, a very close approximation for ν̄ is ν̄ = 1/[4(B0 − L$
0)]. Under this

approximation, (D.13) becomes

2(B0 − L$
0) > Le0 − 1 + is

1 + ie,l0

Be (D.14)

The ratio involving the interest rates is close to 1. Therefore we can further

approximate the condition as

2(B0 − L$
0) > Le0 −Be (D.15)

Assuming S0 = 0, so that B0 −L$
0 = Be,w0 , this becomes 2Be,w0 +Be > Le0 . When

there are larger euro than dollar wholesale deposits, the left hand side is larger

than the sum of all liabilities, excluding net worth. Therefore it is larger than

Le0 + L$
0 − W0. The condition then becomes L$

0 > W0. This holds easily and

certainly for our parameterization of G-SIB banks. Therefore a delayed bank run

exists when ν is less than, but close to the cutoff ν̄. While we made a couple of
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approximations, without doing so this will be the case for the parameters assumed

in the paper.

But for this type of equilibrium to exist, ν will need to be above some minimum

cutoff. To see this, consider ν → 0. In that case it follows from (D.7) that

x → B0 − L$
0. In that case we can rewrite (D.13) as

Le0 + L$
0 < B0 +

1 + is

1 + ie,l0

Be (D.16)

This is clearly not satisfied as the left hand side is the sum of all bank assets and

the right hand side is less than the sum of all bank liabilities. This means that a

delayed bankrun equilibrium does not exist when ν is close to zero. This makes

sense as in that case the losses from selling assets are negligible.

Figure A2 provides a numerical illustration based on the parameterization in

the paper. It shows for ν from 0 to ν̄ = 0.0195 the value of W2 conditional on zero

default on bank loans in period 2, as well as the values of W1, L
$
1, L

e
1 , p

$
1 and pe1 .

We need W2 < 0 for a delayed bankrun equilibrium to exist. This is the case for ν

in between 0.0126 and 0.0195. There is a small range of values of ν from 0.0098 to

0.0126 where W1 < 0 but W2 > 0. At the upperbound where ν = ν̄ = 0.0195, the

balance sheet of the bank looks as follows. The value of remaining euro loans has

dropped from the original 39.5 to 13.8. The net worth is -11.5 and retail deposits

remain 25.3. The price of the dollar loans has dropped to 0.844, while the price

of euro loans has dropped to 0.5. When ν is larger than 0.0195, the bank losses

are even larger and the bank is unable to repay the period 0 wholesale lenders. In

that case a regular bank run equilibrium exists.

E Bank balance sheets and event study

We discuss some details behind the construction of bank balance sheets, which are

used for the calibration exercise in Section 4 of the paper and for the event study

in Figure 2 of the paper.

E.1 Balance Sheet Data

We collect balance sheet data from 40 non-US and non-Chinese G-SIB banks. As

part of the BIS annual G-SIB assessment that has been conducted every year since
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2013, the BIS collects data from a set of the largest banks in the world. These

40 banks are the non-US and non-Chinese banks that have been included in the

BIS G-SIB Main Sample every year from 2013 to 2022.1 These 40 banks are

headquartered in 14 countries.

Define DB,c,t as deposits at G-SIB banks in county c, where DB,c,t =
I∑

i=1

Di,c,t

and Di,c,t are deposits at G-SIB bank i in country c and I is the total number of

G-SIB banks headquartered in country c. These deposit data are taken from the

S&P Capital IQ data.

CUSD
B,c,t and LUSD

B,c,t are the USD denominated claims and liabilities for the G-SIB

banks in country c, where CUSD
B,c,t = mcC

USD
c,t and LUSD

B,c,t = mcL
USD
c,t . CUSD

c,t and

LUSD
c,t are the dollar denominated claims and liabilities for all banks in country c

from the BIS, and mc is the share that is held by the G-SIB banks.

The USD denominated claims and liabilities at the country-level, CUSD
c,t and

LUSD
c,t , are calculated from the BIS International Banking Statistics following the

method described in Aldsoro and Ehlers (2018). From the Locational Banking

Statistics by Nationality we can observe the USD claims and liabilities of banks

headquartered in country c. This includes both local and cross-border holdings by

the bank in the headquarter country as well as local USD claims and liabilities of

1The names of these banks, along with the stock exchange and ticker for the publicly

traded ones are: ANZ Group Holdings Limited (ASX:ANZ), Banco Bilbao Vizcaya Argentaria,

S.A. (BME:BBVA), Banco Santander, S.A. (BME:SAN), Bank of Montreal (TSX:BMO), Bar-

clays PLC (LSE:BARC), BNP Paribas SA (ENXTPA:BNP), CaixaBank, S.A. (BME:CABK),

Canadian Imperial Bank of Commerce (TSX:CM), Commerzbank AG (XTRA:CBK), Com-

monwealth Bank of Australia (ASX:CBA), Coöperatieve Rabobank U.A., Crédit Agricole S.A.

(ENXTPA:ACA), Crédit Mutuel Group, Credit Suisse Group AG (SWX:CSGN), Danske Bank

A/S (CPSE:DANSKE), DBS Group Holdings Ltd (SGX:D05), Deutsche Bank Aktiengesellschaft

(XTRA:DBK), DZ BANK AG, Deutsche Zentral-Genossenschaftsbank Frankfurt am Main ,

Groupe BPCE, HSBC Holdings plc (LSE:HSBA), ING Groep N.V. (ENXTAM:INGA), Intesa

Sanpaolo S.p.A. (BIT:ISP), Lloyds Banking Group plc (LSE:LLOY), Mitsubishi UFJ Finan-

cial Group, Inc. (TSE:8306), Mizuho Financial Group, Inc. (TSE:8411), National Australia

Bank Limited (ASX:NAB), NatWest Group plc (LSE:NWG), Nordea Bank Abp (HLSE:NDA

FI), Royal Bank of Canada (TSX:RY), Société Générale Société anonyme (ENXTPA:GLE),

Standard Chartered PLC (LSE:STAN), State Bank of India (NSEI:SBIN), Sumitomo Mitsui Fi-

nancial Group, Inc. (TSE:8316), Sumitomo Mitsui Trust Group, Inc. (TSE:8309), The Bank

of Nova Scotia (TSX:BNS), The Norinchukin Bank, The Toronto-Dominion Bank (TSX:TD),

UBS Group AG (SWX:UBSG), UniCredit S.p.A. (BIT:UCG), Westpac Banking Corporation

(ASX:WBC)
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foreign affiliates, and excludes intragroup holdings. This however does not include

the local USD claims and liabilities of affiliates in the United States. So to this

data from the Local Banking Statistics by Nationality we add local claims and

liabilities in the local currency by the bank’s affiliates in the United States from

the BIS Consolidated Banking Statistics.

The sharesmc are calculated as follows. Let CF
i,c,t and LF

i,c,t be cross-jurisdictional

claims and liabilities of G-SIB bank i in country c. We observe these data for every

year from 2013 to 2022. Summing these across the G-SIB banks in a country, we

have CF
B,c,t =

I∑
i=1

CF
i,c,t and LF

B,c,t =
I∑

i=1

LF
i,c,t. We can observe foreign claims and lia-

bilities at the country level from the BIS (denominated in all currencies), CF
c,t and

LF
c,t. When observing these foreign claims and liabilities from the BIS, we can ob-

serve if a claim or liability is with a domestic counterparty, foreign counterparty,

or unallocated. We assume that the claims and liabilities with an unallocated

counterparty are 50% foreign and 50% domestic.

From this we can calculate mC
c,t =

CF
B,c,t

CF
c,t

and mL
c,t =

LF
B,c,t

LF
c,t

for every year 2013-

2022. Our shares are mc =
1
2

1
10

2022∑
t=2013

(
mC

c,t +mL
c,t

)
.2

CnonUSD
B,c,t are non-USD denominated claims for the G-SIB banks in country c.

It is computed as a residual: CnonUSD
B,c,t = AB,c,t − CUSD

B,c,t . Total assets of G-SIB

banks in country c are AB,c,t =
I∑

i=1

Ai,c,t, where Ai,c,t is the total assets of G-SIB

bank i.

LnonUSD
B,c,t are non-USD denominated wholesale liabilities for the G-SIB banks

in country c. It is also computed as a residual: LnonUSD
B,c,t = LB,c,t −DB,c,t − LUSD

B,c,t .

Total bank liabilities of G-SIB banks in country c are LB,c,t =
I∑

i=1

Li,c,t, where Li,c,t

is total liabilities of G-SIB bank i.

The net worth of G-SIB banks in country c is then NB,c,t = AB,c,t −LB,c,t. FX

swaps/bank assets are SB,c,t =
CUSD

B,c,t−LUSD
B,c,t

AB,c,t
.

2We can compute these shares every year from 2013 to 2022. They do not show and upward or

downward trend over time, so we simply compute one share and apply it throughout our sample.
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E.2 Event Study Figure 2

The event study graphs in Figure 2 present the responses of seven bank balance

sheet variables: deposits, USD claims, USD liabilities, non-USD claims, non-USD

liabilities, net worth, and FX swaps/bank assets. The figure also presents the CIP

deviation and the probability of default (EDF).

The CIP deviation is the 3-month OIS CIP deviation from Bloomberg. The

graph of in Figure 2 reports the average of these CIP deviations across our 22

events.

The EDF (expected default frequency) is observed at the bank level and is

obtained from Moody’s Analytics. The EDF series EDFB,c,t at the country level

is the average EDF across the G-SIB banks in the country. The EDF graph in

Figure 2 is the average of these country-level EDFs across our 22 events.

We calculate
scDB,c,t

hp(scDB,c,t)
, where sc is the nominal exchange rate in local currency

per USD and hp refers to the HP trend. We normalize this series to have a

value of zero in the quarter T=0 of an event in country c. The graph of retail

deposits in Figure 2 is the average of these normalized
scDB,c,t

hp(scDB,c,t)
across our 22

events. The same is done for USD claims and liabilities, non-USD claims and

wholesale liabilities, and net worth. USD assets and liabilities and net worth are

not converted to the local currency.

For FX swaps/bank assets, we do not scale by the HP trend. We do normalize

the series to have a value of zero in the quarter T=0 of an event in country c.

The graph of FX swaps/bank assets in Figure 2 is the average of these normalized

SB,c,t across our 22 events.

F Sensitivity Analysis and Extensions

We now consider sensitivity analysis and extensions. Figures A3 through A10

illustrate how changing these affect the response of variables to a dollar liquidity

shock.

F.1 Role of νe = νd

In the paper we set ν = νe = νd = 0.2. In Figure A3 we vary ν from 0 to 0.3. Unless

we lower ν below 0.01, this has very little effect on the results. The only variable
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that is affected substantially for values above 0.01 is the probability of default.

When the euro borrowing constraint is binding, it rises in response to the dollar

liquidity shock as we raise ν. This is natural as a higher cost of asset liquidation

lowers net worth, which raises the probability of default. At the extreme where

ν approaches zero, so that assets can be sold without cost, banks only sell dollar

loans and hold the swap market position at zero. Naturally, in that case the CIP

deviation is also unaffected. But beyond this rather extreme case where both dollar

and euro assets are perfectly liquid, we find that ν mainly affects net worth and

the probability of default and only when the euro borrowing constraint binds.

F.2 Role of η

In the paper we set η = 0.0025. In Figure A4 we vary η from 0 to 0.01. We

see that the only variable that is affected is the CIP deviation. Over this range,

the increase in the CIP deviation varies from 0 to 51 basis points with a binding

euro borrowing constraint and from 0 to 117 basis points without a binding euro

borrowing constraint.

F.3 Difference between νe and νd

So far we have assumed that νe = νd = 0.2. We now vary νd − νe while keeping

their average value equal to 0.2. Perhaps not surprisingly, this has a significant

effect on the results, as shown in Figure A5.

One extreme involves νd = 0 and νe = 0.4. Then there is no cost to liquidating

dollar loans, but a very high cost to liquidating euro loans. The opposite extreme

case involves νd = 0.4 and νe = 0.

Consider the two extremes in turn. When νd = 0 and νe = 0.4 there is no

cost to liquidating dollar loans. Banks then naturally sell dollar loans when faced

with a dollar liquidity shock. They do so even when the euro borrowing constraint

does not bind. Dollar assets and liabilities then drop equally and the swap market

position remains zero. The CIP deviation is therefore also unaffected by the shock.

When νd = 0.4 and νe = 0, the cost of selling dollar loans is so high that banks

will not sell any dollars loans. When the euro borrowing constraint binds they will

instead sell euro loans, which they can do without any cost. But this creates a

larger net long dollar position on the balance sheet. This leads to a larger demand

17



for dollar swaps and a larger increase in the CIP deviation.

The probability of bank default actually rises most when νe = νd = 0.2. This is

because in the two extreme cases banks avoid losses associated with selling loans.

For example, when νd = 0.4 and νe = 0, there is no cost associated with selling

euro loans, while banks avoid selling dollar loans as this is too costly.

F.4 Pre-shock Synthetic Dollar Position

Next we consider some extensions. We first vary the pre-shock synthetic dollar

position of banks. So far we set it equal to zero in the pre-shock equilibrium.

Table 2 of the paper shows that in 2022 dollar assets of non-US banks were about

$0.8T higher than dollar liabilities. If this net dollar position is hedged, it implies

that non-US banks hold $0.8T in dollar swaps, which is 1.7% of all bank assets.

On average over the 2003-2022 sample the swap position was 1% of bank assets.

Defining δ as the pre-shock ratio of the swap market position relative to assets,

we will vary δ from -0.05 to 0.05 (-5 to +5%). We do so by changing L$
0 and Le0

relative to their values in Table 3. Holding B$,w
0 equal to its value in Table 3 of the

paper, we set L$
0 = B$,w

0 +δK and Le0 = K−L$
0, where K is the size of the balance

sheet that we hold constant at 47.5. Figure A6 shows that this has virtually no

effect on any of the variables. The drop in dollar and euro lending that occurs

when the euro borrowing constraint binds remains the same. Percentage wise they

vary with δ as L$
0 is higher and Le0 is lower as we raise δ.

F.5 Risk Aversion Wholesale Dollar and Euro Lenders

We have assumed that wholesale lenders are risk neutral, so that the interest rates

on wholesale dollar and euro funding are equal to the safe rate plus the probability

of bank default. We now extend the model to make wholesale lenders risk-averse.

Consider wholesale euro lenders. Let their wealth be W l,e and let P2 be the period

2 payment per euro of wholesale lending to the bank. This is equal to 1 + ie1 with

probability 1− pD and 0 with probability pD. They earn an interest of is on safe

euro assets.

When the euro wholesale lenders allocate Ae,w1 to bank lending, the portfolio

return is

Rp,l
2 = 1 + is +

Ae,w1

W l,e
1

(P2 − 1− is) (F.17)
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Lenders maximize

ERp,l
2 − 0.5γevar(R

p,l
2 ) (F.18)

This implies maximizing

Ae,w1

W l
1

(E(P2)− 1− is)− 0.5γe

(
Ae,w1

W l,e
1

)2

var(P2) (F.19)

This implies

Ae,w1 =
(E(P2)− 1− is)W l,e

1

γevar(P2)
(F.20)

We have

E(P2) =
(
1 + ie1

)
(1− pD) (F.21)

and

var(P2) = E(P2)
2−(E(P2))

2 = (1−pD)
(
1 + ie1

)2−(1−pD)
2
(
1 + ie1

)2
=
(
1 + ie1

)2
pD(1−pD)

(F.22)

To summarize, we have

Ae,w1 =

[(
1 + ie1

)
(1− pD)− 1− is

]
W l,e

γe
(
1 + ie1

)2
pD(1− pD)

(F.23)

Analogously for wholesale dollar lenders we have

A$,w
1 =

[(
1 + i$1

)
(1− pD)− 1− is

]
W l,$

γd
(
1 + i$1

)2
pD(1− pD)

(F.24)

In the calibration, we set W l,e = Be,w0 and W l,$ = B$,w
0 . The market equilib-

rium conditions for short-term wholesale funding are Ae,w1 = Be,w1 and A$,w
1 = B$,w

1 ,

which can be written as(
1 + ie1

)
(1− pD)− 1− is = γe

(
1 + ie1

)2
pD(1− pD)

Be,w1

Be,w0

(F.25)

(
1 + i$1

)
(1− pD)− 1− is = γd(1 + i$1)

2pD(1− pD)
B$,w

1

B$,w
0

(F.26)

This replaces the equations ie1 = i$1 = is + pD.

With this extension, both the first and second moments associated with bank

default affect the interest rates. We vary risk aversion of these lenders from 0 to

2. Figure A7 shows that this has virtually no effect on the results.
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F.6 Bailout of Wholesale Euro Lenders

We consider an extension where there is a partial bailout of euro wholesale lenders

in case of bank default. A fraction baile of obligations to euro wholesale lenders

will be bailed out by the government in period 2 in case of default. Assuming

risk neutrality, the lenders then demand an interest rate ie1 = is + pD(1 − baile).

We vary baile from 0 to 1. When it is 1, there is a complete bailout in case of

default, so that wholesale euro lending becomes risk-free. Figure A8 shows that

this parameter also has no effect on the impact of the dollar liquidity shock on

variables.

It does affect the pre-shock CIP deviation. In the main analysis, where baile =

0, the pre-shock CIP deviation is zero. A higher value of baile implies a larger

pre-shock CIP deviation. It lowers the wholesale euro borrowing rate for banks.

This makes it cheaper to borrow dollars synthetically. The resulting larger demand

for dollar swaps by banks raises the pre-shock CIP deviation.

F.7 Binding Pre-shock Dollar Borrowing Constraint

In the main analysis the dollar borrowing constraint does not strictly bind in the

pre-shock equilibrium, so that ld = 0. We now consider positive values of ld by

raising i$,l0 . As discussed in Appendix B, there is a one-to-one relationship between

ld and i$,l0 . A higher dollar lending rate makes it more attractive for banks to

borrow dollars, which causes the dollar borrowing constraint to bind. By varying

i$,l0 we vary ld in the pre-shock equilibrium from 0 to 0.02.

Raising ld raises the effective pre-shock dollar funding rate, which makes it more

attractive for banks to borrow dollars synthetically. This raises the pre-shock swap

rate and CIP deviation. As we vary ld from 0 to 0.02 the pre-shock CIP deviation

varies from 0 to 100 basis points.3 Nonetheless, Figure A9 shows that the response

of variables to a dollar liquidity shock is again unaffected.

3We also raise u in the pre-shock equilibrium (so far set at 0). The higher swap rate causes

US banks to sell dollar swaps. To equilibrate the swap market, we raise u, so that non-banks

agents buy more dollar swaps. See Appendix B for further details.
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F.8 Mixture of Dollar Liquidity Shocks and Synthetic Dol-

lar Borrowing Shocks

In reality, the two types of dollar funding shocks that we have discussed often occur

in combination. In Figure A10 we consider the following scenario. We continue to

assume a dollar liquidity shock of 15.8%, while at the same time varying ϵu from

0 to 2.

We have seen that synthetic dollar borrowing shocks on their own mainly im-

pact the CIP deviation. They have little effect on the balance sheet and the

probability of default. It is therefore not surprising that when combining the two

shocks, the only variable that is affected is the CIP deviation. The larger the

synthetic dollar borrowing shock that we mix with a given dollar liquidity shock,

the bigger the rise in the CIP deviation.
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